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11 Abstract
12
13 Utilizing accident causation models (ACMs) within a construction organization could address 
14 challenges in extracting lessons-learned from registered occupational accident data – like 
15 learning bottlenecks and inadequate information sharing. Applying text analytics (like large 
16 language models, LLMs) to construction site accident data in conjunction with an ACM could 
17 furtherly improve the addressing of such challenges. Therefore, in this study we investigate 
18 whether we can improve the automation of the accident data analysis (when demanded by a 
19 user) in a construction organization by teaching a LLM to perform accident case analysis 
20 mapped on the components of the bow-tie model template. In this, we analyse accident report 
21 data obtained from a large contracting company in Sweden by combining emergent abilities of 
22 LLMs and the bow-tie model through the in-context learning method. We found that the LLM 
23 successfully learned to perform accident report analysis based on a format of in-context learning 
24 demonstrations, by effectively categorizing and structuring accident data into threats, barriers, 
25 and consequences. The use of in-context learning demonstrated a reduction in output 
26 hallucination and maintained consistency in aligning with predefined analysis structures. It was 
27 confirmed that generating accident analyses without in-context learning resulted in the model’s 
28 tendency to fabricate information. Nonetheless, shortcomings were also identified, like 
29 challenges with data quality and domain complexity, minor inconsistencies in the LLM output, 
30 and an inconclusive efficacy of using the conceived model in proactive accident prevention in 
31 practice. Nevertheless, this study’s contribution is showcasing that an integration of LLMs and 
32 ACMs for learning from registered occupational accident data in construction companies is 
33 both feasible and potentially advantageous – however, it needs to be furtherly investigated.
34
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41 The construction industry is still facing challenges in reducing the frequency of occupational 
42 accidents – especially after a levelling out following a long-time and steady frequency decline 
43 (Samuelsson, 2022). To tackle those challenges and enhance occupational safety, it is crucial 
44 to learn from past experiences (Guan et al., 2024). Sharing information about lessons learned 
45 can empower members in organizations to react and protect themselves and others (Lindberg 
46 et al., 2010). However, construction organizations (e.g., contractors) face several knowledge 
47 sharing issues (Duryan et al., 2020). Those can include the lack of systemic and consistent 
48 knowledge transfer across projects, and on-site laborers being usually less informed on safety 
49 news and changes compared to the white-collar employees (Duryan et al., 2020). Learning 
50 bottlenecks leading to such knowledge sharing challenges are often related to inadequate 
51 conduct of cause analyses and planning for actions and interventions (Drupsteen and Hasle, 
52 2014).
53
54 Having an accident learning cycle can address those challenges; Silva et al. (2017) described 
55 multiple elements in such a cycle, incl. gathering, recording, analysing and coding information, 
56 and establishing operational feedback focusing on applying, disseminating and discussing the 
57 learned information. However, recording and analysing accident cases are far from perfect in 
58 their effectiveness (Gibb et al., 2014). For example, the Swedish Accident Investigation 
59 Authority (Statens haverikommission, SHK) found that disseminating lessons learned was one 
60 of the weakest points in accident investigation and prevention, and that timely availability of 
61 prevention recommendations is important in taking corrective actions (Lindberg et al., 2010).
62 As an analytical accident tool that can be utilized to tackle the aforementioned weak points, the 
63 bow-tie model is a type of accident causation model (ACM) and is used for illustrating and 
64 visualizing the interactions between hazards, protective and preventive measures (Kuzucuoğlu 
65 et al., 2023). The origins of the bow-tie model go back to 1970s and its utilization for hazard 
66 and damage process analyses (Fu et al. 2023). Since then, it has been used in the analytic design 
67 of different accident scenarios, as well as active and reactive hazard management (Jacinto and 
68 Silva, 2010). The bow-tie model can contribute to learning from accidents through simplifying 
69 the cause–effect relationships but still retaining an adequate level of detail in communicating 
70 barrier or control mechanisms for each failure pathway – while having a form suitable for the 
71 understanding and training of process operators (de Ruijter and Guldenmund, 2016).
72
73 At the same time, interest in applying text analytics to construction site accident data has grown 
74 following advancements in natural language processing (NLP) (Baek et al., 2021; Wu et al., 
75 2022). However, while this development can improve learning from previous accidents, recent 
76 NLP-using accident report analyses have faced multiple limitations – such as the need for 
77 extensive manual labelling, and NLP being ambiguous and imprecise in understanding natural 
78 language expressions (Shayboun, 2022; Wu et al., 2022). There have been some efforts in 
79 expanding the application of text analytics in using knowledge-based responses and graph 
80 neural networks, but these are limited in their need for domain- and language-specific logical 
81 forms (Wang and El-Gohary, 2023). Nevertheless, the rise of large language models (LLMs) in 
82 the field of NLP (Zhu et al., 2023) can potentially provide new possibilities in utilizing text 
83 analytics for construction site accident analysis. LLMs display emergent abilities, namely 
84 abilities not being present in smaller models and not being able to scale up by extrapolating a 
85 scaling law (i.e., consistent performance improvements) from small-scale models (Wei et al., 
86 2022). So, due to their enlarged parameter scale, LLMs seem to be able to perform in-context 
87 learning, instruction following, and step by step reasoning – unlike smaller language models 
88 like BERT (Zhao et al., 2023). Crucial among those abilities, in-context learning is “a paradigm 
89 that allows language models to learn tasks given only a few examples in the form of 
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90 demonstration” (Dong et al., 2022) while not requiring fine-tuning on downstream tasks except 
91 for few task-specific demonstrations and appropriate instructions (Zhu et al., 2023).
92
93 This background is leading to our research question: Can we improve the automation of the 
94 accident data analysis (when demanded by a user) in a construction organization by teaching a 
95 LLM to perform accident case analysis based on the bow-tie model template? To address this 
96 question, we analyze data on accident reports and corrective measures by combining the 
97 emergent abilities of LLMs and the concept of the bow-tie model – thus trying to take advantage 
98 of both in an integrated way. Therefore, we map the company’s accident reports into the bow-
99 tie components by demonstrating the analysis through multiple examples in an in-context 

