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Abstract
Let E and F be Hermitian vector bundles over a complex manifold X and let g : E →
F be a holomorphic morphism. We prove a Poincaré-Lelong type formula with a
residue term Mg . The currents Mg so obtained have an expected functorial property.
We discuss various applications: If F has a trivial holomorphic subbundle of rank r
outside the analytic set Z , then we get currents with support on Z that represent the
Bott-Chern classes ĉk(E) for k > rank E−r . We also consider Segre and Chern forms
associated with certain singular metrics on E . The multiplicities (Lelong numbers)
of the various components of Mg only depend on the cokernel of the adjoint sheaf
morphism g∗. This leads to a notion of distinguished varieties and Segre numbers of an
arbitrary coherent sheaf, generalizing these notions, in particular the Hilbert-Samuel
multiplicity, in case of an ideal sheaf.
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1 Introduction

Let g be a non-trivial holomorphic (or meromorphic) section of a Hermitian line
bundle L → X , X a complex manifold of dimension n, and let [divg] be the current
of integration associated with the divisor defined by g. The Poincaré-Lelong formula
states that

ddc log |g|2 = [divg] − c1(L), (1.1)
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where c1(L) is the first Chern form associated with the Chern connection on L , i.e.,
c1(L) = (i/2π)�L , where �L is the curvature form. Here and throughout this paper
dc = (i/2π)(∂̄ − ∂); the constant varies in the literature and is chosen here so that
ddc log |ζ1|2 = [ζ1 = 0]. Thus the Bott-Chern class ĉ1(L) determined by L has the
current representative [divg] with support on the zero set Z of g. This reflects the fact
that L is trivial in the set X \ Z .

Various generalizations to sections of, not necessarily holomorphic, higher rank
bundles are found in, e.g., [21, 34], and [5]. In [22, 23] is developed, for a quite
general class of smooth bundle morphisms g : E → F , a technique to express any
characteristic form of E or of F as a sum L + dT , where L is a current with support
on the singular set Z of g and T is locally integrable. It is based on a transgression
that roughly speaking deforms the given connection on E or F so that the associated
characteristic form concentrates on Z .

The aim of this paper is to present variants of (1.1) when g : E → F is a holomor-
phic morphism with equalities modulo ddc-exact terms, and to give some applictions.
In case when E is a trivial line bundle such a result was obtained in [5], using trans-
gression relying on the ideas and results in [13].

In this paper we use a completely different approach that works for E of higher
rank. Let us first consider again a section g of the line bundle L → X . Recall that
c(L) = 1 + c1(L) is the full Chern form and that the Segre form of L is s(L) =
1/c(L) = 1 − c1(L) + c1(L)2 − · · · . If

Mg = s(L)∧[divg] (1.2)

and Wg = s(L) log |g|2, then (1.1) can be reformulated as

ddcWg = Mg + s(L) − 1. (1.3)

For a section g of a Hermitian vector bundle F → X with zero set Z , we introduced
in [3, 4] the closed current current

Mg :=
∞∑

k=0

Mg
k (1.4)

where Mg
k are the residues Mg

k := 1Z [ddc log |g|2]k, k = 0, 1, 2, · · · , of the gener-
alized Monge-Ampère products [ddc log |g|2]k , see Sect. 2.4.

The currents Mg
k are generalized cycles, a notion introduced in [7], see Sect. 2.3. A

generalized cycle μ of codimension k has well-defined integer multiplicities multxμ
at each point x and a unique global decomposition into a (Lelong current of a) cycle
of codimension k, the fixed part, and the moving part; the multiplicities of the latter
one vanish outside an analytic set of codimension ≥ k + 1. In case μ is positive this
is the Lelong numbers and its Siu decomposition of μ, respectively. It was proved in
[6, 7] that multx M

g
k coincide with the so-called Segre numbers of the ideal Jx at x

generated by g, generalizing the Hilbert-Samuel multiplicity of Jx , and that the fixed
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part of Mg
k is the sum (with multiplicities) of the distinguished varieties of the ideal.

See Sect. 10.
Notice that a section g of F is can be considered as a morphism X × C → F .

For an arbitrary holomorphic morphism g : E → F , where E and F are Hermitian
vector bundles over X , we introduce in this paper a current Mg = Mg

0 + · · · + Mg
n ,

which coincides with Mg above when E is trivial. The current Mg has support on
the analytic set Z where g is not injective. Here Mg

k are closed currents of bidegree
(k, k) and in fact generalized cycles. Notice that Im g is a subbundle of F over X \ Z
and thus the associated Segre form s(Im g) is defined there, cf. Sect. 2. Our first main
result is

Theorem 1.1 With the notation above 1X\Z s(Im g) is locally integrable in X and there
is a current Wg with singularities along Z such that

ddcWg = Mg + 1X\Z s(Im g) − s(E). (1.5)

If E is trivial and F is a line bundle, then (1.5) is precisely (1.3). In case E is a line
bundle Theorem 1.1 as well as other results in this paper are readily deduced from [5]
combined with [7], cf. Remark 11.12. The substantial novelty therefore is when E has
higher rank.

Further properties of Wg and Mg are stated in Theorem 4.4. For instance, the
multiplicities multx Mk are non-negative, and independent of the metrics on E and F .
Moreover, Mg satisfy a certain functorial property so that its definition is determined
by the case when g is generically an isomorphism. Then Z has positive codimension
(unless X is a point) and thus 1X\Z s(Im g) = s(F). We have the following direct
generalization of (1.3).

Corollary 1.2 If g : E → F is generically an isomorphism, then

ddcWg = Mg + s(F) − s(E). (1.6)

We have variants of (1.1); notice that c(F)∧Mg is a current with support on Z .

Proposition 1.3 Assume that E is trivial with trivial metric and g is generically injec-
tive. Then 1X\Z c(F/Im g) is a locally integrable closed current in X and there is a
current V g with singularities along Z such that

ddcV g = c(F)∧Mg + 1X\Z c(F/Im g) − c(F). (1.7)

Since ck(F/Im g) = 0 in X \ Z for k > m − r , r = rank E , we get from (1.7):

Corollary 1.4 If g1, . . . , gr are sections of F that are linearly independent outside Z,
then there are currents V g

k such that

ddcV g
k−1 = (c(F)∧Mg)k − ck(F), k > m − r . (1.8)
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The gi define a trivial subbundle F of rank k in X\Z . It is therefore expected that
the Bott-Chern classes ĉk(F), k > m − r , can be represented by currents that have
support on on Z . In case r = 1, Corollary 1.4 appeared in [5], cf. Remark 11.12 below.

We now turn our attention to a slightly different generalization of the Poincaré-
Lelong formula. Assume that g : E → F is a morphism as before and that g has
optimal rank on X\Z0. In this open setwe have the short exact sequence 0 → Ker g →
E → Im g → 0 and hence the (non-isometric) isomorphism a : E/Ker g � Im g.
Therefore there is a smooth formw in X \Z0 such that ddcw = s(Im g)−s(E/Ker g).
We have an extension across Z0:

Theorem 1.5 The natural extensions 1X\Z0s(E/Ker g) and 1X\Z0s(Im g) are locally
integrable and closed. There is a current Ma with support on Z0 and a current Wa

such that

ddcWa = Ma + 1X\Z0s(Im g) − 1X\Z0s(E/Ker g). (1.9)

In Sect. 8 we give an extended version (Theorem 8.1). The current Ma is (at least
locally) a generalized cycle and it turns out that multx Ma

k may be negative.
In Sect. 9 we discuss Chern and Segre forms associated with some singular metrics

on a vector bundle. A notion of distinguished varieties and Segre type numbers of
a general coherent sheaf are discussed in Sect. 10. In case Z = {x} is a point the
number multx M

g
n is equal to the so-called Buchsbaum-Rim multiplicity, [14], see

Remark 10.3.
The plan for the rest of the paper is as follows. In Sect. 2 we have collected material

that is known, except for the regularization in Propositions 2.3 and 2.5. Then we
discuss modifications that admit extensions of certain generically defined subbundles
in Sect. 3. In Sects. 4, 5 and 6 we define Mg and state and prove the main results. The
proofs rely on results from [7] and [37], and are inspired by [31, 32]. A new Siu type
result for generalized cycles, proved in Sect. 7, is crucial for the proof of Theorem 8.1.
In the last section, Sect. 11, we compute various examples that aim to shed light on
the notions and results.

2 Preliminaries

Throughout this paper X is a connected complex manifold of dimension n.

2.1 Singularities of Logarithmic Type

A current W on X is of logarithmic type along the subvariety Z , cf. [11], if W is
smooth in X \ Z , locally integrable in X , and so that the following holds: Each point
on Z has a neighborhoodU such thatW |U is the direct image under a proper mapping
h : Ũ → U

of a smooth form γ in h−1(U \ Z) that locally in Ũ has the form γ =∑
j α j log |τ j |2 + β, where α j , β are smooth forms, α j are closed, and τ j are local

coordinates.
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This requirement is imposed, see, e.g., [11, 38], to make it possible to define mul-
tiplication of v and the Lelong current of another variety intersecting Z properly. In
this paper we use this notion merely to point out that the current in question has in a
certain sense simple singularities.

2.2 Segre and Chern Classes

Assume that π : E → X is a holomorphic vector bundle, let P(E) be its projectiviza-
tion (so that at each point x ∈ X the fiber consists of all lines through the origin in Ex ),
and let p : P(E) → X be the natural submersion. Consider the pullback p∗E → P(E)

and let L = O(−1) ⊂ p∗E be the tautological line bundle, equipped with the induced
Hermitian metric, and Chern form c(L) = 1 + c1(L). Then

s(E) = p∗(1/c(L)) =
∞∑

k=0

(−1)k p∗c1(L)k (2.1)

and

c(E) = 1

s(E)
. (2.2)

Since p is a submersion, s(E) and c(E) are smooth closed forms. It is proved in
[35] that this definition of Chern form of E coincides with the differential-geometric
definition

c(E) = det
(
IE + i

2π
�E

)
, (2.3)

where �E is the curvature tensor associated with the Chern connection.
If h : X ′ → X is a holomorphic mapping, then

s(h∗E) = h∗s(E), c(h∗E) = h∗c(E). (2.4)

If g : E → E ′ is a holomorphic vector bundle isomorphism, then we have an
induced biholomorphic mapping g̃ : P(E) → P(E ′). If L ′ is the tautological line
bundle over P(E ′), then L = g̃∗L ′. If E and E ′ are Hermitian, then there is a smooth
form w such that ddcw = s(E ′) − s(E).

More generally, 0 → S → E → Q → 0 is a short exact sequence of holomorphic
Hermitian vector bundles over X , then, see [13], there is a smooth form v so that

ddcv = c(E) − c(Q)c(S). (2.5)

It follows from (2.2) that we have a similar relation for the Segre forms. In fact, if
w = −s(E)s(Q)s(S)v, then ddcw = s(E) − s(Q)s(S).
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2.3 Generalized Cycles

Let Z(X) be the Z-module of analytic cycles on X ; i.e., locally finite sums

∑
a j Z j ,

where Z j are irreducible subvarieties Z of X . Such a sum can be identified with its
Lelong current

∑
a j [Z j ].

Let τ : W → X be a proper holomorphicmapping, and let γ = ck1(E1) · · · ckρ (Eρ)

be a product of components of Chern forms of Hermitian vector bundles E1, . . . , Eρ

overW . Then τ∗γ is a closed current of order 0 on X . Let GZ(X) be the Z-module of
all locally finite sums of such currents. If we identify cycles with their Lelong currents
we get a natural inclusion Z(X) ⊂ GZ(X). This module was introduced in [7] and
all properties stated here can be found there with proofs.

We have a natural decomposition

GZ(X) =
dim X∑

k=0

GZk(X),

where GZk(X) is the elements of dimension k; that is, of bidegree (n − k, n − k).
Each generalized cycle has a well-defined Zariski-support. However the support of μ

can have strictly larger dimension than the dimension of μ, cf. Example 2.1.
Given any analytic variety in X we have the natural restriction operator

1V : GZk(X) → GZk(X), μ �→ 1Vμ.

There is a notion of irreducibility and any μ ∈ GZk(X) has a unique decomposi-
tion into irreducible terms. Moreover, 1Vμ is precisely the sum of the irreducible
components of μ whose Zariski-supports are contained in V .

If γ is a component of a Chern form on X , then we have the mapping

μ �→ γ∧μ (2.6)

on GZ(X).
If h : X → Y is a proper mapping, then we have a natural mapping h∗ : GZ(X) →

GZ(Y ), which is consistent with the usual push-forward mapping of cycles. One can
define GZ(Z) just as well for a non-smooth reduced analytic space Z . If i : Z → X is
an inclusion, then the image of i∗ is precisely the elements in GZ(X) that has support
on i∗Z . It is therefore often natural to think of generalized cycles as purely geometric
objects on X and suppress the fact that they formally are currents.

