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Abstract

The rapid spread and growing number of dengue cases worldwide, alongside the absence

of comprehensive vaccines and medications, highlights the critical need for robust tools to

monitor, prevent, and control the disease. This review aims to provide an updated overview

of important covariates and quantitative modelling techniques used to predict or forecast

dengue and/or its vector Aedes mosquitoes in Africa. A systematic search was conducted

across multiple databases, including PubMed, EMBASE, EBSCOhost, and Scopus,

restricted to studies conducted in Africa and published in English. Data management and

extraction process followed the ‘Preferred Reporting Items for Systematic Reviews and

Meta-Analyses’ (PRISMA) framework. The review identified 30 studies, with the majority

(two-thirds) focused on models for predicting Aedes mosquito populations dynamics as a

proxy for dengue risk. The remainder of the studies utilized human dengue cases, incidence

or prevalence data as an outcome. Input data for mosquito and dengue risk models were

mainly obtained from entomological studies and cross-sectional surveys, respectively. More

than half of the studies (56.7%) incorporated climatic factors, such as rainfall, humidity, and

temperature, alongside environmental, demographic, socio-economic, and larval/pupal

abundance factors as covariates in their models. Regarding quantitative modelling tech-

niques, traditional statistical regression methods like logistic and linear regression were pre-

ferred (60.0%), followed by machine learning models (16.7%) and mixed effects models

(13.3%). Notably, only 36.7% of the models disclosed variable selection techniques, and a

mere 20.0% conducted model validation, highlighting a significant gap in reporting method-

ology and assessing model performance. Overall, this review provides a comprehensive

overview of potential covariates and methodological approaches currently applied in the
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African context for modelling dengue and/or its vector, Aedes mosquito. It also underscores

the gaps and challenges posed by limited surveillance data availability, which hinder the

development of predictive models to be used as early warning systems in Africa.

Author summary

Infections from dengue and other arboviral mosquito-borne diseases transmitted by

Aedes mosquitoes are on the rise globally, with Africa being no exception. Their advances

are driven by anthropogenic factors, such as rapid urbanisation, globalisation, and climate

change. Yet, knowledge of dengue epidemiology and burden on the African continent,

and how to enhance preparedness is scarce. Navigating the complexities of predicting the

spread/outbreaks of the dengue or the presence/abundance of Aedes vector mosquitoes, is

challenging due to the complex interactions between multiple factors involved in the

transmission. Despite these challenges, significant progress has been made in developing

various quantitative methods to predict spread and outbreaks in different regions in the

world. Here, we conducted a systematic review to shed light on existing quantitative

modelling approaches for dengue and/or its vector Aedes mosquitoes in Africa, focusing

on methodology, data sources, covariates used, model performance and validation. Our

study revealed several shortcomings in current modelling practices in Africa and empha-

sized the need for real-time primary predictor data and more comprehensive reporting of

model development techniques and validation processes. This review offers an evidence-

based framework for improving future modelling practices, to develop more accurate and

robust dengue prediction models, tailored for African contexts.

Introduction

Dengue is currently the fastest-spreading arboviral mosquito-borne disease globally, with a

high morbidity in children and adults in many tropical and sub-tropical countries. It stems

from the dengue virus (DENV), a flavivirus prevalent in 128 countries, infecting an estimated

390 million individuals annually [1–4]. Over the past two decades, the number of globally

reported human DENV cases has increased by more than a factor of 10 [5]. Urbanization,

rapid population growth, increase in international travel and trade, deficiency in vector con-

trol strategies, inadequate public health infrastructure and climate change have been identified

as important contributors to this resurgence of dengue [5–7].

On the African continent, more than 20 countries have reported outbreaks of dengue since

the 1960s, and the prevalence of dengue appears to have dramatically increased over the past

few decades, despite neither being systematically investigated nor generally considered as a

possible cause of fever by clinicians [8,9]. Africa’s growing populations, rapid and unplanned

urbanization, increasing global trade and movement of goods and people, makes it a rich

spawning ground for the spread of arboviruses such as DENV across the continent [10]. Still,

the epidemiology and burden of dengue are largely uncharacterized. Historically overshad-

owed by malaria, preparedness and early warning systems in Africa for arboviral diseases such

as dengue that are transmitted by a different genus of mosquito, thus remains comparatively

underdeveloped [11].

Preparedness, including the development of prediction models for dengue outbreaks, is

closely linked to the biology and ecology of the vector mosquitoes of the genus Aedes. Aedes
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aegypti is recognized as the primary vector for the DENV in Africa, while Ae. albopictus is con-

sidered more invasive due to its ability to thrive in a wider range of environments, including

both urban and rural areas [12–14]. Ae. albopictus can breed in a variety of natural and artifi-

cial containers, making it highly adaptable and capable of spreading rapidly [15,16]. In con-

trast, Ae. aegypti is typically more associated with urban environments [15,17], where it breeds

in containers with clean water. The adaptability of Ae. albopictus to diverse habitats contrib-

utes to its invasive potential, allowing it to establish populations in regions where Ae. aegypti
might be less prevalent [18].

