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It has been argued that semantic systems reflect pressure for efficiency, and a current debate concerns the cultural evolution-
ary process that produces this pattern. We consider efficiency as instantiated in the Information Bottleneck (IB) principle, and a
model of cultural evolution that combines iterated learning and communication. We show that this model, instantiated in neural
networks, converges to color naming systems that are efficient in the IB sense and similar to human color naming systems. We
also show that some other proposals such as iterated learning alone, communication alone, or the greater learnability of convex
categories, do not yield the same outcome as clearly. We conclude that the combination of iterated learning and communication
provides a plausible means by which human semantic systems become efficient.
Keywords: cultural evolution; iterated learning; efficient communication; semantic categories; color naming

1. Introduction
Semantic categories vary across languages, and it has
been proposed that this variation can be explained by
functional pressure for efficiency. On this view, sys-
tems of categories are under pressure to be both simple
and informative (Rosch, 1978), and different languages
arrive at different ways of solving this problem, yielding
wide yet constrained cross-language variation. There
is evidence for this view from semantic domains such
as kinship (Kemp and Regier, 2012), container names
(Xu et al. 2016), names for seasons (Kemp et al. 2019),
indefinite pronouns (Denić et al. 2022), modals (Imel
and Steinert-Threlkeld, 2022), numeral systems (Xu et
al. 2020, and relatedly Denić and Szymanik, 2024).
Zaslavsky et al. (2018) gave this proposal an inde-
pendent theoretical foundation by grounding it in an
information-theoretic principle of efficiency, the Infor-
mation Bottleneck (IB) principle (Tishby et al. 1999);
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they also showed that (1) color naming systems across
languages are efficient in the IB sense, (2) optimally
IB-efficient systems resemble those found in human lan-
guages, and (3) the IB principle accounts for important
aspects of the data that had eluded earlier explana-
tions. Subsequent work has shown that container nam-
ing (Zaslavsky et al. 2019), grammatical categories of
number, tense, and evidentiality (Mollica et al. 2021),
and person systems (Zaslavsky et al. 2021) are also
efficient in the IB sense.

In a commentary on this line of research, Levinson
(2012) asked how semantic systems evolve to become
efficient and suggested that an important role may be
played by iterated learning (Scott-Phillips and Kirby,
2010). In iterated learning, a cultural convention is
learned by one generation of agents, who then provide
training data from which the next generation learns,
and so on. The convention changes as it passes through
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2 Carlsson et al.

generations, yielding a cultural evolutionary process.
The idea that such a process could eventually lead
to efficient semantic systems has since been explored
and broadly supported. Xu et al. (2013) showed that
chains of human learners who were originally given
a randomly generated color category system eventu-
ally produced systems that were similar to those of
the World Color Survey (WCS; Cook et al. 2005), a
large dataset of color naming systems from 110 unwrit-
ten languages. Although this study did not directly
address efficiency, Carstensen et al. (2015) drew that
link explicitly: they reanalzyed the data of Xu et al.
(2013) and showed that the color naming systems pro-
duced by iterated learning not only became more sim-
ilar to those of human languages—they also became
more informative; the same paper also presented analo-
gous findings for semantic systems of spatial relations.
In response, Carr et al. (2020), building on earlier work
by Kirby et al. (2015) and others, argued that iter-
ated learning primarily contributes simplicity rather
than informativeness—but that a bias for simplicity can
nonetheless sometimes result in an increase in infor-
mativeness. Overall, there is support for the idea that
iterated learning can lead to efficient semantic systems,
with continuing debate over how and why. There are
also recent proposals that non-iterated learning—for
example, in the context of a dyad of communicating
agents (Kågebäck et al. 2020; Chaabouni et al. 2021;
Tucker et al. 2022), or in a single agent without com-
munication (Steinert-Threlkeld and Szymanik, 2020;
Gyevnar et al. 2022)—can explain efficient color nam-
ing systems. In particular, Steinert-Threlkeld and Szy-
manik (2020) argued that “[e]ase of learning explains
semantic universals” (see also Gentner and Bowerman,
2009). To support this claim, Steinert-Threlkeld and
Szymanik (2020) first noted that earlier proposals (Gär-
denfors 2000; Jäger, 2010) had argued for the impor-
tance of convexity in conceptual space as an important
constraint on human semantic categories; they then
demonstrated the greater learnability, in a neural net-
work, of convex as opposed to non-convex color cat-
egories. These recent contributions, and the present
one, build on an important line of earlier work using
agent-based simulations cast as evolutionary models,
without explicitly addressing efficiency (Steels and Bel-
paeme, 2005; Belpaeme and Bleys, 2005; Dowman,
2007; Jameson and Komarova, 2009; Baronchelli et al.
2010).

Several of these prior studies have engaged efficiency
in the IB sense, and two are of particular relevance
to our own work. Chaabouni et al. (2021) showed
that a dyad of neural network agents, trained to dis-
criminate colors via communication, eventually arrived
at color naming systems that were highly efficient in

the IB sense. However, these systems did not always
resemble those of human languages: their categories
“depart to some extent from those typically defined by
human color naming” (Chaabouni et al. 2021: 11 of
SI). Tucker et al. (2022) explored a similar color com-
munication game, and found that their neural agents
gravitated to color naming systems that are both essen-
tially optimally efficient in the IB sense, and similar
to human color naming systems from the WCS. They
achieved this by optimizing an objective function that
is based on the IB objective. To our knowledge, ear-
lier work leaves open whether both high IB efficiency
and similarity to human languages can be achieved
through processes and principles that are independent
of IB. We explore that question here. We also wish to
establish here whether such independent principles may
address the one case in which IB-optimal color naming
systems deviate to some extent from empirical obser-
vation: the case of three-term systems (Zaslavsky et al.
2018,: 7941). Overall, we wished to ascertain whether
a natural model of cultural evolution might account
both for the many cases in which IB matches the data,
and for the one case in which it deviates from the data
to some extent.