100 method. The context and content of this paper is a continuation of a user- and safety-related 
101 study within a large contracting company in Sweden (Shayboun et al., 2021). In that study, it 
102 was found that linking accumulated accident reports to specific work processes added the most 
103 value, while one of the company’s senior health and safety (H&S) specialists confirmed that 
104 gaining knowledge can be challenged by the timely availability of lessons learned (Shayboun 
105 et al., 2021).
106
107 The paper continues with a literature review, the description of the research methodology, and 
108 the results of our analysis. It then concludes with a discussion and final remarks.
109

110 2. Literature review
111
112 2.1. LLMs and in-context learning
113
114 LLMs are the most recent advancement in information retrieval and have demonstrated 
115 capabilities in language understanding and generation without needing fine-tuning on 
116 downstream tasks (Zhu et al., 2023). Modern information retrieval systems consist of a retrieval 
117 and a ranker stages, and the LLMs’ high capacity in text semantics make them more suitable in 
118 enhancing information retrieval as rerankers, document annotators, or generators of 
119 corresponding queries (Zhao et al., 2023). Previously, the Tf-idf and BM25 algorithms have 
120 been criticized for their “conceptual flaw: they work only if there is exact overlap of words 
121 between the query and document” (Jurafsky and Martin, 2023; Guo et al., 2022). The 
122 implication is that the user writing a query or asking a question needs to guess exactly what 
123 wording the writer of the answer might have used; this is called the vocabulary mismatch 
124 problem (Jurafsky and Martin 2023). Jurafsky and Martin (2023) proposed that it is more 
125 successful to use an approach that can handle synonymy (such as dense embedding through 
126 Bidirectional Encoder Representations from Transformers (BERT)) rather than using sparse 
127 word count vectors. BERT has been recognized with impressive performance in different 
128 language understanding, NLP, and information retrieval tasks (Guo et al., 2022; Wang et al., 
129 2024). Kurtz (2022) tested multiple BERT versions on different Swedish tasks and showed that 
130 the performance of each version depends on the task and evaluation criteria; the models 
131 showing better results were AI-Sweden BERT-large, KB BERT-large 110k, and BERT-base-
132 Swedish-cased-new.
133
134 It could be derived from Kurtz’s (2022) study that smaller language models depend on 
135 language-specific pre-training data, which makes their adaptation to small languages such as 
136 Swedish an expensive and resource-intensive task (Holmström et al., 2023). By comparing 
137 language models which were trained specifically on Swedish, such as GPT-SW3 (Ekgren et al., 
138 2022), with GPT-3, BLOOM, OPT, and GPT-NEO/J, which were not explicitly trained on 
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139 Swedish but do contain a small percentage of Swedish in their training data, it was found that 
140 GPT-3 was better than GPT-SW3 in all functional capabilities (Holmström et al., 2023). This 
141 indicates that there is probably no need for pre-training LLMs for a specific set of languages, 
142 contrary to smaller language models such as BERT, which were shown to perform better in a 
143 monolingual setting (Holmström et al., 2023).
144
145 As mentioned in the Introduction, the LLMs’ emergent abilities (Wei et al., 2022) are especially 
146 advantageous for overcoming computationally expensive fine-tuning efforts. Within those, in-
147 context learning works as the LLMs are provided with a few natural language instructions 
148 and/or several task demonstrations of input-label pairs (Zhao et al., 2023; Min et al., 2022). In-
149 context learning is different from prompt learning and few-shot-learning because in it, the 
150 demonstration is part of the prompt and is applied directly to pre-trained LLMs without 
151 requiring parameter update (Dong et al., 2022). Emergent abilities depend on the scaling of the 
152 language model; it has been observed in tests on several downstream NLP tasks that after a 
153 critical scale threshold is reached, performance increases to substantially above random (Wei 
154 et al., 2022). Nevertheless, in addition to the LLM scaling, the performance gain in in-context 
155 learning can be enhanced through the independent specification of the input and label spaces 
156 using the right demonstration format (Min et al., 2022) as well as the selection of closest 
157 neighbors as in-context examples (Dong et al., 2022).
158  
159 2.2. LLMs in construction
160
161 LLMs are starting to be applied in different areas in the construction domain (Saka et al., 2023; 