The development of Aedes from egg to larval and adult stages is heavily influenced by cli-

matic variables such as temperature, precipitation, and relative humidity [19–21]. Increased

temperature (up to a certain limit) can quicken mosquito development, shorten the time

between blood meals, and affects the virus structure, resulting in increased transmission

[22,23]. Aedes mosquitoes thrive in temperatures ranging from 15˚C to 35˚C [12,24]. At the

same time, adult mosquito activity and survival are similarly influenced by humidity since they

are more active and live longer in humid environments [25]. Rainfall also influences dengue

transmission to a very high degree because it offers breeding grounds for mosquitos to lay

eggs, increases mosquito population, and regulates temperature and humidity, both of which

are essential for mosquito survival [22,26]. In addition to the direct influence of climatic vari-

ables on the development and survival of Aedes mosquitoes, the concept of lag effects plays a

crucial role in understanding mosquito population dynamics and disease transmission. Lag

effects refer to the delayed response of mosquito populations and disease incidence to changes

in climatic conditions. For instance, a period of increased rainfall might not immediately result

in an increase in mosquito populations or dengue cases but could lead to a significant increase

weeks later as the eggs laid during the wet period hatch and develop into adults. Similarly,

changes in temperature might affect mosquito development rates and viral replication with a

delay, influencing transmission dynamics after a certain period. Studies have shown that tem-

perature and precipitation lags of one to several weeks can significantly impact mosquito

abundance and the timing of dengue outbreaks [27–29]. These lags are important to consider

when modelling disease transmission, as they help in predicting outbreaks more accurately by

accounting for the time it takes for climatic changes to translate into increased mosquito activ-

ity and disease risk.

In the fight against dengue transmission, in Africa as well as globally, it is crucial to imple-

ment effective prevention measures, particularly in the absence of comprehensive vaccines and

medications. Among these strategies, vector control targeting the mosquito has demonstrated

a considerable success in mitigating dengue outbreaks [30]. However, the traditional practices

often rely on reactive responses, waiting to observe an increase in the number of cases before

identifying potential outbreaks. This reactive approach poses limitations, as it may lead to

delayed responses, allowing outbreaks to escalate before interventions are applied. To address

this challenge, there is a growing emphasis on developing forecasting models to serve as early

warning systems (EWS) for dengue outbreaks. Such models should be capable of predicting

disease outbreaks before they occur, identifying high-risk areas or populations prone to infec-

tion, and integrating both spatial and temporal dimensions. This model should incorporate

real-time data, such as climatic conditions, vector population dynamics, human mobility pat-

terns, and historical disease data, to provide timely and accurate predictions. By leveraging

these predictive insights, proactive measures can be implemented swiftly to prevent outbreaks

from worsening, thereby safeguarding public health and reducing the risk of disease

transmission.

In the realm of quantitative prediction techniques for dengue outbreaks, a wide range of

modelling approaches has been explored, including statistical, mathematical, and machine
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learning models [31–35]. These varieties of approaches in the “modelling toolbox” each has its

own strengths and weaknesses, with a distinct purpose. The challenge arises from the involve-

ment of multiple factors, including the DENV themselves, the vector mosquitoes, and the pop-

ulations susceptible to infection [36,37], reflected in a wide divergence among models in terms

of their setups and goals. To be effective in predicting outbreaks, a model needs to be adaptable

and capable of connecting susceptible population with weather patterns across different geo-

graphical regions [38], while also capturing the temporal aspect by predicting risks or out-

breaks in close to real-time and identifying higher-risk populations [39]. Selecting the

appropriate components, or covariates, for these models poses another challenge. Some mod-

els prioritize climate variables [40,41], while others consider mosquito characteristics or

human population demographics [42–44]. The debate over “the best model” is ongoing, espe-

cially in the African context, where a lack of capacity for arbovirus outbreak preparedness, sur-

veillance, and control has been highlighted [11]. Our focus on Africa is driven by a gap in

knowledge to understand the true scale and drivers of dengue in Africa, as well as the region’s

unique climatic and socio-economic conditions, significantly influencing dengue transmission

dynamics. Africa faces specific environmental and public health challenges that differ from

other parts of the world, necessitating a focused analysis. Expanding the study globally could

dilute the attention on these critical factors. Additionally, the global perspective has already

been considered in other studies [33,45,46], making our regional focus particularly relevant

for addressing gaps in understanding dengue in the African context.

Here, using a broader definition of “dengue modelling”, we conducted a systematic review

of all existing quantitative models applied to either dengue (i.e. human cases), as well as models

aimed at predicting or explaining Aedes vector distribution or abundance (as indicators of

potential dengue risk/outbreaks) in an African context. The aim was to identify and assess a)

the methods, sources of data, and key findings of the published modelling studies, and b) spe-

cific influential environmental factors and other factors associated with dengue risk/outbreaks

and/or Aedes mosquitoes on the continent. Finally, based on the identified modelling

approaches applied in the African context, we evaluate potential obstacles and possible ways

forward towards the development and implementation of EWS for dengue in the African

realm.

Methods

The systematic review’s objective, search strategy, and inclusion and exclusion criteria were

crafted following the ‘Preferred Reporting Items for Systematic Reviews and Meta-Analyses’

(PRISMA) framework, to ensure that the methodologies utilized for the systematic review

were clear, transparent, and consistent [47]. The PRISMA framework provides guidelines for

conducting systematic reviews and meta-analyses, thereby enhancing the quality and transpar-

ency of reporting in such studies. All figures and maps were generated using the R software

(version 4.3.3) [48].

Databases and search strategy

The literature search encompassed articles published until June 2023, ensuring a comprehen-

sive and up-to-date exploration of relevant studies. Four electronic databases, namely PubMed,

EMBASE, EBSCOhost, and SCOPUS, were employed to search and retrieve all published arti-

cles using the search terms outlined in S1 Table. To enhance the sensitivity and specificity of

the initial search across various databases, combinations of keywords were employed. Addi-

tionally, thematic keywords were refined using Boolean operators and truncations before

being applied to the selected electronic databases. Grey literature, such as commentaries,
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reports, and expert reviews that did not present original research, were consulted for addi-

tional information. The resulting relevant studies were then imported into an Excel database

for further analysis.

