
A Parallel Hash Table for Streaming Applications

Downloaded from: https://research.chalmers.se, 2025-10-16 03:24 UTC

Citation for the original published paper (version of record):
Östgren, M., Sourdis, I. (2024). A Parallel Hash Table for Streaming Applications. Parallel
Architectures and Compilation Techniques - Conference Proceedings, PACT: 297-308.
http://dx.doi.org/10.1145/3656019.3676951

N.B. When citing this work, cite the original published paper.

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

(article starts on next page)

A Parallel Hash Table for Streaming Applications
Magnus Östgren

Chalmers University of Technology
Sweden

magnusos@chalmers.se

Ioannis Sourdis
Chalmers University of Technology

Sweden
sourdis@chalmers.se

Abstract
Hash Tables are important data structures for a wide range of data
intensive applications in various domains. They offer compact stor-
age for sparse data, but their performance has difficulties to scale
with the rapidly increasing volumes of data as they typically offer
a single access port. Building a hash table with multiple parallel
ports either has an excessive cost in memory resources, i.e., requir-
ing redundant copies of its contents, and/or exhibits a worst case
performance of just a single port memory due to bank conflicts.
This work introduces a new multi-port hash table design, called
Multi Hash Table, which does not require content replication to
offer conflict free parallelism. Multi Hash Table avoids conflicts
among its parallel banks by (i) supporting different dynamic map-
pings of its hash table address to index to the banks, and by (ii)
caching (and aggregating) accesses to frequently used entries. The
Multi Hash Table is used for reconfigurable single sliding window
stream aggregation, increasing processing throughput by 7.5×.

CCS Concepts
• Hardware→ Hardware accelerators.

Keywords
FPGA, hash table, high throughput, stream aggregation
ACM Reference Format:
Magnus Östgren and Ioannis Sourdis. 2024. A Parallel Hash Table for Stream-
ing Applications. In International Conference on Parallel Architectures and
Compilation Techniques (PACT ’24), October 14–16, 2024, Long Beach, CA, USA.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3656019.3676951

1 Introduction
In an era where massive volumes of data are produced and collected
constantly, the value of these data depends on how efficiently and
fast they are processed. Hash tables are key data structures for a
wide range of data intensive applications in various domains as
they provide fast access and compact storage to sparse data. For
example, sparse matrix multiplication, used in machine learning
[21, 22, 40], graph processing [15, 36], and numerous other algo-
rithms [42], can employ hash tables to merge partial results [31]. In
network processing, hash tables are used to store the state of packet
flows [25, 32] as well as the search patterns of payload content used
in deep packet inspection [8]. Stream processing, data analytics

This work is licensed under a Creative Commons Attribution-Share Alike
International 4.0 License.

PACT ’24, October 14–16, 2024, Long Beach, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0631-8/24/10
https://doi.org/10.1145/3656019.3676951

and other applications that process key-value pairs rely on hash
tables to handle data for different keys [6, 10, 11, 23]. Such work-
loads are expected to process enormous amounts of data at line
rates. However, hash tables have difficulties to scale and introduce
performance bottlenecks.

Conventional hash tables have limited throughput because they
are sequential and allow a single access per cycle. Building a multi-
port hash table to supportmultiple parallel accesses has an excessive
cost of resources and/or limited worst case performance. More
specifically, memory resources increase at least linearly (𝑂 (𝑁))
to the number of (read) ports when write accesses are rare and
inconsistencies between redundant copies of hash table entries can
be tolerated by the application [43, 44]. The memory size increases
quadratically (𝑂 (𝑁 2)) to the number of ports when read and write
accesses need to be serviced accurately [27]. On the other hand,
a hash table can be split without any redundancy to multiple (𝑁)
banks and support 𝑁 parallel accesses [8], but then bank conflicts
can limit worst case performance to that of a single port table. In
summary, currently the memory cost of 𝑁 ports is at least𝑂 (𝑁), if
not 𝑂 (𝑁 2), otherwise performance is data dependent and can be
reduced to a single port throughput.

This work introduces a new parallel multi-port hash table for
streaming applications, which overcomes the above drawbacks of
existing approaches and offers data independent parallelism. The
proposed design, called Multi Hash Table, is organized in multiple
banks, each using a separate queue for incoming access requests.
Our design does not rely on redundant content for conflict-free par-
allelism. On the contrary, each bank stores a disjoint subset of the
entries and bank conflicts are avoided based on the following two
complimenting mechanisms. The first one supports multiple hash
functions, in particular multiple bit-arrangements of the same hash
function output, and allows to dynamically select and switch to one
of them providing alternative address mappings to the table and
improving load balance across banks. The second mechanism adds
a cache before the banks to merge accesses to frequently accessed
entries. It is advocated that the combination of (i) dynamic switch-
ing of address mappings and (ii) caching requests to frequently
accessed entries can offer data independent multi-port hash table
performance without wasting memory resources for replicating
hash table contents. Multi Hash Table is applied to a reconfigurable
stream aggregation accelerator and improves throughput manifold.

Concisely, the contributions of this paper are the following.
A new hash table design is introduced, which maintains data-
independent multi-port performance via dynamic address remap-
ping and caching of frequent accesses. A theoretical analysis of the
proposed Multi Hash Table is performed to determine the minimum
cache size and address mappings for maintaining throughput. A
reconfigurable stream aggregation accelerator, which employs the
proposed Multi Hash Table increasing processing throughput 7.5×.

297

https://orcid.org/0009-0004-0794-6779
https://orcid.org/0000-0002-0452-3664
https://doi.org/10.1145/3656019.3676951
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1145/3656019.3676951
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3656019.3676951&domain=pdf&date_stamp=2024-10-13

PACT ’24, October 14–16, 2024, Long Beach, CA, USA Östgren and Sourdis

The remainder of this paper is organized as follows: Section
2 discusses related work and presents background on stream ag-
gregation. Section 3 offers a theoretical analysis of the proposed
Multi Hash Table. Section 4 describes our reconfigurable stream
aggregation accelerator with a Multi Hash Table. Section 5 provides
our evaluation results and Section 6 summarizes our conclusions.

2 Background & Related Work
This Section describes related work on multi-port memory and
hash tables as well as on other relevant approaches and offers
background on sliding window stream aggregation systems where
the Multi Hash Table concepts are applied.

2.1 Related work
Memory parallelism has been a cornerstone of high performance
computing. In the past, many designs for multi-port and multi-bank
memories and hash tables have been proposed.

Some approaches opt for replicating memory contents to provide
multiple parallel accesses. LaForest and Steffan described a design
for multi-port SRAMs in FPGAs [27]. It supports𝑚-write and 𝑛-
read ports multiplexing𝑚 SRAM blocks, each storing one copy of
the data and providing one write and 𝑛 read ports. An additional
smaller true𝑚 write, 𝑛 read port memory is used to keep track of
the SRAM copy that stores the most recently updated version of
each memory entry. The memory cost of the design is therefore
𝑂 (𝑚×𝑛) or𝑂 (𝑁 2) for providing 𝑁 read and 𝑁 write ports. Yang et
al. designed a parallel hash table that offers 𝑁 parallel (read) access
ports replicating 𝑁 times the contents of the table [43, 44]. Write
accesses need to be broadcasted to all copies so they are effectively
handled with the performance of a single port memory, and without
a synchronization mechanism, temporary inconsistencies in the
memory contents may occur. In summary, the proposed design
offers 𝑁 parallel reads at the memory cost of 𝑂 (𝑁) copies, the
write accesses are performed at a single port memory throughput
and may introduce inaccuracies.

Several designs avoid the replication of hash table contents and
use multiple banks coupled with techniques that alleviate bank con-
flicts. HashCache achieves high speed stateful network processing
at an input rate of 200 million packets per second, supporting up to
800 million different flows [32]. It employs a multi-bank hash table
to store state per flow and uses a small, fixed size cache to service
a handful of frequently appearing packet flows without consuming
the bandwidth of the multi-bank hash table. However, the design is
vulnerable to any traffic composed of repeated packet flows that
do not all fit in their limited cache. A multi-bank hash table is also
used for hash-based pattern matching to scan the payload of net-
work packets in a deep packet inspection system [8]. Hash-based
pattern matching uses perfect hashing on incoming data to index
to a memory that stores search patterns. A subsequent comparison
between the read pattern and incoming data confirms the match
[8, 39]. Fukac et al. increased the throughput of their hash-based
pattern matching design accepting 𝑁 incoming payload bytes per
cycle, hashing them 𝑁 times at different byte offsets and producing
𝑁 accesses per cycle to a multi-bank memory that stores the search
patterns [8]. Conflict resolution is (only partly) handled by a net-
work that interconnects the outputs of the hash functions and the

banks. The network is able to deduplicate redundant accesses to the
same address (search pattern) if these accesses meet in the network.
A similar mechanism was designed for the NYU Ultracomputer
[16] for reducing the traffic to the multiple memory banks. The
Ultracomputer used an omega network and, among others, merged
and deduplicated memory requests to the same address. Similar to
the Ultracomputer, in the design of Fukac et al., accesses to different
addresses that are mapped to the same bank are still not handled
and can cause bank conflicts. An interesting technique to reduce
bank conflicts in DRAM is the Duplicon cache [29]. It reserves a
small part of DRAM to selectively duplicate (in practice cache) the
contents of memory locations that cause a large number of con-
flicts. Multi Hash Table differs from the Duplicon cache because it
offers alternative address mappings to store data, which would be
inefficient in the Duplicon cache context. It is also different from
the Ultracomputer [16] and the hash-based pattern matching by
Fukac et al. [8] because it uses alternative address mappings and
caching to avoid bank conflicts rather than just only deduplicating
multiple accesses to the same address.

