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A B S T R A C T

The efficiency of maritime traffic management and the safety of ship navigation have become top priorities. This 
study introduces a ship behavior recognition method that utilizes the Extreme Gradient Boosting (XGBoost) 
classification model, in conjunction with the Sparrow Search Algorithm (SSA), to enhance proactive maritime 
traffic management. The method leverages Automatic Identification System (AIS) data as its primary source and 
involves several critical steps. Initially, the AIS data is preprocessed, and ship behaviors are encoded. Subse
quently, the encoded behaviors are clustered using spectral clustering to create a labeled dataset. Then, this 
dataset is employed to train and validate the SSA-XGBoost classification algorithm for identifying ship behaviors. 
Finally, an example analysis is performed in the Yangtze River. The results indicate that the proposed method can 
accurately and swiftly identify ship behaviors, achieving an accuracy of 97.28%, precision of 96.97%, recall of 
97.43%, and an F1 score of 97.19%, surpassing the performance of the existing algorithms. The findings have the 
potential to aid maritime supervision authorities in promptly assessing ship navigation statuses and provide a 
valuable reference for developing ship scheduling decisions.

1. Introduction

Maritime transportation is crucial to global trade and the economy, 
facilitating the international movement of goods and supporting com
plex global supply chains (Svanberg et al., 2019; Verschuur et al., 2022; 
Liu et al., 2024; Zhang et al., 2024b). However, the sharp growth in 
trade volume and the increasing number of ships have heightened the 
need for efficient maritime traffic management and enhanced safety in 
ship navigation (Ma et al., 2023; Fu et al., 2023). Current maritime 
traffic management depends on traditional Vessel Traffic Service (VTS) 
systems, which are crucial for navigation monitoring. However, the 
growing shipping volumes and increasing number of vessels pose chal
lenges for VTS systems in processing real-time data and responding 
promptly. These systems often depend on manual operations, compli
cating their ability to manage complex navigational environments and 
dynamic traffic conditions. Introducing machine learning-based systems 
can offer maritime authorities enhanced data analytics for real-time 

decision-making, optimizing resource allocation, and improving navi
gational safety and efficiency. By understanding ship behavioral pat
terns and dynamics, maritime authorities can strengthen the supervision 
of navigational risk hotspots, accurately assess traffic conditions and 
risks, and improve overall traffic management capabilities (Rong et al., 
2024). Thus, research on ship behavior identification is essential for 
proactive maritime traffic management.

Ship behavior refers to the manner in which a ship maneuvers and 
the principles governing its movement under the direction of the crew 
for navigation and avoidance purposes. Current research on ship 
behavior typically focuses on two scales: macro and micro. Macro- 
analysis examines movement patterns of ship fleets on a global scale, 
while micro-analysis focuses on individual ship behaviors on a local 
scale (Zhou et al., 2023, 2024; Wang et al., 2024). Studying the collec
tive behavior of ship groups facilitates the identification of universal 
patterns and governing principles.

Research on ship behavior recognition has primarily employed three 
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model types: (a) probabilistic statistical models, (b) unsupervised 
learning models, and (c) supervised learning models.

Probabilistic statistical models have a clear mathematical foundation 
and theoretical support to identify ship behaviors. For instance, Castaldo 
et al. (2014) used Dynamic Bayesian Networks to automatically identify 
anomalies in port environments. Tang et al. (2020) developed a prob
abilistic directed graph model to detect ship states based on historical 
AIS data and node state features. Carlson et al. (2021) used a multino
mial Hidden Markov Model (HMM) to classify early hostile behaviors by 
encoding the rate of change in a ship course. Murray et al. (2022)
employed Gaussian mixture models to classify ship trajectories and 
predict behaviors. However, these models often rely on simplifying as
sumptions that may not fully capture the complexity of ship behavior 
using simplified mathematical method, especially given the 
high-dimensional nature of ship behavior data, which includes 
multi-dimensional features such as position, Speed Over Ground (SOG), 
and Course Over Ground (COG).

Unsupervised learning models can automatically extract knowledge 
from large amounts of unlabeled data for the recognition of ship be
haviors. For example, Wang et al. (2021) improved the Density-Based 
Spatial Clustering of Applications with Noise (DBSCAN) algorithm to 
develop Hierarchical Density-Based Spatial Clustering of Applications 
with Noise (HDBSCAN) for clustering ship trajectories, facilitating 
maritime supervision in complex waters. Wei et al. (2024) introduced a 
multidimensional Dynamic Time Warping (DWT) metric to measure 
trajectory similarity and used DBSCAN for clustering analysis. Liu et al. 
(2023) proposed an unsupervised method based on AIS data for motion 
behavior extraction and voyage pattern mining. Despite their ability to 
discover patterns from unlabeled data, these models are sensitive to data 
quality, and noise or outliers can significantly impact their performance.

Supervised learning models, trained using labeled data, typically 
achieve high recognition accuracy. For example, Huang et al. (2019)
combined K Nearest Neighbor (KNN) and Local Outlier Factor (LOF) 

algorithms to detect ship behavior. Kim et al. (2015) processed ship 
trajectory data using Support Vector Machines (SVM), optimizing pa
rameters through K-fold cross-validation and grid search. However, 
traditional machine learning methods often struggle with complex 
maritime traffic data (Dong et al., 2020), such as unbalanced or 
high-dimensional datasets, limiting their ability to capture multidi
mensional features and underlying structures.

Currently, the methods used for maritime traffic management (VTS) 
often rely on manual monitoring and decision-making when dealing 
with high traffic and complex channel environments, which can lead to 
lagging response times. They often lack the ability to flexibly adapt to 
complex or dynamic environments, such as narrow waterways, bends or 
harbor areas, which may not be able to adequately identify and handle 
all potential risks. In order to effectively utilize the ship behavioral 
features embedded in ship AIS data for ship behavior identification and 
avoid potential risks, this paper propose the use of integrated learning 
algorithms in supervised learning to address this issue. Integrated 
learning is widely used and effective in the field of big data mining, 
building classification models and pattern recognition research (Qu 
et al., 2019; Tan et al., 2020; Li et al., 2020). The reason for this is that 
integrated learning is good at solving data recognition or classification 
problems with explicit features, and it can improve the efficiency of the 
whole system. We utilize the Extreme Gradient Boosting (XGBoost) 
classification algorithm and optimize its hyperparameters using the 
Sparrow Search Algorithm (SSA) to enhance recognition accuracy. This 
study introduces a integrated learning algorithm based on Uniform 
Manifold Approximation and Projection (UMAP) and spectral clus
tering. The method involves encoding, dimensionality reduction, clus
tering, and visualization of ship behavior, considering parameters such 
as azimuth, speed change, course change, speed change rate, and course 
change rate. This approach helps in understanding and elucidating ship 
maneuvering behavior patterns embedded in AIS data. A recognition 
method combining SSA and XGBoost is proposed. SSA optimizes 

Fig. 1. Ship behavior identification flowchart.
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XGBoost parameters, eliminating manual parameter setting influences. 
This method achieves high-precision recognition of ship behavior, 
enhancing machine learning efficiency in ship collision avoidance, route 
planning, and abnormal behavior detection.

This paper is organized as follows: Section 2 details the methods, 
including ship AIS data preprocessing, ship behavior clustering algo
rithm, ship behavior pattern recognition algorithm, and recognition 
performance evaluation. Section 3 validates the proposed method with a 
case study conducted in the Yangtze River and analyzes the relevant 
conclusions. Section 4 summarizes the conclusions of this paper and 
outlines future research directions.

