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From Dialogue Histories to Knowledge Integration in NLP
Mehrdad Farahani
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Today, Language Models (LMs) have shown impressive results in many Natural
Language Processing (NLP) tasks. Recent advancements in scaling up the
language models (large language models) suggest they can be relatively reliable
tools to assist humans. However, do these models truly “understand” context
in the sense of knowing it? To answer this question, we need to understand
the definition of context. Although there is no universal definition, making
it a complex concept, in NLP, it can take many forms, including exchanged
conversations, external knowledge, linguistic structure, and more.

In this thesis, we address the complexity of context from an LM point of
view in two central research questions: (1) How can LMs better incorporate
dialogue histories and personas in conversational AI tasks? (2) How do LMs
balance internal and external knowledge, and when do they prioritize one over
the other? We present two studies to address these questions from different
perspectives. First, we introduce a new training strategy to encourage the
model to consider context in its responses. Then, we apply dissection methods,
such as causal mediation analysis, to explore the internal mechanisms of LMs
and understand how they interact with context.

Our findings from the first study demonstrate that introducing a relevant
training strategy can slightly improve the model’s overall performance. How-
ever, it does not indicate that the model consistently considers context in its
responses. In contrast, the second study provides a clearer understanding of
how the model interacts with context. It shows that the model first evaluates
the context to ensure its relevance and, if deemed appropriate, incorporates
it into its responses. In such cases, the model tends to rely heavily on the
context, often ignoring its internal knowledge.

Keywords

model analysis, causal mediation analysis, retrieval-augmented models, con-
text
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Chapter 1

Introduction

Context is a term widely used in Natural Language Processing (NLP). Al-
though there is no universal definition for context, in natural language, it
is defined as a fundamental element in human communication with various
factors that shape the meaning of an utterance or interaction (Airenti et al.,
2017; Y. Huang, 2015). But what does it mean in practice in NLP? context can
refer to multiple facets, such as the dialogue history in conversation, external
knowledge required for answering questions, or even the linguistic structure sur-
rounding an utterance. Indeed, this multifaceted behavior of context makes it
complex to study.

Recent developments in building complex Language Models (LMs) or even
different scales such as Large Language Models (LLMs) have shown promising
improvement in NLP tasks. This has led the NLP communities to claim that
these models comprehend the natural language and, by extension, context.
However, as highlighted in the position paper by Bender and Koller (2020),
understanding meaning cannot be achieved only through analyzing forms1 in
LMs. But what do these models know and how they process information? Still
remain important questions.

Disclaimer: In this thesis, we are not concerned with considering whether
LMs “understand” context in the way humans do. Instead, the focus is on
investigating what LMs “know” and how they process and use contextual in-
formation. Whenever the term “understand” or “understanding context” is
used in this thesis, it refers to the computational and representational pro-
cesses within the model, not to human-like comprehension or cognition.

This thesis explores the context as a multifaceted entity in different scopes.
In dialogue systems (Chapter 2, Section 2.5), context allows LM to maintain
coherence, align with user intent, and incorporate relevant prior exchanges.
For instance, producing paradoxical responses with the personas or previous
conversations in an LM highlights the gaps in its contextual comprehension. In

1Form refers to any visible or measurable expression of language, like written marks,
digital text (pixels or bytes), or speech movements.
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4 CHAPTER 1. INTRODUCTION

the question-answering system (Chapter 2, Section 2.4), context often involves
integrating external knowledge like Wikipedia to provide accurate and up-to-
date responses. To address these contextualized challenges, we investigate two
main research questions in this thesis:

1. How can LMs better incorporate dialogue histories and perso-
nas to generate coherent and consistent responses in Conversa-
tional AI tasks?

2. How well do LMs balance between what they already know and
what they fetch, and when and why do they favor one over the
other?

To address these questions, we conducted two studies. The first study
(Chapter 3, Section 3.1) examines how auxiliary tasks, such as Utterance Mask-
ing (UM) and Utterance Permutation (UP), can improve the ability of LMs
(i.e., richer general contextual representations) to handle dialogue context to
generate more consistent responses. In the second study (Chapter 3, Sec-
tion 3.2), we shift our focus to LM augmented with a retriever to explore how
LM balances internal and external knowledge by applying causal mediation
analysis.

This thesis is organized as follows: Chapter 2 provides the background, in-
cluding foundational concepts and required related work for this thesis. Chapter 3
summarized the two studies in more detail, including the methods, findings,
and implications. Finally, Chapter 4 outlines the overall discussion around
this thesis and future directions for further exploration.



Chapter 2

Background

In this chapter, we will discuss the essential knowledge required to understand
the foundation of this thesis. We begin by exploring the evolution of LMs in
recent decades, focusing mainly on Transformer-based models in Section 2.1.
Recent advancements in LMs have enhanced their capacity to encode more
knowledge within their parameters. However, their inability to remain up-to-
date and access expert knowledge has led to approaches that aim to overcome
these limitations by combining internal information with external knowledge
in Section 2.2.

So far, we have discussed the shift in perspective regarding LMs over the
past few years. However, even when we achieve a highly accurate LM, can
we claim that it is reliable? This question leads us to the next part. We will
explore methods that help us interpret both the external behavior and internal
workings of these models in Section 2.3, which play a significant role in this
thesis.

Sections 2.4 and 2.5 introduce Question-Answering systems and Conversa-
tional AI, as this thesis examines the concept of context within two systems.
Finally, Section 2.6 presents the Multi-Task Learning paradigm, which serves
as an initial step toward improving contextual understanding.

2.1 Language Models (Rise of Transformers)
LMs are designed to predict and generate text by modeling the probability of
a sequence of tokens1. LMs historically were developed mainly for applications
such as speech recognition (Rosenfeld, 2000), machine translation (Koehn et
al., 2003), and text prediction (Chen & Goodman, 1999). However, with the
increasing complexity of LMs, they can now solve more complex problems
(Kaddour et al., 2023).

Initially, LMs like n-grams represented by the conditional probability of the
next token given all preceding tokens wT = (w1, w2, . . . , wT ) (Bengio et al.,

1A word is a semantic unit in natural language, while a token is a unit of text that
a language model processes. For instance, the word ”running” can be represented as a
whole-word token ”running” or as subword tokens ”run” + ”ning” in the token space.

5



6 CHAPTER 2. BACKGROUND

2000) is estimated as follows:

P (wT ) =
T∏

t=1

P (wt | wt−1
t−n+1) (2.1)

Where wt represents the t-th token, and wt−1
t−n+1 represents the preceding

sequence of n→ 1 tokens.
One limitation of these models is the curse of dimensionality. N-gram

models estimate the probability of a token based on the preceding n→1 words.
As n increases, possible word combinations grow exponentially, requiring vast
data to produce reliable probability estimates (Bengio et al., 2000).

