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Abstract An efficient development method is required for large-scale digital signal processing imple-
mentations. The proposed design method with parametric modeling and multi-objective optimization 
reduces the optimization time from 300 years by brute-force search to around 2 weeks by a heuristic 
solver using approximation and machine learning. ©2024 The Author(s) 

Introduction 
Model-based design (MBD) and model-based 
systems engineering are general tools for con-
structing reliable cyber-physical systems [1–3]. 
Such systems consist of processing units includ-
ing a central or graphics processing unit, a field-
programmable gate array (FPGA), an artificial in-
telligence core [4], etc. The MBD process must 
be continuously improved to keep up with the 
ever-increasing system scale and decreasing de-
livery times [5]. Model-based machine learning 
(ML) methods have been applied for, e.g., con-
stellation optimization in optical communications 
[6]. High-performance optical communications 
are supported by digital signal processing (DSP) 
implemented in large-scale integrated (LSI) cir-
cuitry [7], which requires an efficient development 
method as well as general processing units. 

MBD includes auto-coding, which converts a 
model into raw codes describing operations, 
avoiding manual coding efforts. On the other 
hand, extensive manual work is required when-
ever the implementable model, i.e., the model fed 
into the auto-coder, is revised, even if there is 
only a minor change in the model parameters. 
Furthermore, existing hardware codes are ren-
dered useless when the model is revised. 

Systems are characterized by functional met-
rics such as error vector magnitude (EVM) and bit 
error rate, and implementational metrics such as 
resource utilization, power consumption, and tim-
ing margin [8,9]. The multi-objective optimization 
of parameter combinations depends on the sys-
tem requirements. The resulting metrics of both 
types are estimated through the black-box be-
havior of the auto-coder and the synthesis and 
layout tools. 

Even with auto-coding, it is complicated to de-
sign a good system with processing units be-
cause of the usual development flow, i.e., first 
choosing upper-layer parameters, then con-
structing a specific implementable model, con-
verting the model to raw codes, and finally feed-
ing the codes to synthesis and layout tools. If one 
stage fails, we must revisit previous stages in the 

flow. This iterative process makes the develop-
ment inefficient. 

To fully enjoy the benefit of MBD, the imple-
mentable model should be a parametric one, 
where variable parameters enable the model to 
be reconfigured for various concrete use cases 
without remodeling. Once a parametric model is 
given, the parameters can be determined by 
black-box multi-objective optimization. 

In this work, we propose parametric and im-
plementable modeling of digital circuitry, com-
bined with black-box optimization of the model 
parameters according to the system require-
ments. As a proof of concept, the framework is 
successfully applied to DSP design in a coherent 
fiber-optical receiver, implemented on an FPGA. 

Modeling method 
Fig. 1 shows flowcharts of development methods. 
In the conventional method (a), the upper-layer 
design fixes the functions and parameters based 
on system requirements, followed by a specific 
modeling stage, which outputs an implementable 
model (I-model). Then, auto-coding converts the 
I-model to raw hardware description language 
(HDL) codes, and synthesis and layout are per-
formed to obtain the final circuitry specifications 
for implementation on a target processing unit. 
The required tools and expertise usually differ 
significantly between the upper-layer algorithmic 
design and the lower-layer implementation tasks, 

 
Fig. 1: Flowcharts of (a) conventional and (b) proposed de-

velopment methods. 
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which makes the determination of both algorith-
mic and implementational parameters an iterative 
process. On the other hand, in the proposed sim-
plified flowchart (b), a parametric and imple-
mentable model (PI-model) is constructed, which 
can be directly converted to a concrete model by 
assigning each parameter a specific value. 
Based on the PI-model, all algorithmic and imple-
mentation parameters are determined by auto-
matic optimization. The final circuitry specifica-
tion is obtained through auto-coding, synthesis, 
and layout (ACSL), which are iteratively per-
formed inside the automatic optimization step. In 
this work, we utilize Simulink as a modeling tool, 
taking care to avoid the predefined models in 
Simulink that cannot be converted to HDL codes. 

In our trial, the pilot-aided DSP chain in coher-
ent reception for 4, 16, 64, 256-ary quadrature 
amplitude modulation (QAM) [10,11] is exempli-
fied, whose block diagram is shown in Fig. 2. The 
eight functions F1–F8 are optimization targets 
and two external function blocks (dashed) serve 
to evaluate the communication quality. The input-
side external functions include an optical trans-
mitter for 2 subcarrier-multiplexed polarization-di-
vision-multiplexed 16-QAM at 2 Gsymbol/s, an 
optical channel with additive noise at a signal-to-
noise ratio of 50 dB, and analog-to-digital conver-
sion at 5 Gsample/s. The subcarrier spacing was 
2.4 GHz, the carrier frequency offset was 50 MHz, 
and the laser linewidth was ~10 kHz. The receiver 
(Rx)-side state controller monitors the clock, fre-
quency, and phase synchronization states and 
controls the corresponding functions. The output-
side external functions include frame synchroni-
zation and EVM calculation. In each function, the 
number of bits defining the amplitude resolution 
and the insertion density of delay flip-flops (usu-
ally put around complex processing such as mul-
tiplications) are described with variables. Both 
static and adaptive equalization are implemented 
by finite-impulse-response filters, where the num-
ber of taps and the number of parallel input sym-
bols are described with variables.  