2. Methodology

The objective of this study is to uncover the behavioral patterns of 
ships as recorded in AIS data and to identify the behaviors and 
maneuvering patterns of ships in maritime environments. This research 
aims to provide crucial theoretical support for intelligent supervision 
and navigation safety within the context of big data and intelligent 
shipping. Additionally, it holds significant implications for enhancing 
the efficiency of maritime traffic supervision and reducing the risk of 
ship navigation. The flowchart illustrating the ship behavior recognition 
process proposed in this paper is presented in Fig. 1. This process 
comprises three main stages. 

• Stage 1: AIS Data Preprocessing: Raw AIS data are filtered, inter
polated, and compressed. The processed trajectories are then stored 
in the AIS database.

• Stage 2: Cluster Analysis of Ship Behavior: Ship behaviors are 
encoded based on the preprocessed AIS data. UMAP and spectral 

clustering algorithms are employed to reduce dimensionality and 
cluster the ship behaviors.

• Stage 3: Ship Behavior Recognition: The encoded ship behaviors, 
along with the clustering results, serve as the data source for the SSA- 
XGBoost algorithm. This process constructs a ship behavior recog
nition model and facilitates the identification of ship behaviors.

2.1. Stage 1: AIS data preprocessing

The AIS is essential for monitoring the maritime environment, ship 
transport, ship management, and other related activities (Fu et al., 2017; 
Li et al., 2018; Emmens et al., 2021). AIS can send and receive critical 
ship-related information, including Maritime Mobile Service Identity 
(MMSI), ship position, speed, course, and destination port (Bailey et al., 
2008). This system enhances collision avoidance capabilities between 
ships and improves the safety and reliability of navigation. Additionally, 
AIS systems are widely used as a data source for maritime traffic analysis 
(Liu et al., 2020; Yu et al., 2020; Zhang et al., 2022a; Liang et al., 2022; 
Ma et al., 2024), collision risk prevention (Greidanus et al., 2016; 
Alessandrini et al., 2018; Liu et al., 2021, 2023a), ship behavior iden
tification(Zhang et al., 2022b, 2024; Rong et al., 2022; Liu et al., 2023b), 
and various other research applications. It is worth noting that Liu et al. 
(2022, 2024) open the door to research questions on the automatic 
identification and analysis of icebreaker assistance operations in 
ice-covered waters, as well as the need for such assistance, through the 
integration of AIS data and ice data using multi-source data fusion 
method. However, AIS data transmission involves multiple nodes, such 
as satellite communication, AIS base stations, decoders, and routers, 
which can compromise the authenticity, completeness, and accuracy of 
the data. This may result in incorrect or missing key information, 

Fig. 2. AIS data preprocessing flowchart.

Fig. 3. Schematic diagram of the DP algorithm.
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including abnormal AIS data values, ship trajectory drift, round-trip 
sailing, and missing data (Pallotta et al., 2013; Yang et al., 2019).

To address these issues, this paper preprocesses the raw AIS data to 
obtain effective data for mining and analysis. The main process of AIS 
data preprocessing is depicted in Fig. 2. The preprocessing framework 
comprises three parts: a filter layer, a repair layer, and a feature 
extraction layer. 

• Filter Layer: This layer performs preliminary screening of the raw AIS 
data and eliminates data with obvious errors, such as incorrect MMSI 
codes and positioning errors.

• Repair Layer: The filtered AIS data are interpolated to equalize the 
time intervals between each trajectory point and smooth the trajec
tory. This provides more accurate trajectory feature points for sub
sequent analysis.

• Feature Extraction Layer: This layer compresses the repaired AIS 
data and stores the compressed trajectories in the AIS database, 
ready for further analysis and mining.

Trajectory compression is mainly used to extract the key features of 
the trajectory, improve the computational efficiency, reduce the data 
storage space, etc. It is also a commonly used trajectory segmentation 
method (Tang et al., 2021). Douglas-Peucker (DP) algorithm (Zhao 
et al., 2019) is a more popular trajectory compression algorithm at the 
present stage. Its advantage lies in the fact that it can retain the feature 
points on the larger curvature patterns. It can be adapted to different 
application scenarios by modifying the threshold value. Therefore, in 
this paper, the DP algorithm will be used to compress and segment the 
repaired AIS data to form ship sub-trajectories.

The schematic diagram of the DP compression algorithm is shown in 
Fig. 3, now given the threshold ε, the original ship trajectory Traj = {P1,

P2,P3, ...,Pm, ...,P12}, the core idea of the DP compression algorithm is to 
replace the original trajectory segment by the compressed approxima
tion of the trajectory segment P1P12 and to ensure that the perpendicular 
Euclidean distance PED(Pm) < ε from the intermediate point Pm, which 
is at the maximum distance from P1P12, to the straight line segment 
P1P12.

If the condition PED(Pm) < ε is not satisfied, the original problem is 
decomposed into two sub-problems, and the line segments P1Pm, PmP12 
are processed recursively with Pm as the splitting point. Taking Fig. 3 as 
an example, where the trajectory point P4 is the farthest point from 
P1P12 and PED(P4) > ε, the recursive compression P1P4, P4P12 . The 
recursion stops when the maximum perpendicular Euclidean distance of 

the intermediate nodes of all approximate trajectory segments are all 
less than a given error threshold ε. The approximate trajectory segment 
P1P4 in Fig. 3 satisfies PED(P2) < ε, PED(P3) < ε, so line segment P1P4 is 
retained and trajectory points P2 and P3 are deleted. The line segment 
P4P12 is processed in the above way, and the approximate trajectory 
Traj́ = {P1,P4,P9,P12} is finally obtained.

2.2. Stage 2: cluster analysis of ship behavior

Most current studies on ship behavior cluster the overall ship tra
jectory without considering the changes in navigational state (e.g., 
speed, course). To intuitively analyze ship behavior and explore the 
underlying behavioral laws, this paper employs a clustering analysis 
method using UMAP and spectral clustering. This approach fully con
siders the dynamic changes in a ship state during navigation.

The process begins with encoding ship behavior to construct a 
mapping relationship between the ship behavioral characteristics and its 
sub-trajectories. The encoded ship behaviors are then subjected to visual 
analysis using the UMAP dimensionality reduction algorithm. Fig. 4 il
lustrates the flowchart of the proposed ship behavior clustering analysis 
method. This method can be divided into three main steps: Ship 
Behavior Coding: This step involves encoding various states of the ship, 
such as speed and course changes, to represent the ship behavior accu
rately. Behavior Feature Dimensionality Reduction: Using the UMAP 
algorithm, the high-dimensional behavior features are reduced to lower 
dimensions for better visualization and analysis. Ship Behavior Clus
tering: Spectral clustering is then applied to the dimensionally reduced 
data to group similar ship behaviors, facilitating a deeper understanding 
of ship navigation patterns.

This comprehensive approach allows for a more detailed and accu
rate analysis of ship behaviors, considering the dynamic nature of ship 
navigation. And the details are presented in the following sections.

2.2.1. Ship behavior coding
The intuitive embodiment of ship behavior is represented by the ship 

trajectory, which can be considered the path a ship takes within a spe
cific environment. Viewing the trajectory merely as a sequence of data 
points ordered by time only utilizes the positional information of the 
ship and overlooks the dynamic changes in ship behavior. Therefore, 
analyzing ship behavior should include considering azimuth, course, 
and speed characteristics.