Bengio et al. (2000) introduced the concept of neural LMs to address this
issue and overcome contextual limitations. They suggested linking each token
in the vocabulary to a distributed feature vector, which became the basis for
Transformer-based LMs (Vaswani et al., 2017). Similarly, the probability of a
sequence in Transformer-based models is represented as:

P (wT ) =
T∏

t=1

P (wt | W t−1; θ) (2.2)

Where wt represents the t-th token in the sequence, W t−1 represents the
subsequence of all preceding tokens, and θ indicates the learnable parameters
of the model.

As the core of these models, the attention mechanism allows the model to
focus on the most relevant parts of the input. This capability helps the model
understand long-range relationships between words and adapt to changes in
context effectively. The attention mechanism was introduced by Bahdanau
et al. (2014) for the first time in the text domain, which allows the models to
focus on relevant input parts selectively. However, early implementations of
attention are combined with more complex models like Recurrent Neural Net-
works (RNNs) (Cheng et al., 2016) or Convolutional Neural Networks (CNNs)
(Parikh et al., 2016), which makes them less scalable and computationally effi-
cient. Transformers, however, changed the game by introducing self-attention
and removing the need for complex models.

The Transformer model, as shown in Figure 2.1, introduces as stacks of
encoder and decoder blocks (Vaswani et al., 2017). The input sequence first
passes through a Positional Encoding to retain word order information and
feeds to encoder and decoder blocks. Each encoder block processes the trans-
formed input sequence with:

1. Multi-Head Self-Attention (MHA) to capture contextual relation-
ships between all words in the sequence

2. Feed-Forward networks (FFN) to apply nonlinear transformations
independently to each token’s representation

3. Residual Connections that bypass the MHA and FFN layers, stabil-
izing gradient flow.
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Figure 2.1: This figure illustrates the Transformer architecture, comprising
both stacks of encoder and decoder.

Then, the decoder receives the encoder’s output and incorporates it with
its self-attended outputs to generate a sequence token by token. The decoder
incorporates two forms of attention:

• Masked Self-attention ensures that each token can only attend to all
the visited tokens to the current token.

• Cross-attention allows the decoder to integrate information from the
entire input sequence already processed by the encoder.

Transformers can capture complete patterns by stacking multiple layers of
these components n times.

As we have demonstrated, the Transformer was initially introduced as an
encoder-decoder model. However, it can also be divided into distinct compon-
ents, serving as the basis for three types of models:

• Encoder-only models like BERT (Devlin et al., 2019) are designed for
tasks that require bidirectional attention.
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• Decoder-only models Like GPT-1/2/3 (Mann et al., 2020; Radford,
2018; Radford et al., 2019) are focused on autoregressive generation with
casual attention (masked self-attention).

• Encoder-decoder models like T5 (Raffel et al., 2020) integrate both
components for understanding and generation.

The term “decoder” generally refers to an autoregressive model with causal
attention, as seen in GPT models, and does not include cross-attention layers.

Before moving on to the next section, it is essential to discuss one of the
key aspects of these Transformer-based LMs: their ability to store knowledge
within their parameters. Petroni et al. (2019) reveal that LMs like BERT can
perform as knowledge bases and recall factual information without fine-tuning.
Furthermore, in another study by Kandpal et al. (2023), they show that LMs
have memorization facts that are exposed more frequently. These findings
show that LMs can store and recall much knowledge effectively.

2.2 Retrieval-Augmented Generation Models
As discussed in Section 2.1, LMs achieved remarkable performance across
a wide range of natural language tasks based on the knowledge stored in
their parameters. Although these parametric memory models capture a large
amount of information in their parameters–often referred to as parametric
memory–they struggle to handle cases that need up-to-date or specialized
knowledge.

Retrieval-augmented generation (RAG) is an approach designed to address
these challenges by augmenting LM to have access to an external source of
information, such as Wikipedia–often referred to as non-parametric memory–
alongside the internal information of the LM itself. This access to both para-
metric and non-parametric memory enables the model to produce contextually
relevant responses.

In general, the RAG paradigm consists of two components (Guu et al.,
2020; Karpukhin et al., 2020; Lewis et al., 2020):

• Retriever: Searches an external document index to fetch relevant doc-
uments based on the input query.

• Generator: A parametric generative model that conditions the input
query and each retrieved document to generate the output.

RAG has many variants, but the general workflow of this approach includes
the following steps (Siriwardhana et al., 2023):

• Query Encoding: The input query is encoded into a representation
that the retriever uses to locate relevant external information.

• Document Retrieval and Ranking: The retriever searches an ex-
ternal corpus and selects a subset of relevant documents or knowledge
elements. These retrieved documents are ranked based on their relevance
to the encoded query using a ranking method.
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• Response Generation: The generator processes the query and the
retrieved context to produce a response.

Atlas, introduced by Izacard et al. (2023), is a retrieval-augmented gen-
eration model designed explicitly for knowledge-intensive tasks and few-shot
learning scenarios. Atlas improves the RAG paradigm by introducing two
different components:

• Contriever (as the retriever) (Izacard et al., 2021): It uses contrastive
learning objectives to learn better contextual alignments between queries
and documents. This allows Atlas to retrieve more relevant documents
to the input queries.

• Fusion-in-Decoder (FiD) Mechanism (as the generator) (Izacard
& Grave, 2020): Each retrieved document is encoded separately and
fused within the decoder. This mechanism enables Atlas to effectively
synthesize information from multiple sources and optimize for few-shot
learning.

Atlas has been selected for this thesis as a representative example of a cap-
able RAG approach due to its fine-tuned version for Question-Answering (QA)
systems and its aim to balance the model’s parametric and non-parametric
memory.

2.3 Model Analysis
In Section 2.1, we discussed how LMs have recently indicated major improve-
ments in various NLP tasks thanks to the emergence of Transformer-based
architectures. As this progress continues to advance, an important question
arises: How reliable are these models? Do they truly understand natural lan-
guage? Answering these questions cannot be achieved only using evaluating
metrics (Belinkov & Glass, 2019).

To illustrate, consider a hypothetical example in sentiment analysis:
Suppose we train an LM using labeled data for positive and negative opinions.
Based on evaluation metrics, the trained model may demonstrate high per-
formance in identifying positive and negative sentiments. However, how well
does the model truly understand sentiment? Will it still perform effectively on
paraphrased opinions or those with ambiguity? Can the model exhibit biases
related to gender, ethnicity, or other sensitive attributes?