Inclusion and exclusion criteria

The articles selected for this review were chosen based on specific inclusion and exclusion cri-

teria. Firstly, we included only available peer-reviewed articles that presented a quantitative

model (predictive or explanatory) of dengue infections, including lab-confirmed infections,

IgG/IgM seropositivity for dengue, dengue or dengue haemorrhagic, and overall dengue prev-

alence, hereafter referred to as “dengue models” for the remainder of the paper. We also con-

sidered articles which used models to explain or predict the population dynamics of dengue

vectors (e.g., Ae. aegypti or Ae. albopictus), as a proxy for dengue risk, hereafter referred to as

“mosquito models” for the remainder of the paper. A quantitative technique, in this context,

refers to a systematic and measurable approach that involves the use of numerical data and the

application of statistical methods, mathematical algorithms, or computational tools to analyse

and interpret these data. Secondly, our search was restricted to publications conducted in any

African country and presented in the English language. There were no exclusions based on a

study’s design or publication year.

Data extraction

The initial screening process involved an assessment of study titles and abstracts to determine

their relevance. Studies that aligned with the research objectives were then subjected to further

evaluation to ascertain their eligibility for full-text review. Next, during the full-text review, a

more stringent set of inclusion and exclusion criteria were employed to select studies for data

extraction. This process involved extracting detailed information covering several key aspects:

• study identification (study titles, author names, publication year, and study location);

• quantitative model characteristics (type of model used and their data sources including

either human dengue cases or the population dynamics of Aedes vectors mosquito, the

covariates included in these models and their respective data sources);

• model assessment (variable selection approaches, model validation and performance

metrics).

Furthermore, the reference lists of the identified studies were examined to identify any sup-

plementary relevant papers. The searches were conducted and double-checked until consistent

results were achieved. Two authors (LLN and ASS) reviewed all hits to determine their rele-

vance. Subsequently, one data extractor (LLN) evaluated the abstracts and full texts of the

selected references for potential eligibility by applying all inclusion and exclusion criteria. All

relevant studies were then imported into Microsoft Excel 365 (Version 2303), where essential

details from each chosen study were extracted, as listed above. The extracted data from these

studies were then summarized, and the methodological characteristics of the models were

organized into a table.

Results

Literature retrieval and characteristics of the included studies

Based on keyword searches, a total of 7,337 records were identified during literature retrieval

from databases. After removing 3,259 duplicates, 4,078 records had their titles and abstracts
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screened. Subsequently, 67 articles underwent full-text review, and after evaluating them for

eligibility based on inclusion and exclusion criteria, 30 articles were retained. The full article

screening and selection process is depicted in the PRISMA flowchart (Fig 1).

A summary of the identified covariates used in the studies are provided in Table 1. Details

of the studies are provided in S2 Table, encompassing the key identifiers and aspects consid-

ered in the identified studies. It includes whether the primary goal was to model or predict

human dengue cases/incidence (referred to as “dengue models”) or population dynamics of

Aedes vector mosquitoes (i.e., abundance or presence) as outbreak indicators (referred to as

“mosquito models”). Additionally, it details the sources of input data, the geographical cover-

age of the studies, and the types and numbers of covariates incorporated in the models, which

include environmental, climatic, larval/pupal abundance, demographic, and socioeconomic

factors, along with their sources. The table include details about the types of quantitative tech-

niques applied in the models and the metrics employed for both variable selection and model

validation.

Fig 1. PRISMA Flowchart depicting the number of records identified, included and excluded, as well as the

reasons for exclusion.

https://doi.org/10.1371/journal.pntd.0012679.g001
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Distribution of dengue and Aedes modelling studies in Africa

The selected studies demonstrate a significant geographical diversity across multiple African

countries (Fig 2), with a notable concentration of studies originating from East Africa. The

country with most studies was Kenya, with 6 studies conducted (out of which 4 were mosquito

models [49–52] and 2 were dengue models [53,54], while the Republic of Tanzania contributed

5 studies, including 3 on mosquito models [55–57] and 2 on dengue models [58,59]. Finally,

three studies were conducted globally, accessing the distribution or global risk for major

Table 1. Types of covariates included in the identified modelling studies, and their distributions. The percentages given are calculated as the total number of studies

utilizing the covariate in question out of the total number of identified modelling studies in the systematic review.

Covariates

Number of Studies Total percentage (n/30)

Dengue models Mosquito models

Climatic factors

Temperature 2 5 23.3%

Mean Temperature 5 16.7%

Minimum Temperature 2 1 10.0%

Maximum Temperature 2 1 10.0%

Rainfall/precipitation (total) 2 4 20.0%

Bioclimatic variables 5 16.7%

Relative Humidity 2 3 16.7%

Seasonal (Dry, Rainy) 4 13.3%

Sun exposure 3 10.0%

Wind speed 1 3.3%

Environmental factors

Mosquitoes collection location (indoors/outdoors) 6 20.0%

Vegetation 6 20.0%

Habitant type/count 4 13.3%

Elevation/altitude 2 6.7%

Location of breeding site (urban/peri-ban/rural) 2 6.7%

Distance to water bodies 1 3.3%

Demographic factors

Age 5 1 20.0%

Gender 5 1 20.0%

Travel outside the country 2 6.7%

Population density 2 6.7%

Vaccination 1 3.3%

Socio-economic factors

House type or construction materials 5 1 20.0%

Use of mosquito preventive measures 4 1 16.7%

Household density/status 3 1 13.3%

Education level/status 3 10.0%

Occupation and employment status 3 10.0%

Access to clean water 2 6.7%

Larval/pupal abundance factors

House Index (HI) 4 13.3%

Container Index (CI) 4 13.3%

Breteau Index (BI) 4 13.3%

Pupae Index (PI) 3 10.0%

Pupae per Person Index (PPI) 1 3.3%

https://doi.org/10.1371/journal.pntd.0012679.t001
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disease transmitted by Ae. aegypti and Ae. albopictus across multiple countries and including

over 50 African countries and territories (60–62) (not depicted on the map in Fig 2).

