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Glioblastoma multiforme is a highly aggressive form of brain cancer, with a median survival time
for diagnosed patients of 15 months. Treatment of this cancer is typically a combination of radiation,
chemotherapy and surgical removal of the tumour. However, the highly invasive and diffuse nature
of glioblastoma makes surgical intrusions difficult, and the diffusive properties of glioblastoma are
poorly understood. In this paper, we introduce a stochastic interacting particle system as a model of
in vitro glioblastoma migration, along with a maximum likelihood-algorithm designed for inference
using microscopy imaging data. The inference method is evaluated on in silico simulation of cancer cell
migration, and then applied to a real data set. We find that the inference method performs with a high
degree of accuracy on the in silico data, and achieve promising results given the in vitro data set.

Keywords: agent based modelling; mathematical biology; glioblastoma; diffusion; statistical inference.

1. Introduction

Glioblastoma multiforme is a brain tumour characterized by a diffuse and highly invasive growth. In
particular, a high degree of variability in the invasive behaviour has been observed in different patients,
leading to a hypothesis that there is a genetic component that determines whether the tumour exhibits a
diffuse or solid morphology. Urbańska et al. (2014) Since the 1980s, the use of mathematical modelling
to aid in the analysis of tumours have steadily grown as a field, and mathematical oncology is today an
important tool for physicians treating cancer patients Anderson & Maini (2018); Hamis et al. (2019).
On a macroscopic level, a glioblastoma tumour is characterized by two main features; the proliferation
rate and the cell diffusivity. Both of these features are emergent phenomena stemming from complex
dynamics at the cell level Skog et al. (2008). Up until recently single cell studies were hard to conduct,
but with further advancements in microscopy technology and image analysis individual cells can now be
tracked with a high degree of precision. Cell tracking technology has made it possible to fit agent based
models (also referred to as individual-based) to in vitro and in vivo data. Historically, partial differential
equations (PDEs) of the Fisher–Kolmogorov type have been the starting point when discussing models
of tumour growth Tracqui et al. (1995). In its most basic form, the normalized density of a tumour u(x, t)
at a point x ∈ R3 and a time t ≥ 0 is determined by

∂tu = DΔu + ru(1 − u). (1.1)
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INFERENCE ON AN INTERACTING DIFFUSION SYSTEM 251

Here D is a diffusion coefficient, related to the macroscopic cell migration rate, and r is a growth rate,
related to the cellular proliferation rate. We see that as u → 1, the growth rate vanishes, and the equation
locally becomes of the pure diffusion type. This equation is usually solved on a compact domain Ω

representing the brain anatomy featuring Neumann boundary conditions and has an initial distribution
u0, which is of compact support. An interesting emergent phenomena is travelling wave solutions to (1.1).
In the context of glioblastoma modelling, such travelling wave solutions have been studied by e.g. Gerlee
and Nelander in Gerlee & Nelander (2016). Equations such as Fisher–Kolmogorov and the wider class
of convection–reaction–diffusion equations it belong to, are not the only partial differential equation
approach taken when modelling tumour growth. Multiple authors have have modelled cell migration
phenomena using Boltzmann-like equations, where the evolution of cell velocity is considered the driving
factor behind migration. For examples of such approaches, see Othmer & Hillen (2000) and Painter &
Hillen (2013). While essentially phenomenological in nature, (1.1) has a deep connection as a limit result
in the theory of random walks Oelschläger (1989). Thus, to study tumour growth and how the diffusivity
depend on microscopic dynamics in greater detail, agent based models are a natural extension of the
continuum approach of (1.1). Agent based models can be divided into two chief paradigms; lattice and
off-lattice models. Historically, lattice-based models have been common within mathematical oncology,
see e.g. Johnston et al. (2017). The discrete nature of lattices make for relatively easy study in silico
and by considering the limit of an infinitesimal lattice, one can establish a natural connection to Fisher–
Kolmogorov type equations under suitable circumstances Davies et al. (2014). Off-lattice models are
usually based on the theory of Brownian random walks, and are usually modelled using stochastic
differential equations (SDEs) Turelli (1977). The calculus of stochastic differentials is well established,
and the framework has been used in physics and finance to study continuous and noisy phenomena since
the turn of the century Lemons & Gythiel (1997); Einstein (1905) and 1970s Black & Scholes (2019),
respectively. The greatest breakthrough was perhaps when stochastic calculus was made rigorous with
the invention of Itô calculus in the 1940s Itô (1944). The connection between stochastic calculus and
diffusion equations is established through the Fokker–Planck equation and Itô calculus Klebaner (2012).

1.1 Earlier work in inference on tumour models

The problem we consider is if the migration of glioblastoma cells cultured in vitro can be described
using a system of coupled SDEs, and if the parameters of the model can be inferred from time-lapse
microscopy data. This type of tracking-inference problem has been studied to great lengths in the
Bayesian community Arulampalam et al. (2002), but few one-size-fits-all solutions exists to anything
but the most basic problems. One of the earliest studies into estimating the parameters of the Fisher’s
equation for glioblastoma growth was conducted by Swanson et al. Swanson et al. (2000) in 2000, but
that study did not consider single-cell tracking, but rather used population density data to fit the model. In
a fairly early study from 2009 Tremel et al. (2009), Tremel et al. used microscopy data to fit a modified
Fisher equation, utilizing single cell tracking. The population growth parameters were fitted using cell
counting, and the diffusion term was inferred by measuring cell speed, comparing it to the characteristic
speed given by the travelling wave solution of the Fisher equation. In a study from 2015 Johnston et al.
(2015), Johnston et al. used microscopy data to fit parameters of the Fisher’s equation directly, bypassing
the tracking of individuals in favor of looking at population level dynamics. In the same research group,
Lagergren et al. recently used a neural network approach to fit an extended Fisher-type equation to data
from a scratch essay Lagergren et al. (2020). For a modern review of machine learning and nonlinear
mixed effect models for Fisher-like equations, we refer to Everett et al. (2020). Individual based, on-
lattice models have however been studied in great lengths. In 2014 Johnston et al. (2014), Approximate
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252 G. LINDWALL AND P. GERLEE