Metrics alone are insufficient to address these questions. We need addi-
tional tools to analyze models comprehensively. Specifically, these tools can
be categorized into two major approaches: Behavioral analysis (Section 2.3.1)
and Structural analysis (Rogers et al., 2020), also referred to as Mechanistic
Interpretability analysis (Geiger et al., 2024) (Section 2.3.2).
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2.3.1 Behavioral analysis
Examines models’ outputs under controlled conditions to understand how mod-
els perform across different settings. This analysis typically involves varied
datasets and tasks. An early work by Ribeiro et al. (2016) proposed the Local
Interpretable Model-Agnostic Explanation (LIME) framework, which helps
explain model predictions by approximating the model locally rather than
globally. This is achieved by generating samples through perturbations of the
original data. Building on this, Ribeiro et al. (2020) presented CHECKLIST,
another line of work that constructs a suit of tests based on linguistic capab-
ilities such as reacting to negations, a temporal chain of events, co-references,
and many more that facilitate the comprehensiveness of models. This ap-
proach shows that even promising Transformer-based models like BERT and
RoBERTa (Liu et al., 2019) fail at many linguistic tasks.

2.3.2 Structural analysis
Provides tools to understand how LMs process and generate outputs beyond
examining only the outputs. These methods reveal the inner mechanisms
contributing to why models behave as they do. Tenney, Xia et al. (2019)
introduced edge probing that probes word-level contextual representations to
identify which layers in Transformer-based LMs encode linguistic features such
as syntax or semantics. They found that these models have rich representa-
tions for syntactic over semantics. In a similar study, Tenney, Das and Pavlick
(2019) introduced two measurements applied to the traditional pipeline order,
demonstrating that LMs can exhibit complex interactions between different
levels of hierarchical information. In another line of work, Marjanovic et al.
(2024) used a probing method to examine how LMs with access to external
context using a retriever handle conflicting knowledge, particularly temporal
and disputable facts. This study reveals that the most frequent facts are rarely
updated using the context. In a similar objective, Y. Zhao et al. (2024) used
a probing method to focus on the flow of information in LMs to detect and
understand knowledge conflicts between the model’s internal information and
external context. In general, a probe is usually a linear or simple neural model
trained to predict a target property (e.g., the presence of knowledge conflicts,
as mentioned in the examples above) from a specific layer in the model. This
method does not necessarily indicate whether the model relies on the informa-
tion in the representations for the predictions. That leads us to another struc-
tural analysis method, causal mediation analysis, which we will discuss about
this method in detail in Section 2.3.2.1. This method has recently garnered
significant attention as it offers a more mechanistic understanding of model
behavior. Yu et al. (2024) employed this approach to investigate the internal
causes of non-factual hallucinations in LMs by examining components such
as attention mechanisms and feedforward layers. In another study by Meng
et al. (2022b), the authors introduced the Rank-One Model Editing (ROME)
method. This approach employs causal mediation analysis to identify which
parts of the model are responsible for recalling facts (which serves as an inspir-
ational foundation for this thesis and we will discuss in Chapter 3, Section 3.2)
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and then uses ROME to update the associated facts. Their findings reveal that
certain feedforward layers in the mid-layers are crucial for processing subject
tokens during factual recall.

2.3.2.1 Causal Mediation Analysis

Causal Mediation Analysis (CMA) is a general statistical technique initially
developed for inferring the effects of any treatment in medicine and social sci-
ences (Pearl, 2001; Peña, 2023) CMA helps disentangle the direct and indirect
effects of a treatment or intervention on an outcome.

CMA in General Framework As Pearl (2001) presented, consider that
a new drug is developed to lower blood pressure. During clinical trials, it
is observed that the drug causes a side effect, such as headaches, in some
patients. As a result, these patients begin taking aspirin. On the other hand,
due to its anti-inflammatory properties and specific effects on blood circulation,
aspirin has an independent impact on alleviating blood pressure symptoms.
In this scenario, the drug influences blood pressure through a direct effect via
its primary mechanism (controlling blood pressure) and an indirect effect by
prompting aspirin use, which contributes to disease improvement. Therefore,
it is essential to separate and examine these effects. In this clinical example,
the treatment (control variable) is the under-development drug, the outcome
is the reduction in blood pressure, and the mediator is the use of aspirin by
patients, which built the foundation of CMA. The goal of this setup is to
separate the drug’s direct effect (X → Y ) and its indirect effect via aspirin use
(X →M → Y ). Similarly, this method can be applied to the internal analysis
of LMs between inputs, internal representations, and outputs (J. Huang et al.,
2024; Meng et al., 2022a; Stolfo et al., 2023; Vig et al., 2020; Yao et al., 2021;
Yu et al., 2024).

CMA in LM Following the “do” notation of Pearl (2001) (X ← 1 means
set X to 1) similar to Meng et al. (2022b), we might be interested in how the
intervention on a control variable X (e.g., the actual object vs. a counterfactual
object or a noised subject vs. an unnoised subject representations) in the input
(e.g., a query like “What is the capital of Sweden? Context: Stockholm is the
capital of Sweden.”) affects an outcome Y (e.g., the probability of a specific
word answer like “Stockholm”). We define the Total Effect (TE) to measure
the effect of X on Y regardless of any specific encoding in the latent layers.

TE = Y (X ← 1)→ Y (X ← 0) (2.3)

Here:

• (X ← 1): Represents the intervention (e.g., replacing the “Stockholm”
representation at the token embedding representation with a counterfac-
tual representation like “Milan” or adding noise to the “Sweden” token
representation).
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• (X ← 0): Represents the absence of intervention.

The intervention does not always affect the outcome directly; instead, its
influence may pass through an intermediary variable M (often called a me-
diator) modifies which part of the model contributes to the effect of X on
Y . Based on Pearl (2001) notation, we define Indirect Effect (IE) with the
following expression:

IE = Y (X ← 0,M(X ← 1))→ Y (X ← 0) (2.4)
Here:

• Running the model with X ← 1 to observe the mediator M .

• Re-running the model with X ← 0 while fixing M to its observed state
from the previous step.

To better understand, consider that we want to evaluate the effect of noising
the representation of a word in the input, such as “Sweden” in the context, on
the probability of predicting ”Stockholm” as the answer to the query. First,
we run the model with a noised representation of “Sweden” (X ← 1) and
observe the resulting intermediate hidden state hl. Then, we re-run the model
with the original, unnoised representation (X ← 0) but restore hl to its state
from the noised run. By comparing the probabilities of “Stockholm” in both
scenarios, we can measure the indirect contribution of hl to the outcome.

The design of X and Y is closely tied to the research question. For instance,
in the study by Meng et al. (2022b), the authors set X as added noise to the
subject representation within a factual prompt–For example, in the prompt
“The Space Needle is in downtown,” the subject is “The Space Needle.” This
setup measures the model’s predicted completion of the prompt, specifically,
the probability assigned to the correct object (e.g., “Seattle” in this example).