Another work that is related to the use case of the proposed
Multi Hash Table in a key-value pair stream aggregation system is
the sort-reduce technique in GraFBoost [24]. GraFBoost proposes a
merge-sort followed by a reduce operation to reduce the number
of incoming key-value pairs in graph analytics and alleviate the
bandwidth pressure. In our stream aggregation Multi Hash Table,
a similar mechanism is used to sort and merge key-value pairs
(tuples) that belong to the same key before caching as well as to
merge tuples within the cache. However, as opposed to GraFBoost,
our stream aggregation use case targets non-associative functions,
so multiple values of the same key cannot be reduced to a single
value, hence our merging step produces a larger tuple with a key
and all aggregated values of the merged tuples.

The use of multiple alternative address mappings for reducing
bank collisions in Multi Hash Table can be generalized as use of
multiple hash functions and is therefore related to existing ap-
proaches that employ multiple hash functions. Seznec’s skewed
associative cache uses a different hash function for each way (bank)
of a cache to reduce (hash-) collisions within a set and improve
cache utilization [38]. Cuckoo hashing does something similar to
reduce hash-collisions handling insertions differently, i.e., inserting
a new entry (to one bank) with one hash function and attempting
to re-insert the evicted entry (to another bank) with another hash
function [34]. An interesting hardware implementation of Cuckoo
hashing exploits the fact that incoming requests do not always
use all hash functions and do not access all banks [35]. Capital-
izing on this observation, it increases throughput by 1.6× with a
pipeline for bank accesses, which allows requests to enter at any
idle bank stage [35]. However, both skewed caches and Cuckoo
hashing aim to improve the utilization of hash table capacity reduc-
ing hash-collisions, i.e., the collisions of multiple keys to the same
hash table entry. On the contrary, the aim of our alternative address
mappings approach is to reduce the collisions of keys to the same
memory bank rather than to a single memory entry, thereby in-
creasing throughput, rather than improving capacity utilization. In
fact, Multi Hash Table can be orthogonal to the choice of hash func-
tion and its efficiency in reducing hash collisions because it only
affects the address mapping of the hash function output. Moreover,

298

A Parallel Hash Table for Streaming Applications PACT ’24, October 14–16, 2024, Long Beach, CA, USA

Input
Stream

WS = 8 tuples

t'1

WA = 2 tuples

t'2 t'3
Output
Stream

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

Figure 1: Sliding-window stream aggregation with Window Size (WS)=8 tuples and Window Advance (WA)=2 tuples for an
input stream of key-value pair tuples 𝑡1, 𝑡2, Grey tuples, 𝑡 ′1, 𝑡

′
2, 𝑡

′
3, indicate output of an aggregation function generated based

on the sliding-window contents when window gets full.

lookups in skewed caches and Cuckoo hashing would require mul-
tiple (possibly parallel) accesses to multiple banks, which would be
wasteful in terms of throughput. On the other hand, Multi Hash Ta-
ble lookups use only the current address mapping unless a new key
is inserted, in which case locations of alternative mappings need to
be accessed, too, to ensure the key is not already stored in the table.

2.2 Stream aggregation with reconfigurable
acceleration

Stream aggregation is one of the most challenging tasks in stream
processing. It can be described by applying the traditional relational
database aggregation semantics to a sliding window. However, as
opposed to databases, it is used to analyze unbounded streams of
big data in various domains, e.g., financial, transportation. Such a
sliding window of size𝑊𝑆 elements is updated with new incoming
elements (values carried by incoming tuples) as illustrated in Figure
1. Upon aggregation, the window “slides” by a particular number of
elements (WindowAdvance -WA) to produce the aggregated values,
i.e., the window contents before sliding [4, 9]. The aggregated values
are subsequently fed to one or multiple functions that compute an
output every time the window slides. Considering a key-value pair
system, incoming tuples carry values of different keys, which are
aggregated separately maintaining a separate sliding-window per
key. Each incoming tuple uses its key as input to a hash function
to index to a hash table that stores data per key, i.e., the values
aggregated in the sliding window and metadata needed to handle
the window.

For some problems, the sliding-window aggregations can be
simplified by computing them incrementally [28, 30, 33]. However,
many others need to follow the single sliding window stream ag-
gregation (Single-SWAG) approach [10, 11, 13]. That is the case for
problems that use non-associative, holistic aggregation functions,
which cannot be computed incrementally, e.g., median [17], or prob-
lems that would be more expensive to compute incrementally than
using Single-SWAG, e.g., frequent aggregations of multiple aggre-
gation functions in geo-tagged data [20], social-media data [19] or
manufacturing-equipment data [18].

Reconfigurable hardware is a suitable substrate for accelerat-
ing stream aggregation because it offers hardware parallelism and
the opportunity to customize the design to particular𝑊𝑆 and𝑊𝐴
as well as to the aggregation functions needed by the application.

Despite previous efforts to accelerate single window stream aggre-
gation using reconfigurable hardware [10, 11] with designs that
offered among others specialized memory hierarchies [12], or com-
pressed sliding windows [13, 14], existing solutions use conven-
tional hash tables that support one read and one write access per
cycle to offer a single read-modify-write operation per incoming
tuple [23]. This effectively limits the throughput of previous stream
aggregation designs to, at best, one incoming tuple per cycle. As
shown in Section 4, the proposed Multi Hash Table enables the
processing of multiple incoming tuples per cycle, increasing the
throughput of reconfigurable sliding window stream aggregation.

3 Theoretical analysis of the Multi Hash Table
This Section provides a theoretical analysis of the proposed scheme
and its two mechanisms for avoiding conflicts independently of
the distribution of incoming access requests. The main objective
of this analysis is to determine the number of cache entries 𝐶
that is sufficient to avoid bank conflicts and maintain maximum
throughput of 𝑁 = 2𝑛 parallel accesses per cycle. Let us consider
the generic, abstract view of the Multi Hash Table illustrated in
Figure 2, with 𝑁 parallel incoming accesses per cycle. The hash
table is split to 𝐵 = 2𝑏 banks of 𝑆 = 2𝑠 entries each, where 𝐵 ≥ 𝑁 in
order to support 𝑁 accesses per cycle. Each incoming request uses
a key to hash to 𝑎 = 𝑏+𝑠 bits, which are used as the address to index
to the hash table of 2𝑎 entries. Up to 𝑁 parallel incoming requests
access first an 𝑁 -port cache, which stores multiple requests for

B0

B2𝑏 − 1

N tuples

C entries
$

M0M1··
M𝑚 − 1

Figure 2: Generic view of theMulti Hash Table. Tuples stream
through an access cache, and then to a hash table bank ac-
cording to the currently active address mapping.

299

PACT ’24, October 14–16, 2024, Long Beach, CA, USA Östgren and Sourdis

𝑀0 𝑀1 𝑀m-1

0

0 𝑎

0 0 0 𝑟𝑏𝑏𝑏

Figure 3: Breakdown of the Multi Hash Table address space.

𝐶 unique hash table locations (addresses). Each cache entry can
aggregatemultiple (up to𝑁) requests to the same hash table address,
which can be sent together to the hash table as one access1. An
incoming request that hits in the cache is stored in the cache if
it fits. Otherwise, 𝑁 aggregated requests to the respective hash
table address are evicted and sent together to the table as a single
hash table access. In case the request misses, then depending on
the cache replacement policy it may be either cached, evicting a
previous entry, or it may bypass the cache going directly to the
hash table banks.

In this analysis, an ideal cache is considered, which always stores
the most recently used entries limited only by its capacity. The
cache replacement policy prioritizes storing entries of the busiest
banks. Moreover, switching to a new address mapping is instant
and does not entail any cost for moving hash table entries. These
considerations are discussed in the next Section, which describes
how and to what extent the proposed Multi Hash Table design is
able to support them when applied to a stream aggregation system.

Let us consider that the hash table can switch between𝑚 different
address mappings,𝑀0,𝑀1, ...,𝑀𝑚−1. Each address mapping uses
𝑏 (out of 𝑎) address bits to select a bank. Let us assume there are 𝑟
address bits, which are not used by any mapping to select a bank.
To minimize the number of mappings and maximize the address
bits used by the mappings to select a bank, it can be considered
that there is no overlap between the 𝑏 bits used by each mapping
to select a bank as shown in Figure 3. Then, the total number of
address bits is 𝑎 =𝑚 ∗ 𝑏 + 𝑟 .

For any address mapping, repeated accesses to a single address
would always need to be serviced by the same bank limiting through-
put. Such repeated accesses would need to be serviced by the cache
in order to avoid congestion to the particular bank and thus per-
formance degradation. Similarly, any sequence of accesses to up to
𝑁 − 1 specific addresses would always go to less than 𝑁 different
banks, reducing the expected throughput. These are some examples
that motivate the use of a cache before the hash table banks.