Ifμ ∈ GZk(X), then for eachpoint x ∈ X there is awell-defined integermultxμ, the
multiplicity ofμ at x . Ifμ is effective, i.e., a positive current, it is precisely the Lelong
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number of μ at x . It coincides with the usual notion of multiplicity if μ is an analytic
cycle. If μ is in GZ(Z) and i : Z → X is an inclusion, then multxμ = multi(x)i∗μ.

Example 2.1 If X = P
2[x0,x1,x2] then μ = ddc log(|x1|2 + |x2|2) is in GZ(P2). It is

smooth except at p = [1, 0, 0], and multxμ = 1 at x = p and 0 elsewhere. Moreover,
μ is irreducible, has dimension 1, and its Zariski-support is X .

We say that β is a B-form on W if it is a component of the form c(E) − c(S)c(Q),
where 0 → S → E → Q is a short exact sequence of Hermitian vector bundles on
W . We say that μ ∼ 0 in GZk(X) if it is a locally finite sum of currents of the form
τ∗(β∧γ ), where τ : W → X is proper, β is a B-form and γ is a product of components
of Chern forms on W .

We let Bk(X) = GZk(X)/ ∼ and B(X) = ⊕∞
k=0Bk(X). It turns out that Z(X) is a

submodule of B(X) as well. The other properties mentioned above regarding GZ(X)

still hold forB(X). Themost important one in this paper is that themultiplicitymultxμ
of μ ∈ GZk(X) only depends on the class of μ in Bk(X).

Lemma 2.2 If γ has positive bidegree, then, cf. (2.6), multx (γ∧μ) = 0.

Any μ is in GZn−k(X) has a unique decomposition

μ =
∑

j

β j [Z j ] + N , (2.7)

where Z j have codimension k and multx N vanishes outside an analytic set of codi-
mension ≥ k + 1. In case μ is effective, i.e., the (k, k)-current μ is a positive, then
(2.7) is the Siu decomposition of μ. For a general μ, see Theorem 7.1 below. If μ′
is another representative of the same class in Bn−k(X), then the Lelong current in
its decomposition (2.7) is the same whereas the term N may be different. As already
mentioned in the introduction the Lelong current and N are referred to as the fixed
and moving part, respectively, of μ.

2.4 GeneralizedMonge-Ampère Products

Let us assume that X is connected and let φ be a section, with zero set Z , of the
Hermitian vector bundle F → X . One can recursively define closed currents of order
zero,

[ddc log |φ|2]0 = 1, [ddc log |φ|2]k
= ddc

(
log |φ|21X\Z [ddc log |φ|2]k−1), k = 0, 1, 2, . . . (2.8)

For each k ≥ 0,

Mφ
k := 1Z [ddc log |φ|2]k

is a closed current of order 0 of bidegree (k, k) with support on Z so it vanishes
if k ≤ codim Z . Thus (2.8) is the classical Bedford-Taylor-Demailly product for
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k ≤ codim Z . The definition for larger k might look artificial, but indeed, e.g., [4,
Proposition 4.4],

[ddc log |φ|2]k = lim
ε→0

(
ddc log(|φ|2 + ε)

)k
, k = 0, 1, 2, . . . . (2.9)

For future reference we sketch a proof for that this definition makes sense: If φ

is identically 0 then Mφ = Mφ
0 = 1Z = 1. Let us assume that Z has positive

codimension. Let π : X̃ → X be a smooth modification such that the sheaf generated
by the section π∗φ of π∗F → X̃ is principal, and generated by the section φ0 of a
line bundle L → X̃ . Then1

π∗φ = φ0φ′,

where φ′ is a section of L∗ ⊗ π∗F . Since L → π∗F, v �→ vφ′, is injective, L is a
subbundle of π∗F . If we equip L with the induced metric, then |φ0| = |π∗φ| and

ddc log |π∗φ|2 = ddc log |φ0|2 = [D] − c1(L) = [D] + s1(L) (2.10)

by (1.1). In particular,

1X ′\|D|ddc log |π∗φ|2 = s1(L).

Let

〈ddc log |φ|2〉 := 1X\Z [ddc log |φ|2] = π∗s1(L), (2.11)

log |φ|2〈ddc log |φ|2〉 = π∗
(
log |π∗φ|2s1(L)

)
, (2.12)

[ddc log |φ|2] = π∗
([D]∧s1(L)−1 + s1(L)

)
(2.13)

and

Mφ
 = 1Z [ddc log |φ|2] = π∗

([D]∧s1(L)−1). (2.14)

It follows that the currents in (2.11) and (2.12) are locally integrable. Moreover, since
|D| = π−1Z (|D| is the Zariski-support of D), it follows that

ddc(log |φ|2〈ddc log |φ|2〉−1) = [ddc log |φ|2]
= Mφ

 + 〈ddc log |φ|2〉,  = 1, 2, . . . . (2.15)

Thus the recursion (2.8)makes sense andproduces precisely the currents 〈ddc log |φ|2〉,
[ddc log |φ|2] andMφ

 . From (2.11), (2.13) and (2.14) we see that they are generalized
cycles on X .

1 Such a smooth modification exists by Hironaka’s theorem. The argument here works just as well if one
takes π as the normalization of the blow up of X along the ideal sheaf defined by φ.
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We let Mφ = Mφ
0 + Mφ

1 + · · · . If π : X̃ → X is any modification, then

π∗Mπ∗φ = Mφ, (2.16)

see [7]. Furthermore, if φ̂ is a section of aHermitian bundle F̂ → X such that |φ̂| ∼ |φ|
locally on X , then M φ̂ and Mφ define the same element in B(X). In particular, F̂ can
be F but with another Hermitian metric.

For a thorough discussion of regularizations of generalized Monge-Ampère prod-
ucts, see, e.g., [33]. We will need the following variant that, as far as we know, has not
appeared before.

Proposition 2.3 Let χ(t) be a smooth function on R that is 0 for t < 1/2 and 1 for
t > 3/4 and let χε = χ(|ϕ|2/ε), where ϕ is a section of a vector bundle (tuple
of holomorphic functions) with zero set V of positive codimension in X. Then the
currents2

T φ,ε
V = (1 − χε)1Z + ∂̄χε∧∂ log |φ|2

2π i
∧

∞∑

=0

〈ddc log |φ|2〉 (2.17)

tend to 1V Mφ when ε → 0.

If V contains Z then T φ,ε
V are smooth and tend to Mφ .

Proof It is clear that (1 − χε)1Z → 1V 1Z = 1V M
φ
0 . Let

T =
∞∑

=0

〈ddc log |φ|2〉.

We have

∂̄χε∧∂ log |φ|2(2π i)−1∧T = ∂̄
(
χε∂ log |φ|2(2π i)−1∧T

)

−χε∧∂̄∂ log |φ|2(2π i)−1∧T . (2.18)

In view of (2.12)

χε∂ log |φ|2∧T → ∂ log |φ|2∧T ,

and hence the first term on the right hand side of (2.18), cf. (2.15), tends to

∞∑

=1

[ddc log |φ|2],

2 The first term on the right hand side of (2.17) vanishes unless φ ≡ 0.
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whereas the second term tends to

1X\V
∞∑

=1

[ddc log |φ|2].

Now (2.17) follows since codim V > 0 and 〈ddc log |φ|2〉 is locally integrable, so
that

1V [ddc log |φ|2] = 1V M
φ
 + 1V 〈ddc log |φ|2〉 = 1V M

φ
 .

��

2.5 Twisting with a Line Bundle

We keep the notation from the previous subsection. Let S → X be a line bundle
(with no specified metric) and assume that ψ is a section of F ⊗ S∗. If s is a local
non-vanishing section of S we let |ψ |◦ = |sψ |. Then ddc log |ψ |◦ := ddc log |sψ |
is independent of the choice of s and hence a global current on X . In this way we
define the global currents [ddc log |ψ |2◦] := [ddc log |sψ |2], cf. Remark 2.6 below,
and M̊ψ := Msψ.

Lemma 2.4 If π : X̃ → X is a modification, then

π∗M̊π∗ψ = M̊ψ. (2.19)

The current M̊ψ is an element in GZ(X). If ψ̂ is a section of F̂ ⊗ S∗, where F̂ → X

is another Hermitian vector bundle and |ψ̂ | ∼ |ψ |, then M̊ ψ̂ defines the same class
in B(X).

Notice that π∗ψ is a section of π∗F ⊗ π∗S∗; we define M̊π∗ψ by suppressing
(π∗S)∗.

Proof Since locally M̊ψ = Msψ , where s is a local non-vanishing section of S, by
(2.16)

π∗M̊π∗ψ = π∗Mπ∗sψ = Msψ = M̊ψ,

and thus (2.19) holds.
We now choose3 π : X̃ → X such that π∗ψ is principal, as in Sect. 2.4. Then

π∗ψ = ψ0ψ ′, where ψ ′ is a non-vanishing section of π∗F ⊗ L∗ ⊗ π∗S∗. Then
π∗(sψ) = (π∗s)ψ0ψ ′. As in Sect. 2.4 we see that s1(L) = ddc log |(π∗s)ψ ′|2 =
ddc log |ψ ′|◦, where the ◦ means that π∗S∗ is suppressed, so that

M̊π∗ψ = [D]∧s(L). (2.20)

3 Since the case ψ ≡ 0 is trivial, we may assume that ψ is not vanishing identically.
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Hence

M̊ψ = π∗M̊π∗ψ = π∗([D]∧s(L)) (2.21)

is an element in GZ(X).
If |ψ̂ | ∼ |ψ |, then π∗ψ̂ = ψ0ψ̂ ′ and therefore, cf. (2.20), M̊π∗ψ̂ = [D]∧ŝ(L),

where ŝ(L) denotes the Segre form ofLwith respect to the metric induced by F̂ . Thus

M̊π∗ψ̂ and M̊π∗ψ are in the same class in B(X̃), and so the last part follows. ��
We have the following variant of Proposition 2.3. Let χε be a sequence as in this

proposition that tends to 1X\V .

Proposition 2.5 Assume that φ is a section of F ⊗ S∗ and that α is a non-vanishing
section of H ⊗ S∗ for some Hermitian vector bundle H → X. Then the currents

T̊ φ,ε
V = (1 − χε)1Z + ∂̄χε∧∂ log(|φ|/|α|)2

2π i
∧

∞∑

=0

〈ddc log |φ|2◦〉 (2.22)

tend to 1V M̊φ when ε → 0.

Here |φ|/|α| is the global function defined locally as |sφ|/|sα|, where s is any local
non-vanishing section of S∗.

Proof Given a local section s we have, with the notation in Proposition 2.3, that

2π i T̊ φ,ε
V = 2π iT sφ,ε

V − ∂̄χε∧∂ log |sα|2∧
∞∑

=0

〈ddc log |φ|2◦〉. (2.23)

Since ∂ log |sα|2 is smooth, letting T denote the last sum, the last term in (2.23) is
equal to

∂̄
(
χε∂ log |sα|2∧T

) − χε∂̄∂ log |sα|2∧T

which tends to ∂̄∂ log |sα|2∧T − ∂̄∂ log |sα|2∧T = 0, since V has positive codimen-
sion so that 1V T = 0. By Proposition 2.3 thus T̊ φ,ε

V = T sφ,ε
V + o(1) → 1V Msφ =

1V M̊φ . ��
Remark 2.6 Assume that we have a (strictly positive) Hermitian metric on S∗ with
metric form ω. Then ω = ddc log |s|2 for any non-vanishing local section of S. Now
|ψ | has a global meaning, |sψ |2 = |s|2|ψ |2, and ddc log |ψ |2◦ = ddc log |sψ |2 =
ddc log |ψ |2 + ω. Thus

ddc log |ψ |2◦ = ddcu + ω, u = log |ψ |2. (2.24)

If we assume that E is a trivial bundle with a trivial metric, then ddc log |ψ |2◦ ≥ 0
and by (2.24) therefore u is quasi-psh with respect to ω. The currents [ddcu + ω]k
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and their residues 1Z [ddcu + ω]k were introduced for arbitrary k and studied in [8],
and further in, e.g., [12]. Here u can be any ω-psh function with analytic singularities.
Analogues for other classes of ω-psh functions are studied in [9].