In this paper, we propose a ship behavior coding method to establish 
a mapping relationship between ship sub-trajectories and ship behav
iors. A ship sub-trajectory is a segment of a ship’s sailing path in a 
specific time period or a specific region. As shown in Fig. 5, this study 
marks the trajectory in segments by taking the start point, end point of 
the ship’s trajectory and the characteristic trajectory points extracted by 

Fig. 4. Flowchart for clustering analysis of ship behavior.

Fig. 5. Sub-trajectory generation graph.
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the DP algorithm as the initial points, and the trajectory between two 
adjacent initial points is a trajectory segment. Each sub-trajectory 
segment represents the smallest unit for storing ship behavior. Ship 
behavior is then extracted based on the information recorded in each 
sub-trajectory segment, a process we refer to as ship behavior coding. 
We propose selecting five elements as ship behavior features and 
encoding them, as shown in Fig. 6. The reason for selecting these five 
elements as ship behavior characteristics is that the azimuth angle from 
the starting point to the end point of the ship’s sub-trajectory can 
characterize the change trend of the ship’s position, and when the ship is 
sailing, the change of its rudder and order is reflected in the ship’s 
behavior as the change of heading, the change of speed, the change of 
the ship’s heading rate, and the change of the ship’s speed rate.

This method enables a detailed and dynamic analysis of ship be
haviors by considering critical navigational parameters and segmenting 
trajectories into manageable units for more precise behavior identifi
cation. More details, let a certain section of sub-trajectory be coded as 
(Azimuth,ΔCOG,ΔSOG,RC,RS), ΔCOG is the change in course, ΔSOG is 
the change in speed, RC is the rate of change in course, and RS is the rate 
of change in speed. Among them, the RC and RS are calculated as shown 
in Eq. (1) and Eq. (2), where ΔTime is the time interval between two 
points of the sub-trajectory. 

RC=
ΔCOG
ΔTime

(1) 

RS=
ΔSOG
ΔTime

(2) 

ΔTime and the parameter ε in the Douglas-Peucker algorithm are indi
rectly related in our trajectory simplification process. ΔTime refers to the 
time interval between consecutive points in the trajectory, while ε is the 
maximum distance between the original and simplified curves in the 
Douglas-Peucker algorithm. In our approach, the trajectory data is first 
temporally sampled using ΔTime. This step reduces the number of points 
while maintaining a consistent time interval between points. The choice 
of ΔTime affects the granularity of the temporal representation of the 
trajectory. Subsequently, we apply the Douglas-Peucker algorithm with 
a specified ε value, which determines the spatial accuracy of the 
simplification. A smaller ε produces more accurate but less simplified 
trajectories, while a larger ε leads to a more simplified but possibly less 
accurate representation.

2.2.2. Behavioral trait dimensionality reduction
The proposed coding methods in Section 2.2.1 are used to encode all 

ship behaviors, creating a set of high-dimensional data to characterize 
these behaviors. However, using high-dimensional data increases the 
computational burden of the subsequent clustering algorithm and poses 
the risk of the dimensionality catastrophe during the clustering process 
(Verleysen et al., 2005). To intuitively display the distribution of ship 
behaviors, avoid the dimensionality catastrophe, and enhance the 
clustering algorithm’s efficiency, it is necessary to reduce the 

dimensionality of the encoded ship behavior data. This reduction in
volves projecting the high-dimensional data into a lower-dimensional 
space using a downscaling algorithm (Sorzano et al., 2014).

Then, the UMAP algorithm (McInnes et al., 2018) among the stream 
learning is used to downscale the encoded ship behaviors and project the 
high-dimensional data to the three-dimensional space. The encoded set 
of ship behaviors is set as M = {m1,m2, ...,mn}, the elements in this set 
are high-dimensional data, and the set of ship behaviors output by the 
UMAP algorithm is Y =

{
y1, y2, ..., yn

}
, the elements in this set are 

three-dimensional data, and given a hyperparameter k, the set of 
neighbors of data point mi in metric space d can be expressed as {mi1， 
mi2,...,mik}, then the fuzzy topology of the high-dimensional data can be 
represented using an exponential probability distribution, as shown in 
Eq. (3). 

Pi|j = exp
(

−
d
(
mi,mj

)
− ρi

σi

)

(3) 

where, ρi is the distance from mi to the first nearest data point, and σi is 
the diameter of mi nearest neighbor data point.

At this time, Pi|j is not a symmetric function, which has to be sym
metrized, and the expression is shown in Eq. (4). After establishing the 
fuzzy topology in the high-dimensional space, the probability distribu
tion needs to be constructed in the low-dimensional distribution, the 
expression of which is shown in Eq. (5), where a and b are 
hyperparameters. 

Pi|j =Pi|j + Pj|i − Pi|jPj|i (4) 

qi|j =
(

1 + a
(

yi − yj

)2b)− 1
(5) 

The UMAP algorithm wants data points with small differences to be 
as close together as possible in the low-dimensional projection space, 
while data points with large differences are as far away as possible in the 
low-dimensional projection space. Therefore, it is necessary to introduce 
gravitational and repulsive functions as shown in Eq. (6) and Eq. (7). 

Attractive=Pi|j(X)log

(
Pi|j(X)
qi|j(Y)

)

(6) 

Repulsive=
(
1 − Pi|j(X)

)
log

(
1 − Pi|j(X)
1 − qi|j(Y)

)

(7) 

where, Pi|j(X) is the weight of the data points in the high-dimensional 
space, and qi|j(Y) is the weight of the data points in the low- 
dimensional space. the UMAP algorithm firstly applies Attractive force 
to the points with small differences in the dataset, and applies Repulsive 
force to the points with large differences, and then gradually reduces the 
gravitational force and the repulsive force through the simulated 
annealing optimization algorithm. Finally, the simulated annealing 
optimization algorithm gradually reduces the gravitational force and 
repulsive force, and minimizes the loss function to find the optimal so
lution.

2.2.3. Chustering of ship behavior
This subsection introduces the ship behavior clustering method. The 

primary objectives for clustering ship behavior are: (1) to objectively 
discover distribution patterns of different ship behavior categories; (2) 
to deeply analyze these patterns, which, when combined with kernel 
density estimation, clearly highlight differences among behavior cate
gories; (3) to categorize ship behavior data, providing high-quality 
datasets for further behavior identification studies.

Various clustering techniques, including K-means and DBSCAN, have 
been applied to AIS data. K-means often struggles with ring or concave 
datasets. DBSCAN, based on density reachability, may merge connected 
classes into one, and its results are highly sensitive to manually set 

Fig. 6. Schematic diagram of ship behavior characteristics.
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parameters like neighborhood radius and density threshold.
The spectral clustering algorithm (Von Luxburg et al., 2007), 

grounded in spectral graph theory, offers advantages over traditional 
methods. It has low time complexity, is insensitive to input data struc
ture, and can identify non-convex datasets. Unlike K-means or DBSCAN, 
spectral clustering is suitable for spatial clustering irrespective of shape, 
achieving globally optimal solutions (Lin et al., 2019) without assuming 
specific data distribution features. This makes it increasingly popular 
(Ahn et al., 2016). Thus, this study employs spectral clustering for the 
analysis of dimensionally-reduced ship behavior data.

The core idea of spectral clustering is to consider the dataset as points 
in space, with points connected to each other by edges. The weight of 
each edge is determined by the distance between two points, if the 
distance between two points is farther then the weight of the edge is 
smaller, the closer the distance is then the weight of the edge is larger. 
Now suppose that the input dataset of the spectral clustering algorithm 
X = {x1, x2, ..., xn} contains n sample points, the number of clusters is k, 
and the output of the algorithm is the clusters A1, A2, ..., Ak, then the 
specific computational process of spectral clustering can be described as 
follows: 

(1) Use Eq. (9) to compute the individual elements of the similarity 
matrix W, which is of size n*n.