A natural candidate model of cultural evolution was
advanced by Kirby et al. (2015), and the ideas we
pursue here build on that general model. Specifically,
Kirby et al. (2015) proposed a model of cultural evo-
lution that interleaves two kinds of learning touched
on above: (1) learning that occurs during transmis-
sion of a linguistic system from one generation to the
next, and (2) learning that occurs during communi-
cation among agents within a single generation. That
formulation allowed them to isolate the effect of each
of the two kinds of learning, and to examine their com-
bination. They were interested in particular in what
evolutionary forces could give rise to compositional
structure of the sort found in human language. In com-
putational simulations and experiments with human
participants, they found that transmission from one
generation to the next exerted pressure for simplicity,
that within-generation communication exerted pres-
sure for informativeness—and that only the two forces
operating together gave rise to compositional structure.
Here, we apply the same general cultural evolution-
ary model to a different question, that of color naming
systems in human languages.

In what follows, we first demonstrate that there exist
many possible color naming systems that are highly
efficient in the IB sense, but do not closely resemble
human systems. The fact that there exist such efficient-
yet-not-human-like systems is not surprising given that
IB is a non-convex optimization problem (Tishby et
al. 1999; Zaslavsky et al. 2018), but appreciating the
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Cultural evolution via iterated learning and communication 3

prevalence of such systems may be helpful in under-
standing how Chaabouni et al. (2021) achieved high
IB efficiency with systems that deviate from human
ones. We then show that the general cultural evolution-
ary model of Kirby et al. (2015), instantiated in neu-
ral networks (Ren et al. 2020), gravitates toward effi-
ciency and, within the class of efficient systems, grav-
itates more toward human color naming systems than
toward others. Finally, we show that iterated learning
alone, communication alone, and convexity alone, do
not yield that outcome as clearly. We conclude that
iterated learning and communication jointly provide
a plausible explanation of how human color naming
systems become efficient.

2. Not all efficient systems are human
like
We considered a natural class of artificial color naming
systems (Abbott et al. 2016; Zaslavsky et al. 2022). In
this class, each named categoryw is modeled as a spher-
ical Gaussian-shaped kernel with mean (prototype) xw
in three-dimensional CIELAB color space (Fig. 1, top
right panel), such that the distribution over words w
given a color chip c at location xc in CIELAB space is:

S(w|c) ∝ e–η||xc–xw ||
2
2 (1)

where η > 0 is a parameter controlling the precision of
the Gaussian kernel. We then generated artificial color
category systems with K = 3, . . . , 10 categories each,
by first sampling η randomly from a uniform distribu-
tion over the interval [0.001, 0.005] for each system,
using the same η for all categories in a given system,
and then sampling the prototype xw of each category
w randomly, without replacement, from a uniform dis-
tribution over the cells of the color naming grid shown
in the top left panel of Fig. 1. This figure shows the
same set of colors as in the top right panel, but now
in a 2D array. In analyzing these systems, we draw
on four quantities from the IB framework as presented
by Zaslavsky et al. (2018) and reviewed below in the
Appendix: the complexity of a category system, the
accuracy of a category system, ε (a measure of the inef-
ficiency of a category system, or its deviation from the
theoretical limit of efficiency), and gNID (a measure of
dissimilarity between two category systems). We noted
that the range of complexity (in the IB sense) for sys-
tems in the WCS was [0.84, 2.65], and also noted that
our random model sometimes generated systems out-
side this range; we only considered artificial systems
with complexity within this range, and generated 100
such systems for each K; we refer to these randomly
generated systems as Gaussian systems.

The lower panels of Fig. 1 compare natural color
naming systems to artificial Gaussian systems. The left-
most column shows three attested color naming sys-
tems from the WCS, from top to bottom: Bété (iso: bev,
Côte d’Ivoire), Colorado / Tsafiki (iso: cof, Ecuador),
and Dyimini (iso: dyi, Côte d’Ivoire). The middle col-
umn shows randomly generated Gaussian systems that
are similar to the WCS system in the same row, and the
rightmost column shows Gaussian systems that are dis-
similar to theWCS system in the same row but of about
the same complexity. In each row, the rightmost sys-
tem, which is dissimilar to the WCS system in that row,
is nonetheless more similar to that WCS system than to
any other WCS system; this means it is dissimilar to
all WCS systems. Thus, there exist Gaussian systems
that are quite similar to naturally occurring systems,
and other Gaussian systems that are quite dissimilar to
naturally occurring systems. To quantify this pattern,
we separated the Gaussian systems into two groups,
based on whether their gNID to the closest WCS sys-
tem exceeded a threshold. We set this threshold to the
smallest gNID between systems in the left (WCS) and
right (Gaussian dissimilar) columns of Fig. 1, which is
0.29. We then grouped all Gaussian systems with gNID
to the closestWCS system below this threshold into one
group, Gaussian[S] (for similar to WCS), and the other
Gaussian systems into another group, Gaussian[D] (for
dissimilar to WCS). We found that 38% of the Gaus-
sian systems fell in Gaussian[D] and they spanned the
complexity range [0.86, 2.26]. Thus, a substantial pro-
portion of the randomly generated Gaussian systems
are at least as dissimilar to WCS systems as are those
in the right column of Fig. 1.

Figure 2 shows the results of an IB efficiency anal-
ysis of the WCS systems (replicating Zaslavsky et al.
2018, and assuming their least-informative prior), and
also of our Gaussian systems. It can be seen that all
Gaussian systems are highly efficient in the IB sense—
that is, they are close to the IB curve that defines the
theoretical limit of efficiency in this domain. Mann–
Whitney U tests revealed (1) that the Gaussian systems
tend to exhibit greater efficiency (lower inefficiency
ε) than do the WCS systems in the same complex-
ity range (P ≪ .001), and (2) that the Gaussian[D]
systems, which are dissimilar to WCS systems, are
also more efficient than WCS systems (P ≪ .001,
one sided), and slightly to marginally more efficient
than Gaussian[S] systems (P = .019 one sided; Bon-
ferroni corrections do not change the qualitative out-
come) (Throughout the paper we use one-sided tests
when comparing different sets of color naming sys-
tems to the Gaussian systems. The reason for this is
that we are interested in knowing whether various sys-
tems generated by an evolutionary process exceed a
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4 Carlsson et al.

