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A B S T R A C T

Catalyst deactivation and regeneration are critical aspects of heavy oil hydroprocessing. This review provides a 
comprehensive overview of the factors contributing to catalyst deactivation, including coke formation, metal and 
other heteroelement poisoning, and active metal sintering. We delve into the mechanisms underlying these 
deactivation processes and discuss their impact on catalyst performance and reactor operations. Furthermore, the 
review explores various catalyst regeneration techniques, such as combustion and gasification techniques. We 
evaluate the effectiveness of these methods in removing coke and restoring catalyst activity. Additionally, we 
discuss strategies for mitigating coke formation, including the development of more coke-resistant catalysts and 
the addition of solvents and surfactants. Refineries can optimize their operations, improve product yields, and 
minimize environmental impact by understanding the causes of catalyst deactivation and the effectiveness of 
different regeneration techniques.

1. Introduction

The world’s energy supply remains heavily dependent on fossil fuels, 
which continue to dominate the global energy mix. Fossil fuels, 
including crude oil, natural gas, and coal, currently account for over 80 
% of global primary energy consumption. Crude oil, in particular, re
mains the most dominant source, contributing approximately 33 % of 
the world’s total energy demand [1]. This heavy reliance on fossil fuels 
has major implications for the environment, as their combustion is a 
primary contributor to greenhouse gas emissions and climate change. 
Despite the growth of renewable sources in recent years, fossil fuels still 
provide the majority of the world’s energy [2] (Fig. 1). Before the mid- 
1990s, the average API gravity of discovered crude oil was declining at a 
rate of 0.15 degrees per year. However, this rate has intensified since 
then, with a steeper decline of 0.22 degrees per year observed from 1995 
onwards [3,4]. This implies a progressive depletion of lighter, higher- 

quality crude oil reserves and a corresponding increase in heavier, 
more viscous crudes. This shift in crude oil characteristics has significant 
implications for the refining industry, as it necessitates adjustments in 
processing technologies and infrastructure to handle heavier feedstocks.

Heavy oil constitutes a significant portion of global petroleum re
serves, with Canada and Venezuela housing the majority [5]. Despite its 
abundance, processing heavy oil poses substantial challenges. Heavy oil, 
unlike lighter crude oils, is characterized by its high content of petro
leum macromolecules, including resins and asphaltenes. These compo
nents possess a complex aromatic structure and are often associated with 
impurities such as nitrogen, oxygen, sulfur, and heavy metals. This 
combination of factors makes heavy oil more challenging to refine into 
valuable fuels compared to lighter crudes. In contrast, they often un
dergo polycondensation, forming large, complex molecules that accu
mulate on equipment surfaces [6,7].

Carbon rejection is a primary method for upgrading heavy oil, 

Abbreviations: API, American Petroleum Institute gravity; APPI, Atmospheric pressure photoionization; HDAs, Hydrodeasphaltenes; HDM, Hydrodemetallization; 
HDN, Hydrodenitrogenation; HDT, Hydrotreating; HDY, Hydrogenation; MALDI, Matrix-assisted laser desorption/ionization; SARA, Saturates, aromatics, resins, and 
asphaltenes; SEC, Size exclusion chromatography; VPO, Vapor pressure osmometry; HDS, Hydrodesulfurization.
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encompassing processes like solvent deasphalting, coking, visbreaking, 
and catalytic cracking. While these methods offer simplicity and versa
tility, they often yield lower-quality products and limited carbon utili
zation [8,9]. In recent years, hydrogen addition technologies have 
gained prominence. By reacting heavy oil with hydrogen under high 
pressure and temperature in the presence of a catalyst [3,10], these 
processes achieve higher carbon utilization efficiency and produce 
valuable products. The added hydrogen can significantly improve 
product quality by reducing impurities like sulfur, nitrogen, and metals, 
resulting in cleaner and more desirable fuels.

Despite the advantages coming from hydroprocessing, it is sensitive 
to catalyst deactivation by coke or metal deposition. This carbonaceous 
and metal deposit can deactivate catalysts by blocking active sites, 
leading to reduced product yield and increased operational costs. 
Additionally, coke buildup can foul reactor internals, causing pressure 
drops and potential shutdowns [11,12]. The formation of coke also 
contributes to greenhouse gas emissions, exacerbating environmental 
concerns. To ensure the economic viability and long-term sustainability 
of heavy oil upgrading, effective coke mitigation as well as catalyst 
regeneration strategies are essential.

This review provides a comprehensive overview of heavy oil char
acterization, with a particular emphasis on the resin and asphaltene 
fractions. We delve into the physicochemical evolution of these fractions 
and their impact on catalyst deactivation. Asphaltenes and resins are 
known to contribute to coke and metal deposition, which can signifi
cantly impair catalyst performance. Furthermore, we explore various 
catalyst regeneration techniques designed to remove coke and restore 

catalyst activity. Finally, we discuss strategies for mitigating coke for
mation, a crucial aspect of optimizing heavy oil upgrading processes.

2. The physicochemical properties of resin and asphaltene in 
heavy oil

2.1. The composition of heavy oil

Heavy oils are the residual fractions that remain after atmospheric 
distillation, typically boiling above 350 ◦C and having a specific gravity 
greater than 0.934 [13]. Their complex molecular composition, char
acterized by low volatility, high polarity, and compositional diversity, 
makes them difficult to characterize at the molecular level [14]. How
ever, the interest in understanding the properties of heavy oils continues 
to grow, as upgrading processes for the bottom-of-the-barrel (BOB) 
fraction have become increasingly important for modern refining op
erations [15].

For decades, many different techniques have been developed for 
heavy oil characterization. While Gas Chromatography (GC) is primarily 
designed for analyzing lighter, volatile compounds, it can be employed 
to analyze heavier fractions of crude oil through specific techniques such 
as Pyrolysis-Gas Chromatography (Py-GC) and Thermal Desorption-Gas 
Chromatography (TD-GC). With Py-GC, the heavy oil samples are 
thermal decomposed into smaller and more volatile fragments. These 
fragments are analyzed separately using GC to give an insight into the 
molecular composition of the original heavy oil [16–18]. On the other 
hand, in TD-GC, heavy oil samples are thermally desorbed to release 

Fig. 1. The global power generation by sources [2] (Reuse with permission).
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volatile components. These volatiles are then carried by an inert gas into 
the GC column for separation and analysis [19]. Using different types of 
detectors such as total ion chromatogram (TIC), and extracted ion 
chromatogram (EIC), the structural information of heavy oil could be 
predicted. However, these methods involve thermal decomposition, 
which can lead to the formation of artificial products reducing the price 
of the method. Moreover, for very high molecular weight components, 
the information obtained may be limited.

Along with the chromatographic methods, spectroscopic techniques 
are also applied to characterize heavy oil. Nuclear Magnetic Resonance 
(NMR) provides detailed information about the molecular structure of 
heavy oil components, including the types of carbon and hydrogen 
atoms present [20,21]. Infrared (IR) spectroscopy can be used to identify 
functional groups and molecular structures [20,22]. Meanwhile, Mass 
Spectrometry (MS) can be used to determine the molecular weight and 
structure of individual compounds in heavy oil [23]. In contrast to GC 
methods, the spectroscopic techniques do not destruct the heavy oil 
molecular and the analysis is generally rapid making them suitable for 
real-time monitoring and control. However, the complex nature of 
heavy oil also leads to difficulty in accurate data interpretation. More
over, this technique might not be sensitive enough to detect trace 
components in samples.

The most common and applicable method used to investigate the 
physicochemical properties of this material is based on the polarity of its 
constituent compounds. Heavy oil is often categorized into saturate, 
aromatic, resin, and asphaltene (SARA). Different methods have been 
developed and used for the SARA analysis of crude oils. These methods 
include gravimetric adsorption chromatography, as outlined in ASTM 
standards D4124, D3279, D6560, and D2007, which involves separating 
the oil into saturates, aromatics, resins, and asphaltenes using adsor
bents such as n-heptane and clay-gel (Fig. 2) [24]. High-performance 
liquid chromatography (HPLC) and thin-layer chromatography-flame 
ionization detection (TLC-FID) are additional techniques used for SARA 
analysis [25–28].

Table 1 provides a SARA composition overview of various heavy oils 
from different geographical sources. The composition of heavy oils is 
heavily influenced by the geological properties of their reservoirs. A 
common characteristic of these heavy oils is their high content of resins 
and asphaltenes, as well as significant levels of heteroatoms such as 
sulfur and metal [29,30]. Resins and asphaltenes are generally the 
heaviest fractions in crude oils [24,31], and their high abundance in 
heavy oils often results in low API gravities, as shown in Table 1. 
Additionally, heavy oils tend to have substantial sulfur content, neces
sitating desulfurization processes to meet environmental fuel 

specifications [32].