162 Ghimire et al., 2024). In that vein, it has been claimed that safety (incl. site safety management) 
163 as one of the most important and sensitive areas of application, while other potential application 
164 areas include automated regulatory compliance in the design phase, as well as risk management 
165 in the different construction phases (Saka et al., 2023). Although the spread LLM utilization is 
166 still in early stages, the literature has shown a few promising cases of using generative pre-
167 trained transformer (GPT) models for few-shot learning and data augmentation. A relevant 
168 example is developing a real-time safety regulation question-answering mechanism by 
169 embedding regulation documentation with a small LLM and then retrieving information based 
170 on user queries with GPT-4 (Khan et al., 2023). GPT 3.5 was also used for classification, cause 
171 identification and summarization of OSHA’s highway construction accidents, showing great 
172 capabilities in condensing safety knowledge about accident causes (Smetana et al., 2024). 
173 Another example concerns construction material lifecycle analysis; based on the ISO 14040 
174 and 14044 standards, academic articles and the CML 2001 assessment method were fed to GPT-
175 3 through feedback-based conversation (Turhan, 2023), while few-shot prompting of GPT was 
176 used for an interactive dialogue system for material selection and optimization (Saka et al., 
177 2023). Moreover, GPT-4 was used for construction contract risk assessment based on project 
178 contract clauses and an expert assessment knowledge base, which were augmented into an in-
179 context learning for more stable results; few-shot prompting was employed in the form of input-
180 output examples to guide the LLM thinking process (Wong et al., 2024). In this approach, subtle 
181 human involvement in accurate risk identification, carefully providing demonstrations, and 
182 emulating the experts’ thinking pattern through the similarity rate between the case clause and 
183 the risk clause, were highlighted (Wong et al., 2024).
184
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185 Although LLMs seem to be promising when used in construction-related tasks, there are 
186 recognizable challenges associated with using GPTs – such as hallucinations (which, in the case 
187 of construction safety, could cause accidents if one only relies on GPT-generated information 
188 (Saka et al., 2023)), as well as dataset biases or unethical data use. Those might be mitigated 
189 by the right domain-specific knowledge being represented and integrated in the GPT models, 
190 rather than relying on the general data used for training them (Zhu et al., 2023). There is also a 
191 need for tangible demonstration of GPT models through robust validation to foster trust and 
192 acceptability (Saka et al., 2023; Ghimire et al., 2024). In addition to the aforementioned 
193 concerns, challenges include the availability of structured high-quality data for fine-tuning 
194 GPTs in order to understand and integrate construction domain knowledge, confidentiality, and 
195 new skillsets required for deployment in the industry (Ashkenazi et al., 2023). There have been 
196 some efforts presenting a framework for creating large generative models (LGMs) in the 
197 construction industry, including data collection and curation, and extensive evaluation of LGMs 
198 by domain experts in terms of semantic coherence, grammar, terminology, and validity of 
199 generated outputs (Taiwo et al., 2024). Such case evaluations when using GPT-4 for the 
200 enhancement of expert systems’ knowledge graphs, showed that assessing the correctness of 
201 the curated information in terms of relevance, consistency, and completeness, is challenging 
202 (Ashkenazi et al., 2023). In another case, ChatGPT v3.5 was tested in creating a construction 
203 project schedule and evaluated by experts in terms of accuracy, efficiency, clarity, coherence, 
204 reliability, relevance, consistency, scalability, and adaptability (Prieto et al., 2023). The case 
205 study showed that ChatGPT v3.5 provided logical yet linear breakdown of project scheduling 
206 tasks, with some errors (like incorrect tasks) that should have been included (Prieto et al., 2023). 
207 GPT-4 was then used in information retrieval and user queries of construction documents, and 
208 this system was evaluated with experts in terms of answering ability, truthfulness quality, 
209 relevance, and reproducibility (Taiwo et al., 2024). The limitations were found to be in the 
210 chunking strategies, and the used semantic search techniques were unable to adequately link 
211 some complex questions to supporting evidence in the contract document (Taiwo et al., 2024).
212

