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Modelling traffic scenarios via Markovian Opinion Dynamics∗

Elisa Gaetan1, Laura Giarré1, Simona Sacone2, Paolo Falcone1,3, Carl-Johan Heiker3

Abstract— We address the question of whether opinion
dynamics models can be exploited in novel scenarios, such
as traffic flow on highway lanes. In this paper, we design
a Markovian model and compare its predictions with those
obtained from the widely recognized Cell Transmission Model
(CTM) for the same traffic scenario. We identify potential chal-
lenges that may arise and propose strategies to address them.
Furthermore, we present a concise demonstration showcasing
the predictive capabilities of our proposed model through a
small-scale example.

I. INTRODUCTION

Road transportation is one of the main actors in the world-
wide economy, while also being one of the major sources of
environmental pollution [1]. The massive and still increasing
use of road transportation induces huge annual costs due
to negative externalities (environmental pollution, noise, and
safety issues), besides the social impact of road congestion.
In Europe, this impact has been estimated at about 100 billion
euros only in 2020 (equivalent to about 1% of the European
Union’s gross domestic product) [2]. A smarter and more
efficient use of road infrastructures still is a fundamental
objective, necessary to serve an always increasing mobility
demand in a sustainable way. Besides a suitable design
of new infrastructures, a crucial role in improving road
networks is played by effective traffic management strategies,
including traffic control methods.

Traffic control strategies have been studied for several
decades and a wide scientific literature is available on the
topic (see [3] and [4]). Among the existing traffic control
strategies, mainstream control refers to the direct regulation
of vehicular flows traveling on the mainstream. More specif-
ically, mainstream control actions include variable speed
limitations and/or lane changing indications (as in [5], [6]),
displayed to users through variable message signs placed
at significant locations on the road or by taking advantage
of intelligent vehicles. The design of mainstream control
schemes has received considerable attention but applications
are still limited. This is also due to the fact that the actuation
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of these policies takes place through variable message panels
which can merely provide “collective” recommendations to
all drivers. Moreover, the speed or lane advice shown on
variable message signs can only be displayed at the panel
locations. Indeed, advice to individual vehicle categories
would certainly be more effective and, as regards the vehicle
positioning in the different lanes, it is even more necessary
that these indications are individual and are possible at every
point of the network and not only where panels are located.
Mainstream control actions tailored to individual vehicles or
small clusters of vehicles would be instead a very promising
approach that is becoming available thanks to the develop-
ment of Connected and Automated Vehicles (CAVs) hav-
ing vehicle-to-vehicle (V2V) vehicle-to-infrastructure (V2I)
communication capabilities. These vehicles become an en-
abling factor also for actuating mainstream control actions
to be implemented ”continuously” along the road.

An important contribution to the effectiveness of traffic
control schemes is the possibility of including predictive
capabilities either obtained with model-based approaches
or data-driven techniques. The modeling of mixed-traffic
(including CAVs) or traffic only consisting of CAVs is a topic
that has not yet been fully explored and understood from
a scientific point of view. A vast set of models have been
studied in the last decades to describe the traffic dynamics on
high-density arterials and some of these models have proven
their effectiveness in predictive control schemes.

However, the presence of connected vehicles, their dy-
namics, and their interactions with other vehicles are as-
pects that have not yet found reliable modeling or adequate
identification techniques. The complexity arising from the
presence of vehicles with very different features and the in-
teractions between vehicles also makes the use of traditional
modeling techniques complex. In this respect, an important
contribution may come from the adoption of learning-based
approaches that, together with the availability of large traffic
data sets, could support the development and the deployment
of powerful prediction tools specifically oriented to control
[7].