In LM applications, we can observe both outcomes (X ← 0 and X ← 1).
However, in a general case (e.g., the medical example), we can observe only one
of these conditions because patients either take the drug or do not. Similarly,
computing the outcome Y (X ← 0,M(X ← 1)) → Y (X ← 0) is feasible as we
can explicitly set mediators in LMs, while it is impractical in general cases.
This flexibility makes CMA particularly powerful for analyzing LMs.

2.4 Question-Answering Systems
Question-answering (QA) systems are a part of Natural Language Understand-
ing (NLU), designed to automatically provide accurate and relevant answers to
users’ queries (Kwiatkowski et al., 2019). QA systems fetch information from
external sources or recall information from internal knowledge to produce a
response. This response can either be identified as a span from a passage
(Extractive QA) (Tran and Kretchmar, 2024) or be generated directly using
language models, potentially integrating a retrieval component (Generative
QA) (Lála et al., 2023). QA systems usually are categorized into (Biancofiore
et al., 2024):
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• Open-domain QA: They aim to answer questions on various topics.

• Factoid QA: They focus on questions that have short and factual an-
swers.

• Visual QA: These systems are built to produce responses based on
visual inputs, such as images or videos.

In this thesis, we focus on a Generative QA system with access to world
knowledge, leading us to examine an interesting behavior of the model: how
it decides to generate a response when both internal information and external
information as context are provided.

2.5 Conversational AI
Conversational AI (ConvAI) studies techniques that focus on building systems
capable of interacting with humans (Ram et al., 2018). These systems should
cover different ranges from simple chatbots to advanced dialogue agents and
be able to manage complex tasks, engage in multi-turn conversations, and
provide accurate and contextually aware responses (Gao et al., 2018).

The first generation of ConvAI focused on building task-specific dialogue
systems (Task-Oriented Dialogue (TOD) systems). These modular systems
could only be able to respond to simple and transactional tasks such as weather
updates, music requests, and so on (Ram et al., 2018). TOD systems are lim-
ited to specific workflows and cannot address a wide range of topics and maxim-
ize long-term user engagement. These limitations direct us to another system
(Open-Domain Dialogue (ODD) systems) that excels in handling unstructured,
diverse, and dynamic conversations for having natural and engaging interac-
tions (M. Huang et al., 2020).

Despite significant advancements, developing ODD systems comes with
challenges, including as below (M. Huang et al., 2020):

• Semantics: ODD systems often struggle with understanding the deeper
meaning behind user inputs, including their intent, sentiment, and con-
textual relevance.

• Consistency: Maintaining coherence throughout a conversation; in
other words, the system must be aware of what has already been said.
ODD systems may give conflicting responses to similar questions within
the same interaction.

• Interactiveness: ODD systems should be able to engage in long and
captivating conversations, but often, they fail when it comes to handling
empathy, entertainment, or companionship.

• Knowledge Integration: These systems are often incapable of ground-
ing knowledge in real-world knowledge, which leads to incorrect and irrel-
evant responses. Although one solution to this could involve providing
access to external knowledge, challenges still remain in selecting and
integrating the most relevant information.
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These features of ODDs make them an interesting subject for investigation
and were examined as the first step in this thesis. We focused on one specific
challenge: “consistency.” We aim to explore methods to improve the contextual
consistency of ConvAI models.

2.6 Multi-Task Learning
Multi-task Learning (MTL) is a machine learning paradigm where the model
is trained to perform multiple tasks parallelly, using shared representation to
improve the generalization performance (Crawshaw, 2020). MTL has been
widely applied in NLP, demonstrating success in language understanding and
representation learning (Collobert and Weston, 2008; Søgaard and Goldberg,
2016).

This approach reflects the process humans use to learn knowledge across
the domain and is efficient when tasks are related, as the information from one
task can improve the others.

In this thesis, we adopt an MTL approach where the model is trained
on a primary task (as our main task) alongside one or more auxiliary tasks
to gain a richer representation. These auxiliary tasks are another objective
for the models, providing additional information to enhance their ability to
understand the context.



Chapter 3

Summary of Included
Papers

This chapter summarizes the two research we have done exploring how LMs
interpret and use context in their outputs. These studies help to focus more
on whether LMs have a proper understanding of context and open new doors
toward controlling this behavior of LMs.

3.1 Paper I
In this paper, we explore how auxiliary tasks can affect models’ ability to com-
prehend context. In this particular study, we take context as the conversation
history between the user and the agent, and also the agent’s persona. We
observe that models’ responses during a conversation occasionally contradict
or even violate the agent’s established persona and prior responses. We intro-
duce two pairs of auxiliary tasks, Utterance Masking (UM) and Utterances
Permuation (UP), to improve contextual representation learning of a GPT
family model on two datasets such as PersonaChat (S. Zhang et al., 2018) and
DailyDialog (Y. Li et al., 2017).

Earlier efforts have been made using auxiliary tasks for other Transformer-
based models (except for decoder-only models) in Conversational AI (Mehri
et al., 2019; Y. Zhao et al., 2020). They demonstrate that adding auxiliary
tasks related to context understanding alongside the main task can encourage
the model to develop more robust general representations. For this reason,
we introduce two pairs of auxiliary tasks targetting context to help LM be
motivated to consider more of the context. UM is designed to help the model
capture the semantics of dialogues by masking utterances in the context and
training the model to predict them in two ways: detecting and recovering.
Detecting approach helps the model identify the presence of masked utterances
while recovering, generating the masked content in a semantically coherent
manner. On the other hand, UP focuses on improving contextual coherence
by permuting utterances in dialogue and asking the model to reconstruct the
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logical sequences (detecting) or recover the correct order (recovering).
To evaluate the impact of these auxiliary tasks, we compare a standard

GPT-2 model (baseline) with GPT-2 models trained with UM and UP tasks.
We use several metrics for surface-level analysis, including Perplexity, BLEU
(Papineni et al., 2002), ROUGE-L (J. Li et al., 2016), BERTScore (T. Zhang
et al., 2020), MoverScore (W. Zhao et al., 2019), and Embedding-based metrics
(Serban et al., 2017). Although most of these metrics compare the generated
responses to a reference output, we assume that the reference inherently reflects
some degree of contextual consistency. However, it does not indicate how
well the response adheres to the dialogue history or aligns with the defined
persona. We hypothesize that if these changes are significant, it indicates that
the auxiliary tasks have affected the model, resulting in consistent responses.
In this sense, the model has successfully accounted for the context.

Models trained with UM and UP showed a consistent reduction in per-
plexity and improvements in BLEU and ROUGE scores across both datasets.
The results show that performing the auxiliary tasks results in a slight overall
improvement.

These auxiliary tasks improve the model’s ability to generate grammatically
accurate responses and enhance the coherence and consistency of responses,
as reflected in the evaluation metrics. Something still missing in this study is
that, although we observe slight improvements, it does not explicitly address
the model’s comprehension of context. This motivates us to conduct a second
study using a different toolset to investigate how the model understands con-
text. However, we must first define what context entails.