Type of data used as model outcome

Most of the identified models employed in Africa, about two-thirds (19 studies out of 30),

focused on modelling the presence or abundance of Aedes mosquitoes (“mosquito models”) as

an indicator or proxy for assessing the risk of dengue occurrence or outbreak, while only one-

third (11 studies out of 30) of the models attempted to directly model the actual risk of dengue

by assessing the human dengue cases/incidence (“dengue models”). The outcomes or

responses in these dengue models included laboratory-confirmed cases (included by 5 studies),

dengue/dengue IgM prevalence/seropositivity (included by 3 studies), and dengue infections

(considered by 3 studies). For mosquito models, the abundance of mature/immature Ae.
aegypti or Ae. albopictus was considered by 10 studies, the presence of mature/immature Ae.
aegypti or Ae. albopictus was utilized by 5 studies, mosquitoes infected with the dengue virus

were utilized by 2 studies, and viral transmission risk and ovitrap positivity were each utilized

by one study. None of the studies focusing on dengue models applied a predictive modelling

approach, while six studies [57,60–64] related to vector mosquito modelling had a predictive

purpose. Most of the studies were primarily conducted at regional and district levels (36.7%),

with 20.0% conducted in cities. Additionally, 10.0% of all the identified studies had a multi-

county scope, while the remaining studies were conducted at the state, provincial, village,

zone, port, and national levels.

Fig 2. Map of Africa displaying the geographical distribution and scope of the studies and categories of

quantitative models (dengue models and mosquito models) as revealed by our systematic review. The Africa

shapefile was obtained and mapped in R using the naturalearth, rnaturalearthdata, and ggplot2 packages.

https://doi.org/10.1371/journal.pntd.0012679.g002
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In the analysed studies, the sources of dengue and entomological data used to model den-

gue risk or outbreak indicators varied considerably. These sources included information on

human dengue cases and Aedes mosquito abundance. Most of the studies (66.7%) relied on

entomological surveys (43.3%) and cross-sectional surveys (23.3%) as their primary sources of

dengue infection and mosquito data, respectively. Approximately 20% of the studies used gov-

ernment records for dengue infection data, sourcing information from Ministries of Health,

hospital surveillance, and health statistical yearbooks to obtain the number of weekly or

monthly laboratory-confirmed dengue cases. Conversely, 6.7% (2/30) of the studies on mos-

quito data used secondary data from previously published studies, while another 6.7% (2/30)

utilized global data from the Global Biodiversity Information Facility (GBIF) and from World

Health Organisation (WHO) weekly epidemiological reports.

Model covariates

The reviewed studies incorporated a diverse set of covariates into their models, grouped into

five distinct categories: climatic, environmental, demographic, socioeconomic, and larval/

pupal abundance factors. The number of covariates utilized was counted based on their use in

either mosquito or dengue models, as shown in Table 1. Most studies incorporated at least

one of these categories into their models, but three studies [60,65,66] did not include any of

these covariates at all. Most of the dengue models incorporated climatic, demographic, and

socioeconomic factors, but did not include any covariates from environmental and larval/

pupal abundance factors. In contrast, most mosquito models incorporated at least one covari-

ate from all five categories. The majority of these covariates (43.3%) were obtained through

entomological and cross-sectional surveys, with 10.0% obtained from local meteorological

weather stations and national databases, and 30.0% from global databases such as the Global

Population Database, the National Oceanic and Atmospheric Administration (NOAA),

NASA’s Earth Observing System (EOS), and WorldClim.

Climatic and environmental factors

Climatic factors were the most included group of variables in the models, with temperature

being the most frequently used, followed by rainfall. About 23.3% of the studies (involving 2

dengue models and 5 mosquito models) incorporated temperature, while 20% of them (involv-

ing 2 dengue models and 4 mosquito models) accounted for rainfall. Among temperature met-

rics, mean temperature was the most utilized, appearing in 16.7% of the studies. All studies

reviewed considered total or cumulative rainfall in their models. The primary sources of data

for temperature (4 studies) and rainfall (3 studies) were local meteorological stations. There

was a limited use of satellite data across the reviewed studies, and these included the use of sat-

ellite databases, such as NASA’s Earth Observing System (EOS) (67), WorldClim [62], and the

National Oceanic and Atmospheric Administration (NOAA) [50,68].