Bayesian Computation (ABC) Tavaré et al. (1997) was used to derive posterior distributions of D and r
in (1.1), using the radial distribution function (see (3.1)–(3.2)) as summary statistics. In 2017 Browning
et al. (2018), Browning et al. used a lattice-free approach to fit a randomwalk model of cancer migration.
The underlying stochastic process in this case was however a Poisson point process, and not the Brownian
motion approach typically employed. Once again, ABC was the inference method of choice, and the
summary statistics considered was the radial distribution function. However, the authors of Johnston
et al. (2014) and Browning et al. (2018) have recently considered SDE driven models Browning et al.
(2020), and cite a number of works on inference of SDEs. Among them we find the work conducted by
Brückner et al. (2020) regarding inference in Langevin-type equations (see (1.3)–(1.4) below for a sketch
of such equations), and the work of Schnoerr et al. Schnoerr et al. (2016) on stochastic reaction–diffusion
processes, which has a connection to stochastic partial differential equations in the mean field limit. The
data on which we base this study is microscopy imaging where single cells are clearly distinguishable,
and so we chose to model the cell population as a system of stochastic differential equations, and make
use of the Fokker–Planck equation for this system to find an expression for the likelihood function.
We then find the maximum of this likelihood using an SMC-within-Gibbs Schön & Lindsten (2015)
approach, using the mode of our posterior distribution as a point estimate of the parameters in our system.
A fully Bayesian evolution of this algorithm can be adopted with some additional work, and is the subject
of future research.

1.2 Biological mechanism behind cell migration

One can divide the means of locomotion in cell migration into two categories, external and individual
factors. External factors include chemotaxis and the extra-cellular matrix (ECM), both of which have
been studied extensively Hillen & Painter (2009); Chauviere et al. (2007). Cell migration involves
processes at several length and time scales and is therefore inherently difficult to describes succinctly.
While single cells are by default the simplest form of life, there is still a complex set of chemical and
physical factors behind their migration, many that are poorly understood. For example, when a cell
is close to division (mitosis), the motility of the cell has been observed to decrease. This has led to
concepts such as the go-or-grow model Gerlee & Nelander (2012). The mode of migration of a cell
has biomechanical explanations on the individual cell level that is a field of research in its own Malik
& Gerlee (2019); Bodor et al. (2020). In practice, however, the migrating behaviour on a larger scale
is described by some reasonably tractable stochastic process, as is commonplace in ecological models.
Common choices of stochastic processes include different kinds of persistent random walks, and their
diffusion limit in Brownian motion Othmer & Hillen (2000). If we denote a single cells location at time
t as x(t), Brownian motion is expressed on SDE form as

dx(t) = σdWt. (1.2)

In a persistent random walk, the stochastic component is instead applied to the velocity of the cell, v(t).
It obeys the system of SDEs

dx(t) = v(t) dt, (1.3)

dv(t) = −av(t) dt + b dW(t), (1.4)

where a > 0 is to be interpreted as friction, acting as a braking influence on the velocity process.
Persistent random walks have a strong foundation in statistical mechanics, and the pathwise behaviour
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Table 1 Most of the notation used in this paper

Variable Explanation

x(t) The locations of all cancer cells at time t
i, j Used as indices for individual cells
xi(t) The location of cell i at time t
θ A vector containing the parameters for the interaction potential (2.1).
σ A vector containing the diffusion coefficients for every cell.
K The total number of images in our data set.
k Used to talk about individual images
tk The time image k was taken
xk Location of all detected cells in the k:th image
xik The location of cell i in image k
Nt/Nk The total number of cells at time t/ in image k
X Capital X is reserved for real data
S In the particle filter introduced in 2.4, S is the number of particles.
s In the particle filter introduced in 2.4, s is used as the index for individual particles.
L In the particle filter introduced in 2.4, L is the time resolution used for simulation.
l In the particle filter introduced in 2.4, l is used to index time steps.
A In the particle swarm introduced in 4.3, A is the number of agents.
(a) In the particle swarm introduced in 4.3, (a) is used to index individual agents.

of realizations of (1.3)–(1.4) do not suffer from the non-differentiability of the cell paths, which is a
pathological feature of Brownian motion. An article covering using such models in a 3D setting was
recently written by Scott et al. Scott et al. (2021).

1.3 Notation

In this paper, we will attempt to fit a flexible SDE model to in vitro imaging data using a simulation-
based maximum likelihood approach. Given the large number of variables in the model we supply the
reader with the below table (Table 1), which lists all variables and their meanings.

2. Model

Regardless of modeling paradigm, cell migration models quickly reach a point of mathematical
intractability even under fairly simple assumptions. Depending on the context, one might opt to exclude
the effect of the ECM, chemotaxis and cell-to-cell adhesion/repulsion. The choice of stochastic process
modelling the independent propulsion of each cell is of great importance when selecting a model, and
whether to include cell division into the model can have an impact as well. In this section, we will discuss
the inclusions and omissions made in our model, given the context of our experimental data. The data set,
described in greater detail in Section 3, consists of microscopy images of glioblastoma cells migrating
through stem cell medium in a well coated with laminin. This implies that the physical and chemical
environment surrounding the cells is fairly homogeneous, and hence we assume a complete absence of
ECM or chemotaxis. We have access to high resolution data of the spatial evolution of the cells, making
an off-lattice agent based model a natural choice. Specifically, the approach will be an interacting system
of stochastic differential equations with an interaction potential in the drift term. As the purpose of the
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254 G. LINDWALL AND P. GERLEE

study is to investigate inference methods on parameters in the drift term, the cell proliferation rate will
be set to zero in our in silico experiments.