W=

⎛

⎝
s11 … s1n
⋮ ⋱ ⋮

sn1 ⋯ snn

⎞

⎠ (8) 

sij = s
(
xi, xj

)
=
∑n

i=1,j=1
exp
(

−
‖ xi − xj ‖

2

2σ2

)

(9) 

(2) Use Eq. (10) to compute the degree matrix D, which is a diagonal 
matrix of size n*n whose elements di on the diagonal are the sums 
of the elements in the i row of the similarity matrix W.

di =
∑n

j=1
sij (10) 

(3) Calculate the Laplace matrix L = D − W.
(4) Calculate the eigenvalues of the Laplace matrix, take the first k 

eigenvalues, and calculate the eigenvectors u1,u2,u3, ...,uk.
(5) Form the k eigenvectors into a matrix.
(6) Let yi ∈ Rk be the i row vector of U, where i = 1,2,3...,n.
(7) Use the K-means algorithm to cluster the new sample points Y =

{
y1, y2, y3, ..., yn

}
into clusters C1,C2, ...,Ck.

(8) Output the clustering results A1,A2, ...,Ak,Ai =
{

j|yj ∈ Ci

}
.

Since the spectral clustering algorithm requires manually setting the 
number of clusters, and this parameter can significantly impact the 
clustering results, it is essential to determine the optimal number of 
clusters. To achieve this, the output of spectral clustering with varying 
numbers of clusters is evaluated using the Calinski-Harabasz (CH) score, 
where a higher CH score indicates better clustering results.

This paper applies the spectral clustering algorithm to cluster ship 
behaviors. However, relying solely on the clustering results is insuffi
cient for analyzing the distribution patterns of ship behaviors. The goal 
of cluster analysis as a descriptive data mining method extends beyond 
revealing the latent cluster structures in the data; it also involves 
exploring the underlying mechanisms that generate these structures. 
Therefore, to delve deeper into the information embedded in the spec
tral clustering algorithm’s output, this paper employs kernel density 
estimation (Chen et al., 2017) to visualize and analyze the behaviors of 
different categories of ships concerning azimuth, SOG, and COG.

2.3. Stage 3: ship behavior recognition

In this section, we determine ship behavior characteristics by coding 
the ship behavior and propose an SSA-XGBoost-based method for ship 
behavior pattern recognition to address the challenge of recognizing or 
classifying data with distinct characteristics. This method integrates the 
clustering results and utilizes the Sparrow Search Algorithm (SSA) to 
optimize the hyperparameters of the XGBoost classification algorithm. 
By doing so, it effectively learns the features of different categories of 
ship behaviors and identifies ship behaviors based on these learned 
features.

2.3.1. XGBoost
XGBoost, proposed by Chen and Guestrin (2016), is an efficient 

gradient boosting decision tree algorithm. Its core principle involves 
using the concept of Boosting, where multiple weak learners are inte
grated into a strong learner. This is achieved by using multiple trees to 
make collective decisions. The result of each tree represents the differ
ence between the target value and the prediction results of all previous 
trees, and the cumulative results of all trees provide the final prediction. 
This approach improves the overall model performance. XGBoost is 
composed of multiple Classification and Regression Trees (CARTs), 
making it a highly flexible and versatile tool for addressing classification 
and regression problems. The structure of the algorithm is illustrated in 
Fig. 7.

XGBoost is an additive model consisting of K base models and its 
model expression can be expressed as: 

ŷi =ϕ(Xi)=
∑K

k=1
fk(Xi), fk ∈ F (11) 

Fig. 7. The structure of Extreme Gradient Boosting (XGBoost) algorithm (Ma et al., 2021).
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where, ŷi is the predicted value of the i-th sample, Xi is the data of the 
i-th sample, K is the number of regression tree models, fk denotes the k-th 
tree, fk(Xi) is the score of the i-th sample in the k-th tree, and F is the set 
of regression tree models.

XGBoost is similar to most machine learning models in that its 
objective function consists of two parts: the total sample loss, and the 
canonical term, which can be expressed as: 

L(ϕ)=
∑n

i=1
l(yi, ŷi)+Ω(fi) (12) 

Ω(f)= γT +
1
2

λ
∑T

j=1
ωj

2 (13) 

where, L(ϕ) is the objective function, l
(
yi, ŷi

)
is the loss function, which 

is used to calculate the difference between the actual value yi and the 
predicted value ŷi and Ω(f) is a regularization term used to control the 
model complexity and prevent the model from being overfitted. T rep
resents the number of leaves in the decision tree model, ωj is the weight 
of leaf nodes in the j-th tree, γ is a hyperparameter that controls the 
number of leaf nodes and λ is the L2 regularization hyperparameter used 
to control the weight of the leaf nodes

To train the error function, a forward distribution algorithm is used, 
where a new function is added to the model in each iteration round and 
the newly generated tree fits the residuals predicted by the tree model in 
the previous round. The forward distribution algorithm can be expressed 
as 

ŷi
(t)
= ŷi

(t− 1)
+ ft(xi) (14) 

where, ŷi
(t) is the predicted value of the i-th sample in the t-th round, and 

ft is the t-th tree, and the current residuals are fitted. The forward dis
tribution algorithm is substituted into the objective function, and the 
iteratively updated objective function can be expressed as: 

L(t) =
∑n

i=1
l
(
yi, ŷ

(t− 1)
i + ft(xi)

)
+Ω(ft) (15) 

where, ŷ(t− 1)
i is the predicted value of the ith sample in the t− 1 round, 

ft(xi) is the prediction value of the i-th sample by the t round fitting tree, 
and l

(
yi, ŷ

(t− 1)
i +ft(xi)

)
is the loss function, which is used to measure the 

error between the true value yi and the updated predicted value. Ω
(
ft
)

are regularized terms that control the complexity of the new tree ft.
In order to facilitate optimization, the loss function is approximated 

by the second-order Taylor expansion 

l
(
yi, ŷ

(t− 1)
i + ft(xi)

)
≈

[

l
(
yi, ŷ

(t− 1)
i

)
+ gift(xi) +

1
2
hif2

t (xi)

]

(16) 

gi = ∂ŷ(t− 1) l
(
yi, ŷ

(t− 1)) (17) 

hi = ∂2
ŷ(t− 1) l

(
yi, ŷ

(t− 1)) (18) 

where, gi is the first order derivative of the loss function and hi is the 
second order derivative of the loss function.

The objective function can be approximated as: 

L(t) ≈
∑n

i=1

[

l
(
yi, ŷ

(t− 1)
i

)
+ gift(xi)+

1
2
hif2

t (xi)

]

+Ω(ft) (19) 

Since l
(
yi, ŷ

(t− 1)
i

)
is independent of ft(xi) and can be ignored, the 

objective function can be further reduced to 

L(t) ≈
∑n

i=1

[

gift(xi)+
1
2
hif2

t (xi)

]

+Ω(ft) (20) 

2.3.2. Sparrow search algorithm
Sparrow Search Algorithm (Xue et al., 2020) is a group intelligence 

optimization algorithm derived from simulating the foraging process of 
a sparrow flock, in which the sparrows in the flock are mainly classified 
into producers, scroungers and vigilant sparrows.