The above address breakdown of Figure 3 can be used to estimate
a first bound to the minimum needed cache size 𝐶𝑁,𝑚,𝑟 as follows:
let us consider for each of these 𝑖 = 0, 1, 2, . . . ,𝑚 address parts the
maximum number of distinct values𝑋𝑖 they can take and still cause
bank conflicts. Then, the total number of distinct addresses that
can cause bank conflicts and would need to be cached is equal to
the product of the number of distinct values for each address part:∏𝑚
𝑖=0 𝑋𝑖 .
For a particular mapping𝑀𝑖 , throughput would be limited if the

𝑁 parallel accesses go to fewer than 𝑁 banks. That is that the 𝑏 bits
used for selecting a bank have 𝑋𝑖 ≤ 𝑁 − 1 distinct values accessing
an equal number of banks. Similarly, the 𝑏 bits used for selecting a
1Depending on the use of the hash table, multiple requests could be reduced in the cache
without accessing the hash table in various ways, e.g., in incremental aggregations
[28, 30, 33] or cases similar to the memory accesses of the Ultracomputer[16].

bank in the other alternative mappings should also have up to 𝑁 −1
distinct values. Otherwise, if any alternative mapping has more
than that, i.e., 𝑋𝑖 ≥ 𝑁 , it is beneficial to switch to that alternative
mapping and restore balance. Finally, the 𝑟 bits that are not used
by any mapping to select a bank can take up to 2𝑟 values. Based on
the above, a first bound to the minimum needed cache size is:

𝐶𝑁,𝑚,𝑟 = (𝑁 − 1)𝑚 ∗ 2𝑟 (1)

where the 𝑏 bits for each mapping take up to 𝑁 − 1 distinct values
and the 𝑟 unused bits take 2𝑟 possible values.

The cache size can be bounded further considering that 𝑁 par-
allel incoming requests can conflict in at most 𝑁2 banks, because
any bank conflict requires at least two requests to that bank. For
example, if the 𝑁 requests map to 𝑁 − 1 banks, then only a single
bank conflict is caused and needs to be serviced by the cache. In
other words, for the current mapping𝑀𝑖 , the number of banks with
conflicts, denoted as 𝐾𝑖 , determines the number of distinct values
of the corresponding 𝑏 address bits, which contribute to the unique
addresses that need to be stored in the cache. Any other access can
go directly to a bank without conflicts. For example, when all 𝑁 = 8
accesses go to bank #1, although all (but one) of these requests
need to be handled by the cache, they all have the same value for
the corresponding 𝑏 bits of the address, the value “1". On the other
hand, when the 𝑁 = 8 accesses go to five banks, e.g., as follows:
#1, #2, #3, #4, #5, #1, #2, #3, respectively, although the 𝑏 bits of the
mapping take five distinct values, only (up to) three of these values
will cause conflicts to banks #1, #2, and #3, and therefore only three
values of these 𝑏 bits are part of addresses that need to be cached.

For a mapping𝑀𝑖 , where the𝑁 parallel accesses map to𝑋𝑖 banks,
the maximum number of conflicting banks is:

𝐾𝑁,𝑋𝑖
𝑖 =𝑚𝑖𝑛(𝑋𝑖 , 𝑁 − 𝑋𝑖) ≤ 𝑁

2 (2)

For example, for 𝑁 = 8, 𝐾8,7
𝑖 = 𝐾8,1

𝑖 = 1 , 𝐾8,6
𝑖 = 𝐾8,2

𝑖 = 2,
𝐾8,3
𝑖 = 𝐾8,5

𝑖 = 3, 𝐾8,4
𝑖 = 4, 𝐾8,8

𝑖 = 0. For the 𝑏 bits used by the
current mapping𝑀𝑖 to select a bank, this defines howmany distinct
values contribute to the addresses that need to be cached.

Let us consider that the current mapping causes 𝐾𝑖 bank con-
flicts. Then, the maximum number of distinct values 𝑋𝑖 should be
calculated for the address part used by each alternative mapping
in order for it to produce 𝐾𝑖 or more conflicting banks. In case an
alternative mapping causes fewer conflicting banks, it is considered
beneficial to switch to that mapping and repeat the above analysis.
For the 𝑏 bank-selecting bits of a mapping, the maximum number
of distinct values 𝑋𝑖 that cause 𝐾𝑖 or more conflicting banks is:

𝑋𝑁,𝐾𝑖
𝑖 = 𝑁 − 𝐾𝑖 (3)

e.g., 𝑋 8,2
𝑖 = 6 because 𝑋𝑖 = 2 or 6 causes 2 conflicting banks,

𝑋𝑖 = 3 or 5 causes 3, and 𝑋𝑖 = 4 causes the maximum number of
conflicting banks 𝑁2 = 4, so the maximum 𝑋𝑖 for 𝑁 = 8 with 𝐾𝑖 = 2
or more conflicting banks is 6 distinct values. Note that 𝑋𝑖 = 1 or 7
cause only one conflicting bank and 𝑋𝑖 = 8 zero conflicts.

Then, for a given number of conflicting banks 𝑗 , the number of
distinct addresses that need to be cached is equal to the product of
the number of conflicting banks 𝑗 (for the current mapping), and
the maximum distinct values that cause equal or more conflicting
banks (𝑁 − 𝑗) for each alternative mapping, that is: 𝑗 ∗ (𝑁 − 𝑗)𝑚−1.

300

A Parallel Hash Table for Streaming Applications PACT ’24, October 14–16, 2024, Long Beach, CA, USA

1k 32k 1M

22

25

28

211

4
(32,2)

9
(32,3)

36
(32,3)16

(32,2)

75
(32,3)

300
(64,3)

64
(32,2)

512
(64,2)

2420
(64,3)

Hash table entries

M
in

#
of

ca
ch
e
en
tri
es

𝑁
4
8
16

Figure 4: Minimum number of cache entries needed to main-
tain processing throughput of 𝑁 incoming tuples per cycle
for different sizes of hash tables. At the top of each bar the
exact number of cache entries is shown, as well as, in a paren-
thesis, the number of banks (B) and number of address map-
pings (m) used in the selected design point (𝐵,𝑚).

The minimum cache size then is equal to the largest such product
for any possible number of conflicting banks, multiplied by the 2𝑟
possible values of the remaining 𝑟 address bits not used by any
mapping:

𝐶𝑁,𝑚,𝑟 =𝑚𝑎𝑥
𝑁
2
𝑗=1 [𝑗 ∗ (𝑁 − 𝑗)𝑚−1] ∗ 2𝑟 (4)

e.g.𝐶8,3,0 ≤ 𝑚𝑎𝑥 (4∗42, 3∗52, 2∗62, 1∗72) =𝑚𝑎𝑥 (64, 75, 72, 49) = 75.
Based on the above, for a 32K entry Multi Hash Table (𝑎 =

15) which accepts 𝑁 = 8 parallel accesses, uses 𝐵 = 32 banks
of 𝑆 = 1𝐾 entries each, and supports 𝑚 = 3 non-overlapping
address mappings to select a bank using all address bits (𝑏 ∗𝑚 =

15 = 𝑎, so 𝑟 = 0), a cache of minimum size 𝐶8,3,0 = 75 entries
is needed to maintain a throughput of 8 accesses per cycle. The
above setup without the support of alternative address mappings
(𝑚 = 1), would need a cache of 𝐶8,1,0 = 4𝐾 entries. Similarly, for a
2M entry Multi Hash Table (𝑎 = 21) which accepts 𝑁 = 16 parallel
accesses, uses 𝐵 = 128 banks of 𝑆 = 16𝐾 entries each, and supports
𝑚 = 3 non-overlapping address mappings to select a bank using
all 𝑎 address bits (𝑏 ∗𝑚 = 21 = 𝑎, so 𝑟 = 0), a cache of minimum
size 𝐶16,3,0 = 605 entries is needed to maintain a throughput of
16 accesses per cycle. Again, without the support of alternative
address mappings, the required cache size would be 𝐶16,1,0 = 128𝐾 .
Figure 4 shows the minimum cache size for hash tables of 1K, 32K
and 1 million entries processing 𝑁 = 4, 8, and 16 tuples per cycle,
using𝑚 ≤ 3 address mappings and 𝐵 ≤ 64 banks. It can be observed
that the required cache size scales well (sub-linearly) to the hash
table capacity and quadratic 𝑂 (𝑁 2) or cubic 𝑂 (𝑁 3) to the number
of incoming tuples per cycle.

4 Multi Hash Table Design for
Stream Aggregation

The Multi Hash Table is designed for and used in a reconfigurable
system for stream aggregation, as defined in Section 2.2, aiming to
increase its processing throughput. Incoming tuples of key-value

$

B0 B1 B𝐵−1

Cache

Inter bank communication ring

Sort & Merge

Queues

AXI mapped HBM

"Flush" writesAggregation reads

F(w)

Compute

IN

OUT

Pipelined Link to banks

Figure 5: Top-level Block diagram of our Stream Aggregation
system with Multi Hash Table.

pairs ⟨𝑘, 𝑣⟩ are aggregated per key in sliding windows of size𝑊𝑆
tuples, which advance/slide by𝑊𝐴 tuples to feed with their con-
tents some compute function, e.g., average, max, sum, median. The
proposed Multi Hash Table enables the design of a reconfigurable
stream aggregation accelerator to process 𝑁 incoming tuples per
cycle, substantially increasing its throughput independently of the
incoming key distribution.