2.6 Regular Embeddings

Let g be a section of F → X and let J be the ideal sheaf generated by g. We have a
non-reduced subspace ι : ZJ → X with structure sheaf OZJ = XO/J . If the zero
set of J has codimension κ , and in addition J is locally generated by κ holomorphic
functions, then one says that ι is a regular embedding. In this case, ZJ has a well-
defined normal bundle N over Z and g defines a canonical embedding of N in F . If
we equip N with the induced metric, then we have a well-defined Segre form s(N )

over Z . Let [ZJ ] denote the Lelong current of the fundamental class of ZJ . Then
[ZJ ] = ∑

j a j [Z j ], where Z j are the irreducible components of Z and a j are positive
integers. We have the generalization

Mg = s(N )∧[ZJ ], (2.25)

of (1.2), see [7, Proposition 1.5].
If ψ is a section of F ⊗ S∗ as in Sect. 2.5 that defines a regular embedding, then

we have an embedding N ⊗ S → F obtained from the embedding N → F ⊗ S∗
induced by ψ . Now

M̊ψ = s(N ⊗ S)∧[ZJ ]. (2.26)

In fact, if s is a local non-vanishing section of S, then by (2.25), M̊ψ = Msψ =
s(N ⊗ S)∧[ZJ ], and so (2.26) follows.

2.7 Rank of a Holomorphic Mapping

Assume that W is irreducible and f : W → Z is any holomorphic mapping. Then
the rank of f at y, dimW − dim f −1( f (y)), is lower semi-continuous on W and its
maximum, rank f , is attained on a dense open subset of Wreg , see, e.g., [19, II, Sect.
8.1]. We have, [19, Corollary II.8.6],

Proposition 2.7 If f is surjective, then rank f = dim Z.

3 Extensions of Subbundles

If g : E → F is a morphism on X , then outside an analytic subvariety Z0 of positive
codimension g has constant and optimal rank, and thus Im g and Ker g are subbundles
of F and E , respectively, in X \ Z0 (recall that X is always assumed to be connected).

Lemma 3.1 Let S = ⊕r
j=1S j be a direct sum of line bundles S j → X. If g : E → S is

a morphism that has optimal rank in X \ Z0, then there is a modification π : X̃ → X
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such that Ker π∗g has an extension across π−1Z0 as a holomorphic subbundle of
π∗E.

Since Im g∗ = (Ker g)⊥ the lemma can be rephrased: If g∗ : S∗ → E∗ has optimal
rank in X \Z0, then the pullback to X̃ \π−1Z0 of the subbundle Im g∗ has an extension
to X̃ .

Proof Let us assume that the optimal rank is ρ. Let g j : E → S j , j = 1, 2, . . . and let
i1 be the first index such that gi1 is not identically 0. Letπ1 : X1 → X be amodification
such that π∗

1 gi1 = g01g
′
1, where g01 is a section of a line bundle L1 → X1 and g′

1 is
a non-vanishing section of π∗

1 E ⊗ L∗
1. Then N1 := Ker g′

1 is a subbundle of π∗
1 E of

codimension 1 over X1. Let now i2 > i1 be the first index so that π∗
1 gi2 |N1 : N1 → Si2

does not vanishing identically. Then there is a a modification π2 : X2 → X1 such that
π∗
2π∗

1 gi2 = g02g
′
2, where g

′
2 is non-vanishing. Hence N2 := Ker g′

2 is a subbundle of
π∗
2π∗

1 E of codimension 2 over X2. Proceeding in this way we end up with a subbundle
Nρ of π∗E over X̃ = Xρ , where π = π1 ◦· · · πρ : X̃ → X . In the Zariski-open subset
of X̃ where π is a biholomorphism, Nρ = ∩ jKer π∗g j = Ker π∗g and hence Nρ is
the desired extension to X̃ . ��
Proposition 3.2 Assume that E, F are Hermitian bundles and g : E → F has optimal
rank in X \Z0. Then the natural extensions from X \Z0 to X of s(E/Ker g) and s(Im g)
as well as of c(E/Ker g) and c(Im g) are locally integrable in X.

Ifπ : X̃ → X is amodification, then it is generically one-to-one and henceπ∗1 = 1.
It follows that π∗π∗a = a if a is a smooth form on X .

Proof In a neighborhood U of any given point x ∈ X both E and F are trivial and
by Lemma 3.1 there is a modification π : Ũ → U such that Im π∗g and Ker π∗g
have extensions from Ũ\π−1Z0 to Ũ . Since these extensions are subbundles of
p∗F and p∗E , respectively, they inherit Hermitian metrics. In Ũ \ π−1Z0 we have
π∗s(E/Ker g) = s(π∗E/Ker π∗g), and thus

s(E/Ker g) = π∗s(π∗E/Ker π∗g) (3.1)

in U \ Z0. Since the Hermitian bundle π∗E/Ker π∗g has an extension to Ũ ,
s(π∗E/Ker π∗g) has a smooth extension to Ũ , in particular it is locally integrable, and
hence π∗s(π∗E/Ker π∗g) is locally integrable inU . In view of (3.1) it coincides with
s(E/Ker g) inU \ Z0 and since Z0 is a set of measure zero, thus 1U\Z0s(E/Ker g) is
locally integrable. The other statements are proved in the same way. ��
Lemma 3.3 If X is compact and projective and g : E → F is any morphism, then
there is a modification π : X̃ → X such that both Ker π∗g and Im π∗g have bundle
extensions to X̃ .

Proof Let L → X be an ample line. Since F = Ker(O(E)
g→ O(F)) is a coherent

sheaf, and X is compact, F ⊗ Lκ is generated by a finite number of global sections
if κ is large enough, see, e.g., [30, Theorem 1.2.6]. If S j = L−κ and S = ⊕r

1S j , we

therefore have a morphism h so thatO(S)
h→ O(E)

g→ O(F) is an exact sequence of
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sheaves. It follows that S
h→ E

g→ F is a generically exact complex of vector bundles.
By Lemma 3.1 there is a modification such that Im π∗h has a bundle extension to X̃ .
Since it coincides generically with Ker π∗g, therefore Ker π∗g has the same extension
to X̃ .

In the same way we can find a similar bundle S∗ and a homomorfism f such that

S∗ f→ F∗ g→ E∗ is generically exact. Hence E
g→ F

f→ S is generically exact and
it follows from Lemma 3.1 that there is a further modification such that Ker π∗ f and
hence Im π∗g have bundle extensions to X̃ . ��

Remark 3.4 Following the proof of Lemma 3.1 we can produce a local holomorphic
frame for the extension of Ker g. To simplify notation we suppress all π j . We can
assume that all S j are trivial so that g j are just sections of E∗. Moreover, we can
assume that r = ρ, since otherwise we delete ’unnecessary’ g∗

j from the beginning.

Now g1 = g01g
′
1, where g

′
1 is non-vanishing and hence defines a subbundle of E∗ of

rank 1, or equivalently a subbundle N1 of E of codimension 1. Locally we can find
a section e∗

1 of E∗ that is parallell with g′
1 so that g1 = α11e∗

1. By assumption the
restriction of g2 to N1 does not vanish identically. Thus after a further modification
g2 = g02g

′
2 where g′

2 is non-vanishing on N1. We can choose a local section e∗
2 of

E∗ such that its image in N1 is parallell with g′
2. It follows that g2 = α21e∗

1 + α22e∗
2.

Proceeding in this way we get linearly independent sections e∗
1, . . . , e

∗
r of E∗ such

that N is subbundle of E that annihilates all of them. Moreover, for  = 1, . . . , r ,

g = α1e
∗
1 + · · · + αe

∗
 ,

where α does not vanish identically. Notice that det g = g1∧ . . . ∧gr =
α11 · · · αrr e∗

1∧ . . . ∧e∗
r . If we extend e∗

j to a local frame e∗
1, . . . , e

∗
m for E∗ and let

e1, . . . , em be he dual frame for E , then N is spanned by er+1, . . . , en .

4 Definition ofMg and theMain Result Theorem 4.4

First assume that E is a line bundle so that g is a section of F ⊗ E∗. We define

Mg = s(E)∧
∞∑

=0

1Z [ddc log |g|2◦], (4.1)

where |g|◦ means that we suppress E∗ so that locally ddc log |g|2◦ = ddc log |ag|2 for
any non-vanishing section a of E , cf. Sect. 2.5.

From now on we assume that r = rank E ≥ 2. Let P(E) be the projectivization of
E , let p : P(E) → X be the natural projection, and let L ⊂ p∗E be the tautological
bundle, cf. Sect. 2.2. Notice that a local section σ of L has the form

σ = s(x, α)α (4.2)
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at (x, [α]), α ∈ Ex , where s(x, α) is a holomorphic function on E \ {0}, 0 denoting
the zero section, that is −1-homogeneous in α ∈ Ex\{0}. By (4.2) we can identify
sections σ of L with such s(x, α), and thus consider α as a section of p∗E ⊗ L∗.
Therefore, cf. Sect. 2.5, ddc log |α|2◦ := ddc log |sα|2 is a global form on P(E), and in
fact equal to ddc log |σ |2 = −c1(L), cf. (1.1). Thus c(L) = 1 − ddc log |α|2◦ so that

s(L) =
∞∑

=0

ω
α, ωα = ddc log |α|2◦. (4.3)

Since g induces a morphism p∗E → p∗F , in particular it defines a morphism
L → p∗F . A local section of L , represented by the−1-homogeneous function s(x, α)

as above, is mapped to the well-defined section s(x, α)g(x)α of p∗F . Thus

G(x, α) := g(x)α (4.4)

is a holomorphic section of p∗F ⊗ L∗ → P(E).
Let Z ′ be the zero set of G on P(E). As before, let Z be the set where g is not

injective and let Z0 be the set where g does not have optimal rank. If g is generically
injective, then Z = Z0 and Z ′ ⊂ p−1Z0. If g is not generically injective, then Z = X
and p(Z ′) = X . If N = Ker g, then P(N ) is a submanifold of P(E) in p−1(X \ Z0)

and

Z ′ ∩ p−1(X \ Z0) = P(N ) ∩ p−1(X \ Z0).

Letting |gα|◦ = |G|◦ = |sG| = |sgα|, where s is a local non-vanishing section of
L , we have, following Sect. 2.5, the generalized Monge-Ampère powers

[ddc log |gα|2◦],  = 0, 1, 2, . . .

and their residues M̊gα
 = 1Z ′ [ddc log |gα|2◦],  = 0, 1, 2, . . . . Locally on P(E)

thus

M̊gα = Msgα. (4.5)

Definition 4.1 We define Mg = p∗
(
s(L)∧M̊gα

)
.

Thus Mg = Mg
0 + Mg

1 + · · · + Mg
n , where Mg

k = p∗(s(L)∧M̊gα)k+r−1 are closed
(k, k)-currents with support on Z . Notice that M̊gα and s(L) only depend on the
metrics on F and E , respectively.

Example 4.2 Assume that E and F are trivial and have trivial metrics. We can assume
that E = C

r
α × X , F = X × C

m , with the Euclidian metric on C
r
α and C

m . Then
P(E) = X × P(Cr

α) and ωα = ddc log |α|2◦ is the usual Fubini-Study metric form
on P(Cr

α); in particular it is a positive form. Thus s(L), cf. (4.3), is independent of
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x . Moreover, locally, for any non-vanishing holomorphic −1-homogeneous s, e.g.,
s = 1/α j in the open set α j �= 0,

[ddc log |gα|2◦] = [ddc log |sgα|2]

is a positive current. Since ωα is a positive (1, 1)-form therefore, cf. (4.3), s(L)∧M̊gα

is a positive current on P(E), and thus Mg is a positive current on X .

Definition 4.3 We say that the morphisms g : E → F and g′ : E → F ′ are compara-
ble if locally in X

|g(x)α| ∼ |g′(x)α|, α ∈ Ex .

In case r = 1, comparability means that the entries in g and g′, respectively,
generate ideal sheaves with the same integral closure,

Theorem 4.4 Let E and F be Hermitian vector bundles over X and g : E → F a
holomorphic morphism. The following holds:

(o) The currents Mg
k are generalized cycles, smooth in the Zariski-open set X \ Z0

where g has optimal rank, and positive on X if E and F have trivial metrics.
(i) The natural extension 1X\Z s(Im g) to X of s(Im g) is locally integrable and

closed, and there is a current Wg with singularities of logarithmic type along
Z0 such that

ddcWg = Mg + 1X\Z s(Im g) − s(E). (4.6)

(ii) If i : X ′ → X is an open subset, then Mi∗g is the restriction of Mg to X ′.
(iii) If π : X̃ → X is a modification, then π∗Mπ∗g = Mg.

(iv) If i : F → F ′ is a subbundle with the metric inherited from F ′, then

Mi◦g = Mg. (4.7)

(v) If g′ : E ′ → F ′ is pointwise injective, then

Mg⊕g′ = s(Im g′)∧Mg. (4.8)

(vi) The multiplicities multx M
g
k are non-negative integers.