The idea at the basis of this work is the development of
a modeling framework based on opinion dynamics oriented
to traffic control that aims to overcome the limits of model-
based methods and those related to the application of purely
data-driven methodologies. In a mixed traffic environment,
with CAVs and human-driven Vehicles, it is possible to
control the traffic flows through the CAVs moves. For this
reason, we may see such ”moves” as choices/decisions and
model them by exploiting models used in opinion dynamics.
Specifically, in this work, we design an opinion dynamics



framework for traffic scenarios. The performance of the
model is tested on an illustrative small-scale case study
demonstrating the consistency of our framework’s predic-
tions with an established traffic model. To the best of our
knowledge, just a few papers have tried to find a connection
between models of opinion dynamics and traffic control
models and predictions. A previous attempt to use opinion
dynamics models for modeling traffic intersections in urban
environments has been reported in [8].

This paper is organized as follows. Section II describes
the Cell Transmission Model (CTM) framework considering
a one-way road, while Section III first introduces a generic
Discrete Time Markov Chain (DTMC) model and then adapts
it to the traffic scenario. Section IV explains how to use the
data to fit DTMC, which results are shown in Section V, for
different scenarios. Lastly, conclusions are drawn in Section
VI.

II. HIGHWAY TRAFFIC MODEL

In this section, we recall the Cell Transmission Model
(CTM), a widely used modeling framework that describes
highway traffic [9]-[10], which our model will be compared
against. Additionally, we discuss how the vehicle arrivals into
the model can be described in this setting.

A. Cell Transmission Model

The CTM builds upon the decomposition of the considered
road stretch into a series of short sections, referred to as
“cells” and denoted as C = c1, ..., cL. The CTM is based on
the following set of two equations:

nc(t+∆t)=nc(t) + qc(t)∆t− qc+1(t)∆t, (1a)

qc(t)=min
{nc−1(t)

∆t
, Qc(t),

Nc(t)−nc(t)

∆t

}
(1b)

where, nc(t) represents the number of vehicles in cell c, qc(t)
is the inflow to cell c and qc+1(t) is the outflow from the
same cell, and ∆k represents the time step size. Additionally,
Nc(t) represents the maximum number of vehicles that cell
c can contain, and Qc(t) denotes the capacity flow into cell
c, which corresponds to the maximum inflow of vehicles
allowed in that cell. The term Nc(t) − nc(t) represents the
available space within cell c. Moreover, the parameters Nc(t)
and Qc(t) can also be constant over time.
Regardless of the number of cells, a CTM always includes
source, gate, and sink cells. Specific properties hold for
each cell type, recalled next. The source cell is assumed to
contain a potentially infinite initial number of vehicles (i.e.,
nsource(0) = ∞), which enter the gate cell, thus resulting
in an infinitely large cell (Ngate(t) = ∞). After traveling
through the series of cells, the vehicles eventually arrive at
the sink cell, which has an infinite capacity (Nsink(t) = ∞)
and can accommodate all entering vehicles. The source-gate
and the sink cells are the input and output cells respectively,
which in turn are the unknown road network structure outside
the scenario’s boundaries, namely the segments of road
before and after the modeled road stretch, that we are not
interested in investigating.

B. Modelling the input to the traffic scenario

In the previous subsection, we mentioned the infinite
capacity of the gate cell in the CTM. However, the literature
does not clearly explain the transition of vehicles from the
gate to the first cell of the road. That is, the function ngate(t),
which influences the inflow q1(t) of vehicles into the first
cell:

q1(t) = min
{ngate(t)

∆t
, Q1(t),

N1(t)− n1(t)

∆t

}
, (2)

is not explicitly defined. Nevertheless, in traffic scenario
modeling, the process of arrivals in the gate cell is often
assumed to follow a Poisson Process [11]. This approach
is inspired by queuing theory from the telecommunications
field [12], where the one-way road can be seen as a queue.
The Poisson Process assumes infinite capacity, with the
arrivals inflow as a stochastic variable. The probability mass
function of a Poisson distributed variable ngate, defined as

P
(
ngate(t) = a

)
=

(λt)a

a!
e−λt,

describes the probability of having a arrivals at time t, where
λt is the average number of arrivals. Therefore, the outflow
from the gate cell to the first cell is a random variable.