2.1 Interaction potentials

In mathematical biology, a potential is used to aggregate mechanical effects that can be difficult to
disentangle. Essentially, potentials can be either repulsive, attractive or both (see Oelschläger (1989)
for a nice summary). Every agent i, in our case cancer cells, is assigned a potential. If another cell
is at a distance r from i where ∇U(r) < 0, the cells repel one another. If ∇U(r) > 0, they attract.
The mechanism behind repulsion and attraction can be for any number of reasons, as the potential in
itself encode some type of average behaviour, and is not a model of a specific biophysical phenomena.
Example of phenomena that results in attraction cell is adhesion, while volume exclusion is a source
of repulsion. However, many of the standard potentials resulted in problems during simulation and
inference, especially pertaining smoothness of their derivatives and the presence of singular points.
As such, we introduce a moderately interacting soft-core potential U(r) governed by a vector of
six parameters θ = [k1, �1,α1, k2, �2,α2]. The potential is designed to be a flexible and infinitely
differentiable version of repulsion–attraction potentials such as the Lennard–Jones potential and the
Morse potential, and is given as

U(r) = α1
1

1 + e−k1(r2−�21)
− α2

( 1

1 + e−k2(r2−�22)
− 1

1 + e−k1(r2−�21)

)
. (2.1)

2.2 SDE model

We chose to model our cell population using a system of interacting stochastic differential equations with
isotropic diffusion. As we will come to see, isotropic diffusion vastly simplifies some implementation
aspects and given the homogeneity of the environment it also serves as a fair assumption. It is however
observed that some cells are more motile than others, and as such we choose to give every cell indexed
by i its own diffusion coefficient σi. At a particular moment in time t, the system evolves according to
the following set of equations

dxi(t) = −
∑
j �=i

∇U(rij(t))dt + σ idWi(t) (2.2)

for i = 1, . . . ,N where N is the number of cells and rij(t) = ‖xi(t) − xj(t)‖.

2.3 Transition probability

The quantity ofmain interest for our inference algorithmwill be theNt-particle densityP(x1, x2, . . . , xN , t) :=
P(x, t). Let Ω be the domain on which the particle diffusion takes place, P0(x) be an initial distribution
and assume Neumann boundary conditions, as the experiment takes place in an enclosed space. P(x, t)
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INFERENCE ON AN INTERACTING DIFFUSION SYSTEM 255

is then given as the solution to the 2Nt-dimensional Fokker–Planck equation

∂tP(x, t) = ∇x ·
[
D∇xP(x, t) + ∇xu(x; θ)P(x, t)

]
, (2.3)

u(x; θ) =
Nt∑

i=1

Nt∑
j=i+1

U(‖xi − xj‖), (2.4)

P(x, 0) = P0(x) (2.5)

∇xP(x, t) · n = 0, x ∈ ∂Ω , (2.6)

where n is a the normal vector the boundary ∂Ω . We note that (2.3) is an unwieldy equation for all but the
smallest number of particles, as the spatial dimension is 2N. Reduction of its dimension can be done by
a number of techniques such as a mean field approximation or closure at the two-particle density Bruna
et al. (2017), but explicit study of this partial differential equation lies outside the scope of this article.
Nevertheless, its interpretation lies at the heart of our inference problem, as P(x, t) is used to construct
the likelihood function used in our inference algorithm.

2.4 Estimating the transition probability through simulation

Solutions to (2.3) over an interval [tk, tk+1], 0 = t0 < t1 < t2 . . . , tK = T correspond to the transition
probability from a given state x(tk) = [x1(tk), x2(tk), . . . , xN(tk)] to any future state at the time tk+1 in
the following fashion Graham et al. (2006)

P(x(t) = x|x(tk)) := Pk(x, t),

where Pk(x, t) satisfies (2.3)–(2.6) with initial condition

Pk(x, tk) = 1

N

N∑
i=1

δxik
(x),

where δ denotes the empirical measure. Assume now that we wish to find the distribution Pk(x, tk+1),
which is needed to construct a likelihood function

πk(xk+1|xk) = Pk(xk+1, tk+1). (2.7)

Now remember that the cancer cells are observed at equally spaced times tk, k = 0, . . . ,K, but we do not
know the state of the cancer cells between these times. Thus, we can view states x(τ ) for tk < τ < tk+1
as hidden states. The idea is now to construct an approximation of πk(xk+1|xk) using L hidden states.
Illustrating the idea using a single hidden state at time τl ∈ (tk, tk+1), we have

πk(xk+1|xk) =
∫

Ω

πl(xk+1|xl)πk(xl|xk)dxl. (2.8)
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256 G. LINDWALL AND P. GERLEE

(2.8) can now be evaluated using Monte Carlo integration, simulating xl := x(τl) given an observed xk.
With S samples for the MC integration, we can obtain an approximation of the integral (2.8)

πk(xk+1|xk) ≈ 1

S

S∑
s=1

π(xk+1|xsl), (2.9)

where xsl is the s:th generated sample of xl, where s = 1, . . . , S. This method to construct approximate
likelihood functions by simulating hidden states using the model is known as a particle filter Schön &
Lindsten (2015); Chopin (2002). The chief question to answer now is how to sample from the hidden
states. The Monte Carlo integration will be constructed using an approximation of the SDE system given
by (2.2). There exist an extensive literature on approximations of nonlinear stochastic dynamical systems,
see e.g. Kloeden & Platen (1992). These are based on the Itô–Taylor expansion, and the most frequently
used method is the Euler–Maruyama scheme. However, since our SDEmodel (2.2) is driven by isotropic
diffusion, there exist a higher order-schemewhere convergence and stability is vastly improved compared
to the Euler scheme. This scheme is studied in detail in Lindwall & Gerlee (2023), but we will give a
short description of it here.We subdivide the interval [tk, tk+1)with a finer time grid τl = tk+ l