(vii) If g and g′ are comparable, then multx M
g
k = multx M

g′
k for each k and each

point x.
(viii) For each k we have a unique decomposition

Mg
k =

∑

j

βk
j [Zk

j ] + Ng
k =: Sgk + Ng

k , (4.9)
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where Zk
j are irreducible subvarieties of codimension k, β j

k are positive inte-

gers, and Ng
k is a closed (k, k)-current with support on Z whose multiplicities

vanish outside a variety of codimension ≥ k + 1. Moreover, ∪ jk Zk
j = Z.

Notice that Z has positive codimension if and only if g is generically injective. If
g is not generically injective, thus ddcWg = Mg − s(E), and Mg is smooth in the
open set X \ Z0 where g has optimal rank, see part (o) and Proposition 5.3.
By the dimension principle for normal currents, Mg

k = 0 if k < codim Z .
If g is generically injective, then E and Im g are isomorphic in X \ Z so that s(E)

and s(Im g) define the same Bott-Chern (cohomology) class there. Equality (4.6) is
an extension across Z . If g is not generically injective, then Mg is a representative of
the Bott-Chern cohomology class ŝ(E).
A variant of (iii) holds for a general proper mapping h, see Proposition 6.1. Regard-
ing (v), notice that Im (g ⊕ g′) = Im g ⊕ Im g′ in X \ Z and s(Im g ⊕ Im g′) =
s(Im g)∧s(Im g′), and thus (4.8) is consistent with (4.6).
Parts (vii) and (viii) of Theorem 4.4 imply that if g and g′ are comparable, then Mg

k

and Mg′
k have the same fixed part.

5 Proofs of Theorem 4.4 and Proposition 1.3

First we need some preparations. We keep the notation from Sect. 4. In particular,
recall that N = Ker g over X \ Z0.

Lemma 5.1 Assume that g is not generically injective. Then the section G generates
the ideal defining P(N ) in P(E)\p−1Z0.

Proof Locally in X \ Z0 we can choose a trivialization E = U × C
r
α such that

N = {α1 = · · · = αρ = 0}. Let α = (α′, α′′) = (α1, . . . αρ, α′′). Then α′ �→
g(α′, α′′) = g(α′, 0) = g′α′ is injective, and hence there is h such that hg′α′ = α′.
Thus 〈g′α′〉 = 〈α′〉 so that gα = g′α′ generates N . Now the lemma follows. ��

By the lemmaG defines a regular embedding inP(E)\p−1Z0 and thus, cf. Sect. 2.6,
it induces an embedding ι : NP(N ) → p∗F ⊗ L∗ and hence a mapping ι : NP(N ) →
p∗Im g ⊗ L∗ on P(N ). For dimension reasons ι and hence the induced mapping

NP(N ) ⊗ L � p∗Im g (5.1)

must be isomorphisms on P(N ) \ p−1Z0.

Remark 5.2 One can establish the isomorphism (5.1) in a more direct way. Recalling
that TP(E) = p∗E/[α] and similarly TP(N ) = p∗N/[α] we have

NP(N ) = TP(E)/TP(N ) = p∗E/[α]/p∗N/[α].

Since (x, γ ) �→ g(x)γ ∈ F⊗L∗ is injective on p∗E/[α]/p∗N/[α], the isomorphism
follows.
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We conclude that

s(NP(N ) ⊗ L) = s(p∗Im g) = p∗s(Im g)

on P(N ) \ p−1Z0. From (2.26) we have the representation

M̊G = p∗s(Im g)∧[P(N )]. (5.2)

Let p′ : P(N ) → X be the natural projection. Then by (5.2),

Mg = p∗
(
s(L)∧M̊G) = p∗(s(L)∧p∗s(Im g)∧[P(N )])

= s(Im g)∧p∗
(
s(L)∧[P(N )]) = s(Im g)∧p′∗s(L) = s(Im g)∧s(N )

on X \ Z0. The last equality holds since the restriction of s(L) to P(N ) is equal to
s(L ′) where L ′ is the tautological line bundle on P(N ) with the metric inherited from
E .

Proposition 5.3 Assume that g is not generically injective. In X \ Z0 we have that
Mg = s(Im g)∧s(N ).

We now turn our attention to regularizations of Mg . To begin with we apply Propo-
sition 2.5 to M̊gα with V = Z ′. Notice that |gα|2/|α|2 is a global function on P(E)

with zero set Z ′ so we can take χε = χ(|gα|2/ε|α|2). Also notice that gα is a section
of p∗F ⊗ L∗ and that α is a non-vanishing section α of p∗E ⊗ L∗. By Proposition 2.5
the smooth forms

1 − χε + ∂̄χε∧∂ log(|gα|/|α|)2
2π i

∧
∞∑

=0

〈ddc log |gα|2◦〉

on P(E) tend to M̊gα . Since p : P(E) → X is a submersion we get

Proposition 5.4 With the notation above the forms4

Mg,ε := p∗
(
s(L)∧(

1 − χε + ∂̄χε∧∂ log(|gα|/|α|)2
2π i

∧
∞∑

=0

〈ddc log |gα|2◦〉
))

(5.3)

are smooth on X and tend to Mg when ε → 0.

Let us now assume that g : E → F is generically injective. That is, Z = Z0 and
p(Z ′) = Z0. Then p−1Z has positive codimension inP(E) so we can take V = p−1Z
in Proposition 2.5. Moreover, Z is the zero set of the global section ϕ = det g of
�r E∗ ⊗ �r F , where r = dim E . In local frames for E and F it is the tuple of all
r × r minors of the associated matrix. Let χε = χ(| det g|2/ε), and for simplicity let
us write χε also for p∗χε .

4 The term 1 − χε can be omitted unless g ≡ 0.
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Proposition 5.5 Assume that g is generically injective and χε = χ(| det g|2/ε). For
each ε > 0

Mg,ε := p∗
(
s(L)∧∂̄χε∧∂ log (|gα|/|α|)2

2π i
∧

∞∑

=0

〈ddc log |gα|2◦〉
)

(5.4)

is a smooth forms on X that vanishes in a neighborhood of Z = Z0, and the sequence
tends to Mg when ε → 0.

Remark 5.6 It follows from Proposition 2.5 that the currents in (5.4) tend to 1Z0M
g ,

provided that g is not identically 0, if we choose χε that converges to 1X\Z0 . If the
optimal rank of g is ρ we can take ϕ as the ρ-determinant of g. Still eachMg,ε vanishes
in a neighborhood of Z0 but it is not smooth in general.

5.1 Proof of (o) and (i) of Theorem 4.4

By Proposition 5.3 Mg is smooth in X \ Z0. Lemma 2.4 claims that M̊gα is an
element in GZ(P(E)) and, cf. Sect. 2.3, therefore s(L)∧M̊gα is in GZ(P(E)). Since
p : P(E) → X is proper, cf. Definition 4.1, Mg

k = p∗
(
(s(L)∧M̊gα)k+r−1

)
is in

GZn−k(X) for k = 0, 1, 2, . . .. If the metrics on E and F are trivial, then Mg is
positive, cf. Example 4.2. Thus (o) holds.

If g ≡ 0, then Z = X and Mg = s(E), and so (i) is trivial. Let us therefore assume
that g is not identically 0. We first consider the case when E is a line bundle so that
g is a section of F ⊗ E∗. Let a be a local non-vanishing section of E . In X \ Z then
ga is a non-vanishing section of the line bundle Im g. Therefore the locally integrable
currents, cf. Sect. 4,

〈ddc log |ga|2〉,
∞∑

=0

〈ddc log |ga|2〉,

are equal to s1(Im g) and s(Im g), respectively in X \ Z . Moreover, cf. Sect. 4,

wg := log(|ga|2/|a|2)s(E)∧1X\Z s(Im g)

is locally integrable in X . In X \ Z we have ddc log(|ga|2/|a|2) = s1(Im g) − s1(E).

Thus

1X\Zddcwg = 1X\Z (s1(Im g) − s1(E))
1

1 − s1(E)

1

1 − s1(Im g)
=

1X\Z
( 1

1 − s1(Im g)
− 1

1 − s1(E)

)
= 1X\Z s(Im g) − s(E) (5.5)

whereas

1Zdd
cwg =

123



   25 Page 20 of 43 M. Andersson

s(E)∧
∞∑

=0

1Zdd
c(log(|ga|2〈ddc log |ga|2〉) = s(E)∧1Z

∞∑

=1

[ddc log |ga|2] = Mg,

(5.6)

cf. (4.1), since s(E) is smooth and closed and

1Zddc
(
log |a|2〈ddc log |ga|2〉) = s1(E)1Z 〈ddc log |ga|2〉 = 0.

Part (i) of Theorem 4.4 now follows from (5.5) and (5.6) in case rank E = 1.
Let us now assume that r = rank E ≥ 2. We keep the notation from Sect. 4. Let

p′ : P(F) → X and let L ′ be the tautological line bundle in (p′)∗F → P(F). Notice
that g induces a holomorphic mapping g̃ : (P(E)\Z ′) → P(F) and so g̃∗L ′ is a well-
defined line bundle over P(E) \ Z ′. Moreover p = p′ ◦ g̃. From now on we write g
rather that g̃ for notational simplicity. If s′ is a section of L ′ then s = g∗s′ is a section
of L . Therefore, since g(x, [α]) = (x, [g(x)α]), letting if β denote elements in F

g∗s1(L ′) = g∗ddc log |β|2◦ = g∗ddc log |βs′|2 = ddc log |gαs|2 = ddc log |gα|2◦.

In view of (4.3) it is natural to introduce the locally integrable form

g∗s(L ′) :=
∞∑

=0

1P(E)\Z ′ [ddc log |gα|2◦] =
∞∑

=0

〈ddc log |gα|2◦〉. (5.7)

on P(E).

Lemma 5.7 We have that

p∗g∗s(L ′) = 1X\Z s(Im g). (5.8)

Proof First assume that g is generically injective. Then p−1Z has positive codimension
in P(E) and therefore 1p−1Z g

∗s(L ′) = 0. Thus it is enough to prove (5.8) in X \
Z . There g : E → Im g is an isomorphism and hence g : P(E) → P(Im g) is a
biholomorphism and so g∗ = g−1∗ . Moreover, the restriction of L ′ → P(F) toP(Im g)
is the tautological line bundle overP(Im g); let us denote this restriction by L ′. Noticing
that p′ = pg−1 we get

p∗g∗s(L ′) = p∗g−1∗ s(L ′) = (pg−1)∗s(L ′) = (p′)∗s(L ′) = s(Im g).

We now assume that the generic rank of g is < rank E . Then Z = X and so the
right hand side of (5.8) vanishes on X . We must ensure that the left hand side vanishes
as well. Since g∗s(L ′) is locally integrable on P(E), p∗g∗s(L ′) is locally integrable
on X and thus it is enough to see that it vanishes on X \ Z0. There Ker g is a subbundle
of E of positive dimension. Let us choose a local frame e1, . . . , er−1, er for E so that
er belongs to Ker g. Then E = X × C

r
α , where α = α1e1 + · · · + αr−1er−1 + αr er .
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Clearly gα = g(α1e1+· · ·+αr−1er−1). In a neighborhood of a point on P(E)where,
say, αr−1 �= 0, and gα �= 0, we have

ddc log |gα|2 = ddc log |g((α1/αr−1)e1 + · · · + (αr−2/αr−1)er−2 + er−1)|2.

Locally on P(E), α′
j = α j/αr−1, j �= r − 1, together with x form a local system of

coordinates, and we see that (ddc log |gα|2) has at most bidegree (r − 2, r − 2) in
α′. Since p is (x, [α]) �→ x it follows that the left hand side of (5.8) vanishes. ��

Notice that

w = log
(|gα|2/|α|2)

is a global function on P(E) which has singularities of logarithmic type along Z ′. We
claim that

ddc
(
ws(L)g∗s(L ′)

) = s(L)∧M̊gα + g∗s(L ′) − s(L). (5.9)

Outside Z ′ the left hand side of (5.9) is

ddc
(
w

1

(1 − s1(L))(1 − g∗s1(L ′))

)
= g∗s1(L ′) − s1(L)

(1 − s1(L))(1 − g∗s1(L ′))

= 1

1 − g∗s1(L ′)
− 1

1 − s1(L)
= g∗s(L ′) − s(L).

The only contribution at Z ′ comes from the residue term which is

s(L)∧1Z ′ddc
log |gα|2◦

1 − 〈ddc log |gα|2◦〉
= s(L)∧1Z ′

∞∑

=1

[ddc log |gα|2◦] = s(L)∧M̊gα,

cf. (5.7). For the last equality we have used that Z has positive codimension so that
M̊gα

0 = 0. Thus (5.9) holds.
With a modification π : Y → P(E) as in the proof of Lemma 2.4 we see that

g∗s(L ′) = π∗s(L) and that π∗w locally has the form log |ψ0|2 + smooth on Y . Thus
ws(L)g∗s(L ′) has singularities of logarithmic type along Z ′ and hence along p−1Z .