2.2. Saturated compounds in heavy oil

Saturated hydrocarbons represent a significant fraction of petroleum 
crude oil and serve as valuable components in transportation fuels and 
petrochemical feedstocks, such as lubricant oil production. While the 
molecular composition of saturated hydrocarbons in distillate fractions 
has been extensively studied [45–47], the characterization of high- 
boiling-point saturated hydrocarbons in heavy oil remains challenging 
due to limitations in analytical techniques. To overcome these chal
lenges, researchers have employed advanced techniques like laser- 
induced acoustic desorption (LIAD) coupled with mass spectrometry. 
Campbell et al. [48,49] and Duan et al. [50,51] utilized LIAD-CI MS 
under vacuum conditions with cyclopentadienyl cobalt radical cation or 
ligated water cluster of Mn + [ClMn(H2O)+] to analyze saturated hy
drocarbons. This approach enabled the vaporization and ionization of 
large and highly branched molecules without significant fragmentation. 
Nyadong et al. [52] further refined the technique by using O2 as a car
rier/reagent gas. This method facilitated the ionization of straight-chain, 
branched, and cycloalkanes with minimal fragmentation. The resulting 
mass spectra predominantly showed [M-H] + ions for straight-chain and 
branched alkanes, and M+ ions for cycloalkanes at lower capillary 
temperatures (<100 ◦C). At higher temperatures (>200 ◦C), [M-H] +
ions became dominant for cycloalkanes. The atmospheric pressure 
operation of this CI method enables easy coupling with FT-ICR MS.

Zhou et al. [53] introduced a novel chemical derivatization method, 
Ruthenium-Ion-Catalyzed Oxidation (RICO), to analyze saturated hy
drocarbons in heavy petroleum fractions using ESI FT-ICR MS. This 
approach transforms saturates into alcohols, which can be ionized by 
ESI. Specifically, branched paraffins and naphthenes with tertiary C–H 
bonds are oxidized to alcohols, while n-paraffins are converted to ke
tones and subsequently reduced to alcohols using LiAlH4. This deriva
tization strategy enables the differentiation between n-paraffins and 
isoparaffins. By using negative-ion ESI, the method simplifies mass 
spectra, generating only [M-H]- ions. This simplification, coupled with 
the continuous and stable ion stream provided by ESI, improves the 
signal-to-noise ratio and detection dynamic range, facilitating semi- 
quantitative analysis of heavy saturates. In another approach, Zhou 
et al. [54] employed a ruthenium-ion-catalyzed oxidation (RICO) to 
convert saturated hydrocarbons in vacuum residue petroleum fractions 
into ketones (20 %) and alcohols (76 %). Subsequently, these oxygen
ated compounds were analyzed using ESI FT-ICR MS. The results 
revealed the presence of naphthenes with up to 10 rings and carbon 
numbers approaching 100 in the vacuum residue samples. H. Muller and 
Q. Saleem [55] recently investigated saturated compounds in heavy 
petroleum. Their study revealed that saturated compounds comprise 
approximately 60 wt% of the lightest vacuum gas oil (VGO) sample, 
while this proportion decreases to around 7.6 wt% in vacuum residue 
(VR). The average number of naphthenic rings in saturated molecules 
ranges from 1 to 2 in light VGO to 6 in VR, with some compounds 
containing up to 12 naphthenic rings.

In summary, saturated hydrocarbons constitute a significant portion 
of heavy oil, particularly in lighter fractions like vacuum gas oil (VGO). 
As the boiling point increases, the proportion of saturated compounds 
decreases, and the complexity of their molecular structures increases. In 
lighter VGO, saturated compounds typically contain 1–2 naphthenic 
rings, while heavier fractions, such as vacuum residue, may contain up 
to 12 naphthenic rings. Despite their high molecular weight, some of 
these polynaphthenic compounds exhibit compact structures with most 
carbon atoms residing within the rings.

2.3. Aromatic compounds in heavy oil

All the SARA fraction in heavy oil was investigated by P.S. Ferreira 
et al. [56]. The monocyclic, bicyclic, tricyclic, and tetracyclic 

Fig. 2. The saturate, aromatic, resin, and asphaltenes separation from heavy oil 
[24] (Reused with permission).
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compounds were found to be the main components in the aromatic 
fraction (Fig. 3). E. Kim et al. [57] used (+) APPI FT-ICR Mass Spectra 
and estimated the average molecular weight of aromatic compounds 
about 470–483 Da. Moreover, in contrast with the saturated fraction, the 
S1 class represents the compounds containing one sulfur atom that was 
abundant in the aromatic fraction. Meanwhile, it was almost nitrogen- 
free in this fraction. In another study, S. Akmaz et al. employed a 
similar mass spectra technique and found a much lower average mo
lecular weight of aromatic compounds of 284 Da. The inconsistency in 
average molecular weight values reported by the two researches might 
come from the difference in the origin of oil. Nevertheless, they all 
agreed that aromatic fractions were nitrogen-free but contained a sig
nificant amount of sulfur.

2.4. Asphaltenes in heavy oil

Asphaltenes, a key component of heavy oils, are characterized by 
their unique solubility behavior. They are insoluble in light aliphatic 
solvents like n-C5H12 or n-C7H14 but readily dissolve in aromatic sol
vents like toluene or benzene [58–60]. This solubility property distin
guishes asphaltenes from other oil constituents and plays a significant 
role in their interactions during refining processes. The presence and 
quantity of asphaltenes in heavy oils have been directly linked to the 
generation of high-molecular-weight carbonaceous compounds, often 
referred to as coke, during upgrading processes [61]. However, the 
specific chemical composition and structure of asphaltenes also influ
ence their propensity to form coke [62]. Understanding the nature of 
asphaltenes is crucial for developing effective strategies to mitigate coke 
formation and optimize heavy oil refining operations.

Asphaltenes are known to possess complex molecular structures, 
typically comprising one or more polyaromatic core units connected by 
aliphatic linkages. These core molecular structures often include a range 

of different atoms beyond just carbon and hydrogen, such as sulfur, 
nitrogen, oxygen, and various metal elements [63]. The intricate and 
diverse nature of asphaltene chemistry, as well as their tendency to self- 
associate into larger aggregates, presents significant challenges in the 
study and understanding of asphaltenes. The inherent complexity of 
asphaltene structures, which incorporate a variety of heteroatoms, 
contributes to the many difficulties and ambiguities encountered in the 
field of asphaltene science. This complexity poses challenges when 
investigating the physical and chemical transformations that occur 
during the upgrading of heavy oils and bitumen. The properties of 
asphaltene were summarized in detail elsewhere [64,65].

The molecular weight of asphaltenes can vary significantly, ranging 
from a few hundred to several thousand Daltons, depending on the 
origin of the oil and the measurement technique employed. This wide 
range reflects the complex and diverse nature of asphaltene structures. 
Vapor pressure osmometry (VPO) analyses have yielded molecular 
weight estimates for an asphaltene molecule of 700 – 2000 Da. Mean
while, the aggregated asphaltenes have been found to have molecular 
weights between 2000 and 30,000 Da [66–71]. These findings under
score the tendency of asphaltenes to self-associate into larger supra
molecular structures. Other analytical methods have provided similar, 
though sometimes more narrow, molecular weight distributions for 
asphaltenes. Size exclusion chromatography (SEC) has specified an 
average asphaltenes MW of around 1700 Da [69]. Matrix-assisted laser 
desorption/ionization (MALDI) mass spectrometry has produced values 
within 786–1280 Da range [72]. Atmospheric pressure photoionization 
(APPI) has yielded molecular weights between 400 and 900 Da [73], 
while fluorescence depolarization (FD) studies have suggested asphal
tene molecular weights of 500–1000 Da [74].

The molecular structure of asphaltenes is a subject of significant 
debate and research in the field of petroleum science. Two primary 
conceptual frameworks have emerged to model asphaltene structures. 
The continental model depicts asphaltenes as single large aromatic core 
units with aliphatic side chains [75]. In contrast, the archipelago envi
sions asphaltenes as comprising multiple aromatic core units connected 
by bridging alkane chains [76,77]. While some studies have suggested 
that both continental and archipelago-type structures may coexist in 
heavy oils and bitumen, more recent evidence indicates that continental 
model structures are likely the predominant asphaltene arrangement 
[78–82]. The Yen-Mullins theory (Fig. 4), proposed in 2011, has become 
the most widely accepted model for asphaltene molecular structure 
[83]. Key features of this model include: 

• Most asphaltene molecules have a continental structure, with a dis
tribution ranging between 500 and 1000 Da and an average weight 
of 700 Da.