Figure 1. Top: Color naming stimulus grid (left), and stimuli plotted in CIELAB space (right). Bottom: nine color naming systems displayed
relative to the grid. The left column contains color naming systems from three languages in theWorld Color Survey (WCS). Colored regions
indicate category extensions, and the color code used for each category is the mean of that category in CIELAB color space. The named
color categories are distributions, and for each category we highlight the level sets between 0.75–1.0 (unfaded area) and 0.3–0.75 (faded
area). The middle and right columns contain randomly generated Gaussian systems of complexity comparable to that of the WCS system
in the same row. The middle column shows random Gaussian systems that are similar to the WCS system in the same row. The right
column shows random Gaussian systems that are dissimilar to the WCS system in the same row; at the same time, there is no other
WCS system that is more similar to this Gaussian system.

random baseline when it comes to either efficiency or
similarity to human systems.). These findings suggest
that there is a substantial number of color naming
systems that are dissimilar to those of human lan-
guages, yet more efficient than them. This in turn
may help to make sense of Chaabouni et al.’s (2021)
finding that their evolutionary process yielded systems
that were highly efficient but not particularly similar
to human ones: our analysis illustrates that there are
many such systems. Given this, we wished to determine
whether a natural evolutionary process would yield
both efficiency in the IB sense, and similarity to human
systems.

3. Iterated learning and communication
As noted above, iterated learning (Kirby, 2001; Smith
et al. 2003) is a cultural evolutionary process in which

a cultural convention is learned first by one gener-
ation of agents, who then pass that convention on
to another generation, and so on—and the conven-
tion changes during inter-generational transmission.
Some of the work we have reviewed above addresses
iterated learning (Levinson, 2012; Carstensen et al.
2015). However, other work we have reviewed instead
addresses cultural evolution through communication
within a single generation (Kågebäck et al. 2020;
Chaabouni et al. 2021; Tucker et al. 2022). We wished
to explore the roles of both iterated learning and com-
munication, and so we adopted the general approach
of Kirby et al. (2015), which involves both in a
way that allows the role of each to be highlighted.
Specifically, we adopted the recently proposed neu-
ral iterated learning (NIL) algorithm Ren et al. 2020,
which can be seen as a neural network implementa-
tion of the approach of Kirby et al. (2015). In the
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Cultural evolution via iterated learning and communication 5

Figure 2. Efficiency of color naming, following Zaslavsky et al.
(2018). The dashed line is the IB theoretical limit of efficiency for
color naming, indicating the greatest possible accuracy for each
level of complexity. The color naming systems of the WCS are
shown in blue, replicating the findings of Zaslavsky et al. (2018).
Our randomly generated Gaussian systems are shown in orange.
The Gaussian systems are often closer to the IB curve than the
WCS systems are. The inset shows the nine color systems of
Fig. 1, with the dissimilar Gaussian systems shown as +.

NIL algorithm, illustrated in overview in Fig. 3, arti-
ficial agents are implemented as neural networks that
communicate with each other within a generation, and
transmit information across generations. Cultural con-
vention (in our case, a color naming system) evolves
both from within-generation communication and from
inter-generational transmission, as the convention
is iteratively passed down through generations of
artificial agents, with each new generation learning
from the previous one (NIL, or neural iterated learn-
ing, is therefore not an entirely informative name for
this process, as it does not explicitly label the important
element of within-generation communication.).

In the NIL algorithm, each generation t (for time
step) consists of two artificial agents, a speaker St and
a listener Lt. The NIL algorithm operates in three
phases. (1) In the first phase, the learning phase, both
agents are exposed to the naming convention of the
previous generation. This is done by first training the
speaker St, using cross-entropy loss, on color-name
pairs generated by the speaker of the previous gen-
eration. The listener Lt is then trained via reinforce-
ment learning in a few rounds of a signaling game
while keeping St fixed: that is, the speaker learns from
the previous generation, and the listener then learns
from the speaker. We had the agents play the signal-
ing game used by Kågebäck et al. (2020), in which
the speaker is given a color chip c, sampled from
a prior distribution over color chips, and produces
a category name describing that color. The listener
then attempts to identify the speaker’s intended color
based on the name produced, by selecting a color

chip ĉ from among those of the naming grid shown
in Fig. 1. A reward is given to the listener depend-
ing on how perceptually similar the selected chip is
to the original color, following equation 2. (2) In the
second phase, the interaction phase, the agents play
the same signaling game but this time both agents
receive a joint reward and update their parameters
during communicative interactions. (3) In the third
phase, the transmission phase, color-name pairs are
generated by sampling colors from the prior distribu-
tion and obtaining names for them from the speaker
St. These color-name pairs are then passed on to the
next generation of agents. In all three phases, color
chips are sampled according to the least-informative
prior of Zaslavsky et al. (2018). Algorithm 1 presents
a schematic overview of the NIL algorithm, and Ren
et al. (2020) present a detailed description. Both the
NIL algorithm and the setting explored by Kågebäck
et al. (2020) build on important earlier work explor-
ing the emergence of communication in neural net-
work models (Foerster et al. 2016; Havrylov and Titov,
2017; Lazaridou et al. 2017; Mordatch and Abbeel,
2018).

In our experiments, we represent both the speaker
and listener as neural networks with one hidden layer
consisting of 25 units with a sigmoidal activation func-
tion followed by a softmax output layer. Individual col-
ors are represented in three-dimensional CIELAB space
when supplied as input to the speaker, and category
names as one-hot encoded vectors. The speaker’s net-
work parameterizes a conditional distribution over
categories given a color. To produce an utterance dur-
ing communication, the speaker samples a category
from this distribution and conveys it to the listener.
The input to the listener is the category uttered by the
speaker, represented as a one-hot encoded vector. The
output of the listener’s network is a probability distri-
bution over the stimulus set, and the listener produces
a guess by sampling from this distribution. For the
reinforcement learning parts of NIL we use the classi-
cal algorithm REINFORCE (Williams, 1992). For the
transmission phase we sample 300 color-name pairs
with replacement, out of the 330 chips in the entire
stimulus set; this ensures that the new generation will
have seen examples from most of color space but it is
impossible for them to have seen all color-name pairs.
To optimize the neural networks, we use the optimizer
Adam (Kingma and Ba, 2015), both in the learning and
interaction phase, with learning rate 0.005 and batch
size 50. For each phase in the NIL algorithm, we take
1, 000 gradient steps. We stop the NIL algorithm either
after 250 generations or once the maximum difference
in IB complexity and accuracy over the ten latest gen-
erations is smaller than 0.1 bit, that is, when the last
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6 Carlsson et al.