Therefore

Wg := p∗(ws(L)g∗s(L ′)) (5.10)

has singularities of logarithmic type along Z . From (5.9), (5.8) and Definition 4.1 we
have

ddcWg = p∗(s(L)∧M̊gα) + p∗g∗s(L ′) − p∗s(L) = Mg + 1X\Z s(Im g) − s(E).

Summing up we have proved part (i) of Theorem 4.4.
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5.2 Proof of (ii), (iii) and (iv)

Part (ii) is clear since all definitions and arguments we use are local on X . Part (iii) is
precisely Lemma 5.8.

Lemma 5.8 Assume that g : E → F is a morphism and π : X̃ → X is a modification.
Then we have an induced mapping π∗g : π∗E → π∗F on X̃ and π∗Mπ∗g = Mg.

Proof Let Ẽ = π∗E . There is a natural mapping π̂ : P̂(Ẽ) → P(E) so that

P(Ẽ)
π̂−→ P(E)

↓ p̃ ↓p

X̃
π−→ X

(5.11)

commutes, and similarly for F . The morphism g : E → F induces a morphism
π∗g : Ẽ → F̃ such that, for y ∈ X̃ and α ∈ Eπ(y),

π∗g(y)α = g(π(y))α, y ∈ X̃ , α ∈ Eπ(y), (5.12)

and

p∗E g−→ p∗F
↓π̂∗ ↓π̂∗

p̃∗ Ẽ π∗g−→ p̃∗ F̃
(5.13)

commutes. If L → P(E) is the tautological line subbundle of p∗E , then L̃ := π̂∗L is
the tautological subbundle of π̂∗ p∗E = p̃∗π∗E , cf. (5.11). In particular,

s(L̃) = π̂∗s(L). (5.14)

Let s be a local non-vanishing holomorphic section of L on P(E). If in addition
g(x)α �= 0 and s̃ = π̂∗s, then by (5.12),

π̂∗(sgα) = s̃π̂∗(gα), π̂∗(gα) = π∗gα. (5.15)

Since π̂ is generically 1−1 it follows from [7, Example 5.3] that π̂∗M π̂∗(sgα) = Msgα

where s is defined. From (5.14), (5.15) and the definition of M̊ , cf. Sect. 2.5, we
conclude that

π̂∗M̊ π̂∗(gα) = M̊gα. (5.16)

By (5.11), (5.14), (5.15), and (5.16) thus

π∗Mπ∗g = π∗ p̃∗
(
s(L̃)∧M̊π∗gα) =

p∗π̂∗
(
π̂∗s(L)∧M̊π∗(gα)

) = p∗
(
s(L)∧M̊gα) = Mg.
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Thus the lemma is proved. ��
The definitions and arguments are not affected if we consider g as a morphism

E → F ′ rather than E → F . Thus (iv) follows.

5.3 Proof of (v)

Assume that g′ : E ′ → F ′ is pointwise injective on X . Let p : P(E) → X and
p̂ : P(E ⊕ E ′) → X be the natural mappings. Moreover, let

j : P(E) → P(E ⊕ E ′), [α] �→ [α, 0].
We claim that

M̊gα⊕g′α′ = j∗
(
p∗s(Im g′)∧M̊gα)

. (5.17)

To see (5.17), assume thatU ⊂ X is an open set where E = U×C
r
α and E

′ = U×C
r ′
α′ .

It is enough to prove (5.17) in each set Ui = p̂−1U ∩ {[α, α′], αi �= 0}. Let i = 1.
Then [α, α′] is represented by

(1, α2/α1, · · · , αr/α1, α
′
1/α1, . . . α

′
r ′/α1).

The image of j : P(E) → P(E ⊕ E ′) is cut out by the section g′(x)α′/α1 of p̂∗Im g′
over U1. Since Im g′ has the same rank as the codimension, the normal bundle of the
image of j is precisely p̂∗Im g′. From [37, Lemma 5.9] we have that

p̂∗c(Im g′)∧Mgα⊕g′α′ = j∗Mgα.

Now p̂∗s(Im g′)∧ j∗Mgα = j∗( j∗ p̂∗s(Im g′)∧Mgα) and thus (5.17) holds inU1 since
p∗ = j∗ p̂∗ In the same way it holds in any Ui , i = 1, . . . , r , and so (5.17) is proved.

Let L̂ be the tautological line bundle in p̂∗(E ⊕ E ′) → P(E ⊕ E ′), and recall that

s(L̂) =
∞∑

=0

(ddc log(|α|2 + |α′|2)◦).

Since the pullback to {α′ = 0} of ddc log(|α|2 +|α′|2)◦ is ddc log |α|2◦, (5.17) implies
that

s(L̂)∧M̊gα⊕g′α′ = j∗
(
j∗s(L̂)∧p∗s(Im g′)∧M̊gα) = j∗

(
s(L)∧p∗s(Im g′)∧M̊gα)

(5.18)

Since p∗ = p̂∗ j∗ we get from (5.18) that

Mg⊕g′ = p̂∗
(
s(L̂)∧M̊gα⊕g′α′) = p∗

(
p∗s(Im g′)∧s(L)∧M̊gα) = s(Im g′)∧Mg.

Thus (v) is proved.
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5.4 Proof of (vi) and (vii)

If g′ is a morphism such that |g′α| ∼ |gα|, then by Lemma 2.4 M̊gα and M̊g′α define
the same class in B(P(E)). It follows that Mg and Mg′

define the same class in B(X).
Therefore the multiplicities of Mg and Mg′

at each point x ∈ X coincide, and are
integers. Locally, cf. Example 4.2, we can choose metrics so that Mg is a positive
current. We conclude that the multiplicities are non-negative integers. Thus (vi) and
(vii) are proved.

5.5 Proof of (viii)

Since Mg
k is in GZn−k(X), the decomposition (4.9) follows from (2.7). The last state-

ment in (viii) requires an additional argument: Let Z ′
i be the subvarieties of P(E)

that appear in the decomposition (2.7) of MG
 for various . It is well-known, and

follows from Sect. 2.4, that their union is precisely the zero set Z ′ of G. It is clear that
p(Z ′) = Z . Thus it is enough to prove, for each Z ′

i , that [p(Z ′
i )] appears in the fixed

part in (4.9) if p(Z ′
i ) has codimension k in X . It is enough to prove this locally on X ,

so we can assume that the metrics are trivial, keeping in mind that the fixed part only
depends on the class of Mg

k in B(X). If p|Z ′
i
has generic rank ρ = n − k, cf. Sect. 2.7,

then the generic dimension of the fibers (p|Z ′
i
)−1x , x ∈ p(Z ′

i ), is ν = dim Z ′
i − ρ.

If locally E = X × C
r
α , then p is ([α], x) �→ x and ωα = ddc log |α|◦ is strictly

positive on each fiber. Therefore p∗(ων
α∧[Z ′

i ]) has support on p(Z ′
i ), is non-zero, and

has bidegree (k, k). Hence it is c[p(Z ′
i )] for some integer c ≥ 1. It follows that

Mg
k = p∗((s(L)∧M̊gα)k+r−1) = c[p(Zi )

′] + · · ·

where all terms in · · · are non-negative, cf. Example 4.2. The proof of Theorem 4.4
is complete.

Proof of Proposition 1.3 Assume that g : E → F and Wg are as in (4.6). By (4.6) and
(2.2),

ddc(c(F)∧Wg) = c(F)∧Mg + c(F)∧1X\Z s(Im g) − c(F) (5.19)

since E is trivial so that s(E) = 1. By Lemma 3.1 there is a modification π : X̃ → X
such that Im π∗g has an extension to a subbundle H of π∗F . In X̃ we thus have the
pointwise exact sequence

0 → H → π∗F → π∗F/H → 0.

By (2.5) there is a smooth form v such that ddcv = c(π∗F) − c(π∗F/H)∧c(H).
Hence

ddc(s(H)∧v) = c(π∗F)∧s(H) − c(π∗F/H).
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Applying π∗ we see that 1X\Z c(F/Im g) is locally integrable and closed, and

ddcπ∗(s(H)∧v) = c(F)∧1X\Z s(Im g) − 1X\Z c(F/Im g). (5.20)

From (5.19) and (5.20) we see that (1.7) holds with V g = c(F)∧Wg − π∗(s(H)∧v).
��

5.6 A remark

Here is an alternativeway to find regularizations ofMg . Let us introduce theHermitian
norm on p∗F ⊗ L∗ → P(E) so that |G| = |gα|/|α| and consider the current MG ,
cf. Remark 2.6 above.

Lemma 5.9 For k = 0, 1, 2, . . . we have the relations

〈ddc log |gα|2◦〉k =
k∑

j=0

(
k

j

)
〈ddc log |G|2〉 j∧ωk− j

α (5.21)

and

M̊G
k+1 =

k∑

j=0

(
k

j

)
MG

j+1∧ωk− j
α . (5.22)

Proof Notice that

log |G|2 = log |sgα| − log |sα| = log |gα|◦ − log |α|2◦ (5.23)

Weproceed by induction.Notice that the case k = 0 of (5.21) is trivial.Assume that it is
proved for some k. Together with (5.23) and the recursion formula for [ddc log |G|2],
cf. (2.8),

[ddc log |gα|2◦]k+1 = ddc
(
(log |G|2 + log |α|2◦)〈ddc log |gα|2◦〉k

) =
k∑

j=0

(
k

j

)
[ddc log |G|2] j+1∧ωk− j

α +
k∑

j=0

(
k

j

)
〈ddc log |G|2〉 j∧ωk− j+1

α .

If we apply 1Z ′ to this relation we get (5.22) for k + 1. If we apply 1P(E)\Z ′ we get
(5.21) for k + 1. Thus the lemma is proved. ��

There are several formulas for regularization of MG
k . For instance, see [7, Proposi-

tion 5.7],

MG
k,ε = ε

([G|2 + ε)k+1 (ddc|G|2)k, k = 0, 1, 2, · · · .
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By (5.22) we therefore get global smooth Mg,ε such that Mg,ε → Mg . Clearly,
1Z ′ [ddc log |gα|2◦]0 = 1Z ′ = MG

0 . In view of (4.3), Definition 4.1 and Lemma 5.9
there are non-negative integers c j,k such that

Mg
ε =

∞∑

k=0

∞∑

j=0

c j,k p∗
(
MG

k,ε∧ω j
α

)
(5.24)

is a sequence of smooth forms that tends to Mg .

6 Behaviour ofMg Under General Proper Mappings

We have the following extension of Theorem 4.4 (iii).

Proposition 6.1 Let g : E → F be a morphism on X. Then Mg induces a mapping
μ �→ Mg∧μ on GZ(X) and B(X) and if h : X ′ → X is any proper holomorphic
mapping, then

h∗(Mh∗g∧μ) = Mg∧h∗μ (6.1)

for all μ ∈ GZ(X ′) and μ ∈ B(X ′).

Example 6.2 If h is a finite mapping, say generically m to 1, then we can apply (6.1)
to the function μ = 1. It follows that h∗Mh∗g = mMg.

Proof of Proposition 6.1 If τ : W → X is proper, then we have the commutative dia-
gram

P(τ ∗E)
τ̃−→ P(E)

↓ p̃ ↓p

W
τ−→ X

(6.2)

In fact, in a local trivialization E = X × C
r
α and τ ∗E = W × C

r
α , so that P(E) =

X × P(Cr
α) and P(τ ∗E) = W × P(Cr

α). Assume that γ is a product of first Chern
forms and let μ = τ∗γ . Since p is a proper submersion the pullback p∗μ exists. We
claim that

p∗μ = τ̃∗ p̃∗γ. (6.3)

The equality (6.3) means that

p∗μ.ξ = τ̃∗ p̃∗γ.ξ, ξ ∈ E(P(E)). (6.4)

The left hand side of (6.4) is, by definition, μ.p∗ξ which in turn is

μ(x).
∫

α

ξ(x, α) = γ (w).

∫

α

ξ(τ (w), α)

123



Poincaré-Lelong Type Formulas... Page 27 of 43    25 

The right hand side is

γ. p̃∗τ̃ ∗ξ = γ (w).

∫

α

ξ(τ (w), α)

as well. Thus (6.3) holds. In particular, p∗γ is in GZ(P(E)). Since Mg,ε =
p∗

(
s(L)∧M̊gα,ε

)
, cf. Proposition 5.4,

Mg,ε∧μ = p∗
(
s(L)∧M̊gα,ε∧p∗μ

)
.