• In a typical molecule, asphaltene consists of one polycyclic aromatic 
core having seven fused rings on average.

Table 1 
The basic properties of different heavy oils.

Oil origin Saturate 
(wt%)

Aromatic 
(wt%)

Resin 
(wt%)

Asphaltene 
(wt%)

Metals 
(ppm)

Sulfur 
(wt%)

API Ref

Lukqin Oilfield heavy oil 34.66 25.38 36.71 3.25 – 0.17 16.7 [33]
Liaohe super heavy oil – – 26.0 43.2 – – 12.5 [34]
Tatarstan heavy crude oil 37.91 38.98 15.36 7.75 490.0 4.61 13.35 [35]
Ashalcha heavy crude oil 28.1 31.3 34.3 6.3 – – 13.94 [36]
Heavy crude oil 28.79 44.32 20.98 5.91 43.3 4.61 13.35 [37]
Bohai oilfield heavy oil 31.37 24.83 41.32 2.48 – 0.79 14.7 [38]
Dead crude oil 27.79 41.19 17.93 13.09 – 6.23 19.0 [39]
Zyuzeevskoye heavy oil 24.6 43.5 21.5 10.4 – 4.53 17.9 [40]
Liaohe heavy oil 21.4 25.7 42.8 10.1 – 0.02 10.2 [41]
Ashal’cha heavy oil 28.79 44.32 20.98 5.91 – 4.52 14.10 [42]
Changqing vacuum residue 48.84 21.40 23.80 5.33 380.0 0.44 17.8 [43]
Ultra-heavy oil 13.5 22.0 15.5 49.0 – 1.3 8.6 [44]

Fig. 3. GCxGC/MS chromatogram of the aromatic fraction [56] (Reused 
with permission).
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• Asphaltenes in heavy oils exist in three forms: individual molecules, 
nanoaggregates (small clusters of ~6 molecules), and larger clusters 
(containing ~8 nanoaggregates).

2.5. Resin in heavy oil

Resins represent the second heaviest fraction in heavy oils, typically 
comprising 20–40 % of the total weight. In contrast to the extensive 
research conducted on asphaltenes, the scientific understanding of 
resins remains relatively limited. Despite this, resins are known to play a 
crucial role in maintaining the stability of petroleum products. They 
prevent the phase separation of asphaltene components during oil 
exploration and refinery [24]. A study by P.M. Spiecker et al. [84] 
examined the interactions between resins and asphaltenes. Their find
ings indicate that the addition of resins disrupts the π–π and polar 
bonding interactions between asphaltene monomers. This, in turn, re
duces the size of asphaltene aggregates. Interestingly, the resin- 
asphaltene interactions are preferred over asphaltene-asphaltene in
teractions, but only when the number of resin molecules per micelle 
exceeds the number of asphaltene molecules per micelle. This suggests a 
delicate balance in the resin-asphaltene relationship and its influence on 
the stability of the petroleum system. Moreover, this dynamic suggests 
the possibility of the resin molecules disrupting the aggregation of 
asphaltene molecules [85,86]. The colloidal suspension of asphaltene in 
resin and other fractions present in heavy oil is illustrated in Fig. 5.

Petroleum resins and asphaltenes share some common structural 
characteristics. Both contain similar elements in their carbon skeleton 
and aromatic heterocyclic compounds with aliphatic substituents 
[87,88]. However, there are notable differences between the two. Pe
troleum resins generally have a lower average molecular weight 
compared to asphaltenes isolated from the same oil sources [83,88]. 
Typically, petroleum resins have a molecular weight range of 360–400 
Da [89], which is significantly lower than the 700–2000 Da range 
observed for asphaltenes [66–71]. Additionally, the hydrogen to carbon 

(H/C) ratios of resins, which vary from 1.2 to 1.7, are on average higher 
than the 0.9 to 1.2 range observed for asphaltenes [90]. This suggests 
that resins have a lower degree of aromaticity compared to the asphal
tene fraction. Furthermore, the heteroatom is more condensed in 
asphaltenes than in resins. Asphaltenes often contain 0.4–1.0 % nitrogen 
and 4.6–8.3 % sulfur, whereas resins have lower concentrations of 
0.2–0.5 % nitrogen and 0.4–5.1 % sulfur [91].

Recent solid-state 13C NMR analysis by T. Liang et al. has provided 
insights into the chemical structure of petroleum resins [92]. The results 
indicate that the resin structure is composed of an aromatic core with 
short aliphatic chains and cycloalkanes attached at the periphery. The 
primary skeleton of the resin molecule is carbon‑hydrogen, with the 
inclusion of three types of heteroatoms: nitrogen, oxygen, and sulfur. 
Interestingly, oxygen is found to be the dominant heteroatom present. 
Examination of the functional groups reveals that methyl, methylene, 
and methine groups have the highest relative proportions. This suggests 
that the average resin structure contains short chains and cycloalkanes, 
rather than long aliphatic chains. The relative proportion of aromatic 
carbon groups is relatively low, accounting for less than a quarter of the 
total structure. Additionally, the aromatic cluster within the resin 
structure exhibits a high degree of condensation, implying a low number 
of protonated aromatic carbons in this region. Based on the collective 
findings from this research, a 2D molecular structure of resin has been 
proposed and is depicted in Fig. 6. This detailed characterization of the 
resin’s chemical composition and structural features provides valuable 
insights into the nature of these important petroleum components.

3. Catalytic hydrocracking reaction mechanism

The general hydrocracking reaction mechanism is summarized in 
Fig. 7 [93]. Hydrocracking transforms heavy oil molecules into smaller, 
more valuable products through a combination of thermal and catalytic 
cracking reactions. These cracking reactions, initiated by both heat and 
hydrogen radicals, occur at a slower rate compared to thermal cracking 

Fig. 4. The asphaltene structure in heavy oil proposed by Mullins [83] (Reuse with permission).

Fig. 5. The resin-asphaltene colloidal structure in heavy oil [85] (Reused with permission).

P.T.H. Pham et al.                                                                                                                                                                                                                              Fuel Processing Technology 267 (2025) 108170 

5 



alone, allowing for better control and preventing excessive breakdown 
of the oil molecules [94]. Also, the presence of a hydrogenation catalyst 
provides an abundant environment of hydrogen radicals. It saturates 
aromatic rings, particularly those with four or more rings, and removes 
heteroatoms through hydrodemetallization [95], hydrodesulfurization 
[32], etc. The number of rings in a molecule also influences the ease of 
heteroatom removal. Molecules with a higher number of rings present 
greater steric hindrance, making it more difficult to remove the het
eroatoms [94]. Additionally, hydrogen radical acts as a radical scav
enger to terminate polycondensation of aromatic ring cores resulting in 
a much lower yield of coke [96,97].

4. Catalyst in heavy oil hydrocracking

Catalysts are indispensable in the conversion and upgrading of heavy 
oils. It often consists of the hydrogenation of active metals doped on a 
carrier such as alumina, silica, titania, etc., or a mixture of them. The 
roles of support are not only to disperse HDY metal but also to promote 
an acidic site where cracking reactions are induced. Since heavy oil is a 
mixture of thousands of petroleum macromolecules, the upgrading re
actions largely depend on the mass transfer of these molecules into the 
pore. Hence, pore size and support composition are the two most 
important factors determining process efficiency [98–101]. The 
hydrogenation-active metals, typically transition metals like molybde
num, nickel, or cobalt, promote the dissociation of H2 molecules into H* 
radicals [102]. These H* act as a radical scavenger to stabilize the heavy 
hydrocarbon radical generated from cracking reaction, prohibit the core 
polycondensation, and promote essential reactions for the impurity re
movals of sulfur (hydrodesulfurization - HDS), nitrogen (hydro
denitrogenation - HDN), and metals (hydrodemetallization - HDM). For 
the effective conversion of heavy oils into valuable light products, a 
well-balanced combination of cracking and hydrogenation reactions is 
required. The general composition of a multi-functional catalyst used in 
heavy oil upgrading is shown in Fig. 8 [103]. In this section, the struc
tural effects of active metal and support on heavy oil hydro-upgrading 
will be examined.

4.1. The structure of the catalytic active site

Catalysts play a crucial role in promoting hydrogenation, which is 
essential for increasing liquid hydrocarbon yield and suppressing coke 
formation. Platinum-group metals like platinum and palladium are 
renowned for their excellent hydrogenation capabilities and are widely 
used in various catalytic processes [104]. However, these noble metals 
are susceptible to sulfur poisoning [105], particularly in the presence of 
sulfur-rich heavy oil feedstocks. To address this limitation, transition 

Fig. 6. The typical model for a 2D structure and the simulation 13C NMR 
spectrum of petroleum resin [92] (Reused with permission).