Figure 3. Illustration of the neural iterated learning (NIL) algorithm (Ren et al. 2020). The algorithm alternates between communication
within a generation, and learning that is iterated across generations. The speaker (S ) in each generation learns from the speaker in the
previous generation, and communicates with the listener (L) in their own generation.

Algorithm 1 Neural Iterated Learning

1: Initialize dataset D1 uniformly at random
2: for t = 1... do
3: Learning Phase
4: Randomly initialize St and Lt.
5: Train St on Dt using stochastic gradient descent

and cross-entropy loss.
6: Play signaling game between St and Lt and

update parameters of only Lt using the
rewards.

7: Interaction Phase
8: Play signaling game between St and Lt and

update parameters of both agents using the
rewards.

9: Transmission Phase
10: Create transmission dataset Dt+1 consisting of

color-name pairs, (c,w) by sampling colors from
the prior p(c) and providing them as input to St.

11: end for

ten generations are all within a small region of the IB
plane. Note that NIL is not guaranteed to converge in
the IB plane and might oscillate back and forth. This is
because the transmission dataset is finite and randomly
sampled, so the next generation might only be able to
approximately reconstruct the naming system of the
previous generation.

The reward function: The reward function of Kåge-
bäck et al. 2020, which we use here, takes the form:

r(c, ĉ) = e–γ||xc–x̂c ||
2
2 (2)

where c is the chip sampled by the speaker, ĉ is the chip
chosen by the listener as their interpretation of the chip

intended by the speaker, xc is the location in CIELAB
space of chip c, and γ is a parameter that controls how
precise the listener’s choice ĉ has to be. As γ → ∞ the
above reduces to a binary reward function, that is, the
listener has to perfectly reconstruct the color to get any
reward. On the other hand, if γ = 0 the reward function
is vacuous in the sense that any possible reconstruction
yields a reward of 1. We use γ = 0.001 which was orig-
inally used by Kågebäck et al. 2020 and motivated by
the analysis by Regier et al. (2007).

4. Analyses and results
4.1 Iterated learning and communication
operating together
For each vocabulary sizeK = 3, . . . , 10 andK = 100, we
ran 100 independent instances of the NIL algorithm.
For each instance, we considered the color naming sys-
tem of the last speaker to be the result of that instance—
we call these systems IL+C, as they are the result of
iterated learning plus communication, and we evalu-
ated the IL+C systems in the IB framework. As can be
seen in Fig. 4 (top panel), the IL+C systems are highly
efficient in the IB sense: they lie near the theoretical effi-
ciency limit (median inefficiency ε = 0.07), and they are
no less efficient than the random Gaussian systems we
considered above (median inefficiency ε = 0.09), which
in turn are more efficient than the human systems of the
WCS (see Section 2). Thus, iterated learning plus com-
munication as formalized in the NIL algorithm leads to
semantic systems that are efficient in the IB sense. This
is consistent with existing proposals: the reward dur-
ing the signaling game favors informativeness (higher
reward for similar colors, following Kågebäck et al.
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Cultural evolution via iterated learning and communication 7

Figure 4. Efficiency of the (top) IL+C, (bottom left) IL, and (bottom right) C evolved color naming systems (orange dots), in each case
compared with the natural systems of the WCS (blue dots). The black triangle indicates the end state of one run, shown in the inset color
map. The histograms above each figure indicate the proportion of systems at the corresponding complexity level.

2020), and it has been argued that iterated learning
favors simplicity (Kirby et al. 2015; Carr et al. 2020).
Interestingly, all the resulting systems lie within the
complexity range of the WCS systems even though
NIL could theoretically produce much more complex
systems, especially when initialized with K = 100.

Xu et al. (2013) examined how color naming sys-
tems evolved through chains of iterated human learners
without within-generation communication, but with
the number of categories constrained. They found that
these lab-evolved systems tended to gravitate toward
color naming systems that were similar to those of the
WCS, and we wished to know whether the same was
true of computational agents in the NIL framework.
For each IL+C system, we determined the dissimilarity
(gNID) between that system and the most similar (low-
est gNID) WCS system. We also determined the analo-
gous quantity (dissimilarity to the most similar WCS

system) for each random Gaussian system. Figure 5
shows that IL+C systems tend to be similar to WCS
systems to a greater extent than Gaussian systems do,
and this was confirmed by a one-sided Mann–Whitney
U test (P ≪ .001). Thus, the NIL process tends to grav-
itate toward human (WCS) systems to a greater extent
than a random but efficient baseline, the Gaussian sys-
tems (We found that 14% of the IL+C experiments ran
for the maximum number of generations without con-
verging in the IB plane. Excluding these systems from
the analysis and only considering the IL+C runs that
did converge does not change the qualitative outcome
of the analysis above.).

We also asked whether NIL would transform effi-
cient systems that were dissimilar to those of the WCS
(namely those of Gaussian[D]) into comparably effi-
cient systems that were more similar to the WCS.
To test this, we initialized the NIL algorithm with a
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8 Carlsson et al.

Figure 5. Distribution of dissimilarity to WCS systems (minimum gNID to any WCS system) shown for IL+C and Gaussian systems. The
Gaussian systems include both Gaussian[S] and Gaussian[D]. Evolved IL+C systems tend to be more similar to attested WCS systems
than are random but highly efficient Gaussian systems.