The producer is the dominant position in the sparrow group, the 
proportion of the group is generally 10–20%, responsible for finding 
food for the whole group and provide the direction of the food and the 
area where the food is available; the scrounger will monitor the pro
ducer all the time, once the producer finds the food, the scrounger will 
immediately follow the producer to seize the food; the vigilant sparrows 
is responsible for monitoring the area around the foraging area. When a 
predator is present around the foraging area, the Vigilant sparrows will 
give an immediate warning, and when the warning signal exceeds the 
alarm value, the entire population will move to the next foraging site 
under the leadership of the producer. The mathematical model of SSA 
starts by assigning a matrix of sparrows’ positions as follows: 

X=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

X1
X2
⋮
⋮
⋮
Xi

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x11 x12 ... ... ... x1j
x21 x22 ... ... ... x2j
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

xi1 xi2 ... ... ... xij

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(21) 

where, xij denotes the position of the i-th sparrow in dimension j. The 
adaptation value FX of all sparrows can be expressed as follows: 

FX =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

f1
f2
⋮
⋮
⋮
fi

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

f [x11 x12 ... ... ... x1j
]

f [x21 x22 ... ... ... x2j
]

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

f [xi1 xi2 ... ... ... xij
]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(22) 

In the sparrow search algorithm, the sparrow with a higher fitness 
value is the producer, which can indicate the foraging location for all the 
scroungers, and the producer is able to obtain a larger foraging search 
range compared to the scroungers, discover potentially excellent solu
tions, and pass them on to the scroungers. The producer position is 
represented by Eq. (23): 

X(t+1)
ij =

⎧
⎪⎪⎨

⎪⎪⎩

X(t)
ij e

(
− i

αtmax

)

, R2〈ST <

X(t)
ij + Q.L,R2 ≥ ST

(23) 

where, X(t)
ij is the position of the j-th dimension of the i-th sparrow in 

generation t. α is a constant that controls the step size of the exploration. 
tmax is the maximum number of iterations, R2 is a random number in the 
interval (0,1). Q is a constant that is used to control the movement step 
size. L is a random number that obeys a normal distribution and is used 
to add random perturbations. ST is the threshold that determines 
whether or not a predator will appear. When R2 < ST means that the 
sparrow conducts a broad search, and the position decays exponentially, 
controlling the range of exploration. When R2 ≥ ST, it means that the 
sparrows are affected by the warning signal and move randomly to avoid 
the threat of predators.

Based on the solutions provided by the producer, as well as their own 
search experience, the scroungers refine the search space, aiming to find 
better solutions in the search space, and pass them on to the vigilant 
sparrows. The scrounger position is represented by Eq. (24): 

X(t+1)
ij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Q⋅e

(
X(t)

worst − X(t)
ij

i2

)

i >
n
2

X(t+1)
P +

⃒
⃒
⃒X(t)

ij − X(t+1)
P

⃒
⃒
⃒⋅A+ Otherwise

(24) 
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where, X(t)
worst indicates the position with the worst fitness among all 

sparrows in the t-th iteration of the population. X(t+1)
P is the current 

optimal location or finder position. A+ is a random number that obeys a 
normal distribution and is used to adjust the search step size. When i > n

2, 
the scrounger is located in the second half of the population. At this 

point, they use an exponential decay strategy to move to the least fit 
position. Otherwise indicate that the scrounger is located in the first half 
of the population. At this point, they tend to be in the optimal position.

Vigilant sparrows are the control centre of the sparrow search al
gorithm and are responsible for supervising and coordinating the ac
tivities of producers and scroungers. It is assumed that vigilant sparrows 
aware of danger make up between 10% and 20% of the population, and 
that the locations of these sparrows are updated according to the 
following Eq. (25): 

X(t+1)
ij =

⎧
⎪⎪⎨

⎪⎪⎩

X(t)
bj + β

(
X(t)

ij − X(t)
bj

)
fi ∕= fg

X(t)
ij + K⋅

(
X(t)

ij − X(t)
wj

|fi − fw| + e

)

fi = fg

(25) 

where, X(t)
bj refers to the current best position in generation t, X(t)

wj refers to 
the current worst position in the t generation, fi is the fitness value of the 
i-th sparrow. fg is the global optimal fitness value, and fw is the fitness 
value of the sparrow with the worst fitness in the current population. β is 
a random number that controls the step size, usually between 0 and 1, 
and is used to introduce randomness. K is a constant that controls the 
step size and is used to adjust the step size for position updates. e is a 
constant with a small value to prevent the denominator from being 0. 
When fi ∕= fg, it means that the Vigilant is moving closer to the current 
global optimal position. When fi = fg, the Vigilant sets its location up
date direction to be farther away from the least well-suited location. the 
flowchart of Sparrow Search Algorithm (SSA) is shown in Fig. 8.

2.3.3. XGBoost hyperparameter optimization
The XGBoost classification algorithm involves multiple hyper

parameters, which often require manual tuning (see Fig. 9). However, 
manually set hyperparameters are rarely optimal. A well-chosen com
bination of hyperparameters can significantly enhance the performance 
of the XGBoost classification algorithm, while poorly set hyper
parameters can lead to underfitting or overfitting.

This paper presents a ship behavior recognition method based on the 
SSA-XGBoost algorithm. The method optimizes the hyperparameters of 

Fig. 8. the flowchart of Sparrow Search Algorithm (SSA).

Fig. 9. The whole analysis process of the Sparrow Search Algorithm based on XGBoost.
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XGBoost using the Sparrow Search Algorithm (SSA) to improve its per
formance. The specific implementation steps are summarized as follows. 

• Determine Inputs and Outputs: Identify the inputs and outputs of the 
recognition model and create the training and test sets.

• Set Initial Parameters: Configure the initial parameters for XGBoost, 
including those involved in optimization, and set the population size, 
the maximum number of iterations, and the number of cross- 
validations for the Sparrow Search Algorithm.

• Calculate Fitness Values: Compute the fitness values of the sparrow 
population and rank these values to select the optimal value.

• Update Locations: Update the locations of the producer, scrounger, 
and vigilant sparrows.

• Check Termination Condition: Determine whether the number of 
iterations meets the termination condition. If not, repeat steps 3 and 
4. If the termination condition is met, stop iterating, output the 
current optimal parameters, input the test set samples into the 
optimal model, and output the diagnostic results.

2.4. Evaluation index of methodological performance

In order to be able to objectively evaluate the performance of 
different integrated learning algorithms in solving the problem of ship 
behavior pattern recognition, this paper uses the following four metrics 
to compare the performance differences of different algorithms: 
Accuracy, Precision, Recall, F1 score, Receiver Operating Characteristic 
(ROC), Area Under ROC Curve(AUC). Accuracy is the ratio of the number 
of samples correctly classified by the classifier to the total number of 
samples. Precision is the proportion of all samples predicted to be in the 
positive category that are actually in the positive category. Recall is the 
proportion of samples that are correctly predicted to be in the positive 
category out of all samples that are actually in the positive category. 
F1 score is the reconciled average of precision and recall and is used as a 
combined measure of classifier performance. In the ROC curve, the 
horizontal coordinate represents the percentage of the number of sam
ples that were correctly predicted as positive out of all the actual posi
tive data samples. The vertical coordinate represents the percentage of 
the number of positive samples that were incorrectly classified as 
negative out of all the data samples that were actually negative. The 
AUC value represents the area below the ROC curve and takes values in 
the range [0,1]. The measure of a better classifier is the closer the AUC is 
to 1, i.e., the larger the AUC value, the better the model.