213 3. Research method
214
215 The conceptualized system for learning from accidents consists of two components, namely 
216 accident case retrieval and bow-tie accident case analysis. This is called a passive reader 
217 approach, and it generates answers to the user queries by supplying retrieved documents from 
218 information retrieval systems; those are then used as inputs to LLMs for creating passages (Zhu 
219 et al., 2023). So, the first system component involves the retrieval of accident cases based on 
220 user queries; a detailed description of this component is described in section 3.4. This step 
221 provides a collection of accident cases that are related to a certain topic as an input to the LLM; 
222 we then use GPT-4o API1 for the analysis within the second system component (section 3.3). 
223 We finally prompt GPT-4o with in-context learning demonstrations that are guiding the output 
224 of the generated text. Fig. 1 offers an overview of this process.

225

226

227 Fig. 1. Process of learning from accidents system
228

1 https://platform.openai.com/docs/models/gpt-4o-mini#4ofootnote 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5004117

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed

https://platform.openai.com/docs/models/gpt-4o-mini#4ofootnote


229 3.1. Data collection, exploration and pre-processing
230
231 The data was collected in 2020-2021 through a digital accident reporting system used by a large 
232 contracting company in Sweden. The collected data comprised of about 3600 accident reports 
233 covering the period between 2014 and 2020 and containing different attributes (Table 1).
234

235 Table 1. Types and number of existing attributes in the collected dataset
236

Categorical 
attributes

Ordinal 
attributes

Numeric 
attributes

Textual 
attributes Dates

122 15 11 16 9
237
238 The data understanding and exploration step is carried out for validating the data quality; 
239 missing values, bias, and inconsistent units are targeted (Bruce, 2016; Lau et al., 2023). 
240 Specifically, the data, which was organized in a tabular format, was investigated in terms of the 
241 number of existing, missing and unique values in each column. Using the results of this 
242 investigation, bar charts were created for every feature to assist the analysis. Further manual 
243 analysis included documenting a description of the columns’ content, taking notes, and making 
244 decisions about whether the feature was suitable to be used in the model. The selection criteria 
245 for the data were based on quality (e.g., excluding columns with a high percentage of missing 
246 values or being empty), their utility for informing causes, circumstances before the accident 
247 happened, and prevention measures (excluding non-informative columns that include, e.g., 
248 project names), and data sensitivity (excluding personal information). It was found that the most 
249 important data quality issues involved the entries offering a general categorization of “Work 
250 process”, “External factor that influenced the incident”, “Work environment” and “Others” – 
251 but these features were initially kept in order to re-evaluate their use in the search and analysis 
252 of accident cases. Moreover, it was found that the values were not mutually exclusive; after 
253 validation by an expert from the company, it was concluded that these values were a result of 
254 the reporter assigning more than one value for the same feature and accident case. The data 
255 quality issues were validated with two experts in the H&S organization from the contracting 
256 company.
257

258 3.2. Accident report retrieval
259
260 The first step in the case retrieval system is to pre-process the data. The accident cases had 
261 multiple free-text entries, incl. the case title and description, cause description and comments, 
262 and action description. As such, during pre-processing, we investigated those entries and 
263 collected the data parts we decided to use in the model. For some cases the free-text descriptions 
264 were repeated in different columns; thus, we checked the textual data for duplication. The 
265 duplications were discarded, and the textual data were merged into one continuous text 
266 description for the respective case.  Then the selected data – as described in the data pre-
267 processing – forms the documents that we use in the retrieval system.
268
269 Following the data pre-processing and the formulation of the accident case documents, the 
270 accident document retrieval was performed by matching the free text query with the documents’ 
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271 case-text through similarity score and matching the set of filters to their corresponding 
272 documents in the dataset (Fig. 2).

273
274 Fig. 2. Data retrieval query and filters.
275
276 For this, we used a Swedish BERT model that was trained on approximately 15-20 GB of text 
277 (200M sentences, 3000M tokens) from various sources (books, news, government publications, 
278 Swedish Wikipedia and internet forums) aiming at providing a representative model for 
279 Swedish text2. The use of Swedish BERT is motivated by the fact that it is better suited in 
280 monolingual settings (in our case, the Swedish language), as mentioned earlier (Holmström et 
281 al., 2023). So, we separately tokenized the query and the documents as a first step for processing 
282 and followed a bi-encoder approach for the query and each document (see Fig. 3). We then 
283 encoded the text into vectors, by using one vector for the query and one for each document. The 
284 retrieval is finalized by calculating the cosine similarity score (Jurafsky and Martin, 2024) 
285 between the query and document vectors, ranking documents based on their cosine similarity 
286 from the highest to lowest, and extracting the documents with the highest score. For this study, 
287 we delimit the extraction to the 5 documents with the highest score.
288