III. AN OPINION DYNAMICS MARKOVIAN MODEL FOR
TRAFFIC SCENARIOS

In this section, we present our opinion dynamics frame-
work for modeling highway line traffic, focusing on cap-
turing and predicting the dynamics of traffic. We start by
introducing the general formulation of a Markovian model
in its discrete-time form. Next, we adapt and customize it to
fit the characteristics of the considered scenario, resulting in
our specific opinion dynamics model.

A. Discrete-Time Markovian Model

The decision process of a single agent r can be described
as a Discrete-Time Markov Chain (DTMC) over a set
S = {s1, ..., sM} of M decision states. State transition
probabilities Pr(sr(t + 1) = sj |sr(t) = si) = prij(t)
at the discrete time step t ∈ Z are defined in the non-
negative, row-stochastic matrix P r(t) ∈ RM×M , such that
P r
i,j(t) = prij(t) for all i, j ∈ {1, . . . ,M}. The probability

distribution Πr(t) = [πr
1(t)...π

r
M (t)]T over S describes the

decision probabilities of r, and is the solution of

Πr(t+ 1) = (P r(t))TΠr(t) (3)

from some initial decision probability Πr(0). The DTMC
is said to be time-homogeneous if the transition matrix is
independent of t, such that P r(t) = P r ∀t. We define a
network X of Z discrete-time Markovian agents, with more
than one agent undergoing a state transition at step t. Similar
to [13], we denote a network state as X = ⟨s1, . . . , sZ⟩, and
the state set of the entire network as SX = S1 × · · · × SZ .
As Sr represents the decisions in S for each r, the network
has MZ states. The transition matrix of X is

P0(t) = P 1(t)⊗ · · · ⊗ P r(t)⊗ · · · ⊗ PZ(t), (4)



where ⊗ is the Kronecker product. The decision probabilities
of the entire network are thus the solution of

ΠX (t+ 1) = (P0(t))
TΠX (t), (5)

given the initial network decision probability distribution
ΠX (0).

B. Fitting the Markovian model for traffic scenarios

In this section, we adapt the generic formulation of a
Discrete-Time Markov Chain (DTMC) from the previous
section to a one-way road traffic scenario. In particular,
we are interested in describing the same scenario as the
CTM, namely a road stretch divided into cells crossed by
vehicles. We start by defining the sets of agents R and states
S for the network of Markovian agents. Considering each
vehicle as an individual agent may seem intuitive. However,
due to the property of Markov Chains where dynamics can
potentially be observed for an infinite time, defining vehicles
as agents would restrict observations to a finite time interval,
undermining this property. To preserve such characteristic of
the Markov Chains, we propose considering the cells in the
CTM as agents of the DTMC:

C ≡ R ⇐⇒ {c1, ..., cL} ≡ {r1, ..., rZ}.

Henceforth, we replace the index r for a generic Markovian
agent with c. Next, we discuss the possible states that a single
agent can assume. We define three distinct states:

• s1 = “The number of vehicles increases”;
• s2 = “The number of vehicles decreases”;
• s3 = “The number of vehicles remains constant”.

Such states describe modes that can be useful also when
dealing with lane change or lane merging decisions. Thus,
for our traffic application, the set of decision states is S =
{s1, s2, s3}. A relationship between such decision states and
the states of the CTM can be easily established by rewriting
(1a) as

nc(t+∆t)− nc(t) = qc(t)∆t− qc+1(t)∆t, (6)

where the lhs represents the variation of vehicles in cell c
over ∆t. Hence, the decision states in S correspond to the
sign of such variation as follows

• nc(t+∆t)− nc(t) > 0 ⇐⇒ sc1(t),
• nc(t+∆t)− nc(t) < 0 ⇐⇒ sc2(t) and
• nc(t+∆t)− nc(t) = 0 ⇐⇒ sc3(t).