Fig. 7. General concept of heavy oil hydrocracking [93] (Reuse with permission).

Fig. 8. The general composition of a heterogeneous catalyst for heavy oil hy
drocracking [103] (Reused with permission).

P.T.H. Pham et al.                                                                                                                                                                                                                              Fuel Processing Technology 267 (2025) 108170 

6 



metals such as molybdenum (Mo), nickel (Ni), cobalt (Co), and tungsten 
(W) have emerged as viable alternatives. Sulfides of Mo and W are 
commonly employed as primary catalysts, while Ni and Co are often 
used as promoters to enhance hydrogenation and hydrotreating activ
ities, including hydrodenitrogenation (HDN), hydrodesulfurization 
(HDS), and hydrodemetallization (HDM) [106–108].

Daage and Chianelli [102] proposed the Rim-Edge model to describe 
the structure and reactivity of molybdenum sulfide catalysts (Fig. 9 a). 
This model suggests that hydrogenation reactions primarily occur at the 
Rim sites, where the coordination geometry allows for the adsorption of 
reactants. The Basal planes, with their six-membered ring structure, are 
sterically hindered and less reactive. Iwata et al. [109] further investi
gated the hydrogenation activity of MoS2 catalysts for heavy oil 
hydroprocessing. Their findings corroborated the importance of Rim 
sites, confirming that the number of active sites is directly related to the 
abundance of Rim sites in the catalyst structure. To enhance catalytic 
activity, it is crucial to prevent the aggregation and growth of MoS2, 
thereby maximizing the number of exposed Rim sites.

The Rim-Edge model, while influential, has limitations in explaining 
the behavior of complex catalysts, especially those containing multiple 
metals [111]. Additionally, the model’s focus on macroscopic properties 
may not fully account for atomic-level variations in catalyst structure, 
which can significantly impact catalytic performance [112]. A more 
recent model proposed by J.V. Lauritsen et al. [113] introduces the 
concept of Brim and CUS sites, visualized in Fig. 9b [110]. CUS sites, 
characterized by missing sulfur atoms at edges or corners, exhibit Lewis 
acid properties and attract reactants. In contrast, Brim sites, which do 
not require unsaturation, possess metallic characteristics and facilitate 
the formation of thiolate intermediates (R-S). These intermediates are 
highly reactive and readily undergo hydrogenation. During the heavy oil 
hydroprocessing, the hydrogenation and C–C, C-M (M represented the 
heteroelements of sulfur, oxygen, nitrogen, and metals) bond cleavage 
parallelly occurs over Brim and CUS sites.

4.2. The structural and properties of support

Catalyst supports play a crucial role in determining the overall per
formance of a catalyst. They provide a physical framework for the active 
metal or metal oxide components, offering a large surface area that can 
accommodate numerous active sites. This increased surface area en
hances catalytic activity generally. Additionally, the porous structure of 
the support facilitates mass transfer, allowing reactants and products to 
readily access the active sites. Therefore, the properties of the support, 
including acidity/ basicity, surface area, and porosity, are critical factors 
influencing the performance of heterogeneous catalysts, alongside the 
chemical composition of the active phase.

Acidic sites on the catalyst promote cracking activity. Materials like 
alumina, crystalline zeolites, amorphous silica-alumina, and their mix
tures, often exhibit a high acidity in both Lewis and Brønsted acid sites 

and are commonly used as catalyst supports [114]. These materials, 
particularly zeolites with their well-defined microporous structure, offer 
high surface areas and strong acidity, leading to the optimizing yield of 
high octane gasoline components, i.e. selective cracking of complex 
crude oil molecules [115]. However, the overuse of acidity sites, espe
cially Brønsted acid sites, in a catalyst led to an overcracking reaction, 
generated a high yield of low-valuable gas as well as triggered coke 
deposition [116,117].

It is crucial to emphasize that heavy oil upgrading involves the 
processing of complex petroleum macromolecular, especially asphal
tene. Consequently, mass transfer plays a pivotal role in the efficiency of 
these processes. To enhance the diffusion of large asphaltene molecules, 
the development of porous-shaped supports or catalysts with macro
pores (>100 nm) is a promising approach. However, it is crucial to 
maintain a balance, as an excessive number of macropores can 
compromise the structural integrity of the catalyst particles [118]. 
Mesoporous alumina, with its interconnected or isolated network 
structure, offers an ideal support material. It combines the crystalline 
properties of alumina with a well-defined porous structure [119]. Cat
alysts with pore sizes ranging from 7 to 20 nm have demonstrated su
perior activity in hydrocracking applications compared to those with 
smaller pores (3–7 nm), as reported for Athabasca oil sand bitumen 
[120]. In particular, while microporous and mesoporous catalysts are 
effective for sulfur and nitrogen removal, microporous catalysts are 
particularly well-suited for hydrodemetallization (HDM) and hydro
deasphaltenization (HDAs) due to their ability to accommodate larger 
molecules [121]. M.S. Rana et al. [122] investigated the impact of 
alumina pore diameter on heavy oil hydrotreating (Fig. 10). The results 

Fig. 9. The Rim-Edge (a) and Brim-CUS (b) model theories for the catalyst active site in heavy oil hydroprocessing [102,110] (Reused with permission).

Fig. 10. The effect of average pore diameter on the HDM, HDS, and HDAs 
efficiencies in heavy oil hydroprocessing [121] (Reused with permission from 
Elsevier, Copyright© 2004).
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indicated a positive correlation between pore size and HDM and HDAs 
efficiency, suggesting that larger pores facilitate the diffusion of heavy 
molecules to the active sites. Conversely, HDS efficiency was found to be 
more dependent on the dispersion of metal active sites rather than pore 
size.

In summary, the catalyst is the most important factor in heavy oil 
hydroprocessing. The selection of catalyst needs to be carefully made 
based on the properties of feedstock and, the goals of the process. The 
properties of active metal and support directly govern process efficiency. 
The detail for the development of hydroprocessing catalysts was sys
tematically summarized by R. Prajapati et al. [123] and the most recent 
research on catalysts for heavy oil upgrading is shown in Table 2.

5. Catalyst deactivation in heavy oil upgrading

5.1. Catalyst deactivation by coke and metal depositions

The most common reason for catalyst decay in heavy oil upgrading is 
because of the formation and deposition of heavy carbonaceous mate
rial, so-called coke, over the catalytic active center. In the heavy oil 
system, asphaltene is often considered a solute since it is well-dispersed 
in the maltenes- a comprising of saturate, aromatic, and resin [81,85]. 
Before the existence of coke, the asphaltene content was found to in
crease at the beginning of upgrading [135,136]. It might be due to the 
polycondensation of resin which has been observed elsewhere 
[135,137,138]. Moreover, it has been reported that the consistent 
growing trends of the non-polar fractions such as naphtha and middle 
distillate during heavy oil hydrocracking regardless of the catalyst 
[139]. At the same time, the average alkyl chain lengths in asphaltene 
were decreased and aromaticity was increased [140,141]. The unfla
vored environment leads to an increase in the size of asphaltene 
agglomeration [142] and at a certain point, asphaltene breaks the 
compatibility state and then triggers the sedimentation. Research on the 
evolution of this sediment has pointed out that the solubility of this solid 
in toluene or tetrahydrofuran was decreased following the extended 
reaction time [143,144]. It indicates the transformation of coke from 
soft form which is asphaltene precipitate into the hard-coke as the re
action prolonged. The hypothesis for the chemical transformation of 
asphaltene molecular was proposed in Fig. 11 [145].

A mechanistic model for coke formation in heavy oil upgrading was 
proposed in 2007, focusing on the asphaltene structure as a “pedant-core 
building block” (Fig. 12) [146]. This model posits that asphaltenes 
consist of an aromatic core surrounded by various alkyl and aromatic 
side chains. During thermal upgrading, the side chains undergo 
cracking, leading to the generation of heavy radicals [147]. The con
verted asphaltene exhibits a high aromaticity and gradually becomes 
incompatible with the oil mixture. It leads to phase separation and 
subsequent polycondensation of the aromatic cores, ultimately forming 
coke. This mechanism is supported by observations made using pyrene 
as a model compound [148].

D.V. Pham et al. [149] studied the catalytic hydrocracking of heavy 
oil using feedstocks containing different amounts of asphaltene of 
10.4–96.3 wt%. The content of asphaltene was found directly related to 
the stability of feedstock. During the slurry phase hydrocracking pro
cess, the unstable feedstock caused serious coke formation and limited 
the yield of desirable fractions such as VGO and middle distillate (MD), 
in agreement with the previous literature [150]. However, it was also 
found that the asphaltene content was not well correlated to the coke 
formation [151]. The quality of asphaltene is more critical for the con
trolling of coke. In particular, asphaltene having a higher aromaticity 
and degree of aromatic ring condensation resulted in a higher yield of 
coke [152–154].