Since p∗μ is in GZ(P(E))we can take limits, following the proof of [7, Theorem 5.2],
and get

Mg∧μ := p∗
(
s(L)∧M̊gα∧p∗μ

)
. (6.5)

We can extend by linearity to a general μ. It is clear from (6.5) that this definition
only depends on μ and not on its representation. One must also check that if μ′ ∼ μ,
then Mg∧μ ∼ Mg∧μ′, but we omit the details. The equality (6.1) follows from the
corresponding property for M̊gα , again see [7, Theorem 5.2], following the proof of
Theorem 4.4 (iii) above. ��

7 Vanishing of Multiplicities

Theorem 7.1 Any μ ∈ GZn−k(X) has a unique decomposition (2.7), where each
irreducible component of N has Zariski support on a set of codimension ≤ k − 1. The
multiplicities of N vanish outside an analytic set of codimension ≥ k + 1.

Sinceμ has a unique decomposition in irreducible components, the theorem follows
from:

Proposition 7.2 If μ ∈ GZn−k(X) is irreducible with Zariski support Z and
codim Z ≤ k − 1, then multxμ vanish outside an analytic subset of Z of codimension
≥ k + 1.

In view of [7, Remark 3.10], an irreducible μ as in Proposition 7.2 is a finite sum
of (k, k)-currents τ∗γ , where τ : W → X and τ(W ) = Z . If τ = i ◦ τ ′, where
i : Z → X , then multxτ ′∗γ = multi(x)τ∗γ , see Sect. 2.3. It is therefore enough to
consider a surjective mapping τ : W → Z and prove that if μ = τ∗γ has bidegree
(, ) on Z ,  ≥ 1, then the subset of Z where multxμ �= 0 is contained in an analytic
subset of codimension ≥  + 1. Now Proposition 7.2 follows from Lemma 7.3 and
Proposition 7.4 below.

Lemma 7.3 Assume that τ : W → Z is proper and surjective and μ = τ∗γ has
bidegree (, ). Let r = dimW − dim Z. If multxμ �= 0, then dim τ−1(x) ≥ r + .
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Proof Let n = dim Z and let ξ be a tuple that defines the maximal ideal at x . Then,
[7, Sect. 6, Eq. (6.1)],

multxμ[x] = Mξ
n−∧τ∗γ = τ∗

(
Mτ∗ξ

n−∧γ
)
.

If this is non-vanishing, then since γ is smooth, Mτ∗ξ
n− is non-vanishing. It has support

on τ−1(x) and therefore n −  ≥ codim W τ−1(x) = n + r − dim τ−1(x). ��
The following proposition should be well-known but as we did not find a precise

reference we provide a proof, cf. Remark 7.5.

Proposition 7.4 If W is irreducible, f : W → Z is a proper surjective mapping and
r = dimW − dim Z, then for each  ≥ 1, the set

A f
r+ := {x; dim f −1(x) ≥ r + }

is contained in an analytic subset of codimension ≥  + 1 in Z.

Proof of Proposition 7.4 We can assume that W is smooth, because otherwise we take
a regularization π : W ′ → W and consider f ′ = f ◦ π , noticing that

{x; dim f −1(x) ≥ r + } ⊂ {x; dim( f ◦ π)−1(x) ≥ r + }.

We proceed by induction over dimW . Assume that the proposition holds for all W
with dimension ≤ m and r such that 0 ≤ r ≤ dimW , and that our W has dimension
m + 1. We first consider the case when r = m + 1. Then all the sets A f

r+ for  ≥ 1
are empty. Thus we can assume from now on that r ≤ m. Notice that the set W ′ ⊂ W
where ∂ f /∂w does not have optimal rank is analytic of dimension ≤ m.

Moreover, observe that if w ∈ W\W ′, then ∂ f /∂w has the same rank in a neigh-
borhood of w so by the constant rank theorem, there is a neighborhood U of w such
that f −1( f (w)) ∩U has dimension r .

Let W ′
j be the irreducible components of W ′ and let f ′

j be the restriction of f to
W ′

j so that f ′
j : W ′

j → f (W ′
j ). Since f is proper, each f (W ′

j ) is an analytic set. We
claim that

A f
r+ = ∪ j A

f ′
j

r+. (7.1)

In fact, assume that f −1(x) has an irreducible component V of dimension ≥ r + .
From the observation above it follows that a generic point on V belongs to W ′, and
hence V is contained in W ′. Thus V = ∪ j V ∩ W ′

j . It follows that at least one of the

analytic sets V ∩ W ′
j has dimension ≥ r + . Thus ( f ′

j )
−1(x) has dimension ≥ r + 

so that x ∈ A
f ′
j

r+. Now (7.1) follows.

In view of (7.1) it is enough to consider each A
f ′
j

r+. Assume that ( f ′
j )

−1(x) has
generic dimension r + ′. By definition then
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rank f ′
j = dimW ′

j − r − ′ ≤ dimW − 1 − r − ′

= dimW − 1 − (dimW − dim Z) − ′ = dim Z − ′ − 1.

Proposition 2.7 implies that

codim f ′
j (W

′
j ) ≥ ′ + 1. (7.2)

First assume that ′ ≥ . Since A
f ′
j

r+ ⊂ f ′
j (W

′
j ), by (7.2),

codim A
f ′
j

r+ ≥ ′ + 1 ≥  + 1

as desired. Now assume that ′ < . Since

A
f ′
j

r+ = A
f ′
j

r+′+−′

it follows from the induction hypothesis that A
f ′
j

r+ is contained in an analytic subset
of f ′

j (W
′
j ) of codimension≥ −′ +1. In view of (7.2) we conclude that this analytic

set has at least codimension  − ′ + 1 + ′ + 1 =  + 2 in Z . Thus Proposition 7.4
is proved. ��
Remark 7.5 If γ in the proof of Lemma 7.3 is strictly positive, then the multiplicity
is strictly positive if and only if dim τ−1(x) ≥ r + . If W in Proposition 7.4 has a
Kähler form ω, then γ = ω are strictly positive closed forms for 1 ≤  ≤ dimW . In
this case therefore Proposition 7.4 follows from Siu’s theorem applied to the positive
closed currents f∗γ.

8 An Extension of Theorem 1.5

Let g : E → F be a morphism and let a : s(E/Ker g) → Im g be the induced iso-
morphism over X \ Z0. Here is an extended version of Theorem 1.5.

Theorem 8.1 The natural extensions 1X\Z0s(E/Ker g) and 1X\Z0s(Im g) are locally
integrable and closed in X, and there is a current Ma, which is locally a generalized
cycle, with support on Z0 such that the following holds:

(a) There is a current Wa with singularities of logarithmic type along Z0 such that

ddcWa = Ma + 1X\Z0s(Im g) − 1X\Z0s(E/Ker g). (8.1)

The analogue of Theorem 4.4 (ii) holds for Ma.
(b) If π : X̃ → X is a modification, and Mπ∗a denotes the current obtained from π∗g,

then

π∗Mπ∗a = Ma . (8.2)
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(c) If Ker g has an extension to a subbundle N of E, and a′ is the induced extension
to a morphism a′ : E/N → F, then Ma = Ma′

, where Ma′
is the current in

Theorem 4.4.
(d) All multiplicities multx Ma

k are integers. There is a unique decomposition of the
form (4.9), wheremultx Na

k vanishes outside an analytic set of codimension≥ k+1.
All the coefficients βk

j are integers. If g and ĝ are comparable, then the associated

Ma
k and Mâ

k have the same multiplicities.

Some of the multiplicities multx Ma
k and coefficents βk

j may be negative, see Exam-
ple 11.10.
If π : X̃ → X is a modification such that π∗Ker g has an extension as a subbundle Ñ
over X̃ , such a modification always exists at least locally, and ã denotes the induced
morphism π∗E/Ñ → π∗F , then Ma = π∗M (π∗a)′ in view of (b) and (c) above. Thus
Ma is determined by these properties.

Although a is only defined on X \ Z0, we can define smooth forms Ma,ε on X by
(5.4).

Proposition 8.2 The limit

Ma := lim
ε→0

Ma,ε (8.3)

exists and is independent of the choice of χ in (5.4).

If the subbundle Ker g ⊂ E defined in X \ Z0 happens to have an extension as a
subbundle N of E over X , then by continuity N ⊂ Ker g and therefore g induces a
morphism a : E/N → F . By Proposition 5.5 then (8.3) is consistent with the previous
definition of Ma .

Proof Assume thatπ : X ′ → X is amodification such that the subbundleπ∗N ⊂ π∗E
on X ′\π−1Z0 extends to a subbundle N ′ of E ′ = π∗E on X ′ Let g′ = π∗g : E ′ →
F ′ = π∗F . Then N ′ ⊂ Ker g′ and so g′ induces a generically injective mapping
a′ : E ′/N ′ → F ′. Thus Ma′

is a well-defined current on X ′. By Lemma 5.8, and its
proof, Ma,ε = π∗Ma′,ε and so

Ma = π∗Ma′
. (8.4)

In particular, it is independent of the choice of χ . At least locally in X such a modifi-
cation π exists, cf. Sect. 3, and thus the proposition is proved. ��
Proof of Theorem 8.1 Let Wa be the form (5.10) but associated with a rather than g in
X \ Z0. Then Wa,ε := χεWa is well-defined in X for each ε > 0. We claim that

Wa := lim
ε→0

Wa,ε (8.5)

exists. To see this let π : X ′ → X be a modification as in the previous proof. If
χ ′

ε = π∗χε , then Wa′,ε = χ ′
εW

a′ = π∗Wa,ε . Thus Wa,ε = π∗Wa′,ε and hence the
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limit (8.5) exists and

Wa = π∗Wa′
. (8.6)

By Theorem 4.4 (i) we have

ddcWa′ = Ma′ + s(Im g′) − s(E ′/N ′). (8.7)

Notice that 1X\Z0s(E/Ker g) = 1X\Z0s(E/N ) = π∗s(E ′/N ′) and 1X\Z0s(Im g) =
π∗s(Im a′) are locally integrable and closed. Taking π∗ now (8.1) follows from (8.4),
(8.6) and (8.7).

Part (b) of the theorem follows in a standard way by choosing a π as above which
in addition factorizes over X̃ . We omit the details. Part (c) follows from the proof of
(a).

Since Ma , at least locally, is a generalized cycle, all its multiplicities are integers,
and we have the unique decomposition (4.9), cf. Sect. 2.3.

If g and ĝ are comparable, then π∗g and π∗ĝ are comparable in X ′ and hence the
associateda′ and â′ are comparable in X ′. It follows from the proof of Theorem4.4 (vii)
that Ma′

and Mâ′
belong to the same class in B(X ′). In view of (8.4) therefore Ma

k

and Mâ
k belong to the same B-class and hence they have the same multiplicities. Thus

Theorem 8.1 is proved. ��
Remark 8.3 The non-negativity of the multiplicities in Theorem 4.4 was proved by
locally choosing trivial metrics locally on X on E and F . This argument breaks down
for Ma since it is the push-forward of Ma′

under a modification, and in general one
cannot choose a metric locally on X so that Ma′

is non-negative on the exceptional
divisor, cf. Example 11.11.

9 Chern and Segre Forms Associated with Certain Singular Metrics

Singular metrics on line bundles have played a fundamental role in algebraic geometry
during the last decades, starting with [18]. Singular metrics on a higher rank bundle
were introduced in [10], see also [17], and have been studied by several authors
since then, e.g., in [25] and [40]. In [36] and later on in [26, 31, 32] are introduced
associated Chern forms. In [31] quite general singular metrics are allowed, but there
are restrictions on the degrees. In [32] the whole Chern forms for metrics with analytic
singularities are defined; however in situations that go beyond [31] an a priori choice
of a smooth metric form is needed. These Chern forms are as expected where the
metric is non-singular and represent the de Rham cohomology classes. We will use
Theorems 4.4 and 8.1 to provide Chern and Segre forms, that in addition represent the
expected Bott-Chern classes, for two classes of singular metrics.

Definition 9.1 Let F̂ → X be a holomorphic vector bundle with a metric that is non-
singular outside an analytic set Z of positive codimension. We say that a current s(F̂)

on X is a Segre form for F̂ if it represents the Bott-Chern class ĉ(F) and is equal to
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the Segre form defined by the metric where it is non-singular. We have the analogous
definition of c(F̂).

Example 9.2 Let E and F be Hermitian vector bundles and g : E → F a holomorphic
morphism. Let Ê be E but equipped by the singular metric so that |s|Ê = |gs|. It was
proved in [32] that, in our notation, the current

s(Ê) = Mg + 1X\Z s(Im g)

defines the same de Rham cohomology class as s(E). Theorem 4.4 (i) states that it in
fact defines the sameBott-Chern class, so that s(Ê) is a Segre form for Ê in the sense of
Definition 9.1. If g is generically surjective it follows from the proof of Proposition 1.3
that

c(Ê) = −c(E)c(F)Mg + c(F) (9.1)

is a Chern form for Ê . Notice that the multiplicities of s(Ê) and −c(Ê) coincide and
are independent of the smooth metrics on E and F .