Without loss of generality, we choose a unitary step size
∆t = 1. Thus, the above discrete derivative of the number
of vehicles in cell r corresponds to the state si. Furthermore,
it is important to note that the fundamental property of a
Markov chain, known as the memoryless property [14], holds
for the proposed model. This property states that given the
current state si, the next state depends only on si and not on
the past history. Indeed, according to (6), the next state can be
also expressed as sci (t) = qc(t)∆t− qc+1(t)∆t. In turn, the
inflow qc(t) and outflow qc+1(t) of the cell c are evaluated
following (1b). Thus, the number of vehicles nc−1(t) and
nc(t) depend on the variation expressed by the previous state

sci (t − 1) and not rely on the past history. Therefore, our
model respects memoryless property.

IV. LEARNING THE TRANSITION MATRIX OF DTMC

Next, we address the problem of inferring from data
the transition matrices P c(t) for each agent c. This task
involves finding the Maximum Likelihood Estimator (MLE)
P̂ c(t) [15]. In the literature, the frequentist and Bayesian
approaches are commonly considered for this purpose [16].
In our case, since we lack any prior information about the
probability distribution of the transition matrix, we adopt the
frequentist approach. As described in [17], the MLE p̂ij(t) =
[P̂ c(t)](i,j) for the transition probability pij(t) = [P c(t)](i,j)
in a non-homogeneous system is given by:

p̂ij(t) =
Vij(t, t+ 1)

Vi+(t, t+ 1)
, (7)

where Vij(t, t+1) represents the number of transitions from
state si to sj in the time interval [t, t+1], and Vi+(t, t+1)
is the number of chains that experience a transition starting
from state si in the same time interval.
The result in (7) can be adapted to a homogeneous system,
as explained in [18]-[19]. In this case, the MLE for pij
becomes:

p̂ij =
vij
vi+

, (8)

Here, vij is the number of observations from state si to
sj , and vi+ =

∑M
j=1 vij represents the total number of

observations starting from state si. Although it is of practical
relevance to building either the (7) or the (8) upon experi-
mental data, in this paper we use state trajectories from the
CTM. Using the state trajectories of the CTM instead of
experimental data is meant to gain an understanding on the
DTMC capability of reproducing the behavior emerging from
a well-known and widely accepted model like the CTM.
While the MLE in the homogeneous case can be easily
estimated by counting the occurrences of state transitions in
a single state trajectory of CTM, the estimator for the non-
homogeneous case requires multiple trajectories to gather
information about the time variability of the state transition
rates.

A. Issue in the transition matrix learning process and its
possible solution

The issue of learning non-row-stochastic matrices P c(t)
is a potential challenge in both homogeneous and non-
homogeneous systems. This can arise because the predic-
tions from the deterministic CTM model may not cover all
possible network configurations at each time instant, leading
to missing transitions in the inferred matrices. In the CTM
framework, while the state of the first cell can vary from
the initial instants due to the stochastic input ngate(t), the
states of the remaining Z − 1 cells are deterministic and
remain constant over the initial executions. Consequently,
it is not guaranteed that all possible network configurations
are reached at least once in the CTM executions, resulting in
zero elements in certain rows of the matrix P0(t). Inspired



by [20], where the authors developed a stochastic version of
CTM, we add a stochastic term, namely a noise in (1) which
becomes

nc(t+∆t)=nc(t)+qc(t)∆t−qc+1(t)∆t+η(t), (9a)

qc(t)=min
{nc−1(t)

∆t
,Qc(t),

Nc(t)−nc(t)

∆t

}
. (9b)