The addition of hydrogen and an HDY catalyst to heavy oil upgrading 
processes can significantly improve asphaltene stability [155,156]. This 
delayed the asphaltene phase separation and led to a substantial 
reduction in coke formation compared to thermal cracking [157]. The 

size of the catalyst is also an important factor affecting the formation of 
coke. A submicron or micron in size could interfere with the formation 
and growth of coke. Meanwhile, the size which is bigger than asphaltene 
mesophase, in contrast, plays the role of a nucleation site for the 
agglomeration of asphaltene, hence resulting in a high coke yield during 
the upgrading process (Fig. 13) [158].

Using a different approach, X. Zhang and J. M. Shaw conducted a 
study on the impact of multiphase behavior on coke formation during 
low-temperature heavy oil hydroprocessing. The reactions were carried 
out using different mixtures of Athabasca vacuum bottoms (ABVB), 
decane, and hydrogen. During the upgrading, multiple phases including 
vapor (V), low-density liquid (L1), and high-density liquid (L2) were 
observed. The denser liquid phase was found to be associated with the 
coke formation [159]. It suggests that a mixture of heavy feedstock with 
a solvent can inhibit coke and enhance upgrading efficiency [160].

Heavy oil often contains significant amounts of various metals such 
as nickel, vanadium, and iron [95]. These heavy metals can accumulate 
on the surface of the catalyst used in the hydroprocessing of heavy oil. 
The presence of these deposited metals can inhibit the interaction be
tween the reactants and the active sites on the catalyst, leading to 
serious deactivation of the catalyst. A study by Kohli et al. [137] 
investigated the loss in HDT catalyst activity, focusing on the effects of 
metal deposition from the asphaltenes and resins. The researchers used 
High-Resolution Transmission Electron Microscopy (HR-TEM) to 
analyze fresh, spent, and regenerated catalyst samples (Fig. 14). Before 
the reaction, the catalyst posed a clear multilayer of 3–4 layers structure 
of the active MoS2 species, with an average length of 3.26 nm. However, 
it was difficult to observe the active species in the spent sample due to 
the extensive deposition of heavy metals and coke. In contrast, the re
generated catalyst exhibited two-layered slabs of the MoS2 active spe
cies, with an average length of 2.81 nm. These changes in the catalyst 
structure, caused by the deposition of nickel (Ni) and vanadium (V), led 
to significant differences in the HDS activity of the catalysts, with the 
order being: regenerated < spent < fresh catalysts [161]. The presence 
of these heavy metals in the catalyst can also increase the olefin fraction 
through dehydrogenation, and lead to higher coke yields during heavy 
oil upgrading [162].

5.2. Catalyst deactivation by other heteroelements and sintering

Besides coke and metal deposition, nitrogen compounds present in 
heavy oil can also deactivate hydroprocessing catalysts [163]. These 
nitrogen compounds, primarily consisting of 5- and 6-membered het
eroaromatic rings and anilines, often exhibit a high basicity [164]. This 
high basicity can hinder the HDS process by competitively adsorbing 
onto active catalyst sites, reducing their availability for sulfur removal 
[165,166]. A study by R. E. Roncolatto et al. [167] on spent FCC cata
lysts revealed that nitrogen compounds tend to accumulate on the 
external surface of the catalyst, while coke formation is more wide
spread. Removing nitrogen compounds through air combustion requires 
harsher conditions of a high temperature and a long resident time 
compared to coke, indicating a stronger bond between nitrogen com
pounds and the active sites.

The inhibition effect on catalyst performance has also been proven to 
depend on the structural properties of the sulfur compounds in the oil. A 
study by Kwak et al. [168] on the deactivation of CoMoS/Al2O3 catalysts 
revealed that in HDS of dibenzothiophene (DBT), the HYD pathway was 
more hindered by the presence of nitrogen compounds than the direct 
desulfurization (DDS) pathway. However, an opposite phenomenon was 
found in the HDS of 4-methyl dibenzothiophene (4-MDBT) or 4,6- 
dimethyl dibenzothiophene (4,6-DMDBT), where the direct desulfur
ization (DDS) pathway was more sensitive with nitrogen-containing 
compound than the HYD pathway. These differences are attributed to 
the varying degrees of steric hindrance to the C-S-C bond caused by the 
methyl groups connected to the ring structure. The removal of nitrogen 
from oil has been reviewed in detail by Prado et al. [169].
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Table 2 
Recent studies on catalysts for heavy oil hydroprocessing.

Heavy oil Operating 
conditions

Catalyst Conversion 
(wt%)

Results Advantages and limitations of catalyst Ref

Vacuum residue 
(9.8 wt% 
asphaltene)

130 bar H2, 
440 ◦C, 2 h Mesoporous Fe2O3

Vacuum 
residue 
conversion of 
74.1–80.3 %.

The acidity and mesoporous 
structure of the catalyst directly 
govern vacuum residue 
conversion. 
The undesirable product yield of 
coke and gas was less in the 
presence of abundant 
hydrogenation active sites.

Advantage: A catalyst based on iron oxide 
has a cost-effective advantage. 
Disadvantage: Iron oxide or iron sulfide is 
not a good hydrogenation catalyst leading 
to the formation of a large amount of gas 
and relatively high coke fractions.

[124]

Vacuum residue 
(10.7 wt% 
Conradson 
carbon residue)

430 ◦C, H2 / oil 
of 800 (v/v), 3 
h.

MoS2/Al2O3-SiO2 with 
different ratios of Al to 
Si

Vacuum 
residue 
conversion of 
over 75 %.

As the Al/Si ratio increases, the 
number of Lewis acid sites rises 
while Brønsted acid sites decline. 
Catalysts with lower Al/Si ratios 
tend to have larger surface areas 
and higher mesoporous volumes, 
which can enhance active site 
accessibility and dispersion. 
The appropriate presence of 
hydrogenation and acid sites 
resulted in an effective upgrade.

Advantage: Catalyst preparation was 
simple using common precursors of Al 
(NO3)3⋅9H2O, (NH4)6Mo7O24⋅4H2O, 
sodium silicate and NH4OH. 
Disadvantage: Feedstock conversion is 
quite low.

[125]

Maya heavy crude 
(33.6 wt% 
asphaltenes)

185 bar H2, 
425 ◦C, 1 h

Functionalized carbon 
nanofibers (CNF) coated 
with Ni-decorated MoS2 

slabs

Asphaltene 
conversion of 
73 %

Liquid yield ~60 wt%, coke yield 
1.2 wt%, HDM and HDS >80 wt%

Advantage: catalysts with a high HDY 
activity result in excellent HDS and HDM 
with a low yield of coke. 
Limitation: The synthesis requires using 
large amounts of corrosive chemicals of 
nitric and sulfuric acids.

[126]

Aguacate heavy 
crude 
(23.3 wt% 
asphaltenes)

70 bar H2, 
310–370 ◦C, 72 
h.

Nano‑nickel dispersed 
in PEG300

Residue 
conversion of 
90.88 % at 
370C, 72 h

Reaction rates were low at a 
temperature range of 310–330 ◦C. 
Hydrogen solubility was 
enhanced by the addition of 
PEG300. 
Hydrogen dissociation was found 
over the (111) lattice of the 
dispersed nickel nanoparticles.

Advantage: The catalyst showed 
promising activity with non-detectable 
coke formation. 
Limitation: The operating temperature 
applied in this study is quite low leading 
to a very long reaction time to achieve an 
adequate conversion of residue. The 
catalyst synthesis requires expensive 
chemicals of nickel(II) acetate 
tetrahydrate and sodium borohydride.

[97]

Atmospheric 
residues 
(6.65–11.49 wt 
% asphaltenes)

Fixed bed 
reactors, 
370 ◦C, 135 bar 
H2.

NiMo/Al2O3 

(pore size 13–30 nm)

Asphaltene 
conversion of 
70–90 %

Catalysts with a large pore size 
flavors the removal of metals and 
asphaltene. 
The hydroprocessing efficiency 
showed a huge dependence on 
asphaltene and nitrogen contents 
in the feedstock.

Advantage: Catalyst is a commercial type. 
Limitation: The deactivations by coke and 
metal deposit were found very severe.

[127]

Vacuum residue 
(33.0 wt% 
asphaltene)

190 bar H2, 
400–450 ◦C, 1 h NiMo/Al2O3

Asphaltene 
conversion of 
50.0–80.3 %

The loading of metal was 
proportional to HDA. 
The regenerated catalyst showed 
better HDAs than the fresh 
catalyst.

Advantage: Catalyst is a commercial type. 
Limitation: Low catalyst activity and 
stability.