The parameters to be automatically optimized 
are limited to the number of taps in F1 (𝑝1 ∈ {36, 
40, …, 72}) and the numbers of bits for amplitude 
levels in F1, F3, F5, F6, and F7 (𝑝2, …, 𝑝6 ∈ {10, 
11, …, 19}). These 6 variables with 10 cases 
each yield up to 106 possible combinations. 

Optimization method 
Even if we construct a PI-model and put the pa-
rameter determination into the hands of an opti-
mizer, the time to explore solution spaces based 
on the model simulation and ACSL can be pro-
hibitive. For example, a full model simulation 
costs 3 minutes, a full model ACSL takes 3 hours, 
and the number of solution candidates would 
usually be >10000 based on the PI-model. To ob-
tain a reasonable solution within a limited time, 
the number of candidates or the time per candi-
date needs to be reduced. To address this issue, 
first, we reduce the ACSL time by breaking the 
full model into component models and combining 
each ACSL results to approximate the full model 
ACSL. Second, we introduce a factorization ma-
chine with annealing (FMA) [12–15], which is a 
heuristic solver using ML. The annealing opti-
mizer minimizes the energy in systems described 
by the Ising model, a physics-based model with 
binary variables [16–19]. 

Fig. 3 shows the flowchart of the proposed op-
timization method. In step S1, reference infor-
mation is gathered to define the conditions for the 
optimization and approximation in S2. The ACSL 
with component models in S3 outputs compo-
nent-wise circuit qualities, which are converted to 
system-wide quality metrics according to refer-
ences in S1. These are used in S4 to obtain the 

full model’s estimated circuitry cost 𝐶̂c for all con-
sidered cases. The key optimization step S5 ex-
tracts 𝑁  potential solution candidates expected 

to minimize the estimated total cost 𝐶̂t = 𝐶̂c + 𝐶f, 
where 𝐶f denotes the function cost obtained from 
model simulations with Simulink. Step S6 per-
forms ACSL based on full system models to ob-
tain the actual circuitry cost 𝐶c for the cases ex-

tracted in S5. Since 𝐶c can differ from 𝐶̂c, there 
may be multiple solution candidates. Step S7, fi-
nally, chooses a solution from the candidates or 

 
Fig. 2: Exemplified block diagram with parametric modeling. 
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Fig. 3: Flowchart of the proposed optimization method, 
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initiates another iteration with different conditions.  

Both 𝐶c and 𝐶̂c are obtained from ACSL using 
Simulink for the auto-coding and Xilinx Vivado for 
the synthesis and layout. Step S5 employs FMA, 
whose acquisition function is 

𝑔(𝒙, 𝒘) = 𝑤0 + 〈𝒙, 𝒘〉 + ∑ 〈𝒗𝑖 , 𝒗𝑗〉𝑖<𝑗 𝑥𝑖𝑥𝑗 , (1) 

where 𝒙 denotes the feature vector with elements 
𝑥𝑖 ∈ {0,1} , 𝑤0  the global bias, 𝒘  the linear 

weights, and 𝒗 the latent vector. The second and 
third terms in the r.h.s. of (1) correspond to the 
magnetic field and the coupling coefficient in an 
annealer, respectively. The parameter combina-
tions to be considered are encoded into 𝒙. The 

ML determines 𝒘 and 𝒗, and an annealing/Ising 

solver then finds 𝒙 to minimize (1).  

Demonstration 
Based on the full PI-model with component mod-
els F𝑘 for 𝑘=1, …,  8 and parameters 𝑝1, …, 𝑝6 in 
Fig. 2, the black-box multi-objective optimization 
process in Fig. 3 was performed. The considered 
metrics 𝑙=1, …, 7 were 1) EVM as a functional 
quality, 2) the look-up table (LUT) size, 3) register 
size, 4) DSP size, 5) worst negative slack (WNS), 
6) worst hold slack (WHS), and 7) power con-
sumption. The full model’s value of metric 𝑙  is 

𝜒𝑙 = ∑ 𝜒𝑘𝑙𝑘  for 𝑙=1, 2, 3, 4, 7 and 𝜒𝑙 = min
𝑘

𝜒𝑘𝑙 for 

𝑙=5, 6, where 𝜒𝑘𝑙 is metric 𝑙 of component model 

𝑘. Differences between the metric values for the 
component models and the full model were com-
pensated by linear regression, i.e., 𝜒𝑙