The noise describes additional vehicles entering the system
and is constrained to be an integer to preserve the feasibility
of the model. To ensure that the vehicle count remains non-
negative (nc(t + ∆t) ≥ 0), the noise term η(t) must be
non-negative as well. The addition of a disturbance term
can help in resolving the issue, but it may not be sufficient
on its own. Based on our simulations, we observed that a
few time instants must be discarded to accurately infer the
transition matrices. This means that we may need to exclude
certain initial time steps to ensure the row-stochasticity of
the inferred matrices. This initial transient phase should
be discarded and corresponds to the burn-in (or warm-up)
phase of Markov chains ([21]). Moreover, owing to the
memoryless property, this does not negatively affect the
Markov chain. In conclusion, incorporating a disturbance
term in the CTM equations can partially address the issue of
non-row-stochastic matrices. However, further considerations
and adjustments, such as discarding initial time steps, may
be necessary.

V. RESULTS

In this section, we compare the CTM and DTMC models
and highlight the obtained results. To begin, we claim that the
non-homogeneous DTMC model is to be preferred over the
homogeneous. Such claim builds on the superior accuracy
of the non-homogeneous model in capturing the dynamics
of the CTM, as shown next by the simulation results of a
small-scale example.

A. Comparing homogeneous and non-homogeneous DTMCs

In this example, we consider a CTM with 2 cells to
derive the transition matrices of DTMCs with Z = 2 and
M = 3. Fig.1a illustrates the probability vector evolution
ΠX (t) of the homogeneous DTMC. Due to the reduced
dimension of the Markov chain, we assume that all the
network configurations are visited at least once during the
simulation, and therefore the corresponding Markov chain is
ergodic ([14]). Consequently, ΠX (t) converges to a unique,
stationary state Π̄X . This plot is compared with Fig. 1b,
which shows the probability evolution of a non-homogeneous
DTMC in order to establish which of the two models must be
preferred. If we assume to consider the one with the highest
probability as the occurred configuration, then we verify
that while the homogeneous DTMC can only predict which
network configuration is most likely to occur in a single
state trajectory of CTM, the non-homogeneous DTMC can
predict the configurations at each instant t and the transitions
between them. Thus, a non-homogeneous DTMC should be
employed, as far as predicting the configurations’ evolution
over time is concerned.
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(b) Non-homogeneous system.

Fig. 1: Comparison between probabilities evolution of the
homogeneous and non-homogeneous DTMCs with Z = 2
and M = 3. If we consider the configuration with the highest
probability at each instant t as the actual configuration,
we can observe that the homogeneous DTMC can only
predict which of the MZ configurations is most probable
to occur in a single execution of CTM. In contrast, the non-
homogeneous DTMC can not only predict the most probable
configurations at each instant t, but it also allows us to
foresee the transitions between configurations.

However, choosing a non-homogeneous DTMC introduces
a partial limitation. Multiple state trajectories of the CTM
are necessary to infer the transition matrices of a single
non-homogeneous DTMC. Consequently, the configurations
predicted by a non-homogeneous DTMC should be com-
pared against multiple CTM’s state trajectories. For future
comparisons, we decide to evaluate the DTMC results against
the modal configurations of CTMs. However, it is worth
noting that being able to predict the average behavior of one-
way roads is still of considerable interest. For instance, by
integrating the DTMC framework into a predictive control
algorithm, one could leverage the model’s capabilities to
anticipate the average traffic behavior of a specific road
stretch. This predictive capability allows us to gain valuable
insights into future traffic conditions and plan control actions
accordingly. More generally, the DTMC framework enables
a macroscopic description of the traffic scenario, focusing on
the collective behavior of traffic flow rather than individual
vehicles. This macroscopic perspective allows us to capture
the overall trends and patterns in traffic dynamics, such as
variations in cell density, flow rates, and congestion levels.

B. Exploiting a small-scale network example to assess the
agreement between CTM and DTMC predictions

We aim to investigate the consistency between CTM and
DTMC in terms of their predictions for various traffic sce-
narios. Furthermore, we emphasize the impact of parameter
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(b) High arrivals rate λhigh.