L (tk+1−tk)
for l = 0, 1, . . . ,L and use the model itself to estimate the unobserved cell distributions x1:N(τl) between
the observations. We do this by generating S proposal paths that x1:N could have traversed from time tk
to tk+1 using the Euler–Maruyama numerical scheme:

x̂τl+1
is = x̂τl

is + mτl
is(tk+1 − tk) + σi

√
tk+1 − tk

L
Z, (2.10)

mτl
is =

∑
j �=i

∇U(x̂τl
is − x̂τl

js) (2.11)

x̂τ0
is = xik (2.12)

for s = 1, . . . , S, l = 0, . . . ,L and i = 1, . . . ,N. Here Z is standard normally distributed random variable.
We can use the L − 1:th positions found using the propagation of (2.10)–(2.12) to construct for cell
i an approximation π̂ik(xi(k+1)|xk; θ , σ

2) of the desired transition density (2.7). It has the distribution
π̂ik(xi(k+1)|xk; θ , σ

2) ∼ p̂ik(xk, θ , σ
2) where

p̂ik(xk, θ , σ
2) = 1

S

S∑
s=1

p̂s
ik(xk, θ , σ

2), (2.13)

p̂s
ik(xk, θ , σ

2) = N (x̂τL−1
is + mτL−1

is (tk+1 − tk), σ
2
i

tk+1 − tk
L

).

More precisely, (2.13) is a Monte Carlo approximation of the marginal likelihood for particle i at time
tk+1; i.e. an approximation of the distribution

pik(x1, tk+1) =
∫

Ω

· · ·
∫

Ω

Pk(x, tk+1)dx2 · · · dxNk
. (2.14)

Techniques for reconstructing the Nt-particle distribution using the marginals are covered in Section 4.
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INFERENCE ON AN INTERACTING DIFFUSION SYSTEM 257

3. Experimental data

The raw data used in this study is an image sequence of glioblastoma cells obtained from the Human
Glioma Cell Culture (HGCC) resource Xie et al. (2015), consisting of K = 232 images with a temporal
resolution of 20 minutes. The dimensions of the images are 1408 × 1040 pixels. The glioblastoma
cells were suspended in stem cell medium and plated onto well plates coated in laminin. The cells
were cultured at 37 ◦C and 5% CO2, and imaged using an IncuCyte microscope. The images were
then tracked using The Baxter Algorithms Magnusson (2016). The output of this procedure is a list of
identified unique cells, and associated features such as time step first and last observed, position over
these time steps, average size and a family tree over mitosis relationships. After cleaning the data by
removing nuisance observations, taken as tracks with fewer than 3 observations or objects smaller than
112 pixels, we calculate the radial distribution function (RDF) of our data set, using a Matlab script
Weeks & Zhang (2023). The RDF describes the local density of cells at a distance r from a reference
cell, and the first peak of this function gives information on the typical distance between neighbouring
cells. With enumerating the observation times as k = 1, . . . ,K, the RDF gik(r) for cell i at time tk is
computed numerically as

gik(r) = 1

2πrdr

∑
j �=i

I
[|‖xik − xik‖ − r| < dr/2

]
(3.1)

g(r) =
K∑

k=1

Nk∑
i=1

gik(r). (3.2)

Here, I is the indicator function and dr is a reasonably small radius ‘shell’, resulting in (3.1) returning
the number density of cells within a distance r ± dr/2 of cell i at time tk. We call this an empirical
RDF. The total RDF given by (3.2) for our in vitro dataset is visualized in Fig. 1, displaying a peak at a
distance of 32 pixels, corresponding to a a distance of 24μm. We take the distance to this first peak as the
characteristic length scale of our data, and normalize so that one such distance is one length unit. While
the cells come in a variety of shape and sizes, taking that into account when conducting the inference is
unfortunately intractable. We thus make the assumption that the cell nuclei are circular, and essentially
we transform every single cell to circular disc with a diameter of 1. This is to ensure numerical stability
of the inference algorithm covered in Section 4. The entire process from microscopy images to cleaned
and normalized tracks is summarized in Fig. 2.

4. Inference method

With the numerical approximation of the marginal likelihood for each particle given by (2.13), we
have the ingredients needed to construct a likelihood-maximizing algorithm. However, straightforward
maximization of the likelihood function will be infeasible given the potentially hundreds of diffusion
coefficients. Luckily, this hurdle can be bypassed by noting that a conjugate relationship for σi exists,
drastically simplifying the process of finding the maximum likelihood for these parameters. This
conjugate relationship is studied in detail in Lindwall & Gerlee (2023). Thus the inference can be
carried out in two blocks, one for the inference on diffusion coefficients conditioned on some set
of interaction parameters, and one for inference on interaction parameters given a set of diffusion
coefficients. This alternating process is repeated until convergence is reached, and we will specify the
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258 G. LINDWALL AND P. GERLEE

Fig. 1. Radial distribution function of the considered data set with length scale given in pixels. Note that the distribution function
have been normalized as to converge to limr→∞ g(r) = 1.

details of the procedure throughout this section. The approach mirrors closely the SMC-within-Gibbs
approach Wilkinson et al. (2011).