Figure 5 illustrates the top-level block diagram of the design. It is
composed of a sort-and-merge network, a subsequent cache, a hash
table using multiple parallel SRAM banks for window management
and partial data aggregation, and a high bandwidth DRAM (HBM)
for storing the complete window contents, as well as a compute
stage, which produces the final output. 𝑁 incoming tuples ⟨𝑘, 𝑣⟩
enter the system simultaneously. The 𝑁 tuples are first sorted by
key and merged if they belong to the same key. Subsequently, they
access an 𝑁 -port cache with their keys. The cache replacement
policy prioritizes the caching of accesses that map to banks with
busier queues. Cache hits enable the value(s) of the respective
incoming tuple to be stored next to older, already cached values
of the same key. Each cache entry fits a fixed number of values,
and exceeding this number causes the key and its cached values
to be evicted. Each cycle, up to 𝑁 cache accesses produce up to
𝑁 evictions, which are then sent forward to the next stage. The
keys of evicted tuples are hashed considering the current address
mapping to produce the hash table address and index to the multi-
bank hash table. They subsequently enter the queue of the selected
bank and then access the bank with a read-modify-write operation,
which utilizes both available bank ports in a pipelined fashion. Each
hash table entry stores the key, metadata to manage the sliding
window, such as pointers to the DRAM location of the sliding
window, the number of values in the window, etc., as well as the
most recent incoming values, which are flushed to DRAM in groups
that match the granularity of DRAM accesses. Windows ready for
aggregation are detected, and their data are sent from the DRAM to
the final stage, which computes the aggregation function(s) using
one of its multiple parallel units. Control logic is used to handle
the dynamic switching between𝑚 hash function address mappings
based on the occupancy of the bank queues. A ring that connects
all banks is used to exchange messages and metadata information
that allows the relocation of hash table entries when needed. Upon

301

PACT ’24, October 14–16, 2024, Long Beach, CA, USA Östgren and Sourdis

relocation, actual data are flushed to HBM, avoiding any costly
data movement across banks. Dynamic change of address mapping
requires that when a new key is inserted into the hash table, the
other𝑚 − 1 alternative locations of the key need to be checked, too,
for an existing entry of the key. However, any other regular hash
table lookup (key hit) is performed with a single bank access using
the current mapping. Next, each of the above components of the
proposed design are described separately.

4.1 Sort-and-Merge
The 𝑁 parallel incoming tuples are first sorted by key using a
pipelined sorting network. This network is implemented using an
optimal network [26] when the number of inputs allows for it;
otherwise as bitonic merge sort. At this stage, latency is not critical,
so fine-grain pipelining can be applied to ensure high clock rates.
Subsequently, tuples of the same key are merged into a single multi-
value tuple, i.e., ⟨𝑘, 𝑣1, 𝑣2, ...⟩, which aggregates all values of the
incoming key. As opposed to previous work on sort-and-reduce [24],
here it is considered that the values of a sliding window feed non-
associative functions and therefore multiple values of the same key
cannot be reduced to a single value before the compute stage. Still,
merging in a multi-value tuple allows it to deduplicate tuples of the
same key and avoid multiple accesses to the subsequent stages, i.e.,
cache, banks, using the same key. As shown in the example of Figure
8, in practice, the output of the merging step still uses the same
𝑁 -tuple input datapath format, but marks the unique keys, which
will subsequently access the cache, and the value(s) they carry. At
this stage, before accessing the cache, the order of the input tuples
are shuffled to improve cache utilisation, because the order of the
tuples affects cache replacement as explained next. This shuffling is
implemented using the sorting network. The tuples are sorted by a
rotated version of the key, rotated by a pseudo-random number, i.e.,
from an LFSR, thereby shuffling tuples while still keeping tuples of
the same key grouped.

4.2 Multi-port Waterfall Cache
An 𝑁 -port cache is designed to store incoming tuples of recently
used keys that would otherwise go to busy banks. As shown by
the analysis in the previous section, the cache needs to hold more
than 𝑁 entries. However, a fully associative multi-port cache design
would not scale well to a large number of entries. Therefore, the
proposed cache is split into multiple (𝑃) pipeline stages, each stage
storing 𝑁 entries, i.e., 𝑁 ways, as shown in Figure 6. A key can
be stored in any stage of the cache, so as expected, a single key
may occupy multiple cache entries, i.e., up to 𝑃 , one per stage. The
evictions from one stage are fed to and can be stored or merged
with another entry of the key in a subsequent stage, like a waterfall.
Hence, the proposed cache is denoted waterfall cache.

A stage contains 𝑁 entries (ways), 𝐸1, 𝐸2, ...𝐸𝑁 , each entry stor-
ing up to 𝑁 values of a different key. Supporting up to 𝑁 parallel
accesses with input keys,𝑘1, 𝑘2, ...𝑘𝑁 to a single cache stage requires
comparing each input key 𝑘𝑖 against all cache entries 𝐸1, 𝐸2, ...𝐸𝑁
in the stage, for a total of 𝑁 2 parallel comparisons.

On a cache hit, i.e., an input key matches a cached key (entry),
the value(s) of the input key are stored next to the already cached
values in the entry. In case the total number of values exceeds

St
ag
e
0

St
ag
e
1

St
ag
e𝑃

Se
ria

lis
at
io
n

/
𝑁

From
sort & merge

/
𝑁

/
𝑁

To
hash table

Figure 6: Overview of thewaterfall cache. It accepts N parallel
requests and is composed ofmultiple stages. Each stage offers
𝑁 entries/ways, each entry storing a key and up to N values.
Tuples not cached in or evicted from one stage are tried again
in the next.

or is equal to the cache entry capacity (𝑁), the 𝑁 older values of
the key are evicted. On a cache miss, the respective valid input
key 𝑘𝑖 may replace (a) only one specific cache entry 𝐸𝑖 , the one
with the same index in the stage (𝑖), (b) and only if it has priority
over it, i.e., maps to a busier bank, and (c) does not already have
𝑁 values. The first restriction reduces the hardware complexity of
the 𝑁 -port cache at the cost of cache efficiency, which is alleviated
by the randomization of keys described in the previous stage. The
second restriction reserves the cache space for keys destined to
busy banks in order to merge accesses and alleviate pressure to
these banks improving throughput. The priority level of an input
key or cached key is determined by finding the queue load of their
destination bank after first hashing them using the current mapping.
This is performed a cycle prior to the cache access, leaving only
the comparison between the bank loads to be in the current cycle
for a cache replacement decision, which is in fact performed in
parallel to the 𝑁 2 comparisons that determine cache hits. The third
restriction avoids evicting unnecessarily an entry that could still
collect values in favor of one that cannot. Finally, to ensure that
hash table accesses spend a limited number of cycles in the cache,
each cache entry includes a counter that is reset when the entry
is accessed and incremented otherwise; upon reaching an upper
counter threshold, the entry is evicted. Figure 7 shows the decision
diagram for an incoming tuple entering a cache stage.

The evicted tuples may contain multiple values ⟨𝑘, 𝑣1, 𝑣2, ...⟩.
In order to reduce the datapath width, after the final cache stage,
evicted tuples are packetized in a multi-flit variable-size format,
with a header flit containing key, and size or a single value, and
following flits containing values. The up to 𝑁 cache evictions per
cycle are put to one of 𝑁 lanes, prioritizing less busy lanes, and
then multiplexed and sent to the banks through a pipelined link.

Figure 8 shows an example of keys going through the sort, merge
and, for simplicity, a single stage cache. Incoming keys 1 to 4 access
the cache where 𝑘4, 𝑘2, and 𝑘3 are stored, while a fourth cache entry
is invalid. Keys 2, 3 and 4 hit in the cache. 𝑘2 causes the number
of stored values in the cache entry to reach their limit and so the
entry is evicted. 𝑘3’s new values are added to the existing cache
entry of 𝑘3. Finally, incoming key K1 did not replace the cached
entry of K4 due to lower priority, so it is evicted together with 𝑘2.

There are several design alternatives for the above multi-port
cache. Moreover, for a cache of a few tens of entries, such as the
ones built in this work, an implementation using registers and

302

A Parallel Hash Table for Streaming Applications PACT ’24, October 14–16, 2024, Long Beach, CA, USA

No Yes

Compare
k with the N entries,

any match?

Check
priority over entry i
win & < N values

in T
No

Merge w/
matching entry

≥ N values?

Incoming tuple T:
<k,v1,v2,..> at position i

Evict incoming tuple T
to the next stage

Replace & evict entry i

DONE

Evict the N oldest
values

No Yes Yes

Figure 7: Decision diagram for an incoming tuple entering
at position 𝑖 = 1, 2, . . . 𝑁 to a waterfall cache stage.

logic is possible; however, larger caches would require an excessive
amount of resources, and other options, such as the multi-port
SRAM design could be explored [27].