The formulas for the four evaluation indicators are shown in Eq. 

(26)–(29). 

Accuracy=
TP + TN

TP + TN + FP + FN
(26) 

Precision=
TP

TP + FP
(27) 

Recall=
TP

TP + FN
(28) 

F1 score=
2 × Precision × Recall

Precision + Recall
(29) 

where, True Positive (TP) is the number of samples that are true positive 
and correctly classified as such. True Negative (TN) is the number of 
samples that are true negative and correctly classified as negative. False 
Positive (FP) is the number of samples that are true negative categories 
but are misclassified as positive. False Negative (FN) is the number of 
samples that are true positive categories but are misclassified as nega
tive.

It is worth explaining that the ship behavior pattern recognition 
studied in this paper belongs to the multiclassification problem. 
Therefore, when calculating precision and recall, it is necessary to 
calculate and macro average (MA) for all categories; when calculating 
F1 score, it is necessary to calculate the precision and recall corre
sponding to all categories, and then calculate the F1 score corresponding 
to each category and macro average. The formulas for the three are 
shown in Eq. (30)–(32), 

Pmacro =
1
k
∑k

i=1
Pi (30) 

Rmacro =
1
k
∑k

i=1
Ri (31) 

F1macro =
1
k
∑k

i=1
F1i (32) 

where, Pmacro, Rmacro and F1macro are the precision rate, the recall rate and 
the macro-mean of the F1 score, respectively; k is the number of cate
gories of the sample data; Pi is the precision rate of the i category; Ri is 
the recall rate of the i category; and F1i is the F1 score of the i category.

Fig. 10. Schematic of the study Watershed and direction of traffic flow.
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3. Case studies and experiments

This section outlines the methodology applied to the case study area 
and AIS data. Initially, the pre-processing steps for the AIS data are 
detailed. Subsequently, the processed data are utilized for ship sub- 
trajectory extraction, behavior coding, and dimensionality reduction 
and clustering of ship behaviors. Based on this, the spatial distribution 
characteristics and behavioral features of the ships are analyzed. Finally, 
the combined dataset, comprising ship behavior coding and clustering 
results, is input into the SSA-XGBoost algorithm for ship behavior 
identification. The performance of different algorithms in recognizing 
ship behavior patterns is compared and analyzed.

3.1. Experimental waters and data processing

The waters studied in this paper are located in the middle and lower 
reaches of the Yangtze River near the Yangzhong Bridge in Yangzhong 
City, Jiangsu Province, as shown in Fig. 10, where the area selected by 
the red rectangle is the case study area, and the specific latitude and 
longitude coordinates of the four vertices of the red rectangle are 
(119◦48′0.1152″, 32◦11′1.6188″), (119◦48′0.1152″, 32◦12′48.942″), 
(119◦50′15.0468″, 32◦11′1.6188″), (119◦50′15.0468″, 32◦12′48.942″).

The study area contains Yangzhong Bridge, Xisha Island and the 
navigation section is more curved, compared with the straight river 
section, the navigation behavior of ships in the study area changes more 
frequently. Therefore, this paper chooses this water as the research 
water, analyzes the ship navigation behavior in this water with practical 
significance and practical application value, can give the first time to sail 
into this water or unfamiliar with this water to provide navigation 

advice to the ship driver, and at the same time to assist the maritime 
authorities to develop regulatory programs.

In order to ensure the validity and reliability of the subsequent model 
data use, the ship AIS data collected in the case study area from 
November 1, 2021 to December 31, 2021 is now processed. The raw AIS 
data collected are now plotted as ship trajectory map and data pro
cessing is done. The results of data processing are shown in Fig. 11.

The last step of AIS data preprocessing is to extract the feature points 
of the ship trajectory, and the DP algorithm is introduced in section 2.1
of this chapter, and the parameter that affects the output results of this 
algorithm is mainly the threshold value. In order to find the threshold 
value suitable for the needs of the current study, the compression rate 
and output results of the DP algorithm under different threshold values 
are compared, as shown in Figs. 12 and 13.

As can be seen from Fig. 12, when the threshold is raised from 
0.00005 to 0.0001, the trajectory compression rate increase is 15.58%; 
when the threshold is raised from 0.0001 to 0.0002, the trajectory 
compression rate increase is 9.09%. The compression rate increase 
brought about by these two threshold elevations is large, but the 
compression rate increase brought about by the subsequent threshold 
elevations decreases significantly, indicating that the trajectory 
compression rate begins to converge when the threshold is 0.0002. At 
this point, if the threshold continues to be raised, not only is the 
compression rate increase small, but the ship trajectory will also be 
distorted.

As can be seen in Fig. 13, when the threshold value is greater than or 
equal to 0.0003, the trajectory begins to appear distortion, and most of 
the trajectories in the southern part of the study waters are compressed 
into simple straight line segments, and a few of the trajectories appear to 
cross the land, losing the original trajectory characteristics. It shows that 
the threshold is set too high at this time, resulting in serious distortion of 
the compressed ship trajectory. By analyzing the above experimental 
results, this paper chooses the output results with a threshold value of 
0.0002 as the data samples for subsequent research.

3.2. Clustering results of ship behavior

3.2.1. Ship behavior coding and dimensionality reduction
In this paper, we use preprocessed ship navigation data as a data 

source with the aim of extracting ship sub-trajectories and identifying 
the corresponding ship behaviors. Ship behavior usually refers to the 
dynamic activities and operation patterns exhibited by a ship during 
navigation. The analysis of subdivided trajectory segments can reveal 
how ships maneuver and navigate under different environmental and 
operational conditions. These behaviors may include steering, acceler
ating, decelerating, etc., and they are critical for navigation safety and 

Fig. 11. Schematic diagram of ship trajectory before and after AIS data processing.

Fig. 12. Compression ratio of DP algorithm with different thresholds.
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traffic management. However, since the original AIS data only contains 
latitude and longitude, speed over ground, course over ground, and 
time, which are relatively primitive information, it is difficult to 
describe the ship behavior, therefore, it is necessary to encode them, and 
the encoding includes the Azimuth, ΔCOG, ΔSOG, RC, RS.

Changes in Azimuth can indicate a ship’s steering maneuvers. By 
analyzing the fluctuation of the azimuth angle, it is possible to identify 
the steering behavior of a ship during a certain period of time, such as 
left turn, right turn and whether it is sailing in a straight line or not. Δ 
COG refers to the difference between a ship’s turn from one heading to 
another. Large changes in heading may indicate that a vessel is engaged 
in behaviors such as avoiding, turning around, or turning in the channel. 
Frequent small changes may point to maneuvers that require precise 
maneuvering, such as navigating a narrow channel. RC is the rate of 

change of course per unit time. A high RC indicates that the ship is 
steering rapidly, which often occurs when avoiding obstacles or 
traversing complex waters. By monitoring the RC, it is possible to 
identify behaviors such as sharp turns, sustained turns, and traveling in a 
straight line at a constant speed. ΔSOG reflect the increase or decrease in 
a ship’s speed over a period of time. Vessel acceleration is often asso
ciated with behaviors such as leaving port, avoiding danger, and 
changing course, while deceleration occurs mostly when berthing, 
anchoring, or preparing for a change of direction. RS indicates the rate of 
change of speed per unit of time. A high RS may indicate an emergency 
acceleration or deceleration maneuver. A steady RS usually indicates 
that the ship is engaged in a planned acceleration or deceleration of 
navigation rather than an emergency maneuver. By combining these 
metrics, we are able to construct a multi-dimensional ship behavior 

Fig. 13. Output of DP algorithm with different thresholds.
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model to better analyze and predict the actions a ship may take in 
different scenarios.