Contribution
M. Farahani conducted the primary research and development, taking respons-
ibility for the majority of the writing, with R. Johansson providing supervision
and guidance throughout the process.
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3.2 Paper II
In this study, we tackle a different approach instead of introducing new meth-
ods to train a model in order to understand context. We perform an analysis
method to examine how the model interacts with the context. In this particu-
lar case, we define context as an external source of information provided by a
retrieval-based LM, as introduced in Section 2.1.

As discussed in Section 2.1 and 2.2, LMs can memorize information during
training by storing it in their weight parameters. For example, when we ask a
simple factual question in a QA system, the LM attempts to recite the mem-
orized information. However, when queries become more complex or require
up-to-date or specialized knowledge, the LM can be supplemented with access
to external knowledge via a retrieval-based LM (such as Atlas). Assuming
the retriever fetches relevant data, it becomes unclear whether the model relies
on its internal, memorized knowledge or external information when generat-
ing a response. In simpler terms, if we treat external information as context,
this raises the question of whether the model prioritizes the provided context
or depends on the knowledge it has already learned during training when re-
sponding. We addressed two research questions on that observation:

1. Which aspect of the model representation impacts the output in copying
mode?

2. What specific parts of the model trigger copying?

To answer these questions, we employ CMA (Section 2.3) to disentangle
the contributions of parametric and non-parametric memory on two entity-
centric question-answer pairs datasets, PopQA (Mallen et al., 2023) and PEQ
(Sciavolino et al., 2021). The experiments apply the structure of factual triples
(s, r, o), where s is the subject, r is the relation, and o is the object, such as
this query “What is the capital of Sweden?” (o: “Stockholm”, r: “capital
of”, s: “Sweden”). In this study, we address context in two distinct ways: ex-
ternal information in the form of real text chunks from Wikipedia or synthetic
information, such as a template corresponding to each relation (e.g., for the
relation “capital of,” we define the template as “obj is the capital of subj.”).
We introduce two experiments:

Experiment 1 investigates how much the model relies on copying from the
context versus recalling from parametric memory, as well as the components
involved in making this decision.

To address this, we start by replacing object token representation in the
context (a retrieved or synthetic document) with counterfactuals (e.g., “Stock-
holm” with “Milan”). We evaluate whether the model relies on copying from
the context or ignores the context and considers its internal information. Then,
as introduced in Equation 2.3 and Equation 2.4, we compute the Total Effect
(TE) and the Indirect Effect (IE). Additionally, we compute the Path-Specific
Effect (PSE), which is similar to the IE but provides insights into the impacts
of individual components separately (Meng et al., 2022b).
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The TE measures the extent to which the model shifts its output towards
the counterfactuals when the context is altered. The IE and PSE also provide
deeper insight into which parts of the input or model layers are involved in
this decision-making process. The results show that object tokens are the most
impactful part, and it is like the object tokens flow directly through the model,
unaffected by the surrounding context. The results also demonstrate that MLP
in mid-layers is important in translating object tokens and relation tokens
representations from the encoder to the decoder, while attention mechanisms
serve a supportive role.

Experiment 2 explores the factors that impact the model’s decision to rely
on non-parametric knowledge by focusing on subject and relation tokens. We
refer to this impact factor as “context relevance.”

Compared to the first experiment, we first substitute the object token with
counterfactuals. Then, noise is added to subject and relation token represent-
ations to explore their impact on context relevance evaluation. As we have
observed, the Atlas model predominantly adopts a copying behavior. By re-
placing the object token with a counterfactual and investigating the effect of
noise on subject tokens and relation tokens, we can investigate which context
components (external information) drive this behavior.

In this experiment, the TE is interpreted as a way to know the valuable
part of the triple in context evaluation. Similarly, we compute the IE and PSE
for this experiment as well. The results show that the MLP in the first layers
is involved in computing the relevance of subject and relation tokens. This
process determines whether the context is relevant enough for the model to
rely on to generate the final answer from the context.

Contribution
M. Farahani conducted the primary research and development, taking respons-
ibility for the majority of the writing, with R. Johansson providing supervision
and guidance throughout the process.



Chapter 4

Discussion and Future
Work

In this thesis, we sought answers to two core research questions: How can
LMs better incorporate context, and what do LMs know about context and how
do they process it? We addressed these questions in different domains and
explored different behaviors of context.

In the first experiment, we demonstrated that introducing relevant auxil-
iary tasks can slightly improve response quality by looking into surface-level
metrics. However, these improvements do not necessarily indicate that the
model really incorporates context. Instead, the model might exploit statist-
ical patterns in the data to optimize the metrics without understanding the
underlying context. The term “understand” needs a more profound way, pos-
sibly a causal mechanism in which the model integrates dialogue histories and
personas meaningfully into its decision-making. This led us to the second ex-
periment, where we shifted focus to a different scenario–context as external
knowledge in a factoid QA system–to investigate these mechanisms further
under a controlled experimental environment.

In the second experiment, we used CMA to observe how Transformer-based
LMs with a retriever (i.e., RAG) incorporate context and which parts of a
model are responsible for this process. Specifically, we found that they eval-
uate the quality of context before generating a response. This evaluation
involves measuring the alignment between question embeddings and context
embeddings, a behavior we term context relevance. Our experiment involved
retrieved documents–either text chunks from Wikipedia or synthetic data gen-
erated from templates–but left several aspects of context evaluation needing
to be explored. For instance, beyond context relevance, qualities such as clar-
ity and coherence, completeness, and correctness of context could also play
vital roles in determining good context quality. Our findings also highlighted
the dual role of the MLP. It not only supports the transition from context
relevance to answer extraction but also aids in translating the most important
contextual elements for response generation.

This thesis offers valuable insights and opens several directions for future
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research. Still, there are areas in this research that need further investigation,
which we will discuss in the following.

We examined the model’s behavior in considering context and identified
the mechanisms and parts of the model that are responsible for that decision-
making. However, an important question arises: How can we control (or
steer) this behavior to achieve the desired output? For example, if we ask
the model a question following its context –“What is the capital of Sweden?”
and “Gothenburg is the capital of Sweden”– we aim to have complete control
over whether the model generates the output based on its internal knowledge
(”Stockholm”) or the external information (“Gothenburg”).

Another area for future investigation in context relevance is understanding
how the frequency of prompts affects the decision-making process we studied.
For example, if we ask the model two questions –“What is Donald Trump’s oc-
cupation?” and “What is Peter Murnoy’s occupation?”– How does its decision-
making change, considering the first question is more frequent than the second?