Gaussian[D] system, ran the NIL algorithm, and com-
pared the initial system to the one that resulted from
NIL. Figure 6 illustrates the beginning and end points
of this process for a small set of systems, and shows that
NIL transforms systems that are efficient but unlike the
WCS into systems that are similar to particular WCS
systems. Figure 7 shows that the same general pattern
also holds over Gaussian[D] systems taken as a whole.
For each Gaussian[D] system, we created an NIL chain,
and initialized the chain with that Gaussian[D] system.
For each such NIL chain, we measured the dissimilar-
ity (gNID) of its initial Gaussian[D] system to the most
similar WCS system, and the gNID of the end result of
NIL to its most similarWCS system.We found that NIL
tends to transform Gaussian[D] systems into systems
that are more similar to the human systems of theWCS.
The mean gNID to WCS was 0.38 before NIL and
0.25 after, and the reduction in dissimilarity to WCS
after applying NIL was significant (one-sided (paired)
Wilcoxon signed-rank test, n = 302, T = 1, 113, P ≪
.001). The median inefficiency of Gaussian[D] systems
is ε = 0.09 and the median inefficiency of the results
of NIL is slightly lower at ε = 0.07, meaning that
NIL made the already-efficient Gaussian[D] systems
slightly more efficient (one-sided (paired) Wilcoxon

signed-rank test, n = 302, T = 7, 716, P ≪ .001).
Thus, NIL moves already-efficient systems closer to the
attested systems of the WCS, while maintaining and
even slightly improving efficiency. Finally, it is note-
worthy that NIL with three terms converges to a system
that is similar to a three-term WCS system (see the top
row of Fig. 6), because three-term systems are the one
case in which IB optimal systems qualitatively diverge
from human data (Zaslavsky et al. 2018: 7941; see also
Fig. 8 and accompanying text). Thus, this is a case in
which NIL appears to provide a better qualitative fit to
the data than IB does.

4.2 Iterated learning alone and
communication alone
So far, we have seen evidence that the Kirby et
al. (2015) model of cultural evolution, as imple-
mented in the NIL algorithm, may provide a plau-
sible model of the cultural evolutionary process by
which human color naming systems become efficient.
We have referred to the result of the full NIL algorithm
as IL+C systems, because these systems result from both
iterated learning (IL) and communication (C). This
raises the question whether iterating learning alone,
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Cultural evolution via iterated learning and communication 9

Figure 6. NIL transforms efficient color naming systems to become more similar to the WCS. In each row, the left column shows a
Gaussian[D] system that was used to initialize NIL, the middle column shows the result of running NIL from that initialization state, and
the right column shows a WCS system (from top to bottom: Bété, Colorado, Dyimini) that is similar to the NIL result.

Figure 7. NIL tends to transform efficient Gaussian[D] color naming systems to become more similar to the WCS. The difference score
is dissimilarity to WCS (minimum gNID to any WCS system) before NIL, minus the same quantity after NIL. Values above zero (marked
by the dashed vertical red line) indicate that NIL has brought a system closer to the systems of the WCS. There is a clear trend toward
positive values, indicating that NIL tends to transform already-efficient systems into systems that are more human like.

or communication alone, would yield comparable
results.

To find out, following Kirby et al. (2015), we ran
two variants of this culural evolutionary algorithm.
One variant included only iterated learning but no com-
munication (i.e., lines 6–8 of Algorithm 1 were omit-
ted). The other variant included communication but no
iterated learning (i.e., there was only one pass through
the main loop, which stopped at line 9); this is exactly
the experiment that was performed by Kågebäck et al.
(2020). We refer to the results of the iterated-learning-
only algorithm as IL (for iterated learning), and the
results of the communication-only algorithm as C (for
communication). For the C experiments, we trained
each dyad of agents for at most 250, 000 batches

but stopped the training once the agents satisfied the
stopping criterion used for IL+C. Note that Kåge-
bäck et al. (2020) only trained each dyad for 50, 000
steps without any early stopping criterion. We found
that 99.6% of the C experiments converged before
reaching the maximum number of batches. All the IL
experiments converged in the IB plane before reaching
250 generations.

Comparison of the three panels of Fig. 4 reveals
that there are qualitative differences in the profiles of
the systems produced by the 3 variants of the NIL
algorithm (IL+C, IL, and C). We have already seen
that IL+C systems (top panel) are both efficient and
similar to human systems; we also note that they
lie within roughly the same complexity range as the
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10 Carlsson et al.

Figure 8. Representative IL+C systems (left column), WCS systems (middle column) and IB optimal systems (right column), with 3, 4,
5, and 6 color terms (rows). The % under each IL+C system indicates the percentage of IL+C systems in the corresponding cluster. The
WCS systems are, from top to bottom: Nafaanra (iso: nfr, Ghana), Culina (iso: cul, Peru, Brazil), Waorani (iso: auc, Ecuador), Jicaque (iso:
jic, Honduras), Berik (iso: bkl, Indonesia), and Kalam (iso: kmh, Papua New Guinea).

human systems of the WCS. In contrast, the IL sys-
tems (bottom left panel) skew toward lower complex-
ity than is seen in human systems, and in fact about
6% of the IL systems lie at the degenerate point (0, 0)
in the IB plane, at which there is a single category
covering the entire color domain. This skew toward
simplicity is compatible with the view (Kirby et al.
2015; Carr et al. 2020) that iterated learning provides
a bias toward simplicity. At the same time, the IL
systems are not only simple but also quite efficient (i.e.,
informative for their level of complexity), which is in
turn compatible with Carstensen et al.’s (2015) claim
that iterated learning can produce informativeness, and
with Carr et al.’s (2020) proposal that a process that
primarily drives toward simplicity can sometimes also
result in greater informativeness. Finally, the C systems
(bottom right panel) show the opposite pattern: a bias
toward higher informativeness, at the price of higher
complexity, extending well above the complexity range
observed in the human systems of the WCS.

Taken together, these results suggest that iterated
learning alone over-emphasizes simplicity, commu-
nication alone over-emphasizes informativeness, and

iterated learning with communication provides a
balance between the two that aligns reasonably well
with what is observed in human color naming systems.
Overall, these results suggest that iterated learning plus
communication is a more plausible model of the cul-
tural evolutionary process that leads to efficient human
color naming systems than is either iterated learning
alone, or communication alone. These findings echo
those of Kirby et al. (2015), who found that com-
positional structure evolved in a communicative sys-
tem only under the combination of iterated learning
and within-generation communication, and not under
either process taken alone.