4.3 Hash Table Banks
The evicted tuples are sent to the hash table banks via a pipelined
link of 𝑁 lanes after their keys are hashed using the current ad-
dress mapping to determine the destination bank. Before the bank,
tuples are enqueued to a parallel-in, serial-out queue, in practice
implemented with 𝑁 parallel queues multiplexed to a single output
and logic to keep track of the arriving tuples order.

In our implementations, a hash table entry in a bank fits a single
key, but associativity could be added, allowing multiple keys per en-
try to reduce bank conflicts [23]. A bank entry stores the following
metadata: key, valid bit, address mapping, status of other mappings,
number of values stored locally, flushed last and in DRAM, DRAM
head and tail pointers as well as a fixed number of the most recent
values of the key, the size of which matches the DRAM access gran-
ularity in order to avoid read-modify-write operations in DRAM,
which would waste DRAM bandwidth. When the number of values
in the bank exhausts the available space, they are flushed to DRAM.

Accessing a bank with an incoming key requires a read access
to retrieve the metadata and determine whether it is a hit or miss
on the hash table based on a comparison between the incoming
key and any valid key stored in the bank entry. A hit will update
the hash table entry to include the new incoming values of the key
and possibly initiating a data flush operation to the DRAM and/or
triggering an aggregation. A miss will need to check whether the
newly inserted key already exists in the table with an alternative
mapping, as explained in detail next, and also to evict any valid
existing entry in the location. The eviction of a valid/active entry
causes a flag to rise, indicating a hash collision, and sends the
necessary information to software, similarly to previous work [13].
Such an entry is considered valid if it has not expired based on its
latest timestamp. In case the evicted valid entry is not placed in the
particular hash table entry with the current address mapping, it

In
Key Value

k1 0
k3 1
k2 3
k3 2

Sorted
Key Value

k1 0
k2 3
k3 1
k3 2

sort

Merged
Key Value

k1 0
k2 3
k∗3 1
˘ 2

merge

Cache
Key Valid Values

k4 1 4, 5
k2 1 0, 1, 2
k𝑥 0
k3 1 0

New Cache
Key Valid Values

k4 1 4,5
k𝑥 0
k3 1 0,1,2
k𝑥 0

Eviction
Key Valid Values

k1 1 0
k2 1 0,1,2,3

0
0

∗Merging of tuples is done by indicating that the subsequent tuple is of the same key.

Figure 8: Example of incoming tuples going through the sort,
merge and (single set) cache stages.

is buffered in a victim cache to cover for any outstanding lookup
requests coming from other banks.

4.4 Switching bank address mapping
Load balancing between banks is improved by supporting𝑚 alter-
native address mappings, each using different 𝑏 bits of the address
(the hashed key) to select a bank and hence placing (most) hash
table entries to different banks2.

The system considers one of these mappings to be the one cur-
rently in use, but keys may be already stored in the hash table with
another alternative mapping previously used. Accesses that pro-
duce a hit, i.e., find an existing entry of the respective key already
placed with the current mapping, require a single access to the ta-
ble. However, accesses that result in a miss need to check whether
the key already exists in the system with one of the other𝑚 − 1
alternative mappings. This generates𝑚 − 1 lookup requests to the
respective banks, which may store the key, and are broadcasted via
a separate (ring) network that interconnects the banks. Such lookup
requests are filtered at the receiving bank to reduce unnecessary
bank accesses, using a small table, which keeps track of the key
stored at each valid bank entry. The lookups that pass the filter are
then put in the tail of the respective bank queue to be processed in
order with other requests in-flight. In case the lookup finds an ex-
isting entry of the key, the entry is invalidated, its data (values) are
flushed to DRAM, and the head and tail window pointers to DRAM
are sent to the new location.These response messages, carrying the
pointers back to the new bank, are also filtered at the destination.
Most responses are negative, i.e., the lookup was a miss, and such
responses do not need to disturb the main read-modify-write loop
and are instead marked in a𝑚 − 1 bits wide table, setting the bit
corresponding to what lookup missed. This table can then be read
in parallel by the bank controller, while handling a normal access
to the same key.

If the response instead was a hit, or the bank is stalling, e.g., due
to a flush being blocked by waiting for a lookup, then the lookup
response is forwarded to the bank, bypassing the bank queue. The

2For a hash table address to fall on the same bank with two mappings the 𝑏 bits used
by each mapping to select a bank should be identical, which has a probability of 1

𝐵 ,
for𝑚 mappings this becomes 1

𝐵𝑚−1 .

303

PACT ’24, October 14–16, 2024, Long Beach, CA, USA Östgren and Sourdis

next subsection describes in more detail how flush stalls can be
avoided using some extra space in the DRAM.

The current address mapping is changed to an alternative map-
ping based on the load of the banks. More precisely, any bank queue
with load exceeding a set threshold would trigger changing of the
address mapping. The threshold is selected to allow a queue to
continue accepting input tuples with the worst case rate until the
new mapping is in effect, without getting full.

An interesting question arises when more than two mappings
are supported, i.e.𝑚 > 2. Which to pick? One of the𝑚 − 1 alterna-
tive mappings is selected based on statistics kept for the incoming
keys that arrived with the current mapping. A saturating counter
is maintained per bit of the incoming addresses (hashed version of
input keys), which is incremented or decremented when an incom-
ing address has a zero or a one in the specific bit position of the
address. Then, bit positions with counter values closer to zero indi-
cate bits with higher entropy, which are preferred when selecting a
bank. The absolute values of the counters for the bits used by each
mapping for selecting a bank are summed, and the mapping with a
lower total score is selected.

4.5 DRAM data store
The SRAM banks of the hash table store metadata for managing
the sliding windows and only a subset of the sliding windows, com-
posed of the most recently received values. The complete sliding
window of each key is located in DRAM, where values are flushed
from the banks in batches that match the DRAM access granularity.
The sliding window of a key is stored in DRAM in a fixed-size,
statically allocated memory region in a circular buffer and its head
and tail pointers are stored in the hash table SRAM bank, similar to
previous work [10]. Although the SRAM banks use multiple alter-
native address mappings, this does not affect the DRAM mapping.
Each entry of the hash table, independent of the mapping it uses
to access an SRAM bank, has a fixed DRAM location that always
uses the same address mapping (address bits order). Consequently,
when an old key entry is moved from a previous hash table bank
location to the one pointed by the current mapping there is no need
of actual data movement between SRAM banks, as explained in the
previous subsection, and any values in the old entry are flushed to
DRAM.

When a new key is inserted and while waiting for the response
of the other𝑚 − 1 banks to confirm or not whether the input key
has any existing entry with an alternative address mapping, more
tuples of the same key may arrive. In case the data of these tuples
do not fit in the limited storage of the SRAM bank, they need to be
flushed to DRAM. However, the tail pointer is not known until the
alternative banks respond. For this reason, a small fraction of the
DRAM space allocated for storing data of a hash table entry is used
as a buffer to temporarily store newly arriving data until the other
banks respond.When the response from the other banks arrives, the
data in the temporary DRAM buffer is moved to the regular space
that stores the key’s sliding window. This is the only operation that
requires to move data between two different DRAM locations. It
is worth noting that a key can have only one other active location
in the SRAM banks because upon a new key insertion, alternative
locations are checked and moved to the new location of the key.

Another interesting point to note is that, unlike the SRAM banks,
the distribution of the incoming keys does not have a significant
effect in DRAM performance. Data are aggregated per key first, par-
tially in the SRAM banks, which handle via address remapping and
caching any skewed key distribution, and then flushed to DRAM
in batches of multiple values, e.g., 64 in our implementation. That
allows the values of an equal number of tuples to be aggregated
in SRAM before flushing triggering a DRAM access only every 64

𝑁
cycles and thus alleviating imbalances in the key distribution.

4.6 Compute Stage
Depending on the aggregation function of the query, the incom-
ing values per key can be processed on the fly, gradually as they
arrive, e.g., for algebraic (i.e., average) or distributive functions
(i.e., minimum, maximum, and sum), or otherwise only when all val-
ues have been received, e.g., for holistic functions, such as median.
Multiple queries and aggregation functions can be supported by im-
plementing different parallel compute stages. After the computation
of aggregation function(s), results are forwarded to output.

The number of incoming tuples per cycle (𝑁) and the number
of tuples that trigger the window to advance (𝑊𝐴) determine the
frequency of aggregations, thus the frequency of computing a func-
tion using the contents of a sliding window, which belongs to a
particular key. On average, 𝑁

𝑊𝐴 aggregations would need to be
computed per cycle. However, the peak number of aggregations
can be significantly higher. The 𝑁 incoming tuples may all trigger
aggregations at the same time. In addition, multiple (up to𝑁) values
evicted together from the cache may cause up to 𝑁

𝑊𝐴 aggregations.
The above call for support of multiple parallel copies of the same
compute stage. In our implementation, 𝑁2 parallel compute mod-
ules for an aggregation function are used. Each bank is able to send
a sliding window for aggregation to any of the compute modules.
Since the focus of this work is to provide 𝑁 -port hash table support
rather than accommodate very frequent aggregations (small𝑊𝐴),
a lot of effort has not been spent on optimizing these compute
modules. However, as shown by previous work, caching the most
recently used sliding windows can alleviate DRAM pressure for
skewed key distributions and small𝑊𝐴 [14].