Climatic and environmental factors for dengue models

A study conducted in Burkina Faso revealed that relative humidity, maximum and minimum

temperatures, and wind speed had a significant non-linear effect on dengue cases [67]. They

found that the optimal temperature for increasing dengue cases was between 27˚C to 32˚C for

the maximum temperature and between 18˚C to 20˚C for the minimum temperature. The

study also indicated that the estimated number of dengue cases increased in two distinct

ranges of maximum relative humidity: first, when maximum relative humidity increased from

15% to 45%, and then when maximum relative humidity increased from 60% to 70%. Addi-

tionally, they showed that an increase in daily wind speed was associated with a decrease in the
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number of daily dengue cases. Another study conducted in Sudan showed that relative humid-

ity, precipitation, and maximum and minimum temperatures were correlated with dengue

incidence [69]. They found that a 3–5-month lag in relative humidity was the strongest explan-

atory variable for dengue incidence. This suggests that while temperature, relative humidity,

and precipitation are critical factors in understanding and predicting dengue outbreaks, their

use should be tailored to specific geographical locations.

Climatic and environmental factors for mosquito models

Five studies on mosquito models [52,57,61,63,64] utilized temperature and precipitation data

in various formats, referred to as bioclimatic variables [70]. These variables included annual

mean temperature (BIO1), mean diurnal range (BIO2), isothermality (BIO3), temperature sea-

sonality (BIO4), maximum temperature of the warmest month (BIO5), minimum temperature

of the coldest month (BIO6), temperature annual range (BIO7), mean temperature of the wet-

test quarter (BIO8), mean temperature of the driest quarter (BIO9), mean temperature of the

warmest quarter (BIO10), mean temperature of the coldest quarter (BIO11), annual precipita-

tion (BIO12), precipitation of the wettest month (BIO13), precipitation of the driest month

(BIO14), precipitation seasonality (BIO15), precipitation of the wettest quarter (BIO16), pre-

cipitation of the driest quarter (BIO17), precipitation of the warmest quarter (BIO18), and pre-

cipitation of the coldest quarter (BIO19). These bioclimatic variables were primarily used to

predict the potential distributions of Aedes species under present-day and future climate

conditions.

Variables related to habitat/environment were only considered for mosquito models. The

most utilized variables were mosquitoes collection location (n = 6), vegetation index (n = 6),

followed by habitat type/count (n = 4). Six studies specifically investigated mosquito breeding

site locations, with two revealing a higher density of Ae. aegypti mosquitoes in urban and peri-

urban areas compared to rural areas [71,72]. Furthermore, one study indicated that, Ae. albo-
pictus were more prone in urban and peri-urban areas, whereas Ae. aegypti were more preva-

lent in rural areas [73]; meanwhile, another study highlighted the widespread abundance of

Ae. aegypti mosquitoes across both urban and rural settings [56]. Four studies identified a posi-

tive significant association between the presence of surrounding vegetation and the presence/

abundance of mature/immature Ae. aegypti and Ae. albopictus species mosquitoes

[50,56,72,74]. Conversely, high habitat counts were observed to significantly contribute to the

increased density of Aedes mosquitoes [50,55].

Demographic and socioeconomic factors

Studies focused on determining the rate of dengue infections or prevalence primarily concen-

trated on demographic and socioeconomic factors. Among the demographic factors, age

(n = 6, 20.0%) and gender (n = 6, 20.0%) were frequently examined. In most studies, there was

no significant difference in dengue virus infection rates or cases between genders

[53,58,59,75–77]. However, some studies did note an association between age and dengue

infection, suggesting that children under 5 years of age were less susceptible to dengue virus

infection compared to older individuals [58,77]. Additionally, two studies indicated that indi-

viduals who travelled outside the country were more prone to dengue virus infection than

non-travellers [53,77].

Regarding socioeconomic factors, the type of housing or construction materials used

(n = 6, 20.0%) was frequently examined, followed by mosquito preventive measures and

household density, each considered by four studies (13.3%). Poor housing conditions were

associated with high mosquito density and dengue infection [50,53,54,58,76–78], while
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overcrowded households were associated with an increased risk of dengue infections [54,76].

Two studies found no significant difference in dengue infection rates between individuals

using mosquito bed nets or repellents and those who did not [58,78]. However, one study sug-

gested that not using daily mosquito repellent was associated with an increased risk of dengue

infection [53], and another study indicated that respondents using Insecticide-Treated Nets

(ITNs) were more likely to be infected with dengue than those who did not use them [77].

Education level and occupation or employment status were also explored as socioeconomic

factors, each examined by three studies (10.0%). Some studies did not find a significant associ-

ation between education level and the risk of dengue infection [58,59,76,77]. However, one

study did find that a lack of knowledge about dengue disease was associated with dengue infec-

tion within the population [76].

Larval/Pupal abundance factors

Studies on mosquito models which aimed at assessing the magnitude and geographic disper-

sion of vector populations have predominantly focused on employing various larval/pupal

abundance factors to analyse and forecast the risk and spread of dengue and/or its vector

Aedes mosquitoes. None of the studies on dengue cases models considered any of the larval/

pupal abundance factors in their models. Among the studies reviewed on mosquito models,

five included different larval/pupal abundance factors in their analyses. The Breteau Index

(BI), indicating Aedes larvae-positive containers per 100 houses surveyed, the House Index

(HI), reflecting the proportion of infested houses with larvae or pupae, and the Container

Index (CI), showing the percentage of water-holding containers with active immature larvae,

were each incorporated as factors in the models in four studies [55,71–74]. Other entomologi-

cal variables like the Pupae Index (PI) [55,72,74], where pupae are counted, the collection loca-

tion [56,71], and the Pupae per Person Index (PPI) [72] were also considered in some studies.