4.3 The distribution of systems produced by
IL+C
To further explore the distribution of systems pro-
duced by IL+C we grouped all IL+C systems from
the main experiment based on the number of color
terms, K, in the systems. For each number of
color terms, we clustered the systems using spectral
clustering (von Luxburg, 2007) with gNID as the
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Cultural evolution via iterated learning and communication 11

dissimilarity measure. To find the appropriate number
of clusters for each number of color terms, we per-
formed spectral clustering with C = 2, 3, 4 clusters
and reported the clustering with the highest silhouette
score (Rousseeuw, 1987) which is standard in cluster-
ing. Since spectral clustering does not return cluster
centers, we take the system that minimizes the aver-
age pairwise gNID to all other systems in the cluster
as a representative sample of that cluster. The result-
ing systems, for K = 3,…, 6, are presented in Fig. 8
along with some WCS systems and the optimal IB sys-
tems. The number under each representative IL+C sys-
tem indicates the percentage of systems contained in the
corresponding cluster.

Interestingly, we see that the IL+C systems with three
color terms appear in two clusters: a larger cluster
that corresponds reasonably well to 3-term systems
observed in the WCS, and a smaller cluster that is sim-
ilar to the unattested IB optimal system. This suggests
that there are two different optima that IL+C converges
to: one human-like and the other corresponding to the
IB optimal solution. The fact that the cluster corre-
sponding to the IB solution is much smaller suggests
that IL+C has a bias toward systems that are more sim-
ilar to the WCS systems. These results are compatible
with the idea that the attested 3-term systems repre-
sent a local optimum that is easier to reach through
a process of cultural evolution than is the IB optimal
solution. Related ideas have also been proposed in con-
nection with kin terminologies, Epling et al. (1973),
Kemp and Regier (2012: 1054).

For the four term systems, we observe that 93% of
the IL+C systems end up in clusters that correspond
fairly well with the optimal IB system and one of the
WCS systems shown in Fig. 8. The last 7% of the sys-
tems end up in a cluster that does not map clearly onto
the WCS data. For both K = 5 and K = 6, we observe
that at least one of the IL+C clusters seems to corre-
spond fairly well with systems in the WCS and with IB
optimal systems.

4.4 Learnability and convexity
Asmentioned above in our review of relevant literature,
an influential idea holds that human categories form
convex regions in a given conceptual space (Gärden-
fors, 2000). In the case of color, a natural space for
testing this claim is CIELAB space (Fig. 1, top right
panel), and Jäger (2010) has shown that the natural
color categories found in the WCS are convex sets in
CIELAB space—supporting the convexity claim of Gär-
denfors (2000) in the domain of color. More recently,
Steinert-Threlkeld and Szymanik (2020) have extended
this line of thought by arguing that convex color cat-
egories are easier to learn than are non-convex ones,

and that this greater learnability helps to explain why
human color categories tend to be convex.

We sought to situate this argument relative to the
one we have been advancing here. Intuitively, it seems
plausible that the artificial Gaussian systems we have
considered above should also be convex, because they
are based on spherical Gaussian-shaped kernels—but
as we have seen, many of these Gaussian systems are
quite dissimilar to the human systems of the WCS. This
suggests that convexity may be a necessary but not suf-
ficient criterion for characterizing human-like seman-
tic categories, a suggestion with which proponents of
the convexity argument are comfortable (P. Gärden-
fors, G. Jäger, personal communication; see also Gär-
denfors (2024)). To probe this possibility further, we
assessed the convexity, the (non-iterated) learnability,
and the efficiency of the WCS systems, the randomly
generated Gaussian systems, and an additional set of
baseline systems that draw category distinctions based
only on hue. These hue-based systems were designed
to be convex but not similar to human systems. Specif-
ically, for vocabulary sizes K = 3, . . . , 10 we divided the
Munsell chart into equally sized categories by grouping
together color chips based on their hue only; in case
equally sized categories were not possible we created
K – 1 equally sized categories and added the remain-
ing color chips to the last category. Example hue-based
systems are shown in Fig. 9: these are deterministic sys-
tems in which hue column fully determines the category
to which a given chip belongs.

To assess the convexity of a color naming system,
we adopted the measure of Steinert-Threlkeld and Szy-
manik (2020). They took the degree of convexity of a
single category, named by a word w, to be:

dcc(w) :=
|w|

|ConvHull(w)|

where | · | is the size of a set, that is, the number of
color chips in that set, and ConvHull(w) is the con-
vex hull, in CIELAB space, of those chips in cate-
gory w. Thus, dcc(w) gives us the proportion of those
chips in the convex hull of category w that are also
in the category w itself. For a perfectly convex cate-
gory, this proportion will be 1. Steinert- Threlkeld and
Szymanik (2020) then defined the degree of convexity
of an entire system S of categories to be the average,
weighted by category size, of dcc(w) across categoriesw
in S:

dc(S) :=

∑
w∈S |w| · dcc(w)∑

w∈S |w|
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12 Carlsson et al.

Figure 9. Hue-based artificial systems, with 3 (left) and 10 (right) categories.

Figure 10. Left panel: Convexity. Convexity for different types of category systems. The natural systems of the WCS, artificial Gaussian
systems, and artificial hue-based systems, are all highly convex when compared with a baseline of randomly generated systems in which
each color chip is assigned to a category selected uniformly at random (labeled “Baseline”). We generated such baseline random systems
with k = 3, . . . , 10 color categories and for each k we drew 10 random systems. Right panel: Learnability. Ease of learning is assessed
by how well a learner generalizes, and generalization is measured by gNID between a learned system and the system from which training
data was drawn. Artificial Gaussian and hue-based systems show generalization that is no worse than that of natural WCS systems.

A dc(S) value of 1 corresponds to a system of per-
fectly convex color categories (This method assumes
deterministic rather than probabilistic category mem-
bership. When applying this method to probabilistic
systems, we first converted the probabilistic system to
a deterministic one by assigning each chip to the modal
category for that chip; we then applied this convexity
measure to the resulting deterministic system.).