′ = 𝑎𝑙𝜒𝑙 + 𝑏𝑙 
based on the results in S1 and S4. Defining the 
low-cost limit 𝛼𝑙, the acceptable limit 𝛽𝑙, the cost 

weight 𝜔𝑙, and the maximum cost  𝑀𝑙, the esti-

mated elemental costs for 𝑙=1, 2, 3, 4, 7 are 𝐶̂𝑙 =

max (0, 𝜔𝑙(𝜒𝑙
′ − 𝛼𝑙)/(𝛽𝑙 − 𝛼𝑙)) if 𝜒𝑙

′ ≤ 𝛽𝑙  and 𝐶̂𝑙 =

𝜔𝑙𝑀𝑙 otherwise. The ones or for 𝑙=5, 6 are 𝐶̂𝑙 =
max (0, 𝜔𝑙(𝛼𝑙 − 𝜒𝑙

′)/𝛼𝑙)  if 𝛽𝑙 ≤ 𝜒𝑙
′  and 𝐶̂𝑙 = 𝜔𝑙𝑀𝑙 

otherwise. The estimated total cost 𝐶̂t = ∑ 𝐶̂𝑙𝑙 . 
We followed the flowchart in Fig. 3, where S1 

gathered reference data in 48 cases, considering 
Xilinx Zynq ZCU208 as the target device. S2 de-
termined the parameters defining the problem (𝜔𝑙, 

𝛼𝑙, and 𝛽𝑙) and approximating the metrics (𝑎𝑙 and 
𝑏𝑙) as shown in Tab. 1, where 𝑀𝑙=100 for every 𝑙 
and 𝑁=20 in S5. In S3, there were 100 cases for 
F1, 10 cases for F3, F5, F6, and F7, and 1 case 
for F2, F4, and F8; 143 cases in total because of 

the component-wise ACSL. S4 computed 𝐶̂c for 
106 cases. S5 employed FMA with energy  

𝐸[𝒙, 𝑚] = −1/|1 − 𝐶̂b[𝒙, 𝑚]/𝐶̂t[𝒙, 𝑚]|
𝑑

, (2) 

where 𝑚  denotes the cumulative number of 

model simulations, 𝐶̂b  the estimated boundary 

value < 𝐶̂t , and 𝑑  a positive real value. Here, 

𝐶̂b[∙, 𝑚] = 0.9 ∙ min(𝐶̂t[∙, 𝑚 − 1]) ≥0 and 𝑑=1. The 

size of 𝒗 was set to 8. Fig. 4 shows the results of 
black-box optimization. The first ML was per-
formed from the dataset of initial sampling of 𝒙 
and the corresponding 𝐸 (filled circles in Fig. 4) in 

(2) with 𝑛 times model simulations. The annealer 

found 𝒙 in (1) as the next sample and (2) calcu-
lated its 𝐸. When each additional pair of 𝒙 and 𝐸 
were obtained, the ML and annealing were itera-
tively performed (open circles in Fig. 4). The 
model simulations in S5 to obtain 𝐶f dominated 

the processing time. The lowest costs 𝐶̂t for 
𝑛=800, 400, and 200 were 3.04, 2.95, and 2.93, 

respectively. In this trial, 𝑛=400 in Fig. 4 was effi-
cient in obtaining many samples having a low en-
ergy or cost with a small 𝑚. According to 𝑁=20 

cases chosen with the estimated cost 𝐶̂t in S5, 
S6 derived the actual cost 𝐶t (crosses in Fig. 4). 
While the actual timing margins obtained in S6 
are hard to estimate from the component models 
in S5, any nonnegative values are acceptable, 
where unacceptable cases can appear in S6. The 
other metrics in S6 agreed with the ones esti-
mated in S5. The lowest 𝐶t of 2.97 was obtained 

with parameters 𝑝1, …, 𝑝6=36, 15, 13, 11, 18, 12. 
The processing time for each step were ap-

proximately 150 hours in S1 (48 cases), 100 
hours in S3 (143 cases), 30–50 hours in S5 (600–
1000 cases), 60 hours in S6 (20 cases), and 340–
360 hours (about 2 weeks) in total.  

Conclusions 
We proposed the concept of parametric modeling 
with automatic optimization and applied to the de-
sign of the DSP chain on an FPGA in a coherent 
receiver. While brute-force optimization with the 
full model would require >300 years at maximum, 
the proposed heuristic solver with the approxima-
tion and FMA reduced the time to around 2 weeks. 

Potential future works could be an application 
of Bayesian optimization [20,21] and the use of 
large language models for generating HDL codes 
directly from the system requirements.  

Tab. 1: Parameters defining and approximating the problem. 

𝑙 metric 𝜔𝑙 𝛼𝑙 𝛽𝑙 𝑎𝑙 𝑏𝑙 

1 EVM 4.5 10 5.0 1 0 

2 LUT 1.0 4.0e5 7.5e4 2.5 –3.2e5 

3 Regs. 1.0 8.0e5 2.5e4 0.78 –1.0e4 

4 DSP 1.0 8.0e3 2.0e3 0.059 3.6e4 

5 WNS 0.25 0 0.1 1 0 

6 WHS 0.25 0 0.05 1 0 

7 Power 1.0 20 10 1.9 –38 

 
Fig. 4: Results of black-box optimization (𝒏=400): circles are 
estimated values in S5 and crosses are actual values in S6. 
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