Temporal relevance is another interesting future direction. This involves
how the model answers questions by accessing external knowledge tied to spe-
cific time periods. It helps to understand how the model deals with outdated
information, chooses a specific time frame to answer a question, or identi-
fies time dependencies. For example, if we ask the model, “Where have the
Olympics been held in the USA?” and provide two temporal information –“In
1996, the USA hosted the Olympics for the first time in Atlanta, Georgia,”
and “In 2002, the Olympics were held in Salt Lake City, Utah”– How does the
model decide which information to use?

So far, we have only discussed directions focused on LMs pre-trained jointly
with a retriever. We have not explored whether the same behavior occurs in
LLMs with access to a retriever (or in-context learning). Another interesting
direction we can apply the methods used in this study to LLMs to determine
whether similar behavior occurs. Additionally, we could compare the results
with instruction-tuned variants of LLMs to assess how this tuning affects their
decision-making.



Bibliography

Airenti, G., Cruciani, M., & Plebe, A. (2017). Context in communication:
A cognitive view (G. Airenti, M. Cruciani & A. Plebe, Eds.) [Re-
trieved from the Library of Congress, https://www.loc.gov/item/
2020394825/]. Frontiers Media SA. (Cit. on p. 3).

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by
jointly learning to align and translate. CoRR, abs/1409.0473 (cit. on
p. 6).

Belinkov, Y., & Glass, J. (2019). Analysis methods in neural language pro-
cessing: A survey. Transactions of the Association for Computational
Linguistics, 7, 49–72 (cit. on p. 9).

Bender, E. M., & Koller, A. (2020, July). Climbing towards NLU: On meaning,
form, and understanding in the age of data. In D. Jurafsky, J. Chai, N.
Schluter & J. Tetreault (Eds.), Proceedings of the 58th annual meet-
ing of the association for computational linguistics (pp. 5185–5198).
Association for Computational Linguistics. https://doi.org/10.18653/
v1/2020.acl-main.463 (cit. on p. 3).

Bengio, Y., Ducharme, R., & Vincent, P. (2000). A neural probabilistic lan-
guage model. Advances in neural information processing systems, 13
(cit. on pp. 5, 6).

Biancofiore, G. M., Deldjoo, Y., Noia, T. D., Di Sciascio, E., & Narducci,
F. (2024). Interactive question answering systems: Literature review.
ACM Computing Surveys, 56(9), 1–38 (cit. on p. 12).

Chen, S. F., & Goodman, J. (1999). An empirical study of smoothing tech-
niques for language modeling. Computer Speech & Language, 13(4),
359–394 (cit. on p. 5).

Cheng, J., Dong, L., & Lapata, M. (2016, November). Long short-term memory-
networks for machine reading. In J. Su, K. Duh & X. Carreras (Eds.),
Proceedings of the 2016 conference on empirical methods in natural
language processing (pp. 551–561). Association for Computational Lin-
guistics. https://doi.org/10.18653/v1/D16-1053 (cit. on p. 6).

Collobert, R., & Weston, J. (2008). A unified architecture for natural language
processing: Deep neural networks with multitask learning. Proceedings
of the 25th international conference on Machine learning, 160–167 (cit.
on p. 14).

Crawshaw, M. (2020). Multi-task learning with deep neural networks: A survey.
arXiv preprint arXiv:2009.09796 (cit. on p. 14).

21



22 BIBLIOGRAPHY

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019, June). BERT: Pre-
training of deep bidirectional transformers for language understanding.
In J. Burstein, C. Doran & T. Solorio (Eds.), Proceedings of the 2019
conference of the north American chapter of the association for com-
putational linguistics: Human language technologies, volume 1 (long
and short papers) (pp. 4171–4186). Association for Computational Lin-
guistics. https://doi.org/10.18653/v1/N19-1423 (cit. on p. 7).

Gao, J., Galley, M., & Li, L. (2018). Neural approaches to conversational ai.
The 41st international ACM SIGIR conference on research & develop-
ment in information retrieval, 1371–1374 (cit. on p. 13).

Geiger, A., Ibeling, D., Zur, A., Chaudhary, M., Chauhan, S., Huang, J., Arora,
A., Wu, Z., Goodman, N., Potts, C., et al. (2024). Causal abstraction:
A theoretical foundation for mechanistic interpretability. Preprint (cit.
on p. 9).

Guu, K., Lee, K., Tung, Z., Pasupat, P., & Chang, M. (2020). Retrieval aug-
mented language model pre-training. International conference on ma-
chine learning, 3929–3938 (cit. on p. 8).

Huang, J., Wu, Z., Potts, C., Geva, M., & Geiger, A. (2024, August). RAVEL:
Evaluating interpretability methods on disentangling language model
representations. In L.-W. Ku, A. Martins & V. Srikumar (Eds.), Pro-
ceedings of the 62nd annual meeting of the association for computa-
tional linguistics (volume 1: Long papers) (pp. 8669–8687). Association
for Computational Linguistics. https://doi.org/10.18653/v1/2024.acl-
long.470 (cit. on p. 11).

Huang, M., Zhu, X., & Gao, J. (2020). Challenges in building intelligent open-
domain dialog systems. ACM Transactions on Information Systems
(TOIS), 38(3), 1–32 (cit. on p. 13).

Huang, Y. (2015). Pragmatics. Oxford University Press, Incorporated. (Cit. on
p. 3).

Izacard, G., Caron, M., Hosseini, L., Riedel, S., Bojanowski, P., Joulin, A.,
& Grave, E. (2021). Unsupervised dense information retrieval with
contrastive learning. arXiv:2112.09118 (cit. on p. 9).

Izacard, G., & Grave, E. (2020). Leveraging passage retrieval with generative
models for open domain question answering. arXiv preprint arXiv:2007.01282
(cit. on p. 9).

Izacard, G., Lewis, P., Lomeli, M., Hosseini, L., Petroni, F., Schick, T., Dwivedi-
Yu, J., Joulin, A., Riedel, S., & Grave, E. (2023). Atlas: Few-shot
learning with retrieval augmented language models. J. Mach. Learn.
Res., 24(1) (cit. on p. 9).

Kaddour, J., Harris, J., Mozes, M., Bradley, H., Raileanu, R., & McHardy, R.
(2023). Challenges and applications of large language models. arXiv
preprint arXiv:2307.10169 (cit. on p. 5).

Kandpal, N., Deng, H., Roberts, A., Wallace, E., & Raffel, C. (2023). Large
language models struggle to learn long-tail knowledge. Proceedings of
the 40th International Conference on Machine Learning (cit. on p. 8).

Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu, L., Edunov, S., Chen, D., &
Yih, W.-t. (2020, November). Dense passage retrieval for open-domain



BIBLIOGRAPHY 23

question answering. In B. Webber, T. Cohn, Y. He & Y. Liu (Eds.),
Proceedings of the 2020 conference on empirical methods in natural
language processing (emnlp) (pp. 6769–6781). Association for Com-
putational Linguistics. https ://doi .org/10.18653/v1/2020.emnlp-
main.550 (cit. on p. 8).