Modeling techniques

Various quantitative models were applied to analyse dengue burden, outbreaks, or the pres-

ence/absence or abundance of Aedes species (for all details see S2 Table). The selection of

modelling techniques was driven by the specific study objectives, whether they aimed at pre-

diction/forecasting, analysis, or developing early warning systems for dengue and/or Aedes
vector monitoring. These models were categorized into four classes: machine learning, mecha-

nistic, mixed-effects models, and traditional statistical models (Fig 3). Traditional statistical

models include common techniques like logistic or linear regression, which (up to a transfor-

mation) analyse a linear relationship between variables but do not account for additional com-

plex structures like grouped data or random effects. Mixed-effects models are an advanced

form of traditional statistical models, designed to handle data with both fixed and random

effects, making them particularly useful for analysing hierarchical or grouped data by consid-

ering variability within and between groups. Mechanistic models are based on the biological

and physical processes that drive disease transmission or mosquito dynamics. They use mathe-

matical equations to represent how factors like temperature or precipitation influence mos-

quito populations and dengue transmission, offering a detailed understanding of the

underlying mechanisms. Lastly, machine learning models are data-driven approaches that use

algorithms to identify patterns in data without being explicitly programmed. These models

excel in making predictions and handling large datasets, often providing higher accuracy than

traditional methods, particularly in dealing with complex, non-linear relationships.

Mosquito models utilized various classes of these modelling techniques, whereas dengue

models relied primarily on traditional statistical models. The predominant modelling
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approach employed was traditional statistical models (n = 18, 60.0%, including 10 dengue

cases models and 8 mosquito models), with logistic regression (binary and multivariable)

being the most prevalent (n = 8), followed by generalized linear models (GLMs) (n = 4) and

linear regression models (n = 2). One study each utilized Bayesian hierarchical Poisson model

(68), Poisson discrete probability (65), generalized additive models [67], and zero-inflated neg-

ative binomial models (ZINBs) [49]. Additionally, one study stated that they applied bivariate

and multivariate analyses but did not specify the model distribution [77].

Machine learning methodologies were used by 5 studies (16.7%), with 13.3% utilizing maxi-

mum entropy (MaxEnt) and 3.3% employing boosted regression tree (BRT) techniques. These

methods were commonly employed during the development of mosquito ecological niche or

species distribution models (SDM). Their primary goal was to describe the environmental suit-

ability of Aedes mosquitoes, especially on larger geographical scales like multicounty or multi-

continental levels.

Mixed effect models were employed by 4 studies (13.3%), with generalised linear mixed

models (GLMM) being the most prevalent, utilized by 2 studies [56,71]. Generalised additive

mixed models (GAMM) (50) and zero-inflated negative binomial mixed effect models

(ZINBMs) [55] were each used by one study. Studies often opt for the mixed effect models

over traditional statistical model when dealing with nested or clustered data, where observa-

tions are grouped within larger units. By incorporating random effects for these groupings,

mixed effect models can capture the variability within and between groups more accurately

than traditional models.

Mechanistic models were employed by 2 studies (6.7%), whereas one study used general cir-

culation models (GCMs) to predict monthly dengue global transmission risk in current cli-

mates and compare it to expected risk in 2050 and 2080 on a global scale [62]. Another study

employed the similarity search approach to create a risk map by integrating environmental

susceptibility analysis and geographical information systems [52]. It then compared areas with

dengue prevalence to all other locations.

Fig 3. Quantitative model techniques: Mosquito models were found to encompass all modelling techniques,

whereas dengue models included only the more traditional statistical techniques.

https://doi.org/10.1371/journal.pntd.0012679.g003
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Variable selection/Dimension reduction

In this review, a total of 11 (36.7%) studies explicitly stated the techniques they used for vari-

able selection/dimension reduction during their model development (see S2 Table for details).

These techniques conveyed significant diversity, with the most frequently used technique

being the Akaike Information Criterion (AIC), which was employed by 6 studies, making up

20.0% of all the articles reviewed. The second most common approach was Principal Compo-

nent Analysis (PCA) [61] and Multi Correspondence Analysis (MCA) [54], implemented by 2

studies and accounting for 6.7% of the reviewed articles. Stepwise procedures [75], Unbiased

Risk Estimator (UBRE) [67], likelihood ratio tests [58], Jackknife procedures [57], and Bayes-

ian Information Criterion (BIC) [50] were each used by 1 study.

Model validation or predictive performance

In the 30 studies reviewed, only six (20.0%) specified the validation techniques used to assess

model performance (S2 Table). Among these techniques, confusion matrix-based metrics

with partial receiver operating characteristic (pROC) curve were the most employed tech-

nique, implemented by 4 (13.3%) studies. The second most utilized technique for model vali-

dation was the Area Under the Curve (AUC), used by 3 (10.33%) studies. Other commonly

employed validation techniques included analysis of residual plots and partitioning the dataset

into training and test sets (cross-validation).

Discussion

This comprehensive review explores the quantitative models used for modelling and predict-

ing the spread/outbreak of dengue cases/incidences/prevalence or the abundance/presence of

its vector, Aedes mosquitoes, in the context of Africa.

The nature of data, including model outcomes and covariates, plays a significant role in

determining the type and structure of models within the field of modelling. Notably, two-

thirds of the studies used were “mosquito models” aiming at to predicting or modelling the

population dynamics of dengue vectors as a proxy risk factor for dengue. These studies focus

on monitoring Aedes mosquito populations and their breeding sites, serving as early indicators

of potential dengue outbreaks by identifying areas with high vector densities. While this proac-

tive approach is essential for implementing targeted vector control measures and can help pre-

vent outbreaks in human populations, it is important to note that the majority (65%) of these

mosquito data sets were obtained via entomological surveys, that can come with significant

associated costs and resource demands. Conducting regular entomological surveys to gather

essential data for dengue modelling and Early Warning System (EWS) development requires a

significant financial investment. These include expenses related to personnel, equipment, field-

work logistics, data collection, and subsequent analysis.