4.1 Inference on diffusion coefficient—conjugate relationship

The inference algorithm used for the diffusion coefficients is based on a technique covered Lindwall &
Gerlee (2023), and we will provide just a brief summary of the method here. For each individual cell i
we have a maximum likelihood estimate σ̂i given by

σ̂ 2
i =

∑Ki−1
k=ki

(
xi(k+1) − mik

)TSik
−1(xi(k+1) − mik

)
2K

(4.1)

mik = xik + (tk+1 − tk)
∑
j �=i

∇U(xik − xjk), (4.2)

Sik = ST
1kS1k + ST

2kS2k, (4.3)

S1k = √
tk+1 − tk

(
I + tk+1 − tk

2

∑
j �=i

∇2U(xik − xjk)
)

(4.4)

S2k = (tk+1 − tk)
3
2√

12

∑
j �=i

∇2U(xik − xjk), (4.5)

where ki is the index for the first observation of this cell, and Ki is the index of the last observation. This
maximum likelihood estimate is based on the approximate transition density given by (2.13), and the
fact that it results in a Gamma-conjugacy for isotropic diffusion for σi. Again, for more details we refer
to Lindwall & Gerlee (2023).

4.2 Inference on interaction parameters—surrogate likelihood and RDF

For the inference on θ , we will use a maximum likelihood (ML) approach where the analyt-
ically intractable likelihood function is replaced with a Monte Carlo surrogate based on the
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INFERENCE ON AN INTERACTING DIFFUSION SYSTEM 259

Fig. 2. Pipeline detailed in Section 3, showing the process from laboratory to annotated track data useful for our inference
algorithm.
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260 G. LINDWALL AND P. GERLEE

Fig. 3. A snapshot of the particle filter predicting the location of an in silico cell at time tk+1 (marked with a Δ) given its location
at time tk (marked with a ∇). Colourbar shows normalized log likelihood calculated using (4.6), where 1 the maximum. There are
45 minutes between the observations. In the picture on the left, the particle filter uses the same θ and σ that were used simulate the
data set. Here the prediction performs well, indicated by the fact that the colour around the cell’s location at time tk+1 (marked by
a Δ) is warm. In the picture on the right, a randomly perturbed θ was used. This resulted in a bad overlap between the location of
the cell at time tk+1 and the log-likelihood given by (4.6). For both images, particle filter hyperparameters of L = 45 and S = 80
have been used.

p̂iik(xi(k+1); xk, θ , σ
2) computed using (2.13). We then use this simulation to approximate the log

likelihood of a parameter set θ . Here however, we have to tackle the problem that (2.13) only
approximates the marginal likelihoods, and we must find a way to express the full Nt-particle density
using the marginals. We suggest to simply assume independence of the particle distributions;

P(x, t) =
Nt∏

i=1

pi(xi, t)

leading to the mean field approximation (MFA) of the Nt-particle distribution. This gives us a log-
likelihood given by

�̂MFA(θ , σ) =
K−1∑
k=0

Nk∑
i=1

log(π̂ik(xi(k+1)|xk; θ , σ
2)), (4.6)

where Nk is the number of observed particles at time tk. It is possible to include higher order
approximations in the particle distributions, see e.g. Bruna et al. (2017), but given the complexity of
the inference algorithm we here opt for a simple approach to the problem of calculating the Nt-particle
distribution from the marginals. We see a visual representation of (4.6) in Fig. 3, where we also indicate
how it is used for inference purposes.We refrain to the Figure text for further details on the interpretation.

In the event of mitosis taking place between observation k and k + 1 when applying the algorithm
to in vitro data, our simulation scheme ignores the presence of the new born cell until the next set of
forward simulation, from observation k + 1 to k + 2. The logic behind this decision is illustrated in
Fig. 4. The exact birth time of a cell is outside of what we can possibly know, so we simply assume
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INFERENCE ON AN INTERACTING DIFFUSION SYSTEM 261

Fig. 4. An illustration of how cell lifelength is dealt with in our inference algorithm. The solid lines represent at what times the
cell is actually alive, and the dashed lines represent observation times. Cell 1 is alive for the entire duration of this snapshot over
five observed times tk−2, . . . , tk+2. Cell 2 is born after observed time tk−2, but before tk−1. We thus assign Cell 2 a birth time of
tk−1. Cell 3 dies after time tk+1, but its death is first noted at time tk+2. We assign that Cell 3 died at the time it was last observed;
at tk+1.

that it was born the moment we first detected it, and concede that for some time between its ‘actual’
birth time and the time we first detect it, it has had some influence on the dynamics of the entire system
that is not taken into account. The same applies for cell death—the time of death of a cell is set to be
the last time it was observed alive. The bias these assumptions introduce is mitigated by increasing the
observation frequency. We also want to make sure that not only is the predictive power of a proposed
parameter configuration (θ , σ) resulting in a maximized likelihood, but also that the spatial structure
of our synthetic cell population mimic that of the underlying data. The spatial structure is encoded in
the radial distribution function, previously discussed in Section 3, and as such we will also consider a
penalty for widely diverging radial distribution functions for our forward simulations when compared to
the ground truth RDF, namely the radial distribution function deviation (RDF-deviation)

R̂(θ , σ) = 1

S

K∑
k=1

( ∫ rmax

0
(gk(r) − ĝsk(r; θ , σ))2dr

)1/2
. (4.7)

Here, g(r) is the RDF from our dataset (visualized in Fig. 1) and ĝsk(r) is an RDF calculated using
(3.1) from the forward simulation-generated positions x̂τL

is given (θ , σ); see equations 2.102.12. The
integral is evaluated numerically by simply considering the Euclidean norm of the discretized radial
distribution functions, which are represented as vectors in Matlab.