289
290 Fig. 3. Accident reports retrieval process
291

292 3.3. Formulating in-context learning demonstrations
293
294 In this step, we used the bow-tie model (Fig. 4) as a template for analyzing the retrieved accident 
295 reports for the in-context learning demonstrations. The demonstrations constitute examples of 
296 the analysis template that the LLM should be able to reproduce (Zhu et al., 2023). The bow-tie 
297 model itself can be visualized in a structure that resembles a bow and consists of five key 
298 elements: the hazard, threats, top events, barriers, and consequences; those elements remain 
299 consistent across variations of the bow-tie model (de Ruijter and Guldenmund, 2016; Fu et al., 
300 2020). The top event can be defined as the common node where control was lost and the event 

2 https://huggingface.co/KB/bert-base-swedish-cased 
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301 happens just before the various final consequences occur (de Ruijter and Guldenmund, 2016). 
302 Linked to the top event is the hazard, which can be described as something in, around, or part 
303 of the organization, that has the potential to cause damage (Fu et al., 2020). Threats (the causes 
304 of the top event) and consequences (the results of the top event) extend on both sides of the top 
305 event (de Ruijter and Guldenmund, 2016; Fu et al., 2020). Barriers can also be included on both 
306 sides of the top event; the preventive barriers should stop threats from resulting in the top event 
307 or even occurring at all, while the recovery barriers should reduce or completely stop 
308 consequences from happening (Fu et al., 2020). However, prevention barriers can still fail; 
309 whatever causes a preventive barrier to fail is described as an escalation barrier (Fu et al., 2020).

310
311 Fig. 4. The bow-tie model (Fu et al., 2020)
312
313 Using the aforementioned definitions of the bow-tie components, we formulated two sets of in-
314 context learning demonstrations, as illustrated in Fig. 5 below. We selected two and three 
315 relevant cases for queries 1 and 2 respectively, and provided GPT-4o with these queries, their 
316 corresponding cases, and their analyses. The accident data could not be mapped on all the bow-
317 tie components; therefore, the respective analyses were reduced to being focused on the 
318 components shown in Fig. 5. In writing up the demonstration the hazards were not explicitly 
319 mentioned in the text, so we deduced those from the accident case documents. For the rest of 
320 the analysis, we were intentional in extracting text parts from the accident descriptions with 
321 minimal rephrasing, except for using the profession as a subject, as well as using the categorical 
322 causes besides the parts mentioned in the text descriptions. The logic behind choosing this 
323 structure of writing the demonstrations was to keep the integrity of the data and simplify the 
324 evaluation of the LLM output.
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325
326 Fig. 5. The utilized in-context learning demonstrations fed to LLM
327

328 3.4 Experimental setup
329
330 In this step, we used GPT-4o with two system instructions and user prompt settings. For both 
331 conditions we instructed the LLM to select the accident cases that were relevant to the query 
332 after BERT has retrieved 10 documents. Then, for the first system instruction and user prompt 
333 setting, we used the in-context learning demonstrations to train GPT-4o to replicate the analysis 
334 of accident reporting documents. For the second setting, the GPT-4o is prompted to analyze the 
335 same accident cases without an in-context learning demonstration. We then compared the 
336 output in the two conditions and discussed whether there seemed to be potential benefits of 
337 using in-context learning in this application area.
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338
339
340 Fig. 6. Two alternatives for system instructions and user prompt settings: with in-context 
341 learning (above), and without in-context learning (below)
342
343 We then extracted three sets of 10 documents, each related to a query (see Fig. 7 below), and 
344 evaluated the GPT-4o response based on its selection of relevant accident cases to the query, 
345 output hallucination, and output validity. Hallucination is the LLM’s tendency to generate 
346 convincing but false output (Ghimire et al., 2024; Saka et al., 2023), and validity here refers to 
347 three interconnected concerns: the factual accuracy of the generated output (Taiwo et al., 2024), 
348 whether the GPT responses capture the bow-tie analysis template we provided in the 
349 demonstration, and whether the right accident information was assigned to the right bow-tie 
350 component in patterns akin to our provided in-context learning demonstrations. For validation, 
351 the three extracted three sets of documents were evaluated in terms of LLM output on each of 
352 the latter criteria.