Taking the ship with MMSI No. 413973083 as an example, Table 1
shows the 9 ship behaviors coded for this ship, where each row of data 
describes one ship behavior, from row 1 to row 9, in the chronological 
order of the sub-trajectory starting point. From Table 1 and it can be 
seen that the ship azimuth gradually adjusted from 89.3◦ to 217.6◦

during the observed time period, and the course changes were all pos
itive, indicating that it was making a right turn and accompanied by a 
change in speed. Through the above analysis, it can be seen that the 
coded ship sub-trajectories can better describe the ship behavior. 
Although coding can assist in analyzing the behavior of a single ship, it is 
difficult to mine the behavioral patterns of groups of ships, so it is 
necessary to code all the ship behaviors in the dataset.

After completing the coding process for the ship behaviors in the 
dataset, they need to be downscaled to project the coded high- 
dimensional ship behaviors to the three-dimensional space. In this 
paper, the UMAP algorithm is used to downscale the coded 4647 ship 
behaviors. The output of the UMAP algorithm is shown in Fig. 14, where 
each data point corresponds to a ship behavior and the three axes 
correspond to the three features after downsizing, respectively. As can 
be seen from Fig. 14, the use of the UMAP algorithm not only maintains 
the differences between individual ship behaviors, but also maintains 
the global structure of the dataset well.

3.2.2. Clustering results and analysis
In this paper, we use the spectral clustering algorithm to cluster the 

ship behaviors after dimensionality reduction and use the CH score to 
evaluate the advantages and disadvantages of the clustering results 
under different numbers of clusters. Fig. 15 shows the CH scores for 12 
different numbers of clustering results, and from Fig. 15, it can be seen 
that the CH score is highest when the number of clusters is 9. Therefore, 
this paper selects the output with the number of clusters of 9 as the 
object of analysis, and Fig. 16 shows the distribution of this output in the 
three-dimensional space.

According to the clustering results of ship behaviors in Fig. 16, the 
ship trajectory map is drawn. Fig. 17 shows the overall display of the 
clustering results, and Fig. 18 shows the distribution pattern of different 
categories of ship behaviors on the map. Next, the kernel density is 
estimated for the speed change, course change, and azimuth in each 
category of ship behavior, and the processed results are shown in Fig. 19.

In response to the observation and analysis of ship behavior in the 
case study area, the following key regularities can be drawn from the 
observations in Figs. 18 and 19:

Although the geographical distribution of Cluster 1 and Cluster 4 
ship behaviors is similar, and the peak speed change of both clusters is 0, 
the azimuth and course change values differ. For azimuth, Cluster 1 
behaviors are primarily distributed at 85◦, while Cluster 4 behaviors are 

Table 1 
Example of ship behavior after coding.

MMSI Azimuth ΔCOG ΔSOG Rate of 
change in 
coures 
(RC)

Rate of 
change in 
speed(RS)

413973083 89.30174 12.67397 − 0.22777 0.14106 − 0.00253
413973083 100.66589 14.80551 − 0.06465 0.12359 − 0.00054
413973083 115.34473 11.62729 − 0.00631 0.12941 − 0.00007
413973083 125.14700 19.94029 0.02186 0.13316 0.00015
413973083 149.92980 16.90236 0.25968 0.18812 0.00289
413973083 158.89132 0.40843 0.64737 0.00227 0.00360
413973083 170.04237 15.97359 − 0.63442 0.06667 − 0.00265
413973083 196.75719 35.32902 − 1.21015 0.23592 − 0.00808
413973083 217.63242 38.83105 − 0.41981 0.32413 − 0.00350

Fig. 14. UMAP downscaling results.

Fig. 15. CH scores for 12 different numbers of clustering results.
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mainly at 10◦. Regarding course change values, the peak for Cluster 1 is 
around − 20, indicating a left steering attitude, whereas the peak for 
Cluster 4 is around 25, indicating right steering.

Although the geographical distribution of Cluster 2 and Cluster 8 
ship behaviors is similar, their azimuth, course change, and speed 
change values show different distributions. Cluster 2 behaviors have an 
azimuth primarily at 320◦, while Cluster 8 behaviors are mainly at 350◦. 

The course change peaks for Cluster 2 and Cluster 8 are − 12 and 25, 
respectively, meaning Cluster 2 behaviors are mostly accompanied by a 
small left turn, while Cluster 8 behaviors involve a right turn. For speed 
change, the peaks for Cluster 2 and Cluster 8 are 0 and -0.2, respectively, 
indicating that Cluster 2 behaviors involve relatively small speed 
changes, while Cluster 8 behaviors include slight deceleration.

The geographical distribution of Cluster 3 and Cluster 7 ship 

Fig. 16. Output of spectral clustering algorithm with number of clusters 9.

Fig. 17. Clustering results.
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behaviors is relatively similar, with the peak course change for both 
clusters at around − 10. However, the azimuth and speed change values 
differ. Cluster 3 behaviors have an azimuth primarily at 280◦, while 
Cluster 7 behaviors are mainly at 315◦. The speed change peaks for 
Cluster 3 and Cluster 7 are 0.2 and − 0.2, respectively, indicating that 
Cluster 3 behaviors are accompanied by slight acceleration, while 
Cluster 7 behaviors involve slight deceleration.

Cluster 5 ship behavior is geographically concentrated in the west 
channel and sailing downstream, with an azimuth mainly distributed at 
155◦. The peak course change is around 10, indicating slight right-hand 
steering, and the peak speed change is 0, indicating relatively small 
speed changes.

Cluster 6 ship behavior is geographically concentrated in the 
southern part of the waters, with an azimuth primarily at 90◦. The peak 
course change is 0, indicating relatively small changes in course, and the 
peak speed change is 0.3, indicating slight acceleration.

Cluster 9 ship behavior is geographically concentrated in the 
southwest part of the waters, with an azimuth primarily at 20◦. The peak 
course change is around − 20, indicating a larger left-turning behavior, 
and the peak speed change is 0, indicating relatively small speed 
changes.

The clustering results reveal the behavioral patterns of ship naviga
tion in the case study area and align with the actual navigation situation. 
These analyses provide important references and support for ship pilots 
entering the waters for the first time, for the development of navigation 
aids, and for ship pilotage services. For ship pilots entering the waters 
for the first time, the results provide a visual reference of typical navi
gational paths and behavioral patterns, while each cluster represents a 
specific navigational strategy applicable to different navigational con
ditions. For navigational aids, the results can be used to optimize the 
arrangement of the navigational marking system, provide a data basis 

for the development of an intelligent navigation system, and help to 
predict the behavior of ships and provide real-time advice. The results 
can also be used to help develop more accurate pilotage plans and 
provide real-time advice for ship pilotage service. It helps to develop 
more accurate pilotage plans, and can also be used for pilot training to 
improve awareness and response to different navigational patterns. 
Although the clustering results provide a valuable reference for navi
gational patterns, multiple factors need to be considered in practical 
applications and used in conjunction with VTS and other navigation 
systems to ensure navigational safety.

3.3. Recognition results and performance analysis

In this section, the clustering result with the highest CH score is used 
as the data source, and the Random Forest Algorithm, GBDT, XGBoost, 
and SSA-XGBoost are employed to identify ship behaviors. The perfor
mance differences of these algorithms in the problem of ship behavioral 
pattern recognition are compared and analyzed.