[128]

Heavy crude oil 
(35.2 wt% 
asphaltenes)

98 bar H2, 
372 ◦C, 1 h

4600 ppm of nano NiFe 
(25 % mol Ni)

Asphaltene 
conversion of 
43.7 %

Liquid yield 50.5 wt%, HDN 36 wt 
%, HDS 35 wt%

Advantage: Catalyst activity was quite 
high even at a relatively low temperature. 
Limitation: Due to the small size of the 
catalyst, the recovery and recycling of 
this material is challenging.

[129]

Vacuum residue 
(23.1 wt% 
asphaltenes)

70 bar H2, 
400 ◦C, 4 h

1300 ppm unsupported 
nickel–tungsten sulfide 
(NiWS(x)) particles

Asphaltene 
conversion of 
81.8 %

Liquid yield 71.6 wt%, HDS 86.5 
wt%, coke yield 4 wt%

Advantage: Great upgrading efficiency 
with high sulfur removal and liquid yield. 
Limitation: The synthesis of the catalyst is 
difficult to scale up. The formation of 
undesirable coke was not well controlled.

[130]

Vacuum residue 
(23.1 wt% 
asphaltenes)

70 bar H2, 
400 ◦C, 4 h

Nanosheet-structured 
WS2

Asphaltene 
conversion of 
75.3 %

Liquid yield 71.8 wt%, coke 9.1 
wt%, HDM 96.5 wt%

Advantage: Catalyst activity was good 
with high HDAs, HDM, and liquid yield. 
Limitation: The formation of coke was 
very high which reduced the carbon 
utilization efficiency.

[131]

Vacuum residue 
(23.1 wt% 
asphaltenes)

70 bar H2, 
420 ◦C, 4 h

Cs-exchanged 
phosphotungstic acids 
(CsxH3-xPW12O40, 
x = 1–3)

Asphaltene 
conversion of 
78.3 %

Liquid yield 68.7 wt%, coke yield 
9.2 wt%, HDS 60 wt%, HDM 95 
wt%

Advantage: The catalyst exhibited a 
decent activity flavoring a high liquid 
yield and a great HDM. 
Limitation: Low HDS and high yield of 
coke.

[132]

NiMo/Al2O3-based 
catalyst

Asphaltene 
conversion of 
76.2 %

Liquid yield 50.6 wt%, coke yield 
15.5 wt%, HDS 63.1 wt%, HDM 
98 wt%

Heavy oil 
(3.2 wt% 
asphaltenes)

Semi model: 
110 bar H2, 
370 ◦C, 24 h

4000 ppm 
ultradispersed metallic 
nickel nanocatalyst

Asphaltene 
conversion of 
43.7 %.

Residue conversion of 47 wt%, 
HDAs 50 wt%, HDS 20 wt%

Advantage: The catalyst showed a great 
dispersibility in heavy oil leading to a 
good upgrading performance. The spent 
catalyst had a similar size to the fresh 

[133]

(continued on next page)
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Heavy oil upgrading often involves multiple catalytic beds or re
actors, with guard beds placed at the beginning to remove nitrogen and 
metal compounds that can poison the main HDS catalysts [170]. The 
arrangement of HDS and hydrocracking (HCK) catalyst beds depends on 
the desired product. HDS and HCK are typically located toward the end 
of the process to ensure high yields of clean liquid fuel. Fig. 15 illustrates 
a general scheme for heavy oil upgrading [95].

Catalyst deactivation in heavy oil hydroprocessing can be caused by 
various factors, including coke and metal deposition, nitrogen 
poisoning, and structural changes in the active metal species. While the 
temperature range for hydrodesulfurization (HDS) is typically 
320–380 ◦C, hydrocracking requires higher temperatures (>400 ◦C) for 
complete conversion. However, high temperatures can also accelerate 
metal sintering, a process that permanently reduces catalyst activity 
[164,171]. Regeneration, often involving combustion to remove coke, 
can further exacerbate sintering and phase transformations at temper
atures above 500 ◦C [137]. The next section will delve deeper into the 
challenges and strategies for regenerating spent HDS catalysts.

6. The regeneration of spent catalysts

The coke deposition onto the catalyst surface is the most common 
cause of catalyst decay in reactions involving hydrocarbons. In heavy oil 
upgrading, coking becomes much more serious due to the heavy of the 
feedstock [172,173]. Depending on the type of coke, different gasifica
tion techniques could be applied which are described in Eqs. (1)–(4). In 
heavy residue hydroprocessing, the coke naturally varies widely 
depending on feedstock properties and operating conditions. In general, 
coke generated from asphaltene-rich feed often has a much higher 
aromaticity and is difficult to dilute in any type of solvent. In contrast, 
coke formed by polycondensation of resin posed a lower average mo
lecular weight with a higher aliphaticity and could be dissolved in sol
vents such as hexane, benzene, or tetrahydrofuran [174]. Hence, the 
feedstock composition influences the type of coke which requires 
different removal conditions for catalyst regeneration. 

C+O2→CO2 ΔH0 = − 393.0 kJ mol− 1 (1) 

C+H2 ↔ CH4 ΔH0 = − 75.0 kJ mol− 1 (2) 

Table 2 (continued )

Heavy oil Operating 
conditions 

Catalyst Conversion 
(wt%) 

Results Advantages and limitations of catalyst Ref

suggesting a highly recyclable catalyst. 
Limitation: The catalyst dosage was high, 
but the sulfur removal efficiency was low.

Vacuum residue 
(6.82 wt% 
asphaltenes)

100 bar H2, 
410 ◦C, 1 h

2000 ppm of presulfided 
oil-soluble MoS2

Asphaltene 
conversion of 
~100 %.

Liquid yield 83.4 wt%, coke yield 
0.19 wt%, 
HDS 59.2 wt%, HDM 83.4 wt%

Advantage: The catalyst showed a great 
activity toward liquid fraction. Coke yield 
was low. 
Limitation: The catalyst required a 
presulfurization process. The removal of 
metal and sulfur was relatively low.

[134]

Fig. 11. The structure of asphaltene at different X540 ◦C residue conversions [145] (Reuse with permission from Elsevier. Copyright © 2008).
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C+H2O ↔ CO+H2 ΔH0 = + 131.0 kJ mol− 1 (3) 

C+CO2 ↔ 2CO ΔH0 = +172.0 kJ mol− 1 (4) 

6.1. The regeneration of spent catalyst using the combustion method

Among the above-mentioned methods for coke removal, the com
bustion pathway using oxygen or air is the most frequently used 
[175,176]. The basic nature of this reaction is highly exothermic with a 
fast reaction rate. To minimize safety risks, a diluted air mixture is used 
as the oxidizing agent in the early stages of regeneration. Once the most 
reactive coke has been removed, pure air can be introduced to complete 
the process. Nevertheless, rigorous temperature control is essential to 
ensure safe operation [177]. Depending on the type of coke, the removal 
temperature range is from 250 ◦C to 500 ◦C [178]. Besides, the spent 

catalyst often contains 1.5–2 wt% of hydrogen (the hydrocarbon trapped 
in the catalyst pore [179]), 4.4–7 wt% of sulfur and approximately 0.5 
wt% of nitrogen [180]. The general combustion of coke involved other 
heteroelements is shown in Eq. (5). 

CxHyNzSm +
(

x+
y
4
+

z
2
+m

)
O2→xCO2 +

y
2
H2O+ zNO+mSO2 (5) 

Notably, CO2 is always a major product in the outlet gas generated 
after oxidative regeneration, even when oxygen is scarce. This can be 
explained by the well-established mechanism of hydrocarbon autoxi
dation, involving the chemisorption of oxygen and the subsequent for
mation of surface intermediates such as peroxy radicals and hydrogen 
peroxides [181,182]. The mechanism of oxygenated complex formation 
during autoxidation of coke is shown in Fig. 16. At the beginning of the 
regeneration process with a low temperature, the weight of the spent 
catalyst was found to be increased due to the chemisorption of O2 and 
the formation of surface complexes. However, these complexes quickly 
decomposed when the operating temperature reached the critical point 
and triggered the combustion [182].

K. Matsushita et al. [183] conducted a study on temperature- 
programmed oxidation (TPO) of coke with different ages of spent 
catalyst. The TPO profile exhibited two distinct CO2 desorption peaks 
centered around 573 K and 700 K, corresponding to the removal of soft 
and hard coke, respectively. Soft coke, composed of reversibly adsorbed 
precursors like aromatics and asphaltenes from the feedstock, can be 
removed at lower temperatures [184]. In contrast, hard coke, which is 
strongly bound to the catalyst, requires higher temperatures for the 
removal [185]. Importantly, the transformation of soft to hard types was 
observed with the time on stream. It indicates that the formation of coke 
is due to the polycondensation of asphaltene aromatic core and occurs 
when asphaltenes are exposed to a severity condition for a long period 
[64,186].