Fig. 2: Comparing CTM modal configurations under low and
high arrivals rate of vehicles. In both figures, the distinct
symbols (varying in shape and color) represent the different
configurations denoted as Xhij that CTM can exhibit over
time.

values on the resulting configurations. The evolution of the
vehicle count, as described by (1), primarily depends on
parameters Qc(t) and Nc(t). Additionally, as elaborated in
Section II-B, the arrival rate λ also influences the system.
By varying the values of (Qc(t), Nc(t), λ), we can design
diverse traffic scenarios. We assume that the parameters
are time-invariant, assuming a consistent road structure over
time. Our analysis is limited to two types of one-way roads:

1) Uniform roads, where Nc = N and Qc = Q for all
c ∈ C (see Case 1).

2) Roads with a narrowing in the last cell, where N1 =
... = Nc = ... = NcL−1

> NcL (see Case 2).
To conduct the tests, we employ a small-scale network with
Z = 3 agents and M = 3 states. Consequently, the DTMC
has a total of MZ = 27 possible configurations. Utilizing (9),
we derive the data needed to compute the state trajectories
of CTM using the procedure outlined in Section III-B. This
allows us to infer the transition matrices P c(t) for each agent
c ∈ C. We then construct the transition matrices for the entire
network as described in (4) and simulate the network with
random initial conditions. Finally, we compare the results
obtained from the DTMC with the modal predictions of the
CTM. Furthermore, for Case 1, we examine the effect of λ,
while for Case 2, we consider both Qc and λ as variables of
interest.

Case 1: Assuming Nc = N = 50 veh and Qc = Q =
25 veh/min, with an outflow from the network of Qout =
Q. Additionally, considering the potential issues outlined in
Section IV-A, we set η(t) = U(0 veh, 2 veh). To investigate
the impact of λ, we conduct two tests:

• A road with a low arrival rate λlow < Qout,

(a) Probability evolution of DTMC for λhigh. To enhance clarity,
we present a graphical representation of the most probable states,
which have probability Π123 and Π213, along with the probabilities
of the additional two configurations observed in Fig. 2b, namely
Π131 and Π311.

(b) DTMC configurations for λhigh. This graph is derived from the
probability evolution plot shown in Fig. 3a. Specifically, the con-
figuration denoted as Xhij corresponds to the highest probability
Πhij observed.

Fig. 3: Evolution of probability estimated configuration chain
of DTMC with λhigh. The highlighted red zone indicates
the inability to make predictions due to non-row-stochastic
inferred transition matrices.

• A road with a high arrival rate λhigh ≥ Qout.
Without loss of generality, we choose λlow = 5veh/min
(Fig. 2a) and λhigh = 50 veh/min (Fig. 2b). The modal
plots demonstrate that a low arrival rate causes the system
to alternate between configurations X121 and X212, while a
high arrival rate induces the system to switch between X123

and X213. Consequently, we conclude that the arrival rate
influences the number of vehicles in the last cell, specifically
in the case of uniform one-way roads. Notably, a high arrival
rate results in a consistent density of vehicles in the last cell.
By utilizing the data obtained from the CTMs, we derive
the transition matrices and derive the probability evolution
of the DTMC. As an example, we present and discuss
the simulations for λhigh (Fig. 3). In Fig. 3a, we plot the
evolution of ΠX according to (5). To enhance clarity owing
to the high dimension of the state vector (ΠX ∈ R27×1),
we present just some of the state probabilities Πhij . Thus,
we deduce the corresponding configurations (Fig. 3b), by
stating that the configuration Xhij(t) that occurs must have
the highest probability

max
Πhij(t)∈Π(t),

h∈S1, i∈S2, j∈S3

Πhij(t) = Xhij(t). (10)

It should be noted that the configurations at the initial mo-
ments cannot be reliably inferred due to non-row-stochastic
transition matrices. These instances are highlighted by the



red zone in Fig. 3. Finally, we compare the predictions of
the CTM and DTMC. Except for a brief transient period
in the beginning, the predictions of the two models align.
Consequently, we can assert that our framework accurately
predicts the average behavior of a uniform one-way road.