Remark 9.3 One can obtain an analogue of (9.1) for an arbitrary g; for simplicity
though we assume that Z has positive codimension. Using the ideas in the proof of
Proposition 9.4 below one can define a current Mg,b and a locally integrable V g such
that ddcV g = −Mg,b + 1X\Z c(Im g)− c(E), so that c(Ê) = −Mg,b + 1X\Z c(Im g)
is a Chern form for Ê .

In our second example we assume that g : E → F is a generically surjective
morphism, E and F Hermitian vector bundles, and we let F̂ be F but equipped with
the singular metric induced from E . That is, for β ∈ F and x ∈ X\Z0, |β|F̂ =
|g−1β|E/Ker g . Then clearly F̂ is isometric to E/Ker g in X \ Z0 so that s(F̂) =
s(E/Ker g) and c(F̂) = c(E/Ker g) there.

Proposition 9.4 With the notation in Theorem 8.1,

s(F̂) = 1X\Z0s(E/Ker g) − Ma (9.2)

is a Segre form for F̂. There is a related current Ma,c with support on Z0 such that

c(F̂) = 1X\Z0c(E/Ker g) + Ma,c (9.3)

is a Chern form for F̂. The multiplicities of Ma and Ma,c are independent of the
smooth metrics on E and F.

Corollary 9.5 If g is generically an isomorphism and E is trivial with a trivial metric,
then

s(F̂) = 1 − Mg, c(F̂) = 1 + Mg,c. (9.4)
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Different trivial metrics on E may produce different Mg , see Examples 11.4 and
11.5. However, −s1(F̂) = c1(F̂) = [det g], see Proposition 11.1 and the definition of
Mg,c below.

Proof of Proposition 9.4 Clearly (9.2) is equal to s(E/Ker g) in X \Z0. Theorem8.1 (a)
implies that (9.2) is Bott-Chern cohomologous with s(F), and thus a Segre form for
F̂ .

Let π : X ′ → X be a modification as in the proof of Theorem 8.1. Then we have,
cf. (8.7), ddcWa′ = Ma′ + s(F ′) − s(E ′/N ′). Since s(E ′/N ′) and c(E ′/N ′) are
smooth, we get

ddcV a′ = Ma′,c + c(E ′/N ′) − c(F ′), (9.5)

where Ma′,c = c(F ′)c(E ′/N ′)Ma′
and V a′ = c(F ′)c(E ′/N ′)Wa′

. We define

Ma,c = π∗Ma′,c, V a = π∗V a′
. (9.6)

By regularization as in the proof of Theorem 8.1 one verifies that the definitions in
(9.6) are independent of π . Thus Ma,c and V a are globally defined on X . Applying
π∗ to (9.5) we get

ddcV = Ma,c + 1X\Z0c(E/Ker g) − c(F).

Thus (9.3) is a Chern form for F̂ .
The class of the current Ma in B(X) is independent of the smooth metrics on E

and F . The same holds for the class of Ma′,c in B(X ′) and hence for the class of Ma,c

in B(X). Thus the statements about multMa and multMa,c follow. ��

10 Segre Numbers and Distinguished Varieties Associated with a
Coherent Sheaf

These numbers, which generalize the Hilbert-Samuel multiplicity of Jx , were intro-
duced, with a geometric definition, in the ’90 s, independently by Tworzewski, [39]
andGaffney-Gassler [20]. Later on a purely algebraic definition was given in Achilles-
Manaresi [1], andAchilles-Rams, [2].Wecan consider such a g as amorphism E → F ,
where E = X × C is a trivial line bundle with a trivial metric.

Assume that g is a holomorphic section of a vector bundle F , that is, E is trivial line
bundle in our set-up. Then g generates an ideal sheaf J ⊂ O which is precisely the
image of the dual morphism g∗ : O(F∗) → O(E∗) = O. The decomposition (4.9) is a
generalization of the classical King formula, [27], and the analytic sets Zk

j that appear
in the fixed part are precisely the so-called distinguished varieties associated with J .
If π : X ′ → X is the blow-up of X along J , then Zk

j are precisely the images of the
various irrreducible components of the exceptional divisor in X ′. As mentioned in the
introduction, the multiplicities multx M

g
k are the so-called Segre numbers ek(Jx ) of

Jx .
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We will discuss generalizations to arbitrary coherent (analytic) sheaves. As for
notions like Cohen-Macaulay, dimension etc, we ’identify’ an ideal sheaf J with
the quotient sheaf O/J . By definition an arbitrary coherent sheaf F locally has a
representation F = O(E∗)/Im g∗, where g : E → F is a holomorphic morphism.

Proposition 10.1 Given a coherent sheaf F = O(E∗)/Im g∗, the multiplicities
multx M

g
k and the fixed part of the decomposition (4.9) only depends on F .

Taking this proposition for granted the following definitions may be reasonable.

Definition 10.2 If the coherent F has the local presentation F = O(E∗)/Im g∗, then
we define its Segre numbers ek(Fx ) = multx M

g
k , k = 0, 1, . . ., and its distinguished

varieties as the various components of the fixed part in (4.9) for various k.

It follows from Theorem 4.4 that the Segre numbers ek(Fx ) are non-negative inte-
gers that can be strictly positive only if x ∈ Z and k ≥ codim Z .

Remark 10.3 If F has zero set {x}, then its Buchsbaum-Rim multiplicity was intro-
duced in [14]. This definition is algebraic, but a geometric description appeared in
[28, 29] and [24]. One can verify that it indeed coincides with multx M

g
n . A detailed

argument will be given in a forthcoming paper. If the singularity is not isolated, in
[15] is defined algebraically a list of numbers, generalizing the description in [1] of
Segre numbers in case of an ideal. One could guess that these numbers coincide with
the numbers multx M

g
k .

Letπ : Y → P(E) be the blow-up ofP(E) alongG = gα. In view of the discussion
above and the proof of Theorem 4.4 (viii), the distinguished varieties of F are the
images under p ◦ π of the various irreducible components of the exceptional divisor
of π .

Proof of Proposition 10.1 A minimal free resolution of F at a point x is unique, up to
biholomorphisms, and any resolution at x is the direct sum of a minimal resolution
and a resolution of 0. The latter resolution ends with a pointwise surjective mapping
(g′)∗ : (F)∗ → (E ′)∗. If g∗ is the last mapping in a minimal resolution ofF at x , then
F = O(E∗)/Im g∗ and any other representation has the form

F = O(E∗ ⊕ (E ′)∗)/Im (g∗ ⊕ (g′)∗),

where g′ : E ′ → F ′ is pointwise injective. In view of Theorem 4.4 (v) and Lemma 2.2
thus

multx M
g⊕g′
k = multx M

g
k , k = 0, 1, 2, . . . . (10.1)

Thus these numbers are intrinsic for the sheaf F at x . Consider now the representa-

tion (4.9) for Mg⊕g′
k and Mg

k , respectively. Since Ng⊕g′
k and Ng

k only have non-zero

multiplicities on sets of codimension ≥ k+1, (10.1) implies that Mg⊕g′
k and Mg

k have
the same fixed part. ��
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Example 10.4 The morphism g∗(x) in Example 11.2 below gives the coherent sheaf
F = O ⊕ O/x1O ⊕ x2O, and it is shown that its distinguished varieties are the axes
and the point (0, 0). Moreover, it has non-zero multiplicities on both codimension 1
and 2. The morphism defined by the matrix

[
x1x2 0
0 1

]
. (10.2)

gives the sheaf F = O ⊕ O/x1x2O ⊕ O = O/x1x2O, which we identify with the
ideal sheaf 〈x1x2〉. It has the coordinate axes as distinguished varieties and non-zero
multiplicities only on codimension 1. However, the determinant ideals in both cases
are 〈x1x2〉. Thus neither distinguished varieties nor multiplicities can be computed
from the determinant ideal.

11 Some Examples and Remarks

We will use the notation introduced in Sect. 4. We present our first example as a
proposition.

Proposition 11.1 If g : E → F is generically an isomorphism, then

Mg
1 = [div(det g)]. (11.1)

Proof Let Z be the zero set of det g. Since Mg
1 is a (1, 1)-current with support on the

hypersurface Z it must be (the Lelong current of) a cycle with support on Z . It is there-
fore enough to check, for any regular point x ∈ Z , that multx Mg = multx [div(det g)].

Let us first assume that n = 1, that the base space X is a neighborhood U of the
closed unit disk, E = U × C

r , and F = U × C
r and det g(x) = xνa in U , where a

is non-vanishing. Since the multiplicities are independent of the metrics on E and F
we can assume that they are trivial in U . If ν = 1, then g(0) has a simple eigenvalue
and hence a one-dimensional kernel. Thus M̊gα

r is a point mass in P(E) and hence

Mg
1 = p∗(s(L)∧M̊gα

r ) = p∗M̊gα
r = [0].

Now assume that ν > 1. We can choose a continuous perturbation gt of g such that
g0 = g and det g1 has ν distinct simple zeros x1, . . . , xν close to x = 0. Then the
kernel of each g(x j ) is one-dimensional, so that Mg1 = [x1] + · · · + [xν] and so its
total mass is ν. Since we have trivial metrics s1(E) = 0 and s1(F) = 0, so by (1.6),

∫

|x |<1
Mgt

1 =
∫

|x |<1
ddcWgt

0 =
∫

|x |=1
dcWgt

0 .

For each t the integral is a sum of the Lelong numbers (multiplicities) of Mgt
1 so by

Theorem 4.4 it is a positive integer. From formula (5.10) we see that wgt depends
continuously on t on |x | = 1. Thus the integral is ν also for g = g0, so the proposition
holds when n = 1.
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Now assume that n > 1, 0 is a regular point on Z , and locally Z = {x1 = 0}.
Then det g = xν

1a for some ν and non-vanishing holomorphic function a. From the
discussion above we know that Mg

1 = μ[x1 = 0] so we have to prove that μ = ν. For
a generic choice of complementary coordinate functions x2, . . . , xn ,

μ = mult0M
g
1 = mult0

([x2 = · · · = xn = 0]∧Mg
1

)
.

Let i : Cx1 → C
n
x , x1 �→ (x1, 0, . . . , 0). By Proposition 6.1 thus

i∗Mi∗g
1 = [x2 = · · · = xn = 0]∧Mg

1 = μ[0]. (11.2)

Now det i∗g(x1) = a(x1, 0)xν
1 so from the case n = 1 we have Mi∗g

1 = ν[0] in C so

that i∗Mi∗g
1 = ν[0] in Cn . In view of (11.2) thus μ = ν. ��

We will use the following form of Crofton’s formula, see, e.g., [6, Lemma 6.3]: If
( f1, . . . , fm) is a tuple of holomorphic functions and [γ1, . . . , γm] ∈ P(Cm

γ ), then

∫

γ

[div(γ1 f1 + · · · + γm fm)]dσ(γ ) = ddc log(| f1|2 + · · · + | fm |2). (11.3)

Here dσ is the normalized volume form associated with the Fubini-Study metric on
P(Cm). If in addition div f1, . . . , div fm intersect properly, i.e., the codimension of
their intersection is m, then

(
ddc log(| f1|2 + · · · + | fm |2))k = [

ddc log(| f1|2 + · · · + | fm |2)]k

is locally integrable for k < m and

M f
m = [ddc log(| f1|2 + · · · + | fm |2)]m = [div f1]∧ · · · ∧[div fm]. (11.4)

The right hand side is the (Lelong current of the) of the intersection product of the
divisors and can be defined by any reasonable regularizations of the [ f j ], see [16,
2.12.3]. It is well-known that this product is unchanged if f j are replaced by γ j · f =
f1γ

j
1 + · · · + γ

j
m fm for generic choices of γ j ∈ P(Cm). Therefore one can deduce

(11.4) from (11.3). In the examples below we often write [ f = 0] for [div f ].
Example 11.2 Let X = C

2
x , E = X × C

2
α , F = X × C

2, both with trivial metric. and
g : E → F defined by

[
x1 0
0 x2

]
. (11.5)

Then gα = (x1α1, x2α2) defines a proper intersection in C
2
x × P(C2

α) so by (11.4)

M̊gα = M̊gα
2 = [ddc log |gα|2◦]2 = [x1 = α2 = 0] + [x2 = α1 = 0] + [x1 = x2 = 0].
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(11.6)

Since s(L) = 1 + ωα we see that Mg = Mg
1 + Mg

2 , where

Mg
1 = [x1 = 0] + [x2 = 0] = [x1x2 = 0], Mg

2 = [x1 = x2 = 0].