To assess the (non-iterated) learnability of a color
naming system, we took a system to be easily learned
to the extent that a neural network learner general-
izes the system well—that is, to the extent that the
learned system matches the one from which training
data was sampled. We assessed this by considering only
the learning phase of the NIL algorithm, and consider-
ing only the speaker’s learning (specifically lines 3–5
of Algorithm 1), leaving all parameters unchanged. We
then measured the gNID between the learned system
and the system from which training data was drawn.
During training, the agent sees only part of the entire
system, so this gNID is a measure of how well the agent
generalizes from the data it receives. To mitigate possi-
ble effects caused by sampling the training dataset, we

performed each experiment over 10 independent runs
and averaged.

We assessed the convexity, the learnability, and the
IB efficiency of the (natural) WCS, (artificial) Gaussian,
and (artificial) hue-based systems. Convexity results are
shown in Fig. 10 (left panel), and learnability results
are shown in Fig. 10 (right panel). All three types
of system are highly convex, with the artificial Gaus-
sian and hue-based systems being slightly more convex
than the natural WCS systems—perhaps because the
natural systems include noise. Moreover, in line with
the expectation that convex systems will be learnable,
all three types of system show good generalization,
with no advantage for the natural WCS systems over
the artificial Gaussian and hue-based systems. These
results confirm that convex systems tend to be highly
learnable, and also highlight that something beyond
convexity and (non-iterated) learnability must play a
role in differentiating human systems from artificial
semantic systems that do not resemble them. Finally,
Fig. 11 shows that artificial hue-based systems are not
especially efficient—in contrast with artificial Gaussian
systems and naturalWCS systems.We take these results
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Cultural evolution via iterated learning and communication 13

Figure 11. Some convex and learnable category systems are not efficient. Efficiency of the artificial hue-based systems (green dots),
compared with that of the artificial Gaussian (orange dots) and natural WCS (blue dots) systems.

to suggest that convexity and learnability provide a
partial answer to the question of what characterizes
human semantic categories—and that a fuller answer
may be provided by iterated learning and communica-
tion operating together, as a model of cultural evolu-
tion that leads toward efficient and human-like systems
of semantic categories.

5. Discussion
We have shown (1) that there exists a reasonably sized
class of color naming systems that are highly efficient in
the IB sense but dissimilar from human systems; (2) that
iterated learning plus communication, as captured in
the NIL algorithm, leads to color naming systems that
are both efficient in the IB sense and similar to human
systems; and (3) that iterated learning alone, commu-
nication alone, and convexity alone, do not yield that
result as clearly. These findings help to answer some
questions, and also open up others.

As we have noted, the existence of highly efficient
systems that do not align with human ones is not in
itself surprising. IB is a non-convex optimization prob-
lem (Tishby et al. 1999; Zaslavsky et al. 2018), so mul-
tiple optima and near-optima are to be expected. How-
ever we feel that our identification of such systems may
nonetheless be helpful, because it highlights just how
many such systems exist, and just how dissimilar from
human systems they sometimes are. In particular, this

helps to make sense of Chaabouni et al.’s (2021) finding
that simulations of cultural evolution can lead to color
naming systems that exhibit high IB efficiency but devi-
ate to some extent from human systems—something
that we also sometimes find, as seen above in Fig. 8.
This in turn highlights the importance of identifying
cultural evolutionary processes that tend to avoid these
outcomes and instead converge toward systems we find
in human languages.

We have argued that iterated learning plus com-
munication, as proposed by Kirby et al. (2015) and
implemented in the NIL algorithm (Ren et al. 2020), is
such a process, and that it provides a better account of
cross-language color naming data than either iterated
learning alone, or communication alone. Our findings
supporting this idea thus generalize Kirby et al.’s (2015)
argument, which concerned compositionality in lan-
guage, to a different aspect of language. Our findings
also confirm a proposed resolution to a tension in the
literature. As we have noted, Carstensen et al. (2015)
argued that iterated learning alone can lead to infor-
mative semantic systems, whereas Carr et al. (2020)
argued that iterated learning provides a bias for sim-
plicity, and communication provides a bias for infor-
mativeness. However, Carr et al. (2020) also found that
a bias for simplicity—such as that provided through
iterated learning—can produce systems that are infor-
mative as well as simple, and they suggested that this
helps to resolve the tension. Specifically, they suggested
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14 Carlsson et al.

that an increase in informativeness through iterated
learning, as observed by Carstensen et al. (2015), can
result from a process (iterated learning) the primary
outcome of which is a drive toward simplicity. Our
finding that both forces are needed to account for the
data aligns with Carr et al.’s (2020) central position. In
addition, our finding that iterated learning alone also
converges to efficient and thus informative systems—
although often to overly simple ones—qualitatively
replicates the findings of Carstensen et al. (2015), in
a way that confirms Carr et al.’s (2020) proposed reso-
lution of the tension: iterated learning does lead to sim-
plicity, as suggested, but it also leads to informativeness
to some extent.

It is natural to think of cultural evolution as a mean
by which the abstract computational goal of optimal
efficiency might be attained or approximated. The opti-
mally efficient color naming systems on the IB curve
closely resemble those in human languages (Zaslavsky
et al. 2018), and the IL+C systems are likewise highly
efficient and similar to those in human languages.
However, as noted above, there is an exception to
this pattern. In the case of three-term systems, the
IB optimal system qualitatively differs from the color
naming patterns found in the WCS (Zaslavsky et al.
2018: 7941), whereas IL+C systems often qualitatively
match attested 3-term systems (recall the top rows of
Figs 6 and 8). Thus, in this one case, it appears that
human languages do not attain the optimal solution or
something similar to it, and instead attain a somewhat
different near-optimal solution that is apparently more
easily reached by a process of cultural evolution.