4.3 Full inference algorithm

The inference algorithm is a variation of the classic particle swarm optimization method introduced in
Kennedy & Eberhart (1995). Particle swarm optimization is a stochastic optimization method running
over T generations, and is useful when optimizing objective functions that one can assume satisfy some
smoothness conditions, but whose derivatives are exceedingly hard to evaluate. The objective function
itself however should be readily available for evaluation. It is also applicable when we suspect that the
objective exhibits many local maxima. The set up is as follows; a set of A agents enumerated (a) =
1, . . . ,A are initiated in the parameter space Θ , i.e. the space of possible values of θ . Their locations,
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262 G. LINDWALL AND P. GERLEE

dubbed θ(a), are then used to calculate a set of diffusion coefficients σ(a) given the data xk, k = 1, . . . ,K
along with (4.1)–(4.5). (θ(a), σ(a)) are then used to forward simulate from one observation to the next,
and we evaluate the surrogate likelihood for the parameters using (4.6). This is the object of greatest
interest for the optimization algorithm. However, we note by inspection of (2.10)–(2.12) that the number
of operations required for evaluating the particle filter used to estimate (4.6) is O(N2KSL), where we
remind ourselves that N is the number of observed cells, K is the number of observations, S is the number
of particles used in the filter and L is the time resolution used in the particle filter.

4.3.1 Penalty formulation of optimization problem. To bypass this ballooning complexity, we chose
to approximate the cell-cell interactions by, for each cell, only consider a limited set of neighbouring
cells. This list is updated for each of the K observations. Thus, between the observations, when we
propagate from a state given by xk using the particle filter, we will only evaluate a fraction of all possible
interactions. This is not a concession when forward-simulating, since the interaction potential is short-
range by design. However, without taking long-range interactions into account when constructing the
surrogate likelihood, the fact that the interaction must remain short-range must be enforced in some
other way. We must also enforce a number of intrinsic properties of the interaction potential, which
we will formulate as constraints of the maximum likelihood optimization. The optimization problem of
maximizing the likelihood and minimizing the RDF-deviation given the constraints on the interaction
function is given by

maxθ ,σ �̂MFA(θ , σ) − R̂(θ , σ)

s.t. |U(R; θ)| − ε|U(1; θ)| ≤ 0
U(0; θ) ≥ 0

∂
∂r U(0; θ) ≤ 0

U(1; θ) ≤ 0
∂
∂r U(1; θ) = 0
∂2

∂r2
U(1; θ) ≥ 0.

(4.8)

Here, R and ε are parameters that determine the range of the potential. The parameter R determines
the distance at which the potential has decreased by a factor ε compared to the equilibrium, which is
always present at a distance of 1 l.e. In Andolfi et al. (2014) it was shown that glioblastoma cells interact
mechanically up to a distance of two cell diameters and we therefore set R = 3. The value of ε was
set to 10−2, which signifies a substantial drop in intra-cellular repulsion. The remaining constraints
are to make sure that U retains the general desired shape of the interaction potential. In practice, we
enforce these constraints using an exterior penalty method. Let gc(θ) be the c:th constraint, and express
the constraint ∂

∂r U(1; θ) = 0 as two inequality constraints of opposite signs. In generation t of our
optimization algorithm, our objective is to maximize the unconstrained problem

max
θ ,σ

ψ(θ , σ) := �̂MFA(θ , σ) − R̂(θ , σ) − λt

( 7∑
c=1

max(0, gc(θ))2
)
, (4.9)

where λt is the penalty term that increases every generation; we chose the penalty term λt = 2
√

t. We
will refer to ψ(θ , σ) as the fitness value for these parameters.

4.3.2 Outline of optimization algorithm. With the objective function clearly in our minds, we now
move on to a brief description of the optimization algorithm. We begin by specifying the attributes of
each agent.
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INFERENCE ON AN INTERACTING DIFFUSION SYSTEM 263

Table 2 Attributes of particle swarm agents

Attribute Notation Initial value

Diffusion coefficients σ(a) NaN
Interaction parameters θ(a) Uniformly drawn from Θ

Velocity v(a) 10−3 · θ(a)

Fitness value ψ(a) NaN
Best ever location θ∗

(a) θ(a)

Best ever fitness value Ψ(a) −∞

Note that it does not matter what we initialize σ(a) as—it will be calculated using our initial θ(a)

regardless. At initialization, we start with deciding for how many generations T we wish to run the
algorithm, set the hyperparameters S and L for the particle filter and R, ε for the constraints. We then
generate A agents with the attributes specified in Table 2. These attributes are then used to evaluate
(4.9) and a fitness value ψ(a) is assigned. If this fitness value is higher than the current best fitness
Ψ(a), it replaces Ψ(a), and θ(a) replaces θ∗

(a). The fitness-comparison aspect of a standard particle swarm
generation is complicated by the presence of the penalty method. In order to bypass this, we ‘re-penalize’
the previously held best belief about θ , to even out the playing field. This is vital, as otherwise beliefs held
in earlier generations are given an unfair advantage when compared to more heavily penalized beliefs.
At the end of every generation, the agents are compared to one another, and a global highest fitness Ψ

with corresponding θ∗
(a)max is crowned. If these would trump the current historical best values Ψ ∗ and

θ∗, they are replaced. To account for situations where an unduly high score was given to a bad choice
of θ∗ in an early generation, we once again ‘re-penalize’ the best ever choice θ∗ in every generation to
make sure that the algorithm does not run astray. The agents then propagate using simulated annealing
to update the velocity, with annealing functions

f1(t) = 1

3

(
1 + e2−

3t
T
)−1,

f2(t) = 1

3

(
1 + e4−

6t
T
)−1,

where f1(t) governs annealing for propagation towards θ∗
(a) and f2(t) is for the collective best θ∗. The

hyperparameters governing the annealing functions were chosen so that for the first half of the iterations,
particles would favor exploring towards θ∗

(a), i.e. expressingmore individual behaviour. After that, f2(t) >

f1(t), meaning that θ∗ will be favoured. We then update the time index t and start over. This algorithm is
summarized in Fig. 5. One important aside is that the propagation takes place in a logarithmic parameter
space, in order to counteract the varying magnitude of the different parameters.