Notice that Mg
1 = [div(det g)] in accordance with Proposition 11.1.

The next example shows that in general several components of M̊gα come into play
to produce Mg

1 .

Example 11.3 Let X = C, E = X × C
2
α and F = X × C

2, and let both E and F
be equipped with the trivial metric. Let g : E → F be the morphism defined by the
matrix

[
x2 0
0 x

]
.

Notice that det g = x3, Z = {0}, and Z ′ = {0} × P(C2
α). Now ddc log |gα|2◦ = [x =

0] + ddc log([xα1|2 + |α2|2)◦ so that

M̊gα
1 = 1Z ′ddc log |gα|2◦ = [x = 0].

Furthermore, a computation using (11.4), yields that ddc
(
log |gα|2◦1P(E)\Z ′

ddc log |gα|2◦
) = [x = 0]∧[α2] + [xα1 = 0]∧[α2 = 0] and hence

M̊gα
2 = 2[x = 0]∧[α2 = 0].

Altogether, as expected from Proposition 11.1

Mg
1 = p∗

(
s(L)∧M̊gα) = p∗

(
ωα∧[x = 0] + 2[x = 0]∧[α2 = 0]) = 3[x = 0].

Example 11.4 Let X = C
2, E = X × C

2
α , F = X × C with trivial metrics, and g the

morphism given by [x1 x2]. Since g is not generically injective, Z = X . Moreover,
Z ′ = {(x, [α]); x1α1 + x2α2 = 0}. We have M̊gα = M̊gα

1 = [x1α1 + x2α2 = 0].
Since s(L) = 1 + ωα we get, using (11.3),

Mg = Mg
0 + Mg

1 = 1X + ddc log(|x1|2 + |x2|2).

HereMg
0 is the fixed part, and it consists of the single distinguished variety X . The term

Mg
1 has dimension 1 and is geometrically the mean value of lines through the origin

in X , so it is a moving term. It follows that mult(0,0)M
g
1 = 1 but mult(x1,x2)M

g
1 = 0

for (x1, x2) �= (0, 0).
Ifwe change the trivialmetric on E , e.g., by letting |α|2 := |α1|2+2|α2|2, thenωα =

ddc log(|α1|2 + 2|α2|2) and one can verify that then Mg
1 = ddc log(2|x1|2 + |x2|2).

Here is a similar example but where g is generically injective.
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Example 11.5 Let X = C
3, E = F = X × C

3 with trivial metrics, and g given by

⎡

⎣
x1x3 0 0
0 x2x3 0
0 0 x23

⎤

⎦ .

Then Z = {x1x2x3 = 0}, and gα = x3(x1α1, x2α2, x3α3) so that

ddc log |gα|2◦ = [x3 = 0] + ddc log(|x1α1|2 + |x2α2|2 + |x3α3|2).

Thus M̊gα
1 = [x3 = 0]. Next we have

[ddc log |gα|2◦]2 =
ddc

(
log |x3|2 + log(|x1α1|2 + |x2α2|2 + |x3α3|2)∧ddc log(|x1α1|2 + |x2α2|2 + |x3α3|2)

) =
[x3 = 0]∧ddc log(|x1α1|2 + |x2α2|2) + (

ddc log(|x1α1|2 + |x2α2|2 + |x3α3|2)
)2

.

Thus

M̊gα
2 = [x3 = 0]∧ddc log(|x1α1|2 + |x2α2|2).

Furthermore we get, using (11.4),

M̊gα
3 = [x3 = 0]∧(

ddc log(|x1α1|2 + |x2α2|2)
)2 + [x1α1 = 0]∧[x2α2 = 0]∧[x3α3 = 0].

We do not compute all terms of Mg but notice that, e.g.,

∫

α

[x3 = 0]∧ddc log(|x1α1|2 + |x2α2|2)∧ωα

is a non-zero term in Mg
2 that has support on the hyperplane [x3 = 0]. As in Exam-

ple 11.4 one can verify that Mg
2 depends on the choice of trivial metric on E .

Assume that g : E → F is generically an isomorphism. Then g∗ : F∗ → E∗ is as
well. In view of (1.6) and the fact that

sk(E
∗) = (−1)ksk(E) (11.7)

it follows that Mg∗
k and (−1)k+1Mg

k define the same Bott-Chern class.

Remark 11.6 It is not true in general that Mg∗
k = (−1)k+1Mg

k . In fact, given trivial
metrics on E and F we know that both Mg and Mg∗

are positive currents. Therefore
(11.7) fails as soon as Mg

k is non-zero for an even k. See, e.g., Mg
2 in Example 11.2.

Let us now consider a global version of Example 11.2.
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Example 11.7 Let X = P
2 = P(Cx0,x1,x2). Then x j is a section of O(1) → X

and thus defines a morphism O(−1) → X × C. If E = X × O(−1) ⊗ C
2
α and

F = X × C
2
α thus (11.5) defines a morphism g : E → F . We choose the natural

metric onO(−1) so that s1(O(−1)) = ddc log |x |2 = ωx on X . It follows that L then
is the tautological line bundle with respect to trivial metric onC2

α tensored byO(−1),
so that s1(L) = ωα + ωx . Noting that P(E) has dimension 1 in α, therefore

s(L) = 1 + ωα + ωx + 2ωα∧ωx + ω2
x + 3ω2

x∧ωα. (11.8)

Applying p∗ to (11.8) we get

s(E) = 1 + 2ωx + 3ω2
x . (11.9)

Since the metric on F is trivial we see that (11.6) still holds in this case (but interpreted
onP(E)). Combined with (11.8) we can computeMg = p∗(s(L)∧M̊gα) and find that

Mg
1 = [x1 = 0] + [x2 = 0],

Mg
2 = ωx∧[x1 = 0] + ωx∧[x2 = 0] + [x1 = x2 = 0]. (11.10)

Notice that (11.9) and (11.10) are in accordance with (1.6) since Mg
1 and Mg

2 are
Bott-Chern cohomologous with 2ωx and 3ω2

x , respectively, on X = P
2 and s(F) = 1.

Example 11.8 Let us consider the adjoint mapping g : X ×C
2
α → X ×O(1) ⊗C

2. In
this case s(L) = 1 + ωα and s(E) = 1. Now

|gα|2◦ = (|x1α1|2 + |x2α2|2)◦/|x |2

and so

ddc log |gα|2◦ = ddc log((|x1α1|2 + |x2α2|2)◦ − ωx .

We see that

M̊gα
2 = 1Z ′ [ddc log |gα|2◦]2 = [x1 = α2 = 0] + [x2 = α1 = 0] + [x1 = x2 = 0]

as before, whereas

1P(E)\Z ′ [ddc log |gα|2◦]2 = −2ddc log(|x1α1|2 + |x2α2|2)◦∧ωx + ω2
x .

Therefore

M̊gα
3 = 1Z ′ [ddc log |gα|2◦]3

= −2
([x1 = α2 = 0] + [x2 = α1 = 0] + [x1 = x2 = 0])∧ωx

= −2[x1 = α2 = 0]∧ωx − 2[x2 = α1 = 0]∧ωx .
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Recalling that s(L) = 1 + ωα we get

Mg
1 = [x1 = 0] + [x2 = 0],
Mg

2 = [x1 = x2 = 0] − 2[x1 = 0]∧ωx − 2[x2 = 0]∧ωx . (11.11)

In view of (11.7) and (11.9), s(F) = 1 − 2ωx + 3ω2
x . Thus, cf. (11.11), (1.6) is

respected.

Example 11.9 Let X = P
2
x and consider the morphism g : O(−1) → X × C

2
α , where

g = [x1 x2], so that g is singular at the point p = [1, x1, x2]. We see that

s1(Im g) = ddc log(|x1|2 + |x2|2) =: ωp

in X \ {p}. It follows that s2(Im g) = ω2
p = 0 in X\{p}. Since Mg

2 has support at p it
must be α[p] for some integer α. By (4.6),

ddcWg
1 = 1X\{p}s2(Im g) − s2(O(−1))2 + Mg

2 = −ω2 + Mg
2

so we conclude that Mg
2 = [p]. It also follows directly, cf. (11.4), that

Mg
2 = 1{p}ddc

(
log(|x1|2 + |x2|2)1X\{p}ddc log(|x1|2 + |x2|2)) = [p].

We shall now see that the morphism a in Theorem 8.1 can have negative multiplic-
ities.

Example 11.10 Let X = P
2 and consider the morphism g′ : X ×C

2
α → O(1); it is the

dual of the morphism in Example 11.9. Consider the induced morphism

a : C2 × P
2/Ker g′ → O(1).

From (11.7) we see that s2(E/Ker g′) = 0. By (8.1) in Theorem 8.1 therefore

ddcWa
1 = ω2 + Ma

2 ,

so we can conclude that Ma
2 = −[p].

Let us now make a direct computation that reveals how the minus sign in the
previous example appears, without relying on the global formula (8.1). We consider a
somewhat more general mapping, but restrict to the local situation.

Example 11.11 Let X = U ⊂ C
2, E = X ×C

2
α , F = X ×C (with trivial metrics) and

g = (g1, g2) with an isolated zero at 0 ∈ U . Let π : X ′ → X be a modification such
that π∗g = g0 g′, where g0 is a section of the line bundle L → X ′ and g′ = (g′

1, g
′
2)

is a non-vanishing section of L∗ ⊗ C
2. The kernel of π∗g is generated by (−g′

2, g
′
1)

in X ′ \ π∗(0) and it thus has a holomorphic extension to a subbundle of E ′ = π∗E
over X ′. Notice that the image in E ′/N ′ of the holomorphic section u1 = (1, 0) is
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non-vanishing in the open subset of X ′ where g′
1 �= 0. The norm of the image of u1 in

E ′/N ′ is the E ′-norm of

û1 = u1 − u1 · (−ḡ′
2, ḡ

′
1)

|g′|2 (−g′
2, g

′
1).

A straight forward computation reveals that |û1|2 = |g′
2|2/|g′|2, and thus ddc log |û1|2

= −ddc log |g′|2 in the set where g′
1 �= 0. An analogous formula holds where g′

2 �= 0.
Since E ′/N ′ is a line bundle we conclude that

s1(E
′/N ′) = −ddc log |g′|2, s2(E

′/N ′) = (−ddc log |g′|2)2 = 0.

Notice that a′ : E ′/N ′ → π∗F is defined by a′ = g0(g′
1, g

′
2) so that diva

′ = [g0 = 0].
Recalling, cf. (4.1), that Ma′ = s(E ′/N ′)∧[diva′] we thus have Ma′

1 = [g0 = 0] and
Ma′

2 = s1(E ′/N ′)∧[g0 = 0]. We conclude that

Ma
2 = π∗Ma′

2 = −c[0],

where c is a positive integer. In fact, Mg∗
2 = c[0] so c is the multiplicity of the zero of

g at 0.

Remark 11.12 Let E be a trivial line bundle (with trivial metric) and let g : E → F
be generically injective morphism, i.e., a non-trivial holomorphic section of F . With
the notation in this paper a residue current, here denoted by Mg,a , was defined in [5]
in the following way. Let S denote E but with the singular metric inherited from F .
Then, writing c(F/S) is locally integrable in X and

Mg,a := 1Zddc(log |g|2c(F/S)).

If π : X ′ → X is a suitable modification, then π∗c(S) and π∗c(F/S) are smooth in
X ′ and so there is a smooth form v such that ddcv = π∗c(F)−π∗c(S)π∗c(F/S). By
arguments as in the proof of Proposition 1.3 it follows that Mg,a is in the same class
in B(X) as

1Zddc(log |g|2c(F)/c(S)) = c(F)1Zddc(log |g|2
∞∑

=0

〈ddc log |g|2〉)

= c(F)∧Mg =: Mg,b.

In particular, Mg,a and Mg , as well as Mg,b, have the same multiplicities and fixed
part. In case F has a trivial metric, these three currents coincide.

Let us conclude by mentioning two natural question that are not discussed in
this paper. The classical Poincaré-Lelong formula sometimes occurs in the form
∂̄(1/g)∧Dg/2π i = [divg], where D is the Chern connection, which means that
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∂̄
1

g
∧s(F)Dg/2π i = Mg.

Thus Mg is a product of a residue current and a smooth form. In a similar way the
current Mg,a in Remark 11.12, see [5, (6.4)], can be written Mg,a = Rg ·ϕ,where Rg

is the Bochner-Martinelli residue current and ϕ is a matrix of smooth forms involving
both Dg and the curvature tensor.We do not knowwhether there are analogues for Mg

even when E is a line bundle. Another natural question is whether some assumptions
of positivity/negativity on F and/or E will imply positivity of Mg; see [5] for some
results of this kind for Mg,a .
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