The effectiveness of this method is varied. K. Kohli et al. studied 
[187] the regeneration of NiMo/Al2O3 spent catalyst obtained from HDS 
of heavy oil. The regenerated process involved an air-calcination at 
550 ◦C followed by reactivation in the CS2-saturated H2 flow at 400 ◦C. 
As a result, catalyst activity was fully gained. In another work reported 
by A. Pimerzin et al. [188], only 72 % of HDS activity was recovered 

Fig. 12. The physicochemical transformation of asphaltene in heavy oil upgrading [146] (Reuse with permission).

Fig. 13. The growth of coke (a), a submicron or micron size of catalyst pro
hibiting coke formation; and large catalyst particles promoting coke growth 
(c) [158].
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after the air-regeneration method was applied to the spent of CoMo/ 
Al2O3. The main difference between these two studies is the age of the 
catalyst. K. Kohli et al. [187] recovered and regenerated the HDS cata
lyst after 6 h of reaction time. Meanwhile, in the study conducted by A. 
Pimerzin et al. [188], a two-year spent catalyst was employed. As time 
goes by, the polycondensation of the aromatic core forms a hard-coke 
type which is heavy and has a low H/C ratio [135] challenging the 
regeneration process. A T. Aguayo et al. [189] have found that the 
oxidation rate of coke was strongly influenced by the nature of coke. The 
activation energy for a low H/C ratio coke was found to be much higher 
than hydrogen-rich coke [190]. It suggests that the effectiveness of 
catalyst regeneration largely depends on the morphology of coke.

6.2. Catalyst regeneration using gasification agents

Despite a huge advantage coming from the ease of operation and 
highly available oxidation reagent in the combustion method, the 
biggest disadvantage is the highly exothermic nature of the main reac
tion. As a consequence, the catalyst regeneration is easily overheated 
causing metal sintering and permanent degradation [191,192]. Another 
uncommon method uses hydrogen reductant [189,193]. The advantage 

of it, as presented in Eq. (2), is a much lower exothermic reaction giving 
a better control of regeneration in comparison to the combustion 
method.

George et al. [194] reported that the use of pure hydrogen at 773 K 
did not lead to significant coke removal from a spent NiMo/Al2O3 
catalyst. The thermodynamic unflavored of the methanation reaction 
(Eq. (2)) at such temperatures suggests that the type of coke present, 
rather than the regeneration conditions, was the primary obstacle to 
coke removal. In a study by S.J. Jong et al. [195], it was observed that 
Brønsted acid sites in H-ZSM-5 zeolite play a significant role in H2 
regeneration. Using xenon adsorption and 13C CP-MAS NMR spectros
copy, they found that coke located near these acid sites was preferen
tially removed during the regeneration process.

The major disadvantages of the coke hydrogenation method are the 
low effectiveness when operating at moderate operating temperature 
[196] and the difficulty of removing the hard coke having a low H/C 
ratio [197,198]. The hydrogen reactivation was only successful for the 
H/C ratio of coke greater than 1.0. Silva et al. [199] demonstrated that 
hydrogen treatment was limited to removing soft coke from spent NiMo/ 
Al2O3 catalysts. Hard coke deposits were highly inert and required a 
higher operating temperature (>500 ◦C) and pressure (>15 MPa) to be 

Fig. 14. The HR-TEM analysis for catalysts (i) before reaction (ii) after reaction, and (iii) after regeneration [137] (Reused with permission).
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partially removed [200]. Moreover, hydrogen is a costly reactant, and 
the production of methane is also a greenhouse gas and is being 
restricted by government policies. Hence, the application of this tech
nology is still on the laboratory scale.

The coke gasification using CO2 or steam (Eqs. (3–4)) is getting more 
attention because of the lower greenhouse gas emission emitting to the 

environment in comparison to other methods [201–203]. In the case of 
CO2 gasification, the operating temperature requires at least 700 ◦C to 
obtain effective coke removal [204]. At this condition, the sintering of 
active metal is quite significant. The reaction of coke with steam occurs 
at a similar temperature range but the rate is 2–5 times faster than that of 
CO2 [205,206]. However, steam could interact with support such as 
alumina leading to a permanently damage catalyst porous structure 
[207,208]. The advantages and limitations of each common coke 
removal process are reviewed in Table 3.

The Integrated Residual Cracking and Gasification (ICCG) process 
offers a stepwise approach to the value-added utilization of heavy oil 
and petroleum residues. As illustrated in Fig. 17, heavy oil is initially 
cracked into volatiles, with simultaneous coke formation. Subsequently, 
the coke is gasified with steam to produce syngas. This steam gasifica
tion process can also be used to regenerate spent catalysts. The hydrogen 
generated from this process can be recycled to hydrotreat the cracked 
oils. Finally, the regenerated catalyst particles can be recirculated to the 
reactor to provide the necessary heat for catalytic cracking [209].

6.3. Mitigation of catalyst sintering after thermal regeneration

Based on Table 3, the traditional methods suffer from active metal 
sintering due to overheating or a high operating temperature. To address 
this issue, researchers have explored using an additional leaching pro
cess. Albemarle introduced a commercial technology called REACT in 
2003 to reactivate spent STARS catalysts. This process restores over 90 
% of the fresh catalyst’s activity by redistributing metals and recon
structing the type II active phase. Details of the reactivation process are 
outlined in the patent application by Ginestra et al. [210] and Eijsbouts 
et al. [211]. These patents list a variety of chelating agents, including 
citric acid, tartaric acid, oxalic acid, malonic acid, butanediol, glycolic 
aldehyde, acetaldol, and various glycols, that can be employed in the 
reactivation process [212]. Numerous spent HPR catalysts have been 
successfully reactivated using this method, as confirmed by published 
data.

Even though the recovery in catalytic activity has been proven 
experimentally, the mechanism of this method was still not yet clear. 
Mazoyer et al. [213] investigated the impact of chelating agents, such as 
diammonium salt of ethylene diaminetetraacetic acid, on a calcined 

Fig. 15. Heavy oil hydroprocessing general scheme [95] (Reused with permission).

Fig. 16. Mechanism of oxygenated complex formation during autoxidation of 
coke [177] (Reused with permission).
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CoMo/Al2O3 catalyst. The study revealed that the chelating agent 
effectively dissolved the undesirable CoMoO4 crystalline phase, leading 
to a more dispersed distribution of Co2+ cations on the catalyst surface. 
This, in turn, facilitated the formation of the active Co-Mo-S phase. 
However, the chelating agent was unable to solubilize Co2+ from the 
stable CoAl2O3 spinel structure. In a similar study, Costa et al. [214] 
explored the role of glycol-based additives in enhancing the activity of 
CoMo and CoMoP catalysts. For catalysts with a P/Mo molar ratio below 
0.4, the addition of the additive resulted in the formation of Anderson 
heteropolyanions like AlMo6O24

6− and AlMo6O40
7− . This redissolution 

phenomenon, however, was limited by the low solubility of these het
eropolyanions. In the case of CoMoP catalysts with a P/Mo ratio 

exceeding 0.4, the formation of PCoMo11O40
7− was observed. In both 

cases, the chelating agents played a crucial role in the redissolution of 
the inactive form of active metal and the redispersion of active com
ponents, leading to enhanced catalytic performance.

6.4. Recent advantages in hydroprocessing catalyst regeneration

CO2 gasification is an energy-intensive process due to its highly 
endothermic nature. To achieve an auto-thermal process, oxygen can be 
added to the CO2-rich atmosphere [215,216]. The combustion of coke 
with oxygen provides the necessary energy for CO2 gasification [217]. 
Alenazey et al. [215] proposed integrating air combustion and CO2 
gasification to minimize energy consumption, reduce greenhouse gas 
emissions, and mitigate catalyst sintering. This one-stage FCC regener
ation process, illustrated in Fig. 18 [218], involves mixing oxygen from 
an air separation unit with CO2 to regenerate the spent catalyst. A sig
nificant amount of CO is produced, and the excess unreacted CO2 is 
recycled within the system [219,220].

In a similar approach, Zhang et al. [221] demonstrated that the 
addition of 3 % O2 to steam significantly reduced regeneration time. 
They found that coke could be removed from the catalyst at tempera
tures below 800 ◦C in just 10 min, compared to 30 min with pure steam. 
This reduction in regeneration time was attributed to a decrease in 
activation energy from 115 to 45 kJ/mol. Coupling steam gasification 
with oxygen combustion also is used to optimize the heat balance in 
various processes. Gorma et al. [222] proposed a step-out improvement 
to the Fluid Catalytic Cracking (FCC) process, where the heat balance 
was optimized by combining steam gasification and oxygen combustion. 
This integrated approach allowed for the efficient removal of large 
quantities of coke from the catalyst.