4.7 Discussion
In practice, the Multi Hash Table design may differ from the ideal
model considered in the analysis of the previous section. Building
an ideal 𝑁 -port cache that stores all most recent requests to the
banks that receive more accesses than their fair share would need
to be fully associative, i.e., an 𝑁 -port Content Addressable Memory
(CAM), and it would be expensive even if it is small. Our way of
implementing this, by layering a set of very small fully associative
caches, slightly limits the amount of usable space as the same key
can temporarily take up an entry in multiple stages. For simplicity,
the replacement options within a stage are also restricted to a
single, particular way for each incoming key, which further limits
cache efficiency. In addition, our current implementation prioritises
busier banks using only three levels of priority, which is not very
accurate compared to using the actual number of elements in a bank
queue and therefore may not always prioritise correctly between
banks. All the above implementation limitations could be overcome

304

A Parallel Hash Table for Streaming Applications PACT ’24, October 14–16, 2024, Long Beach, CA, USA

with a more complex design. More replacement options could be
used at the cost of more multiplexers, which would possibly affect
the critical path, and exact bank queue load information could be
used at the cost of wider comparisons for the replacement decision.
Another design aspect that is not ideal is the switching between
address mappings, which in practice entails latency and bandwidth
overheads. Switching is not instant, and its delay is taken into
account in setting the bank queues load thresholds. It is worth
noting that there is a bandwidth and latency cost for inter-bank
communication. The bandwidth cost of inter-bank communication
is minimal as it involves only pointer, rather than data, exchange.
The latency cost is tolerated by allowing new hash table entries
to store new data in a bank before checking old entries and using
temporary buffers in DRAM if this is not enough.

The Multi Hash Table design can be further optimised in vari-
ous ways. The multi-port cache is expected to limit the operating
frequency of the design to at least half of the maximum frequency
of the FPGA BlockRAMs. Consequently, the SRAM banks of the
design can be used in double the frequency to (virtually) offer dou-
ble the number of ports, as suggested in previous work [27]. Other
parts of the design, such as the inter-bank communication and the
cache-to-banks link could also be double-pumped to save resources.

5 Evaluation
5.1 Experimental setup
Multi Hash Table was implemented on the AMD Alveo U280 Data
Center Accelerator Card [2] with 8GB HBM2, which provides 32
channels of 460GB/s aggregate throughput. The Alveo card is fed
by a 100Gbps Mellanox MCX516A-CDAT, which is connected via a
network interface built based on XUP Vitis Network example [41].

Our design supports 𝑁 = 8 incoming tuples per cycle, using
𝑚 = 3 address mappings, 𝐵 = 32 banks of 32K hash table entries in
total, and an 80-entry cache of 10 stages with 8 entries per stage. The
32 HBM channels are connected to the banks and to the compute
stage(s) using 4 AXI4 interfaces each (8 in total). Each tuple is 4
bytes, more precisely, 3 bytes of key and one byte of value. For
comparison, two baseline designs are also implemented offering
the same capacity (32k entries). The first one supports 𝑁 = 1
incoming tuples per cycle (𝑚 = 1, 𝐵 = 1), which is what previous
FPGA-based single-window stream aggregation approaches use
[10–14]. The second baseline processes 𝑁 = 8 incoming tuples
per cycle, and uses the same number of banks (𝐵 = 32) but does
not have any mechanism to avoid bank conflicts, suffering worst
case performance equal to 𝑁 = 1. Besides resource utilization and
operating frequency, power estimations were derived from the
FPGA EDA tool (Vivado).

Two queries were implemented. The first one comprised of al-
gebraic and distributive functions: “Find the average, minimum,
maximum value for each key for the last WS tuples and return the
aggregate everyWA tuples". The second one uses a holistic aggrega-
tion function: “Find the median value for each key for the last WS
tuples and return the aggregate every WA tuples". Query-1 design
supports window sizes from 64 to 1K tuples and the WA varying
from 1 up to𝑊𝑆 tuples with support for up to 32K concurrently
active keys. Query-2 is more complex, and it was possible to reach
timing closure when supporting window sizes of up to 256 tuples.

The first query uses 64 parallel compute units, incrementally
calculating the three sub queries from 64 values read from DRAM
every cycle. The 64 partial results were then reduced to the final
result. The version of the system that implements this query has
four parallel copies of the compute stage, each with a separate
memory interface. For the second query, a median accelerator was
implemented as a pipelined sorting network fed with data from
four memory interfaces, and the system only has one instance of
this compute stage. Both queries support runtime configuration of
𝑊𝑆 , with that, limiting how much they can be optimized. For most
real applications𝑊𝑆 and𝑊𝐴 should be fixed at compile time.

Most parts of our designs were implemented in the python based
hardware definition language Amaranth [1], but some parts, most
significantly the compute stages, are implemented using Vitis HLS
[3] introducing some inefficiencies.

A number of different key distributions were used to test the
robustness of the Multi Hash Table. The test inputs were composed
of a repeated sequences of tuples that belong to:

• 𝑖 = 1, 2, . . . , or 𝑁 distinct keys sent in fixed order;
• distinct keys that map to 𝑗 = 1, 2, . . . , or 𝑁 banks using each
mapping sent in a fixed order; In practice, the hashed value
of the keys generates addresses with 𝑗 distinct values for the
𝑏 bits of each of the𝑚 mappings;

• the above two datasets with 10% and 20% uniform random
keys added;

• 32K and 16K distinct keys sent in a fixed order, i.e., equal to
the hash table capacity and half that, respectively.

• the linear road benchmark [5], vehicle ID used as key.
• a part of the 2011 Google cluster-usage traces [37], with job
ID used as key.

These test inputs were tested in simulation (for better monitor-
ing) running until the system reached a stable state without input
queues increasing further. These tests confirmed that the system
supportedmaximum throughput, processing𝑁 = 8 incoming tuples
per cycle as long as𝑊𝐴 was large enough for the compute stage
to sustain it. In addition, the same test inputs were combined and
used in our FPGA prototype experiments to measure the reported
performance for difference combinations of𝑊𝐴 and𝑊𝑆 .

5.2 Implementation results
The implementation results of the evaluated designs are shown in
Table 1. Multi Hash Table uses 40-50% of the FPGAs LUTs (spread
over 70-80% of available slices) and most of the SRAM resources
(90%). The median compute stage is 2.7× larger than the one that
supports average, min and max, still compute takes only about
3-12% of the total resources. About a quarter of the resources go to
the multi-ported cache component, including sorting and merging,
and most of the rest are used by the banks, including the links that
interconnect them, their input queues and their interfaces to flush
data to the HBM. Both versions of our design operate at 150 MHz
supporting 𝑁 = 8 incoming tuples, 256 bits in total, every FPGA
cycle, utilizing about 40% of the 100 Gb/s network bandwidth. This
translates to a line rate of 1.2 Giga tuples/sec. Finally, the power
consumption of the design is estimated to be 46-47 watts.

305

PACT ’24, October 14–16, 2024, Long Beach, CA, USA Östgren and Sourdis

Table 1: Implementation Results.

Design N/m/P/W/B/S Query Slices SRAM F max Power
[×1000] [Kb] [MHz] [W]

Multi Hash Table 8/3/10/8/32/32k q1 119 (73.43%) 151776 150 47.5
q2 127 (78.51%) 142560 150 46.2

Baseline 1 1/1/0/0/1/32k q1 58 (35.60%) 24264 160 37.8
q2 60 (37.24%) 21960 160 37.7

Baseline 2 8/1/0/0/32/32k q1 86 (52.77%) 141980 160 47.8
q2 94 (58.18%) 132768 160 46.9

Design parameters: # incoming tuples per cycle (N), # addr. mappings (m), # cache
pipeline stages & # entries per stage (P,W), # banks (B), hash table size (S).

In comparison, the two baselines have higher clock frequency
and operate at 160MHz, because they do not use the cache struc-
ture that defines Multi Hash Table critical path. The first baseline
(𝑁 = 1) requires about half of the Multi Hash Table logic despite
supporting significantly lower bandwidth because network and
HBM interfaces add constant overheads to all designs. However,
its SRAM utilization is significantly reduced to 1

6 versus our de-
sign and its power consumption is 20% lower. The second baseline
(𝑁 = 8,𝑚 = 1) requires about 2

3 of the logic and similar amount of
SRAM compared to Multi Hash Table, because it does not use the
proposed (LUT-based) cache, but offers the same number of banks.
Despite fewer resources baseline-2 has similar power cost with the
Multi Hash Table because it operates at higher frequency.

It is worth noting that all above designs process 4B tuples that
carry 1B values. A Multi Hash Table design processing 8B tuples
(4B key, 4B value) would be too large to fit in our FPGA device
requiring 2× more logic and 4

3 of the SRAM resources.

5.3 Performance results
Multi Hash Table was evaluated using the datasets described in
the experimental setup and compared to the two baselines. The
behavior of the design was first analyzed using RTL simulation and
subsequently tested in the FPGA card to measure throughput.