One third of the identified studies, utilized human dengue data as a model outcome and

encompass parameters like the number of confirmed dengue cases [54,65,67,69], individuals

with active dengue infections [53,58,75,77,78], and those testing seropositive for dengue IgG

and IgM antibodies [59,76]. Employing human dengue cases as an indicator for detecting den-

gue outbreaks provides a direct measure of dengue transmission and its impact on the suscep-

tible population. This approach can be particularly beneficial in areas where implementing

comprehensive entomological surveillance is challenging. However, it is crucial to ensure the

accuracy and timely availability of dengue cases data. This necessitates reliance on reliable and

high-quality data sources such as government surveillance systems, including hospitals, and

other trustworthy sources. Despite the advantages of using government surveillance systems to

obtain accurate dengue cases data, only a small proportion of the identified studies (n = 6)
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adopted this approach. Instead, about half of the human dengue modelling studies in Africa

(n = 20) relied on cross-sectional surveys, which can incur significant costs during the data col-

lection process, and which may therefore not form a sustainable backbone in a dengue early

warning system for a country. This pattern contrasts with trends observed in other parts of the

world, where more than two-thirds of the dengue cases data in reviewed studies came from

surveillance systems [33,45]. The preference of utilizing cross-sectional human dengue or

entomological surveys in Africa may be attributed by the challenges of unavailable dengue sur-

veillance systems [79], leading to underreporting or poor-quality data that complicates the

development of accurate models.

It was observed that 60% of the all the identified studies utilized traditional statistical (cor-

relative) models, with logistic regression being the most used approach, this is consistent with

the results of another systematic review [33]. Traditional statistical regression models work

under several assumptions, including linearity (meaning the relationship between the depen-

dent variable and the explanatory variables is assumed to be linear) and homogeneity of vari-

ance (indicating that the variability of the residuals is constant across all levels of the

explanatory variables). However, it is acknowledged that most of these assumptions may not

always reflect real-world scenarios accurately, especially when dealing with complex relation-

ships between variables like climatic factors, which can be non-linear [80,81]. Moreover, when

trying to forecast disease outbreaks over time and in specific regions, traditional statistical

regression techniques may face difficulties. To address these challenges, researchers can con-

sider using non-parametric models or adding random effects to their models [82,83]. These

adjustments aim to enhance the model’s flexibility and its ability to capture nuanced relation-

ships within the data. In studies conducted in Africa, only a few studies (13.3%) have adopted

these advanced techniques, such as generalized linear mixed models (GLMM), generalized

additive mixed models (GAMM), and zero-inflated negative binomial mixed models

(ZINBMs).

Regarding spatio-temporal models, which integrate geographical and temporal aspects,

none of the identified studies conducted in Africa considered these types of models. Spatial

models account for the geographical distribution and clustering of disease cases, as well as cor-

relations between spatial sampling units, while temporal models capture the patterns and

trends of dengue occurrence over time. Spatio-temporal models, on the other hand, integrate

both dimensions, providing a holistic view of disease spread across different locations and

time intervals. These models can offer valuable insights for risk assessments, aiding local or

national dengue prevention and control programs in preparing for and responding to dengue

epidemics in endemic regions. For instance, Patricia Marques et al. [84] used a Bayesian hier-

archical framework to forecast dengue dynamics in Brazil, revealing that some traditionally

non-endemic microregions might experience increased dengue incidence due to future cli-

mate scenarios. Similarly, Hwa-Lung Yu et al. [85] employed a spatio-temporal approach to

predict dengue outbreaks in Southern Taiwan, highlighting the significant impact of climatic

conditions and providing valuable "one-week-ahead" outbreak warnings. Moreover, in Singa-

pore, Haoyang Sun et al. [86] utilized a Bayesian hierarchical model to analyse the spatio-tem-

poral dynamics of Aedes aegypti and Aedes albopictus in relation to environmental and

anthropogenic variables. Their findings suggested that public residential estates with older

buildings and more nearby managed vegetation should be prioritized for vector control

inspections and community advocacy to reduce Aedes mosquito abundance and mitigate den-

gue risk. Dengue is sensitive to variations in climatic conditions at local, regional, and global

scales. Some areas currently at risk, but not yet endemic for dengue, may transition to endemic

status due to climate change, particularly related to temperature changes. The absence of these

models in Africa may stem from various reasons, notably the insufficient capacity and the
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unavailability of suitable data required for their construction. This may be due to the lack of a

dengue surveillance data system. The quality of accessible data, particularly surveillance data,

directly influences the caliber of models that can be created. Inadequate and inaccurate data

pose significant challenges to developing effective spatio-temporal models.

In many studies across several African countries, like findings in other parts of the world,

certain environmental factors such as rainfall, temperature, and relative humidity consistently

emerged as crucial covariates influencing the transmission of dengue and the presence or

abundance of its vector, Aedes mosquitoes. These climatic variables play a significant role in

the breeding and survival of Aedes mosquitoes, consequently impacting the prevalence and

spread of dengue. However, beyond these well-established factors, several other significant var-

iables affecting the spread of dengue in Africa were also observed. One such factor is the pres-

ence of surrounding vegetation, which has been notably associated with the presence of

immature stages of Ae. aegypti and Ae. albopictus. Vegetation provides ideal breeding grounds

for these mosquitoes, leading to increased transmission rates in areas with dense vegetation.