The hyperparameters of the XGBoost model that boost performance 
include the learning rate, the number of estimators (n_estimators), and 
the maximum depth (max_depth). The learning rate controls the 
magnitude of model parameter updates in each iteration; a smaller 
learning rate can make the model more stable but requires more itera
tions to reach the optimal solution. Therefore, the learning rate of the 
XGBoost model is selected using the Sparrow Search Algorithm in the 
range of 0.01–0.3. The number of estimators determines the number of 
rounds of model training; a larger number of iterations can make the 
model more accurate but may lead to overfitting. Consequently, the 
number of iterations’ search range is set from 1 to 100. The depth of the 
tree controls the maximum depth of each tree; a greater depth can make 
the model better fit the training set but may also cause overfitting. Thus, 

Fig. 18. Distribution of different categories of ship behavior.

Q. Ma et al.                                                                                                                                                                                                                                      Ocean Engineering 315 (2025) 119791 

14 



Fig. 19. Estimated probability densities of various types of ship behavioral characteristics.

Q. Ma et al.                                                                                                                                                                                                                                      Ocean Engineering 315 (2025) 119791 

15 



the depth of the tree is set to a range of 3–15 (Table 2).
By setting reasonable upper and lower limits for the boosting pa

rameters, the search time and resource consumption caused by itera
tively calculating the objective function values can be reduced, and 
search efficiency can be improved, avoiding XGBoost overfitting. 
Therefore, when optimizing XGBoost, it is particularly important to set 
reasonable upper and lower limits for the boosting parameters, which 
can improve search efficiency and enhance the generalization ability 
and performance of the SSA-XGBoost model. After optimization using 
the Sparrow Search Algorithm, the optimal parameter values obtained 
are a learning rate of 0.03, n_estimators of 20, and a max_depth of 12.

To intuitively compare the performance advantages and disadvan
tages of different algorithms in solving the ship behavior recognition 
problem, the recognition results of each algorithm are compared with 

the actual results using evaluation indices such as Accuracy, Precision, 
Recall, and F1 score, as shown in Table 3. According to the data in the 
table, the SSA-XGBoost algorithm achieves an accuracy of 97.28%, 
precision of 96.97%, recall of 97.43%, and F1 score of 97.19%. 
Compared to the other three algorithms, SSA-XGBoost has higher per
formance metrics and better performance in identifying ship behavior.

Different methods of dividing the training set and validation set can 
also impact model construction. To further verify the advantages of the 
SSA-XGBoost algorithm for the ship behavior problem, we conducted 
10-fold cross-validation using the four algorithms. Cross-validation 
provides stable performance assessment through multiple training and 
testing. It can help identify cases where the model performs well on the 
training set but poorly on the unseen data, guiding the selection of the 
appropriate model complexity/hyperparameters and thus reducing the 
risk of overfitting. The results of 10 folder cross-validations of the four 
algorithms are shown in Fig. 20. The radar chart in Fig. 21 indicates that 
SSA-XGBoost performs the best in cross-validation compared to the 
other three algorithms. Meanwhile, the above comparative analysis 
shows that the ship behavior recognition model constructed by the SSA- 
XGBoost algorithm has better generalization capability, recognition 
accuracy, and overall performance. It indicates that the model performs 
consistently on different cross-validation sets, and that there is no sig
nificant overfitting or underfitting problem.

This Fig. 22 presents a comparative analysis of ROC curves for four 
machine learning models—Random Forest, GBDT, XGBoost, and SSA- 
XGBoost—evaluated across nine clusters. The results demonstrate a 
progressive improvement in model performance, with AUC values 
increasing from Random Forest to SSA-XGBoost. The SSA-XGBoost 
model stands out with the highest and most consistent AUC scores, 
reaching near-perfect values above 0.97, highlighting its superior pre
dictive accuracy. This comparison underscores the effectiveness of 

Table 2 
Parameter optimization settings.

Parameter name Search Scope

learning rate [0.01,0.3]
n_estimators [1,100]
max_ depth [3,15]

Table 3 
Performance evaluation of different algorithms.

Algorithm name Accuracy Precision Recall F1 score

Random forest 0.8839 0.9161 0.8939 0.8839
GBDT 0.9039 0.9343 0.8751 0.8985
XGBoost 0.9425 0.9499 0.9384 0.9368
SSA-XGBoost 0.9728 0.9697 0.9743 0.9719

Fig. 20. Cross-validation results.
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advanced optimization techniques, like SSA, in enhancing model per
formance across diverse data clusters.

4. Conclusion

In comparison to traditional Vessel Traffic Service (VTS) systems, 
machine learning-based methods significantly enhance the speed and 
accuracy of data processing while demonstrating adaptability to diverse 
navigational environments through dynamic learning. These capabil
ities empower maritime authorities to monitor potential risks more 
effectively and take timely actions, yielding notable improvements in 
both safety and operational efficiency. In this context, our study in
troduces a novel ship behavior pattern recognition method leveraging 
the SSA-XGBoost algorithm and AIS data.

The proposed method begins with the preprocessing of AIS data from 
the target study area, followed by encoding critical ship behavior fea
tures, such as azimuth, ΔCOG, ΔSOG, RC, and RS. We then apply the 
UMAP algorithm for dimensionality reduction and perform spectral 
clustering to facilitate an intuitive and comprehensive analysis of ship 
behavior patterns. The SSA-XGBoost algorithm subsequently maps the 
AIS data to these behaviors, ensuring efficient and accurate recognition.

The effectiveness of this approach was validated through a case study 
conducted near Yangzhong Bridge on the Yangtze River, covering data 
from November 1, 2021, to December 31, 2021. The results of spectral 
clustering closely corresponded to real-world ship behavior, and the 
SSA-XGBoost algorithm demonstrated superior performance compared 
to traditional models such as Random Forest, GBDT, and XGBoost. These 
outcomes provide a robust theoretical foundation for enhancing mari
time traffic management, supporting the development of more effective 
strategies that improve traffic efficiency and reduce accident risks.

Compared to conventional VTS systems, the method proposed herein 
offers greater flexibility and precision in real-time data processing and 

the capture of multi-dimensional features. Traditional VTS systems often 
depend on manual monitoring and struggle to adapt swiftly to complex 
maritime conditions. In contrast, our machine learning-based approach 
enhances navigation safety and management efficiency by leveraging 
dynamic learning and data-driven decision-making. Moreover, this 
method excels at analyzing and recognizing patterns within high- 
dimensional datasets, identifying intricate ship behavior patterns that 
might be overlooked by human operators. By automating the recogni
tion process, our system reduces reliance on human monitoring, yielding 
cost savings and more efficient resource utilization in traffic control 
centers.

Nevertheless, this study has certain limitations. Firstly, the clustering 
results may be influenced by external parameters such as wind, waves, 
and currents. If these factors are not adequately accounted for, the 
identified behavior patterns may lack accuracy or practical relevance. 
Future research should incorporate more comprehensive validation 
methods and consider additional environmental variables to ensure the 
robustness of clustering results under diverse conditions. Additionally, 
while the SSA-XGBoost algorithm demonstrates exceptional perfor
mance, its effectiveness depends on the quality of input data and 
appropriate hyperparameter configurations. In situations where data 
quality is suboptimal or hyperparameter settings are not well-tuned, the 
model’s recognition capabilities may be compromised. Future work will 
focus on improving data processing robustness and exploring advanced 
machine learning techniques to optimize model performance across 
varying data quality scenarios in complex maritime environments.
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