Kwiatkowski, T., Palomaki, J., Redfield, O., Collins, M., Parikh, A., Alberti,
C., Epstein, D., Polosukhin, I., Devlin, J., Lee, K., et al. (2019). Nat-
ural questions: A benchmark for question answering research. Trans-
actions of the Association for Computational Linguistics, 7, 453–466
(cit. on p. 12).

Lála, J., O’Donoghue, O., Shtedritski, A., Cox, S., Rodriques, S. G., & White,
A. D. (2023). Paperqa: Retrieval-augmented generative agent for sci-
entific research. arXiv preprint arXiv:2312.07559 (cit. on p. 12).

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler,
H., Lewis, M., Yih, W.-t., Rocktäschel, T., Riedel, S., & Kiela, D.
(2020). Retrieval-augmented generation for knowledge-intensive nlp
tasks. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan & H. Lin
(Eds.), Advances in neural information processing systems (pp. 9459–
9474, Vol. 33). Curran Associates, Inc. https://proceedings.neurips.
cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-
Paper.pdf (cit. on p. 8).

Li, J., Galley, M., Brockett, C., Gao, J., & Dolan, B. (2016). A diversity-
promoting objective function for neural conversation models. Proceed-
ings of the 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Techno-
logies, 110–119. https : //doi . org/10 . 18653/v1/N16 - 1014 (cit. on
p. 16).

Li, Y., Su, H., Shen, X., Li, W., Cao, Z., & Niu, S. (2017, November). Daily-
Dialog: A manually labelled multi-turn dialogue dataset. In G. Kon-
drak & T. Watanabe (Eds.), Proceedings of the eighth international
joint conference on natural language processing (volume 1: Long pa-
pers) (pp. 986–995). Asian Federation of Natural Language Processing.
https://aclanthology.org/I17-1099 (cit. on p. 15).

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M.,
Zettlemoyer, L., & Stoyanov, V. (2019). Roberta: A robustly optimized
bert pretraining approach. ArXiv, abs/1907.11692 (cit. on p. 10).

Mallen, A., Asai, A., Zhong, V., Das, R., Khashabi, D., & Hajishirzi, H. (2023,
July). When not to trust language models: Investigating effectiveness
of parametric and non-parametric memories. In A. Rogers, J. Boyd-
Graber & N. Okazaki (Eds.), Proceedings of the 61st annual meeting of
the association for computational linguistics (volume 1: Long papers)
(pp. 9802–9822). Association for Computational Linguistics. https://
doi.org/10.18653/v1/2023.acl-long.546 (cit. on p. 17).

Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., Agarwal, S., et al. (2020). Language
models are few-shot learners. arXiv preprint arXiv:2005.14165, 1 (cit.
on p. 8).



24 BIBLIOGRAPHY

Marjanovic, S. V., Yu, H., Atanasova, P., Maistro, M., Lioma, C., & Augen-
stein, I. (2024, November). DYNAMICQA: Tracing internal know-
ledge conflicts in language models. In Y. Al-Onaizan, M. Bansal &
Y.-N. Chen (Eds.), Findings of the association for computational lin-
guistics: Emnlp 2024 (pp. 14346–14360). Association for Computa-
tional Linguistics. https : / / doi . org / 10 . 18653 / v1 / 2024 . findings -
emnlp.838 (cit. on p. 10).

Mehri, S., Razumovskaia, E., Zhao, T., & Eskenazi, M. (2019, July). Pre-
training methods for dialog context representation learning. In A.
Korhonen, D. Traum & L. Màrquez (Eds.), Proceedings of the 57th an-
nual meeting of the association for computational linguistics (pp. 3836–
3845). Association for Computational Linguistics. https://doi.org/10.
18653/v1/P19-1373 (cit. on p. 15).

Meng, K., Bau, D., Andonian, A., & Belinkov, Y. (2022a). Locating and editing
factual associations in GPT. In S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho & A. Oh (Eds.), Advances in neural informa-
tion processing systems (pp. 17359–17372, Vol. 35). Curran Associ-
ates, Inc. https://proceedings.neurips.cc/paper_files/paper/2022/
file/6f1d43d5a82a37e89b0665b33bf3a182- Paper- Conference.pdf (cit.
on p. 11).

Meng, K., Bau, D., Andonian, A., & Belinkov, Y. (2022b). Locating and editing
factual associations in gpt. Advances in Neural Information Processing
Systems, 35, 17359–17372 (cit. on pp. 10–12, 17).

Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002). Bleu: A method for
automatic evaluation of machine translation. Proceedings of the 40th
Annual Meeting of the Association for Computational Linguistics, 311–
318. https://doi.org/10.3115/1073083.1073135 (cit. on p. 16).

Parikh, A. P., Täckström, O., Das, D., & Uszkoreit, J. (2016). A decompos-
able attention model for natural language inference. arXiv preprint
arXiv:1606.01933 (cit. on p. 6).

Pearl, J. (2001). Direct and indirect effects. Proceedings of the Seventeenth
Conference on Uncertainty in Artificial Intelligence, 411–420 (cit. on
pp. 11, 12).

Peña, J. M. (2023). Alternative measures of direct and indirect effects. ArXiv,
abs/2306.01292. https://arxiv.org/pdf/2306.01292 (cit. on p. 11).

Petroni, F., Rocktäschel, T., Riedel, S., Lewis, P., Bakhtin, A., Wu, Y., &
Miller, A. (2019, November). Language models as knowledge bases?
In K. Inui, J. Jiang, V. Ng & X. Wan (Eds.), Proceedings of the 2019
conference on empirical methods in natural language processing and
the 9th international joint conference on natural language processing
(emnlp-ijcnlp) (pp. 2463–2473). Association for Computational Lin-
guistics. https://doi.org/10.18653/v1/D19-1250 (cit. on p. 8).

Radford, A. (2018). Improving language understanding by generative pre-
training (cit. on p. 8).

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.
(2019). Language models are unsupervised multitask learners. OpenAI
blog, 1(8), 9 (cit. on p. 8).



BIBLIOGRAPHY 25

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y.,
Li, W., & Liu, P. J. (2020). Exploring the limits of transfer learning
with a unified text-to-text transformer. Journal of machine learning
research, 21(140), 1–67 (cit. on p. 8).

Ram, A., Prasad, R., Khatri, C., Venkatesh, A., Gabriel, R., Liu, Q., Nunn, J.,
Hedayatnia, B., Cheng, M., Nagar, A., et al. (2018). Conversational ai:
The science behind the alexa prize. arXiv preprint arXiv:1801.03604
(cit. on p. 13).

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). ” why should i trust you?”
explaining the predictions of any classifier. Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and
data mining, 1135–1144 (cit. on p. 10).