The simulation analysis confirmed that Multi Hash Table could
detect busy banks and prioritize the caching of keys going to these
banks allowing multiple requests of the same key to be aggregated
thereby quickly eliminating the pressure on the respective banks.
In cases where input traffic is aimed at overloading multiple banks,
the system prioritized caching of their keys in sequence rather than
all of them at the same time, allowing the cache to store more keys
of the same bank and offload banks faster one by one. The design
was also able to detect the address mapping with fewer conflicts
and switch to that allowing already entered keys to relocate fast.
Even for traffic where each tuple belonged to a different unique
key, the inter-bank interconnect was able to support the necessary
communication load.

The processing throughput of the Multi Hash Table, i.e., the
number of input tuples processed by the system per unit of time,
is measured for every query and compared to the two baselines.
Figure 9 depicts the Multi Hash Table processing throughput for
query-1 and query-2 for different Window Sizes (WS), Window
Advance (WA) as well as the throughput of the first baseline (𝑁 = 1)
and the best- and worst-case throughput of the second baseline
(𝑁 = 1,𝑚 = 1). For the first query, which implements the simplest
compute stage, maximum throughput of 1.2 Gtuples/sec is achieved
for all window sizes. This demonstrates in practice the effectiveness

of Multi Hash Table, which is able to sustain the processing of
𝑁 = 8 incoming tuples per cycle for any key distribution. As theWA
reduces, aggregations are more frequent and processing throughput
gets limited by the bandwidth of the HBM and compute stages,
which need to deliver and process, respectively, the contents of a
sliding window more often and therefore become the bottleneck of
the design. For example, the throughput for queries with WA of 1
and 8 is 5-25 and 4-12 × lower than the maximum, respectively. It is
worth noting that memory pressure due to frequent aggregations on
skewed key distributions can be alleviated by caching most recent
sliding windows [14], but this is not implemented in our designs as
the focus is to maintain high throughput on the hash table updates.
Another interesting observation is that the impact of low WA is
more severe for larger WS. This is because larger windows put
more pressure both to the HBM and on the compute stages of the
system. The second query implements a more complex function,
and therefore, the largest supported window size that allowed time
closure at the target frequency is smaller (256). The processing
throughput of the Query-2 design is similar to Query-1, but slightly
lower for small WAs due to a slower compute stage. For large WAs,
Query-2 is able to achieve maximum throughput, too.

Compared to the performance of the two baselinesMulti Hash Ta-
ble is slightly less than 8× better (7.5×) than the 𝑁 = 1 baseline,
due to its lower frequency. It is equally faster than the worst-case
throughput of the second baseline (𝑁 = 8,𝑚 = 1), which performs
as fast as 𝑁 = 1 when all accesses go to the same bank because it
lacks a mechanism to deal with conflicts. Finally, Multi Hash Table
is 6% slower than the best-case performance of the second baseline
(𝑁 = 8, 𝑚 = 1), i.e., when accesses are evenly distributed to at
least 𝑁 = 8 banks, due to its slightly lower frequency. Note that the
frequency advantage of the baselines does not yield any throughput
advantage for small WAs because in these cases the bottleneck of
all designs is in the HBM, which operates at a fixed frequency.

5.4 Comparison with related work
The Multi Hash Table enabled the processing of up to 𝑁 = 8 tuples
per cycle increasing stream aggregation throughput eight-fold to
1.2 Gtuples/sec. Current state of the art work on FPGA-based sliding
window stream aggregation (SWAG) uses a single port hash tables
[13, 14]. They use 4× larger tuples, i.e. 128 bits, and are limited to
processing one incoming tuple every two FPGA cycles, at similar
frequency supporting 70 Mtuples/sec for the same queries [13, 14].
This is similar to current state of the art GPU-based SWAG [7].
In comparison, the Multi Hash Table is able to offer 17× higher
processing throughput versus previous stream aggregation systems.

FPGA andGPU designs proposed for in-memory database queries,
share some similarities with our work although they do not tackle
the same problem. Stream processing is more challenging than
in-memory databases as it requires to process incoming tuples on
the fly and each individual incoming tuple triggers a new update to
the contents of its entire sliding window. Nevertheless, for queries
that require entry updates, FPGA-based [43] and GPU-based [6]
in-memory database systems achieve processing throughput of 816
Mtuples/sec and 420 Mtuples/sec, respectively; Multi Hash Table
offers 1.5× and 3× higher processing throughput, respectively.

306

A Parallel Hash Table for Streaming Applications PACT ’24, October 14–16, 2024, Long Beach, CA, USA

64 128 256 512 1k
0

300

600

900

1,200

Window Size (WS)

Th
ro
ug

hp
ut

[M
tu
pl
e/
se
c]

BL2 (best case)
BL2 (worst case) & BL1
MultiHash Table, WA=1
MultiHash Table, WA=8
MultiHash Table, WA=32
MultiHash Table, WA=64
MultiHash Table, WA=128
MultiHash Table, WA=256
MultiHash Table, WA=512
MultiHash Table, WA=1k

(a) Query-1 (average, min, max).

64 128 256
0

300

600

900

1,200

Window Size (WS)

Th
ro
ug

hp
ut

[M
tu
pl
e/
se
c]

BL2 (best case)
BL2 (worst case) & BL1
MultiHash Table, WA=1
MultiHash Table, WA=8
MultiHash Table, WA=32
MultiHash Table, WA=64
MultiHash Table, WA=128
MultiHash Table, WA=256

(b) Query-2 (median).

Figure 9: Multi Hash Table (N=8, m=3) throughput vs. two baselines: BL1 (N=1) and BL2 (N=8, m=1) (worst-case and best-case).

6 Conclusions
Hash tables are important in a wide range of data intensive applica-
tions. However, they have difficulties to scale their access through-
put as they typically offer a single access port. Previous attempts to
increase the number of ports require excessive memory resources,
as they have to replicate hash table contents at least as many times
as the number of access ports or their performance suffers from
bank conflicts and in the worst case is limited to the performance of
a single port. This work described a new parallel multi-port hash ta-
ble design for stream processing, which provides data-independent
𝑁 -port bandwidth without replicating its contents. Multi Hash Ta-
ble uses multiple banks and avoids bank conflicts (i) supporting
dynamic remapping of the hash table address to redistribute and
re-balance accesses among banks, and by (ii) caching accesses to
frequently used entries. Dynamic address remapping requires only
metadata exchange between the banks, rather than data exchange,
because data are flushed to the next level (DRAM), which main-
tains a fixed address mapping. Multi Hash Table is applied to a
reconfigurable single sliding window stream aggregation system
demonstrating a 7.5× increase in processing throughput.

Acknowledgments
This work was supported by the Swedish Foundation for Strategic
Research (contract number CHI19-0048) under the PRIDE project.

References
[1] amaranth lang. 2023. amaranth.

https://github.com/amaranth-lang/amaranth.
[2] AMD. 2023. Alveo U280 Data Center Accelerator Card.

https://www.xilinx.com/products/boards-and-kits/alveo/u280.html.
[3] AMD. 2023. Vitis HLS.

https://www.xilinx.com/products/design-tools/vitis/vitis-hls.html.
[4] Henrique CMAndrade, Buğra Gedik, and Deepak S Turaga. 2014. Fundamentals of

stream processing: application design, systems, and analytics. Cambridge University
Press.

[5] Arvind Arasu, Mitch Cherniack, Eduardo Galvez, David Maier, Anurag S Maskey,
Esther Ryvkina, Michael Stonebraker, and Richard Tibbetts. 2004. Linear road: a
stream data management benchmark. In Proceedings of the Thirtieth international
conference on Very large data bases-Volume 30. 480–491.

[6] Saman Ashkiani, Martin Farach-Colton, and John D. Owens. 2018. A Dynamic
Hash Table for the GPU. In IEEE International Parallel and Distributed Processing
Symposium, IPDPS. 419–429.

[7] Tiziano De Matteis et al. 2019. GASSER: An Auto-Tunable System for General
Sliding-Window Streaming Operators on GPUs. IEEE Access 7 (2019), 48753–
48769.

[8] Tomás Fukac, Jirí Matousek, Jan Korenek, and Lukás Kekely. 2021. Increasing
Memory Efficiency of Hash-Based Pattern Matching for High-Speed Networks.
In International Conference on Field-Programmable Technology, (FPT). 1–9.

[9] B. Gedik. 2014. Generic windowing support for extensible stream processing
systems. Softw., Pract. Exper. 44, 9 (2014), 1105–1128.

[10] Prajith Ramakrishnan Geethakumari, Vincenzo Gulisano, Bo Joel Svensson, Pedro
Trancoso, and Ioannis Sourdis. 2017. Single window stream aggregation using
reconfigurable hardware. In 2017 International Conference on Field Programmable
Technology (ICFPT). 112–119. https://doi.org/10.1109/FPT.2017.8280128

[11] Prajith Ramakrishnan Geethakumari, Vincenzo Gulisano, Pedro Trancoso, and
Ioannis Sourdis. 2019. Time-SWAD: A Dataflow Engine for Time-Based Single
Window Stream Aggregation. In Int’ernationa’l Conf. on Field-Programmable
Technology (FPT). IEEE, 72–80.