Additionally, poor housing conditions have emerged as strong indicators of higher dengue

incidence in African settings. Other socio-economic factors, such as lack of public knowledge

about dengue and overcrowded households, were also found to be influential determinants of

dengue risk. While vector abundance is a well-recognized risk factor for dengue outbreaks,

none of the analysed studies incorporated these entomological indicators directly into their

models. This omission is particularly surprising, as mosquito abundance is a key driver of den-

gue transmission. Including such indicators in future models could improve the accuracy and

effectiveness of outbreak predictions in Africa.

Evaluation metrics play a critical role in real-world data studies as they assess whether the

collected data suit the models’ intended objectives and help gauge data quality and bias

[87,88]. Our findings uncovered a concerning trend regarding the absence of robust variable

selection procedures and model validation among the reviewed published models. Many pre-

dictive models heavily depend on substantial data for accurate disease modelling. Therefore,

steps like variable selection and model validation are vital to counter overfitting and enhance

the interpretability and predictive accuracy of these models. Variable selection is pivotal as it

involves identifying and including the most relevant covariates from a larger set to create a

parsimonious model. This process is crucial because it eliminates extraneous or redundant

variables, thus reducing overfitting—where a model becomes too tailored on training data and

performs poorly on test data—while also improving the model’s interpretability, making it

more understandable and applicable in real-world scenarios. Additionally, model validation is

imperative to ensure the reliability and accuracy of predictive models. Validation should not

only be conducted within the population from which the data were sourced but also across

diverse populations to assess generalizability. It is concerning that our review identified a lack

of explicit use of out-of-sample validation techniques in the reviewed studies, indicating a

potential gap in ensuring the robustness and applicability of these models beyond their train-

ing data.

Towards sustainable early warning systems for dengue in Africa

Having an effective EWS for dengue is important for controlling the disease before it becomes

a big problem. This works by using data from human case surveillance, monitoring mosquito

abundances, looking at environmental information, and using advanced modelling techniques

to predict and spot outbreaks before they become serious public health issues [89,90]. For a

model to serve as an effective EWS for dengue, it must have the capability to forecast disease

outbreaks proactively, identify areas or populations at high risk of infection, and integrate
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both spatial and temporal aspects. Such a model should integrate real-time data, including cli-

mate conditions, mosquito population dynamics, and historical disease data, to deliver timely

and precise predictions. In the studies reviewed, none had specifically developed models tai-

lored for dengue early warning systems in the context of Africa. This gap can be traced back to

the limited and inconsistent availability of data. This scarcity is a direct result of the absence of

comprehensive dengue surveillance systems in several African countries. As a result, many

existing models lean towards being descriptive rather than predictive. They are primarily

focused on comprehending the present distributions of dengue and/or Aedes species, as well as

their influencing factors, rather than anticipating and forecasting future outbreaks. As a way

forward, we suggest the following recommendations, addressing the gap of dengue EWS in

Africa:

✓ African governing bodies must prioritize enhancing dengue surveillance systems to address

the scarcity of reliable and high-quality dengue data. This can be accomplished by expand-

ing existing surveillance efforts from other diseases, like those conducted by National

Malaria Control Programmes, to also include dengue information. If no such systems are

currently in place, existing resources can be utilized to introduce a cost-effective surveil-

lance system. By fostering improved surveillance systems, we can achieve more accurate

and comprehensive data collection, which is essential for developing effective dengue mod-

els. This, in turn, will enable the creation of EWS for disease outbreaks, providing timely

alerts and facilitating proactive measures to mitigate the impact of dengue on public health.

✓ Ongoing entomological surveys in Africa are essential for modelling dengue and Aedes mos-

quitoes and developing EWS. This is especially important given the limited dengue surveil-

lance currently available on the continent. However, these surveys need to be carefully

designed or refined to collect the appropriate data necessary for building an effective pre-

dictive model. To ensure the effectiveness and sustainability of these surveys, essential sup-

port from key stakeholders such as governing bodies, public health organizations, and

research institutions is inevitable. This collaborative effort will not only enhance data collec-

tion but also contribute to the development of accurate and appropriate predictive models,

thereby improving the effectiveness of dengue EWS and Aedes mosquito-related diseases.

✓ An effective predictive model that incorporates covariates from multiple domains, including

climatic, environmental, demographic, socioeconomic, and larval/pupal abundance factors,

would be highly advantageous. However, it is crucial to test whether the inclusion of any of

these covariates improves the model’s predictive capabilities.

Limitations

Our analysis was limited to studies published in English, which may have impacted our evalua-

tion of regional trends. Furthermore, there is a possibility that relevant literature, including

some grey literature, were not included as databases do not cover all journals and university

press articles. This is particularly crucial for locally significant modelling efforts that may not

have reached mainstream academic platforms.

Conclusion

We conducted a comprehensive systematic review, specifically examining the quantitative

methods used to model and/or predict dengue or its vector Aedes mosquito in Africa. Our

review identified several key shortcomings in the current modelling practices for dengue in

Africa, including scarce dengue surveillance systems, inadequate reporting of model
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development techniques, validation, and performance measures. We also observed the pre-

dominant focus on traditional statistical methodology in modelling techniques, with a lack of

utilization of more advanced models such as spatio-temporal models–crucial to enable real-

time prediction. Additionally, our review highlighted a lack of adoption of models suitable for

serving as dengue Early Warning Systems (EWS) in Africa. We hope the findings of this review

will aid in paving the way for improving dengue modelling practices as dengue continues to

spread/increase across the continent, making the development and implementation of appro-

priate dengue EWS are more critical than ever.
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