353
354
355 Fig. 7. GPT response with and without in-context learning. 
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356
357 Fig. 8. GPT response without in-context learning. 
358

359 4. Results
360
361 In this section we indicatively showcase three queries and select one document analysis for 
362 each of the queries to demonstrate samples of the GPT-4o output.
363

364 4.1 Accident case retrieval  
365
366 The first step of the system process, namely the retrieval of accident cases, showed interesting 
367 results when it comes to the relevance of the retrieved cases and the utility of the search filters. 
368 When using all the filters and a query, the retrieval system was likely to not extract any cases. 
369 This indicates that the filters can cancel each other and is consistent with our data pre-processing 
370 observations of skewed tails of the features as they are often populated with only a few instances 
371 of the rest of the unique values of the same feature. There are also missing values which hinder 
372 the use of the filters effectively. Gradually eliminating filters showed better retrieval. Moreover, 
373 it was mostly possible to determine the case relevance by reading the case description rather 
374 than through the case categorical attributes due to their latter’s generalized nature. By using 
375 BERT’s information retrieval, it was quickly noticed that not all retrieved cases were relevant 
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376 to the query; three and six out of 10 retrieved cases were relevant to first and second query, 
377 respectively.
378
379 The results of the retrieved cases were structured in the format shown in Fig. 5. After looking 
380 at those, we found that missing values can compromise the data’s specificity and consistency – 
381 therefore potentially making it less useful for information retrieval. This finding resulted in the 
382 decision to exclude more data. On the other hand, parts of the categorical data that were sourced 
383 from the ready drop-down categorization were found to be especially helpful in formulating the 
384 in-context demonstrations. Those parts were “The last aberrant event that preceded the injury”, 
385 “Injury type”, “Cause”, and “Occupation”. Those were selected in an iterative process of 
386 examining the retrieved cases while formulating the in-context learning demonstration for use 
387 in the bow-tie model; we then assigned the respective parts of the accident description text to 
388 the corresponding components of the bow-tie model.
389
390 4.2 Relevant data and case selection
391
392 The cases selected by GPT-4o almost matched our selection of the cases that are relevant to the 
393 query. In other words, the LLM never missed a case which was previously labeled as relevant 
394 by the researcher. However, the GPT also selected an extra document that we did not consider 
395 relevant. The reason behind this is unclear, as the case involved moving baskets and a pole 
396 being detached from its mount, but the case description itself is not clearly mentioning lifting 
397 devices or lifting equipment (see Query 3, Fig 7). Thus, GPT-4o showcased an overall good 
398 performance; however there still were challenges in this step of the process. It is observed that 
399 there is some room for subjectivity in the selection process. For example, in the second query, 
400 there were two cases of vehicles colliding with passing animals; those were eventually not 
401 chosen to be analyzed, because both ours and the LLM’s selection approach followed the query 
402 precisely. These cases could be argued to be relevant to the query, but the GPT-4o did not select 
403 them because they did not involve hitting a person with a vehicle. Similarly, in the third query, 
404 it is not straightforward to determine which cases are relevant. For example, one document 
405 mentioned the use of forks for carrying element support beams in the future as a preventive 
406 action – however, the accident had been not caused by lifting tools, but rather the lack of them. 
407

408 4.2 Hallucinations
409
410 Overall, we very rarely observed hallucinations within these three experiments. The LLM 
411 performed very satisfactorily when it came to adhering to the accident case data. There was no 
412 alarming fabrication of information that did not exist in the accident descriptions, or the 
413 documents provided to GPT-4o to analyze. However, a few deviations were indeed observed. 
414 Specifically, the LLM made up a word to describe the type of worker involved in the accident, 
415 specifically, instead of using the case description’s term “Blue collar or civil engineering 
416 worker” (in Swedish: “Yrkesarbetare eller Mark/Väg o Anl. Arbetare”), it instead invented a 
417 non-existent word that could be described as “working worker” (in Swedish: “Arbetsarbetare”). 
418 Another instance involved rephrasing the text, but without any fabrication of false or different 
419 information in the causes of the first query (see Fig. 7). Again, in query 2, it can be observed 
420 that there is rephrasing of the mentioned cause as “Insufficient barrier” instead of “Lack of 
421 barriers/signs” – but we deemed that the difference between those two was not semantically 
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422 significant. In the responses to query 3, there was also very little hallucination to be observed, 
423 except for the term “Inform and train personnel” in the preventive barrier, while training was 
424 not mentioned in the accident case text.