[12] Prajith Ramakrishnan Geethakumari and Ioannis Sourdis. 2021. A Specialized
Memory Hierarchy for Stream Aggregation. In 2021 31st International Conference
on Field-Programmable Logic and Applications (FPL). 204–210. https://doi.org/10.
1109/FPL53798.2021.00041

[13] Prajith Ramakrishnan Geethakumari and Ioannis Sourdis. 2021. StreamZip:
Compressed Sliding-Windows for Stream Aggregation. In 2021 International
Conference on Field-Programmable Technology (ICFPT). 1–9. https://doi.org/10.
1109/ICFPT52863.2021.9609952

[14] Prajith Ramakrishnan Geethakumari and Ioannis Sourdis. 2023. Stream Aggre-
gation with Compressed Sliding Windows. ACM Trans. Reconfigurable Technol.
Syst. (TRETS) 16, 3 (2023), 37:1–37:28.

[15] John R. Gilbert, Steve Reinhardt, and Viral B. Shah. 2006. High-Performance
Graph Algorithms from Parallel Sparse Matrices (PARA). In 8th International
Conference on Applied Parallel Computing: State of the Art in Scientific Computing.
260–269.

[16] Allan Gottlieb, Ralph Grishman, Clyde P. Kruskal, Kevin P. McAuliffe, Larry
Rudolph, and Marc Snir. 1983. The NYU Ultracomputer—Designing an MIMD
Shared Memory Parallel Computer. IEEE Trans. Comput. C-32, 2 (1983), 175–189.
https://doi.org/10.1109/TC.1983.1676201

[17] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart,
Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. 1997. Data Cube: A Rela-
tional Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals.
Data Min. Knowl. Dis., 1(1) (Jan. 1997), 29–53.

[18] Vincenzo Gulisano, Zbigniew Jerzak, Roman Katerinenko, Martin Strohbach, and
Holger Ziekow. 2017. The DEBS 2017 Grand Challenge. In ACM Int. Conf. on
Distributed Event-based Systems (DEBS). 271–273.

[19] Vincenzo Gulisano, Zbigniew Jerzak, Spyros Voulgaris, and Holger Ziekow. 2016.
The DEBS 2016 Grand Challenge. In ACM DEBS. ACM, 289–292.

[20] Vincenzo Gulisano, Yiannis Nikolakopoulos, Ivan Walulya, Marina Papatri-
antafilou, and Philippas Tsigas. 2015. Deterministic Real-time Analytics of
Geospatial Data Streams Through ScaleGate Objects. In ACM DEBS. ACM, 316–
317.

[21] Song Han, Huizi Mao, and William J. Dally. 2016. Deep Compression: Compress-
ing Deep Neural Network with Pruning, Trained Quantization and Huffman
Coding. In 4th Int’l Conf. on Learning Representations, ICLR.

[22] Song Han, Jeff Pool, John Tran, andWilliam J. Dally. 2015. Learning BothWeights
and Connections for Efficient Neural Networks. In 28th International Conference
on Neural Information Processing Systems - Volume 1 (NIPS). 1135–1143.

[23] Zsolt István, Gustavo Alonso, Michaela Blott, and Kees Vissers. 2015. A hash
table for line-rate data processing. ACM TRETS 8, 2 (2015), 13.

[24] Sang-Woo Jun, Andy Wright, Sizhuo Zhang, Shuotao Xu, and Arvind. 2018.
GraFBoost: Using Accelerated Flash Storage for External Graph Analytics. In
2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture
(ISCA). 411–424.

307

https://github.com/amaranth-lang/amaranth
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://www.xilinx.com/products/design-tools/vitis/vitis-hls.html
https://doi.org/10.1109/FPT.2017.8280128
https://doi.org/10.1109/FPL53798.2021.00041
https://doi.org/10.1109/FPL53798.2021.00041
https://doi.org/10.1109/ICFPT52863.2021.9609952
https://doi.org/10.1109/ICFPT52863.2021.9609952
https://doi.org/10.1109/TC.1983.1676201

PACT ’24, October 14–16, 2024, Long Beach, CA, USA Östgren and Sourdis

[25] A. Kirsch, M. Mitzenmacher, and G. Varghese. 2010. Hash-Based Techniques for
High-Speed Packet Processing. In Algorithms for Next Generation Networks.

[26] Donald E. Knuth. 1998. The art of computer programming, volume 3: (2nd ed.)
sorting and searching. Addison Wesley Longman Publishing Co., Inc., USA.

[27] Charles Eric LaForest and J. Gregory Steffan. 2010. Efficient Multi-Ported Mem-
ories for FPGAs. In Proceedings of the 18th Annual ACM/SIGDA International
Symposium on Field Programmable Gate Arrays (FPGA). 41–50.

[28] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A Tucker. 2005.
No pane, no gain: efficient evaluation of sliding-window aggregates over data
streams. ACM SIGMOD 34, 1 (2005), 39–44.

[29] Ben Lin, Michael B. Healy, Rustam Miftakhutdinov, Philip G. Emma, and Yale
Patt. 2018. Duplicon Cache: Mitigating Off-Chip Memory Bank and Bank Group
Conflicts Via Data Duplication. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 285–297. https://doi.org/10.1109/
MICRO.2018.00031

[30] Rene Mueller, Jens Teubner, and Gustavo Alonso. 2009. Streams on wires: a query
compiler for FPGAs. VLDB 2, 1 (2009), 229–240.

[31] M. Naumov, L. Chien, P. Vandermersch, and U. Kapasi. 2010. Cusparse library. In
GPU Technology Conference (GTC).

[32] Michael Offel, Andreas Ley, and Sven Hager. 2023. HashCache: High-Performance
State Tracking for Resilient FPGA-Based Packet Processing. In 2023 33rd Interna-
tional Conference on Field-Programmable Logic and Applications (FPL). 364–364.
https://doi.org/10.1109/FPL60245.2023.00069

[33] Yasin Oge, Masato Yoshimi, Takefumi Miyoshi, Hideyuki Kawashima, Hidetsugu
Irie, and Tsutomu Yoshinaga. 2013. An efficient and scalable implementation of
sliding-window aggregate operator on FPGA. In CANDAR. IEEE, 112–121.

[34] Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo hashing. Journal of
Algorithms 51, 2 (2004), 122–144.

[35] Salvatore Pontarelli, Pedro Reviriego, and Juan Antonio Maestro. 2016. Parallel
d-Pipeline: A Cuckoo Hashing Implementation for Increased Throughput. IEEE
Trans. Comput. 65, 1 (2016), 326–331. https://doi.org/10.1109/TC.2015.2417524

[36] M.O. Rabin and V.V. Vazirani. 1989. Maximum Matchings in General Graphs
Through Randomization. In Journal of Algorithms, Vol. 10. 557–567.

[37] Charles Reiss, John Wilkes, and Joseph L. Hellerstein. 2011. Google cluster-usage
traces: format + schema. Technical Report. Google Inc., Mountain View, CA, USA.
Revised 2014-11-17 for version 2.1. Posted at https://github.com/google/cluster-
data.

[38] André Seznec. 1993. A Case for Two-Way Skewed-Associative Caches. In 20th
Annual International Symposium on Computer Architecture (ISCA). 169–178.

[39] I. Sourdis, D. Pnevmatikatos, S. Wong, and S. Vassiliadis. 2005. A reconfigurable
perfect-hashing scheme for packet inspection. In Int’l Conf. on Field Programmable
Logic and Applications (FPL). 644–647.

[40] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning
Structured Sparsity in Deep Neural Networks. In Advances in Neural Information
Processing Systems.

[41] Xilinx. 2023. XUP Vitis Network Example.
https://github.com/Xilinx/xup_vitis_network_example.

[42] Ichitaro Yamazaki and Xiaoye S. Li. 2010. On Techniques to Improve Robustness
and Scalability of a Parallel Hybrid Linear Solver. In Proceedings of the 9th Inter-
national Conference on High Performance Computing for Computational Science
(VECPAR). 421–434.

[43] Yang Yang, Sanmukh R. Kuppannagari, and Viktor K. Prasanna. 2020. A High
Throughput Parallel Hash Table Accelerator on HBM-enabled FPGAs. In 2020
International Conference on Field-Programmable Technology (ICFPT). 148–153.

[44] Yang Yang, Sanmukh R. Kuppannagari, Ajitesh Srivastava, Rajgopal Kannan, and
Viktor K. Prasanna. 2020. FASTHash: FPGA-Based High Throughput Parallel
Hash Table. In International Conference in High Performance Computing. 3–22.

308

https://doi.org/10.1109/MICRO.2018.00031
https://doi.org/10.1109/MICRO.2018.00031
https://doi.org/10.1109/FPL60245.2023.00069
https://doi.org/10.1109/TC.2015.2417524
https://github.com/google/cluster-data
https://github.com/google/cluster-data
https://github.com/Xilinx/xup_vitis_network_example

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Related work
	2.2 Stream aggregation with reconfigurable acceleration

	3 Theoretical analysis of the Multi Hash Table
	4 Multi Hash Table Design for Stream Aggregation
	4.1 Sort-and-Merge
	4.2 Multi-port Waterfall Cache
	4.3 Hash Table Banks
	4.4 Switching bank address mapping
	4.5 DRAM data store
	4.6 Compute Stage
	4.7 Discussion

	5 Evaluation
	5.1 Experimental setup
	5.2 Implementation results
	5.3 Performance results
	5.4 Comparison with related work

	6 Conclusions
	Acknowledgments
	References