5. Results

5.1 Results on in silico data

To benchmark the algorithm laid out in section 5, we ran an in silico experiment generated using the
model as stated in (2.2) and simulated using the same scheme as in (2.10)–(2.12). The parameters used
in these experiments are specified in Table 3, along with the initial population size N0. The choice of σ

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
m

b/article/41/3/250/7732137 by C
halm

ers U
niversity of Technology / The M

ain Library user on 12 D
ecem

ber 2024



264 G. LINDWALL AND P. GERLEE

Fig. 5. Outline of the stochastic optimization algorithm. Note that the re-penalization step is not written out explicitly, but rather
implied in all comparison steps.
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INFERENCE ON AN INTERACTING DIFFUSION SYSTEM 265

Table 3 Parameters used for in silico experiments

k1 �1 α1 k2 �2 α2 σ N0

10.00 0.55 4 · 10−3 4.00 1.20 6 · 10−5 e−9/2 256

is informed by Swanson et al. Swanson et al. (2000), where in vivo invasion of glioma was measured in
both gray and white brain matter. The findings in Swansons work is that the average diffusion in gray
matter were 0.0013 cm2/day, which translates to σ = 0.0053 in our our unit of [cell diameter]2/second.
This is assuming an average cell diameter of 24 μm, corresponding to the peak in Fig. 1. The parameters
θ and σ were chosen so that by visual inspection, the simulated systemmimics the observed data detailed
in Section 3. We simulate the cell set using a time step in the numerical scheme corresponding to (τk −
τk−1) = Δτ = 1 second over 24 hours. Although the algorithm allows for populations of varying size,
these are not considered in this in silico experiment. One purpose of running the in silico experiment
is to study how well the algorithm converges for different initial conditions. In order to study this, we
initiate the particle swarm randomly at the surface of a 6-dimensional hyper-sphere centered around the
logarithm of the ground truth parameter values as presented in 3, with radii rθ = 0.25, 0.5, 0.75 and
1. For these experiments, we use an observation frequency of Δt = 20 minutes. The results of these
experiments are summarized in Fig. 6 along with Table 4. Another purpose is to investigate to what
degree the frequency of observations affect the accuracy of our parameter estimations. In order to study
this, we run inference on three variations of a single realization of the experiment, using observations
every Δt = 10, 20 and 40 minutes. The 10 minutes between observations is a much higher frequency
compared to the in vitro data, while the 20 minutes interval is comparable and the 40 minutes interval
data is more infrequent. The results of these experiments are summarized in Fig. 7 along with Table 5.
The algorithm runs for T = 180 generations for each experiment on the in silico data set, and we use
S = 12 for the number of particles in the particle filter. L is set asΔt/12.We see that while the parameters
inferred as summarized in Tables 4–5 can differ quite a lot from Table 3, though the winning parameter
sets generates a potential quite close to the underlying target, measured in the bottom panel of Figs 6–7.
The error in these panels is computed as where rm is the closest distance two cells were ever detected at

∫ 5

rm

|U(r; θ(a)) − U(r; θ)|2dr. (5.1)

Finally, we present inference on the diffusion coefficient for the different time resolutions as well. The
Δt = 40 minutes data underestimates the diffusion coefficient, but this is to be expected; the attractive
portion of the potential used to generate the data set imposes a subdiffusive quality onto the system.
Since the less frequent observations settled for a ‘flatter’ interaction potential, the numerical scheme
given by (4.1)–(4.5) took less of the interaction into account, reporting the ‘actual’ motility, and not the
underlying. This result is visualized by box plots over the posterior modes in 8.

5.2 Results on in vitro data

For the in vitro experiment, we considered the data set appended within the supplementary materials of
this paper, the radial distribution function of which is given in Fig. 1. In order to explore a large number of
parameter configurations, we ran 64 instances of the inference algorithm summarized in Fig. 5 utilizing
twelve agents. Using the parameters in Table 3 as a reference point, each run was initiated around a
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266 G. LINDWALL AND P. GERLEE

Table 4 Parameters inferred from the in silico radius experiment—ground truth is found in Table 3

rθ k1 �1 α1 k2 �2 α2

0.25 10.56 0.57 5.08 · 10−3 4.14 1.18 5.90 · 10−5

0.5 7.59 0.48 3.03 · 10−3 3.21 1.44 4.46 · 10−5

0.75 10.84 0.68 2.75 · 10−3 7.34 1.25 5.99 · 10−5

1 10.89 0.50 9.14 · 10−3 1.81 1.53 9.49 · 10−5

Table 5 Parameters inferred from the in silico time resolution experiment—ground truth is found in
Table 3

Δt k1 �1 α1 k2 �2 α2

10 min 6.00 0.32 3.99 · 10−4 4.04 1.21 6.23 · 10−5

20 min 10.37 0.12 2.61 · 10−2 4.08 0.56 1.74 · 10−4

40 min 9.79 0.62 1.59 · 10−3 5.20 0.95 7.96 · 10−5

Table 6 5 best parameter sets inferred from the in vitro experiment. Note the difference in range for
fitness values Ψ in the initial and final run of the algorithm—these are results of the increased resolution
used in the final run