425 Nevertheless, by looking at the generated analysis without the in-context learning setting (see 
426 highlighted text in Fig. 7), it can be observed that the plausible but incorrect analyses increase 
427 consistently for the three accident reports compared to the generated analysis with in-context 
428 learning. We could even detect some pattern of generating recommendations related to training 
429 in using proper personal protective equipment or proper procedures, as well as immediate 
430 medical attention for the injured worker. Moreover, by looking the generated text content, we 
431 find that there is a probability that the LLM response is making assumptions about the 
432 threats/causes and is generating output such as the “site layout allowing parked vehicles to 
433 potentially roll into traffic areas” and “insufficient communication of safety procedures.” 
434 Overall, the analysis shows that the in-context learning demonstrations helped GPT-4o reduce 
435 hallucinations and mostly use the accident descriptions for the analysis without fabrication.
436

437 4.3 Validity of output
438 By looking at the accident documents analyzed by GPT-4o and in-context learning, we found 
439 that the output follows the same bow-tie concepts and structure designed in the demonstrations. 
440 We also found that the output follows a very similar pattern of copying the text part 
441 corresponding to the respective bow-tie component. Nevertheless, minor inconsistencies were 
442 spotted. By looking at the causes in Fig. 7, we can notice that the LLM ignored causes 
443 mentioned in the first and second query documents – specifically “Other Action (MUST BE 
444 DESCRIBED IN A TEXT FIELD)” and “Other personal factor (MUST BE DESCRIBED IN 
445 A TEXT FIELD)” – but decided to add them in the third query. This observation showcases a 
446 general issue with using GPT, namely its tendency to be inconsistent.

447 It is also observed that although the LLM response adheres to the data provided in the document, 
448 it sometimes excludes potentially important text parts. In query 3 the analysis does not include 
449 that it was a blacksmith who had the accident. In query 2 we also can see that the details of how 
450 the worker came to roll with the vehicle are excluded from the analysis. Similarly in another 
451 document, the case text mentions that the prevention measure was discussed in the weekly 
452 meeting, but this information was omitted in the analysis which might be important indicator 
453 for the importance of the incident. This observation might be related to the overall observation 
454 that the GPT response seems to be less likely to include the event description under the causes 
455 category as we provided in the demonstrations, and this might be influenced by that the causes 
456 are explicitly mentioned in the documents, and it looks that their presence override what the 
457 GPT learns from the demonstrations. This shows that the model can be very sensitive to the fed 
458 data and the demonstrations.  

459 Comparing the GPT responses with and without the ICL demonstrations, we can see that the 
460 output tends to be inconsistent with one bow-tie categorization. In query 3, the model generates 
461 an output with escalation factors while it does not in the other two queries. The response also 
462 shows that the model use “mitigative barriers”, “mitigation action”, and “recovery barrier” 
463 interchangeably. While in query 3, the GPT response does not include any consequences. This 
464 might be because the bow-tie model has multiple variations. This also shows that the ICL 
465 demonstrations help the GPT response to be more consistent to follow a certain format. 
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466 5. Discussion
467
468 The findings from our study demonstrate that LLMs can be effectively combined with bow-tie 
469 analysis. By leveraging In-context learning capabilities of GPT-4o, we observed that the LLMs 
470 provided sufficient accident analysis and adhered to the structure of bow-tie components in the 
471 hand-crafted demonstrations. This showcase potentials for multiple use cases where the same 
472 approach could be applied for different purposes that support safety processes and safety 
473 personnel in the construction industry. This approach could be used with other accident analysis 
474 models or other use cases for improving data quality or automatic fill of accident reports into 
475 predefined categories. The experiments also showcased that LLM-based systems could be 
476 successfully used in enhancing the selection process in IR systems. We have seen that that the 
477 GPT is able to do very similar choices compared to the researcher selection. However, there are 
478 limitations related to subjectivity and lack of sufficient data to include or exclude cases when 
479 compared to the query.
480
481 For validation, we focused on the metrics of hallucinations and validity of the generated output. 
482 Compared to the generated output without the ICL demonstrations we have seen the ICL 
483 combination with the bow-tie format reduce hallucinations and maintain the validity of the 
484 output. We find that the ICL demonstrations were contributing to guiding the model to generate 
485 accurate and contextually appropriate accident analysis. This is consistent with the literature on 
486 the helpful conditions for ICL to work effectively which are the formatting of demonstrations 
487 (Min et al., 2022), and selecting closest neighbors as in-context examples (Dong et al. 2022). 
488 Without ICL, the model exhibited a higher tendency of output fabrication and inconsistency, 
489 reaffirming the importance of demonstrating structured examples for a more reliable GPT 
490 output.
491
492 With this concept of a system, we aim to assist in the improvement of occupational safety in 
493 the context of the contracting company, by making the search and analysis process of accident 
494 reports more consistent. Nevertheless, we cannot make claims about the utility of the proposed 
495 system in terms of recommending prevention and/or control actions – the data used in this study 
496 showed that that prevention-related information was mentioned only briefly, while 
497 recommendations of potential implementation were almost completely lacking. This is 
498 especially critical, because it follows an already documented pattern in which accident 
499 investigation models are lacking in designing and implementing recommendations (Lundberg 
500 et al., 2009). While this may imply that recommendations and their implementation could be 
501 derived from the analysis (Lundberg et al., 2009), it also makes it hard to establish the 
502 usefulness of providing accident analysis information as a form of a proactive prevention tool. 
503 Therefore, future research should investigate whether providing safety professionals with 
504 accident information can influence accident prevention proactively.
505
506 While the results are promising, several limitations must be acknowledged. Firstly, the data 
507 quality issues (e.g., data entries with missing values and inconsistencies), significantly impacted 
508 the model's performance. Although pre-processing improved some issues, complete reliance on 
509 textual data could still limit the model's efficacy when faced with ambiguous or poorly reported 
510 accidents. The downside of the pre-processing is that large parts of the data were excluded and 
511 deemed not useful for the proposed system. Secondly, complex realities of construction site 
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512 incidents might not always be fully captured by NLP algorithms, which can occasionally lead 
513 to marginally relevant or overlooked cases in the retrieval process. This was clearly shown by 
514 the need to re-select relevant cases after employing BERT for retrieving accident cases. 
515 Moreover, the textual accident descriptions summarized background information without 
516 enough details about how and why the events occurred. This needs to be corrected; a potential 
517 measure would be to incorporate more comprehensive and detailed data. Additionally, the 
518 observed minor inconsistencies in the bow-tie analysis, such as occasional omission of 
519 important event details, indicate that there is room for improving the model’s sensitivity and 
520 context awareness.
521
522 Regardless of the limitations, the system shows efficacy in categorizing and structuring accident 
523 data into threats, barriers, and consequences which can simplify the complexity often associated 
524 with accident causation analysis. This indicates potential scalability and adaptability of LLMs 
525 in learning new types of accident scenarios and suggests that such systems can evolve with 
526 increasing data – thus making them a long-term asset for construction firms focusing on health 
527 and safety. Future research should focus on expanding the dataset and improving its quality 
528 through rigorous validation and inclusion of more detailed and diverse accident reports, which 
529 can potentially provide a broader foundation for the LLM’s learning. Furthermore, the 
530 integration of feedback loops where the model’s analysis is continuously reviewed by human 
531 experts, should also be investigated. This could ensure that the LLMs remain updated with user 
532 preference.
533