A major question left open by our findings is exactly
why we obtain the results we do. The general model of
Kirby et al. (2015), as implemented in the NIL algo-
rithm, is just one possible cultural evolutionary pro-
cess, and we have seen that the process accounts for
existing data reasonably well. It makes sense intuitively
that NIL strikes a balance between the simplicity bias
of iterated learning and the informativeness bias of
communication—but what is still missing is a finer-
grained sense for exactly which features of this detailed
process are critical, vs. replaceable by others, and
what the broader class of such processes is that would
account well for the data (Tucker et al. 2022). A related
direction for future research concerns the fact that the
evolutionary process we have explored here is some-
what abstract and idealized, in that agents communi-
cate with little context or pragmatic inference. Actual
linguistic communication is highly context-dependent,
and supported by rich pragmatic inference—it seems
important to understand whether our results would
still hold in a more realistic and richer environment
for learning and interaction. Our agents also have

designated roles: an agent acts either as a speaker or
as a listener, and a direction for future research is to
extend our setting to a more realistic model in which
agents can alternate between the two roles. In addition,
in our idealized setup a given agent interacts with only
one other agent, whereas in human social interaction,
communication within a generation happens in social
networks such that an agent interacts with many other
agents throughout their lifetime. An interesting direc-
tion for future researchwould be to explore what biases
are introduced by certain population structures and
whether varying the population structure can account
for the variance observed in human color naming data.

Another important issue concerns the situating of
this evolutionary account relative to the classic account
of Berlin and Kay (1969). Our work here inherits,
from the work of Zaslavsky et al. (2018) on which we
build, an important connection to that earlier classic
account: a trace along the IB curve reveals a sequence
of color naming systems that gradually increase in
complexity and that recapitulate the Berlin and Kay
(1969) hierarchy, while also capturing aspects of com-
peting accounts (MacLaury, 1997; Levinson, 2000).
However, the mapping of that connection to fine-
grained empirical data concerning language change
over historical time has only recently begun (Zaslavsky
et al. 2022), and a connection to the evolutionary
model we explore here has not to our knowledge been
attempted. Finally, we have focused on the semantic
domain of color, but the ideas we have pursued are
not specific to color, so another open question is the
extent to which our results generalize to other semantic
domains.
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Appendix
The framework of Zaslavsky et al. (2018)
Zaslavsky et al. (2018) cast the notion of efficiency
in terms of an independent information-theoretic
principle, the Information Bottleneck (IB) princi-
ple (Tishby et al. 1999). In the framework of Zaslavsky
et al. (2018), a semantic system is considered efficient to
the extent that it achieves an optimal tradeoff between
the complexity of a system, and the accuracy of com-
munication that that system supports. These notions
are grounded in the communicative scenario illustrated
in Fig. A.1, in which a speaker attempts to communi-
cate with a listener about referents in a given domain
universe U, in our case the domain of color. Here, the
speaker considers a specific target color t ∈ U and
holds it in mind in the form of a mental representa-
tion mt, which is a probability distribution over color
space (CIELAB; recall Fig. 1), centered at t. To commu-
nicate that mental representation, the speaker utters a
word w, drawn from a language-specific probabilistic
encoder q(w|mt) that maps from meaningsmt to words
w; this encoder q(w|mt) is the semantic system bywhich
the speaker and listener communicate. The listener then
produces, on the basis of the uttered word w, a men-
tal representation m̂w that is the listener’s reconstruc-
tion of the speaker’s original representationmt. Casting
this simple communicative scenario in terms of the IB
principle results in formal definitions of four quantities
that are central to the IB formalization of efficiency, and
on which we rely in our work: complexity, accuracy, ε,
and gNID.

The complexity of a semantic system q is given by
Iq(Mt;W), that is, the mutual information between
the speaker’s mental representation mt and the word

w used to express it. The greater the complexity of the
system, the more information the wordw carries about
the speaker’s mental representation mt. The accuracy
of a semantic system is given by Iq(W;U), which can
be shown to capture the similarity of the speaker’s
and listener’s mental representations (see Zaslavsky et
al. 2018: 7939). The core idea of efficiency in this
framework is to obtain the greatest accuracy possi-
ble for a given level of complexity—that is, to com-
municate as precisely as possible for a given amount
of information sent. An optimally efficient semantic
system q is thus one that minimizes the IB objective
function:

Fβ[q] = Iq(Mt;W) – βIq(W;U)

where β ≥ 0 is a tradeoff parameter that controls
the relative weight given to complexity and accuracy.
Those systems q∗ that minimize this objective func-
tion for different values of β yield the IB theoretical
limit of efficiency; that is, these are the systems with
the greatest possible accuracy for each level of com-
plexity. Zaslavsky et al. (2018) showed that human
color naming systems achieve near-optimal efficiency
in the IB sense, and that fully IB-optimal systems often
closely correspond to color naming systems in human
languages.

In our analyses, we also make use of two other quan-
tities from the framework of Zaslavsky et al. (2018).
First, εq measures the inefficiency of a semantic system,
or its deviation from optimal efficiency, as described on
p. 7939 of their article:

εq =
1
β
(
Fβ[q] – F∗

β
)

Figure A.1. The framework of Zaslavsky et al. (2018). A speaker communicates a specific referent to a listener by producing a word. The
IB principle provides formal specifications of various quantities associated with this communicative act; see text for details. The figure is
from Zaslavsky et al. (2021).
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Here F∗
β is the optimal value of the IB objective for

a given value of β, and β is chosen to minimize the
difference Fβ[q] – F∗

β for a given semantic system q.
Finally, we follow Zaslavsky et al. (2018) in using their
gNID measure to measure the dissimilarity between
two semantic systems, as described on p. 7942 of their
article. This measure assumes that a single meaning m
is assigned a name by each of two semantic systems q1

and q2: W1 ∼ q1(w1|m) and W2 ∼ q2(w2|m). Then the
dissimilarity between q1 and q2 is given by

gNID(W1,W2) = 1 –
I(W1;W2)

max
{
I(W1;W′

1), I(W2;W′
2)
} .

Here,W′
i corresponds to another independent speaker

using the system qi.

D
ow

nloaded from
 https://academ

ic.oup.com
/jole/advance-article/doi/10.1093/jole/lzae010/7907230 by C

halm
ers U

niversity of Technology / The M
ain Library user on 05 D

ecem
ber 2024


	Cultural evolution via iterated learning and communication explains efficient color naming systems
	Introduction
	Not all efficient systems are human  like
	Iterated learning and communication
	Analyses and results
	Iterated learning and communication operating together
	Iterated learning alone and communication alone
	The distribution of systems produced by IL+C
	Learnability and convexity

	Discussion
	References