Case 2: Considering N1 = N2 = 50 veh, N3 = 30 veh,
and Q1 = Q2 = 25 veh/min, we continue to employ
η(t) = U(0 veh, 2 veh) as in Case 1. In this case, we conduct
tests for four different scenarios by varying the parameters
Q3 = {5, 25}veh/min and Qout = {5, 25}veh/min, while
keeping λlow = 5veh/min and λhigh = 50 veh/min fixed.
Physically, the values of the maximal inflow Q3 and outflow
Qout can be interpreted as the width of the entrance and exit
of the last cell, respectively. Therefore, altering their values
corresponds to either widening or narrowing the access and
exit points. The results are summarized in Tab. I, which
presents the configurations Xhij assumed by the CTM for
each combination of parameters (Q3, Qout, λ). Unlike Case
1, we now observe that the network is primarily influenced
by Q3 and Qout rather than λ. The configurations assumed
by the system remain consistent for both λlow and λhigh.
Consequently, our analysis focuses on the effects of Q3 and
Qout.
In the case of parameter combination A, where both the
inflow and outflow of the last cell are minimal and only a
few vehicles enter at each time interval (maximum 5 units),
it is reasonable to expect a constant density in the last cell
(s3(t) = s3 for all t).
Increasing the outflow (combination B) results in a constant
density in all cells. This is a direct consequence of Qout >
Q3, as only a limited number of vehicles can be transferred
from the second to the third cell. In essence, the small value
of Q3 acts as a restriction on traffic flow toward the last cell,
consequently affecting the densities of the preceding cells.
On the other hand, when the inflow is increased, a constant
density is observed in the third cell, as seen in combination
C. In this scenario, the limited capacity of the outflow acts
as a constraint on vehicles leaving the network. As a result,
only a few vehicles are able to exit the last cell, leading to
a tendency for the density to remain constant.
Finally, combination D yields the same results as in Case 1.
The inflow and outflow values are insufficient to fill the last
cell (Q3 = Qout < N3), and thus no traffic congestion is
observed.
Comparisons between the modal CTM predictions and the
DTMC predictions have been conducted for all the presented

TABLE I: Results from the conducted tests for Case 2.

Network Parameters

(Q3, Qout, λ)

Network Configurations

λlow = 5veh/min λhigh = 50 veh/min

A. (5, 5) veh/min X123, X213 X123, X213

B. (5, 25) veh/min X333 X333

C. (25, 5) veh/min X123, X213 X123, X213

D. (25, 25) veh/min X121, X212 X121, X212

combinations, considering both low and high arrival rates.
Satisfactory agreement between the two frameworks has been
obtained.

VI. CONCLUSION

In this paper, we have introduced an opinion dynamics
Markovian framework for traffic control. Our framework
models and analyzes traffic dynamics in a one-way road
scenario. To capture the variations of density in different cells
along the road, we have employed a Discrete-Time Markov
Chain as the underlying mathematical model. By utilizing
DTMC, we are able to represent the system dynamics as a
sequence of discrete configurations and transitions between
these configurations. Each cell in the one-way road is treated
as an individual agent in the DTMC, and the density of
vehicles in each cell is considered as a key parameter of
interest. Although our study has shown a satisfactory level of
agreement between the predictions of the CTM and DTMC,
it is important to acknowledge that the DTMC model has
been tested in a relatively simple scenario. To further validate
and assess the robustness of our DTMC framework, it is
essential to test it in a variety of real-world and more
demanding traffic scenarios. In future work, we intend to
expand the application scenarios of our model and explore
various highway layouts, including situations such as lane
merging and lane changing. Tests using real data are also
ongoing. Additionally, we believe that our framework could
be integrated into a control scheme as a predictive tool in
place of other widely recognized traffic models.
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