534 6. Conclusions
535
536 In summary, this study highlights the potential of combining LLMs (and specifically, a 
537 customization of GPT-4o) with bow-tie analysis for processing and learning from past accident 
538 reports in the context of a contracting company in Sweden. The LLM successfully learned to 
539 perform accident report analysis based on a format shown to the model through in-context 
540 learning demonstrations. The use of in-context learning demonstrated a reduction in output 
541 hallucination and maintained consistency in aligning with predefined analysis structures. The 
542 experiment also confirmed that generating accident analyses without the in-context learning 
543 demonstrations resulted in the model’s tendency to fabricate information that, while not being 
544 necessarily false, did not exist in the data. The use of GPT also showed to enhance the retrieval 
545 of cases from the reported accidents’ database through adding it as an extra step after the 
546 similarity score BERT retriever.
547
548 This research sets a promising direction for the use of large language models (incl. generative 
549 pre-trained transformers) in conjunction with accident causation models (specifically, the bow-
550 tie model) in improving occupational safety within the construction industry. Nonetheless, 
551 challenges remain, particularly related to data quality and domain complexity. Moreover, it is 
552 not possible to make conclusions about the efficacy of using the developed concept of a system 
553 in proactive accident prevention in practice, which indicates future research needs. Data quality 
554 issues, such as missing values, inconsistent entries and the format of reporting, resulted in 
555 excluding large parts of the data – which hindered the enhancement of textual data with details 
556 about accidents. Moreover, by looking critically at the GPT output, minor inconsistencies were 
557 detected, indicating that there is room for improving the model’s performance. 
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558

559 Despite limitations, the conceptualized system managed to effectively categorize and structure 
560 accident data into threats, barriers, and consequences. Future research can expand and improve 
561 the pre-processing of the dataset, incorporate detailed accident reports, and investigate feedback 
562 loops with human experts to ensure continuous improvement and relevancy of the LLMs.
563

564 7. Declaration of generative AI and AI-assisted technologies in the 
565 writing process
566 During the preparation of this work the authors used [Chat GPT] to help editing the language 
567 of the paper to improve readability. After using this tool, the authors reviewed and edited the 
568 content as needed and take full responsibility for the content of the published article.
569
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Fig. 1. Process of learning from accidents system
Fig. 2. Data retrieval query and filters.
Fig. 3. Accident reports retrieval process
Fig. 4. The bow-tie model (Fu et al., 2020)
Fig. 5. The utilized in-context learning demonstrations fed to LLM
Fig. 6. Two alternatives for system instructions and user prompt settings: with in-context 
learning (above), and without in-context learning (below)
Fig. 7. GPT response with and without in-context learning. 
Fig. 8. GPT response without in-context learning
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