Besides, the addition of certain metal dopants has been demonstrated 
as an effective method to increase the coke removal rate during catalyst 
regeneration. Metals such as Mn [223], La [224], alkali/alkaline earth 
elements [216,225], and V [202,226] have all been found to improve 
the adsorption of regeneration agents and facilitate the coke removal 
reactions.

Recently, plasma-based regeneration has emerged as an alternative 
to traditional high-temperature oxidative methods for catalyst rejuve
nation. The key advantage of plasma regeneration is that it can operate 
at significantly lower temperatures. For instance, H. Srour et al. [227] 
studied the plasma-based regeneration of CoMoP/Al2O3 catalysts. Their 
results showed that the sulfur and coke deposits were eliminated at just 

Table 3 
The advantages and limitations of common coke removal processes.

Removal 
agent

Reaction 
temperature 
(◦C)

Removal 
rate

Advantages Disadvantages

Oxygen/ 
Air

400—600 O2 > H2O 
> CO2 >

H2

Reactants are 
highly available. 
The removal 
rate is rapid, and 
the process is 
well-developed.

Catalyst is easy to 
be overheated 
leading to active 
metal sintering. 
The regenerated 
catalyst requires 
reactivation.

Hydrogen > 800 The reaction is 
much less 
exothermic, 
giving better 
control of the 
process. The 
regenerated 
does not require 
reactivation.

Hydrogen is a 
costly reactant. 
The reaction rate 
is very low in 
comparison to 
other agents. A 
high operating 
temperature 
possibly leads to 
active metal 
sintering.

Carbon 
dioxide

700— 950 No greenhouse 
gas emission is 
produced. CO2 is 
a relatively 
cheap reactant 
and the removal 
rate is moderate.

Catalyst activity 
and stability are 
often decreased 
due to metal 
sintering.

Steam 700— 950 Water is an 
abundant 
reactant. The 
product gas is a 
mixture of H2 

and CO so-called 
syngas and it has 
many 
applications in 
different 
chemical 
engineering 
processes.

At a high 
temperature, 
water can destroy 
the structure of 
alumina support.

Fig. 17. Reaction flow of heavy oil during integrated cracking and coke gasi
fication process [209] (Reused with permission).

Fig. 18. One-stage FCC regeneration system under a rich CO2 atmosphere 
[218] (Reused with permission).
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250 ◦C, compared to the 400 ◦C required in the conventional regener
ation approach. However, despite the promising results in removing the 
undesirable deposits, the plasma treatment led to the formation of a 
refractory CoMoO4 phase, even at temperatures as low as 200 ◦C. This 
implies that localized “hot spots” were created during the plasma 
exposure, which prohibited the full restoration of the catalytic activity. 
A detail on the application potential of plasma for the regeneration of 
catalysts can be found in a review written by D H. Lee [228].

7. Mitigation of catalyst deactivation in heavy oil 
hydroprocessing

Coke formation is a major challenge in heavy oil hydroprocessing. 
This carbonaceous deposit not only deactivates the catalyst by blocking 
active sites but also leads to reactor fouling, reducing process efficiency 
[170,229]. The accumulation of coke diminishes product yield as 
feedstock is consumed without being converted to valuable products 
[230]. Moreover, coke formation can have environmental implications 
due to the possibility of the generation of greenhouse gases in the 
regeneration of catalysts. Hence, effective coke mitigation strategies are 
crucial for ensuring the economic viability, operational efficiency, and 
environmental sustainability of heavy oil upgrading processes.

In heavy residue processing, the formation of coke includes physical 
and chemical transformations of asphaltene [64]. The hydroprocessing 
requires an adequate combination of hydrogenation and cracking re
action to avoid incompatible asphaltene as well as polycondensation of 
aromatic core [231,232]. Particularly, hydroprocessing is often con
ducted at a high temperature to increase productivity. However, the 
cracking reaction is also promoted and becomes dominant at this con
dition leading to rapid catalyst decay by coke. The use of high hydrogen 
pressure was proven as an effective method [7,157,233]. However, it 
only works up to a certain level [155] and also requires a complicated 
reactor design.

The enhancement of hydrogenation could also be done by using a 
good catalyst. Current research on catalyst development is primarily 
focused on maximizing the utilization of active metal species in hydro
genation reactions. A common approach is to persulfide the metals to 
obtain highly active metal sulfide nanocrystals [106,134,234–237]. 
Another interesting avenue is to exploit the potential hydrogenation 

activity of metal impurities present in asphaltenes. Recently, Lee et al. 
[238] reported a successful strategy to convert the vanadyl porphyrins 
in asphaltenes into hydrogenation active V2S3 form during asphaltene 
hydrocracking when tetralin was used as a solvent. This conversion 
resulted in significantly improved hydrogen uptake and asphaltene 
conversion, while also suppressing coke formation. The employment of 
external hydrogen donors has been explored as an effective method to 
enhance upgrading efficiency [239–243]. However, this method faces 
some practical limitations. It often requires large amounts of expensive 
hydrogen donors, and the recovery of them from the product can be 
challenging.

Another strategy is to delay the sedimentation of asphaltene by 
improving its stability during hydroprocessing. One technique is the 
addition of artificial asphaltene dispersants. These dispersants can 
change the colloidal stability of aphaltene in the feedstock. During 
heavy oil upgrading, the conversion of asphaltene into valuable fraction 
was found to be more efficient with a much lower yield of coke [141]. 
Another solution is the addition of aromatic diluents to the feedstock, 
which helps increase the asphaltenes compatibility during the reaction 
[244–246]. In a similar attempt, partial refluxing of products, such as 
the VGO fraction, has also been proven to be a good solution for con
trolling sediment formation [247]. Furthermore, the use of additives 
that disturb the aromatic core polycondensation has been verified to be 
another effective approach [248–250]. The ideal conversion of heavy oil 
with high effectiveness in the removal of heteroelements metals, sulfur, 
oxygen, and nitrogen as well as minimizing coke formation is shown in 
Fig. 19 [95].

8. Conclusions

Catalyst deactivation and regeneration are crucial factors in the ef
ficiency and sustainability of heavy oil hydroprocessing. This review 
provides a comprehensive exploration of the key influences on catalyst 
deactivation, including coke formation, metal poisoning, and sulfur 
poisoning. It delves into the underlying mechanisms and their detri
mental effects on catalyst performance and reactor operations. This re
view discusses various regeneration techniques, such as combustion and 
gasification using carbon dioxide, hydrogen, and steam. It evaluates the 
effectiveness of these methods in removing coke and restoring catalyst 

Fig. 19. The ideal heavy oil upgrading system with high heteroelements removal efficiencies and minimization of coke formation. [95] (Reuse with permission).
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activity. Additionally, the review explores strategies to mitigate coke 
formation, including feedstock pretreatment, the addition of coke- 
delayed agents, and the development of more robust catalysts. By un
derstanding these critical aspects, refineries can optimize their opera
tions, enhance product yields, and minimize environmental impact. This 
review offers valuable insights for researchers and engineers seeking to 
advance the field of heavy oil hydroprocessing.
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[19] B.M.F. Ávila, A. Aguiar, A.O. Gomes, D.A. Azevedo, Characterization of extra 
heavy gas oil biomarkers using comprehensive two-dimensional gas 
chromatography coupled to time-of-flight mass spectrometry, Org. Geochem. 41 
(9) (2010) 863–866.

[20] I.Z. Rakhmatullin, S.V. Efimov, V.A. Tyurin, A.A. Al-Muntaser, A.E. Klimovitskii, 
M.A. Varfolomeev, et al., Application of high resolution NMR (1H and 13C) and 
FTIR spectroscopy for characterization of light and heavy crude oils, J. Pet. Sci. 
Eng. 168 (2018) 256–262.

[21] K.E. Nielsen, J. Dittmer, A. Malmendal, N.C. Nielsen, Quantitative Analysis of 
Constituents in Heavy fuel Oil by 1H Nuclear magnetic Resonance (NMR) 
Spectroscopy and Multivariate Data Analysis, Energy Fuel 22 (6) (2008) 
4070–4076.

[22] J. Laxalde, C. Ruckebusch, O. Devos, N. Caillol, F. Wahl, L. Duponchel, 
Characterisation of heavy oils using near-infrared spectroscopy: Optimisation of 
pre-processing methods and variable selection, Anal. Chim. Acta 705 (1) (2011) 
227–234.

[23] E. Niyonsaba, K.E. Wehde, R. Yerabolu, G. Kilaz, H.I. Kenttämaa, Determination 
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