Ribeiro, M. T., Wu, T., Guestrin, C., & Singh, S. (2020, July). Beyond accur-
acy: Behavioral testing of NLP models with CheckList. In D. Jurafsky,
J. Chai, N. Schluter & J. Tetreault (Eds.), Proceedings of the 58th an-
nual meeting of the association for computational linguistics (pp. 4902–
4912). Association for Computational Linguistics. https://doi.org/10.
18653/v1/2020.acl-main.442 (cit. on p. 10).

Rogers, A., Kovaleva, O., & Rumshisky, A. (2020). A primer in BERTology:
What we know about how BERT works (M. Johnson, B. Roark &
A. Nenkova, Eds.). Transactions of the Association for Computational
Linguistics, 8, 842–866. https://doi.org/10.1162/tacl_a_00349 (cit.
on p. 9).

Rosenfeld, R. (2000). Two decades of statistical language modeling: Where do
we go from here? Proceedings of the IEEE, 88(8), 1270–1278 (cit. on
p. 5).

Sciavolino, C., Zhong, Z., Lee, J., & Chen, D. (2021, November). Simple entity-
centric questions challenge dense retrievers. In M.-F. Moens, X. Huang,
L. Specia & S. W.-t. Yih (Eds.), Proceedings of the 2021 conference
on empirical methods in natural language processing (pp. 6138–6148).
Association for Computational Linguistics. https://doi.org/10.18653/
v1/2021.emnlp-main.496 (cit. on p. 17).

Serban, I. V., Sordoni, A., Lowe, R., Charlin, L., Pineau, J., Courville, A.,
& Bengio, Y. (2017). A hierarchical latent variable encoder-decoder
model for generating dialogues. Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, 3295–3301 (cit. on p. 16).

Siriwardhana, S., Weerasekera, R., Wen, E., Kaluarachchi, T., Rana, R., &
Nanayakkara, S. (2023). Improving the domain adaptation of retrieval
augmented generation (rag) models for open domain question answer-
ing. Transactions of the Association for Computational Linguistics,
11, 1–17 (cit. on p. 8).

Søgaard, A., & Goldberg, Y. (2016). Deep multi-task learning with low level
tasks supervised at lower layers. Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics (Volume 2: Short
Papers), 231–235 (cit. on p. 14).

Stolfo, A., Belinkov, Y., & Sachan, M. (2023, December). A mechanistic in-
terpretation of arithmetic reasoning in language models using causal



26 BIBLIOGRAPHY

mediation analysis. In H. Bouamor, J. Pino & K. Bali (Eds.), Proceed-
ings of the 2023 conference on empirical methods in natural language
processing (pp. 7035–7052). Association for Computational Linguist-
ics. https ://doi .org/10 .18653/v1/2023 . emnlp- main .435 (cit. on
p. 11).

Tenney, I., Das, D., & Pavlick, E. (2019, July). BERT rediscovers the clas-
sical NLP pipeline. In A. Korhonen, D. Traum & L. Màrquez (Eds.),
Proceedings of the 57th annual meeting of the association for com-
putational linguistics (pp. 4593–4601). Association for Computational
Linguistics. https://doi.org/10.18653/v1/P19-1452 (cit. on p. 10).

Tenney, I., Xia, P., Chen, B., Wang, A., Poliak, A., McCoy, R. T., Kim, N.,
Durme, B. V., Bowman, S. R., Das, D., & Pavlick, E. (2019). What do
you learn from context? probing for sentence structure in contextual-
ized word representations. https://arxiv.org/abs/1905.06316 (cit. on
p. 10).

Tran, S. Q., & Kretchmar, M. (2024). Towards robust extractive question an-
swering models: Rethinking the training methodology. arXiv preprint
arXiv:2409.19766 (cit. on p. 12).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Pro-
ceedings of the 31st International Conference on Neural Information
Processing Systems, 6000–6010 (cit. on p. 6).

Vig, J., Gehrmann, S., Belinkov, Y., Qian, S., Nevo, D., Singer, Y., & Shieber,
S. (2020). Investigating gender bias in language models using causal
mediation analysis. In H. Larochelle, M. Ranzato, R. Hadsell, M. Bal-
can & H. Lin (Eds.), Advances in neural information processing sys-
tems (pp. 12388–12401, Vol. 33). Curran Associates, Inc. (Cit. on
p. 11).

Yao, L., Chu, Z., Li, S., Li, Y., Gao, J., & Zhang, A. (2021). A survey on
causal inference. ACM Transactions on Knowledge Discovery from
Data (TKDD), 15(5), 1–46 (cit. on p. 11).

Yu, L., Cao, M., Cheung, J. C., & Dong, Y. (2024, November). Mechanistic
understanding and mitigation of language model non-factual hallucin-
ations. In Y. Al-Onaizan, M. Bansal & Y.-N. Chen (Eds.), Findings of
the association for computational linguistics: Emnlp 2024 (pp. 7943–
7956). Association for Computational Linguistics. https://doi.org/10.
18653/v1/2024.findings-emnlp.466 (cit. on pp. 10, 11).

Zhang, S., Dinan, E., Urbanek, J., Szlam, A., Kiela, D., & Weston, J. (2018,
July). Personalizing dialogue agents: I have a dog, do you have pets
too? In I. Gurevych & Y. Miyao (Eds.), Proceedings of the 56th an-
nual meeting of the association for computational linguistics (volume
1: Long papers) (pp. 2204–2213). Association for Computational Lin-
guistics. https://doi.org/10.18653/v1/P18-1205 (cit. on p. 15).

Zhang, T., Kishore, V., Wu, F., Weinberger, K. Q., & Artzi, Y. (2020). Bertscore:
Evaluating text generation with bert. https://arxiv.org/abs/1904.
09675 (cit. on p. 16).



BIBLIOGRAPHY 27

Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C. M., & Eger, S. (2019).
MoverScore: Text generation evaluating with contextualized embed-
dings and earth mover distance. Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), 563–578. https://doi.org/10.18653/v1/D19-1053 (cit. on
p. 16).

Zhao, Y., Du, X., Hong, G., Gema, A. P., Devoto, A., Wang, H., He, X.,
Wong, K.-F., & Minervini, P. (2024). Analysing the residual stream
of language models under knowledge conflicts. https://arxiv.org/abs/
2410.16090 (cit. on p. 10).

Zhao, Y., Xu, C., & Wu, W. (2020, November). Learning a simple and ef-
fective model for multi-turn response generation with auxiliary tasks.
In B. Webber, T. Cohn, Y. He & Y. Liu (Eds.), Proceedings of the
2020 conference on empirical methods in natural language processing
(emnlp) (pp. 3472–3483). Association for Computational Linguistics.
https://doi.org/10.18653/v1/2020.emnlp-main.279 (cit. on p. 15).