Final Ψ Initial Ψ k1 �1 α1 k2 �2 α2

1727.7 −969.54 47.437 0.3672 7.4052·10−3 17.239 0.3377 8.8214·10−5

1717.6 −968.94 19.528 0.0096 1.1518·10−3 13.450 0.0087 1.5979·10−5

1639.2 −968.76 20.039 0.1742 1.3114·10−3 10.429 0.3002 9.7072·10−6

1610.0 −968.74 18.320 0.3136 3.4666·10−4 9.7028 0.4892 3.5659·10−6

1571.2 −969.42 63.925 0.3101 1.8444·10−1 4.0104 0.5602 5.0649·10−6

corner of a 6-dimensional cube with side length 2 centered around the the logarithm of the parameters
given in Table 3. The 12 agents were then initiated on the surface of a 6-dimensional sphere of radius
rθ = 0.5 centered at those corners. We let the algorithm run for 100 generations, with the same S and L
as for the in silico experiments. After this, we identify the 20 strongest potentials discovered by this wide
sweep, with fitness values ranging from Ψ = −967.37 for the highest scoring agent to Ψ = −970.58
for the 20:th best fit. In order to further hone in on what potential fit the data set best, we score the top
20 parameters once again, but this time using S = 100 and L = Δt/4, giving us a much more accurate
result from the particle filter (2.10)–(2.12). The five best potentials discovered after refined scoring are
presented in Table 6 and are visualized in Fig. 9. We refer to the b:th best performing parameter set
as θ∗

b , for b = 1, . . . , 5. Broadly, two local maxima has been found by the algorithm. One case, which
includes the highest scoring one, features a equilibrium distance of r ≈ 0.6. The other case is a purely
repulsive potential. For the diffusion coefficients, we find that they vary quite a bit across the population,
but the high-scoring potentials agree on both the mean and standard deviation of how σ is distributed
across the glioblastoma cell culture. Box plots featuring the distribution for σ ∗ for the top five parameter
configurations are visualized in Fig. 10.
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INFERENCE ON AN INTERACTING DIFFUSION SYSTEM 267

Fig. 6. 20 best potentials generated by the particle swarm from the in silico experiment, compared to the underlying potential.
Note that the potential marked in red is the one with the best score, and not necessarily the one closest to the underlying potential.
For all of these, Δt = 20 minutes. The error in the bottom panel is given by equation (5.1).

6. Discussion

The model as well as the inference algorithm designed for this this problem contains a diverse array of
methods from different fields of applied mathematics. Some immediate mechanistic aspects left out in
the SDE model will now be discussed, followed by ideas for improvement of the inference algorithm.
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268 G. LINDWALL AND P. GERLEE

Fig. 7. 20 best potentials generated by the particle swarm from the in silico experiment, compared to the underlying potential.
Note that the potential marked in red is the one with the best score, and not necessarily the one closest to the underlying potential.
For all of these, rθ = 0.75. The error in the bottom panel is given by equation (5.1).

6.1 Model development proposals for the agent based model

Birth and death of cells. While the inference algorithm is flexible in that it can handle a varying number
of cells between images, cell birth and death has not been considered in the model. There has been
extensive research into the field of branching Brownian motion Bramson (1978), and this stochastic
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INFERENCE ON AN INTERACTING DIFFUSION SYSTEM 269

Fig. 8. Distribution of modes for the σi found by the winning agents in the 10, 20 and 40 minute cases of the in silico experiment,
compared to the underlying σ as a black dashed line.

Fig. 9. The interaction potentials found by the winning agents on the in vitro experiment. Parameters θ∗
b for potential b given by

the b:th row of Table 6. Note that the distance r is given in terms of of the equilibrium distance derived from Fig. 1, so that r = 1
denotes the peak of the radial distribution function.

process has a straightforward connection to Fisher-type equations through the use of renewal-reward
theory Oelschläger (1989); Smith (1958). Since the model covered here is already Brownian motion
based, a natural next step is to add branching properties to the paths xi(t), representing mitosis. This
could then be modified further to study other effects, such as the Allee effect Neufeld et al. (2017).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
m

b/article/41/3/250/7732137 by C
halm

ers U
niversity of Technology / The M

ain Library user on 12 D
ecem

ber 2024



270 G. LINDWALL AND P. GERLEE

Fig. 10. Box plot over σ∗
b found by using the winning parameter sets θ∗

b found in Table 6. θ∗
1 results in an average diffusion

coefficient of σ∗ = 5.83 · 10−3, and a standard deviation in diffusion coefficient of
√∑N

i=1(σ
∗
i1 − σ∗)2/(N − 1) = 1.71 · 10−3.

Inference on birth and death rates using single cell tracking has been carried out previously Johnston
et al. (2014), and as such this is a promising future line of work. Phenotype switching. Phenotype
switching can be considered, as in Gerlee & Nelander (2012). This would result in an increased number
of model parameters, and a model framework for this is summarized in Oelschläger (1989), along
with how to treat birth and death rates. However, inference on phenotype switching given the current
methodology is a subtle problem, giving rise to queries of whether a phenotype switch has truly taken
place, or if a cell slows down due to some other external stimuli. Related to phenotype switching is the
concept of population heterogeneity, which amounts to the presence of distinct subpopulations within
the cancer cell population. These subpopulations might differ with respect to the model parameters, and
this is one possible explanation for the highly variant nature of the histogram of estimated diffusion
coefficients in Fig. 10. However, variation between these subpopulations with respect to mechanical
properties is not accounted for in the model, and the performance of the algorithm might improve if
multiple subpopulations are included. Persistent random walk. Brownian motion is by its very nature
a physical impossibility, as its trajectory is nowhere differentiable. One can for the purpose of rigour
choose to model the randommotion of cells using a stochastic processes such as (1.3)–(1.4) instead. This
approach brings with it new and exciting modelling opportunities, as we in the continuum perspective
move away from pure diffusion type equation to Boltzmann-like equations over time, space and velocity
Othmer et al. (1988). The trade-off is that the problem doubles in complexity, and useful properties such
as the Markovian nature of the fluctuations in space are lost. Critical re-evaluation of the interaction
potential. The model (2.2) and especially the interaction potential (2.1) were designed with the explicit
goal to to create a flexible, multipurpose way of expressing many kinds of particle kinematics situation.
Under appropriate choices of θ , (2.1) can approximate everything from hard-sphere interactions to very
long-range, soft-core potentials. However, the flexibility comes at a cost, as it introduces many degrees of
freedomwhen solving the inverse problem of finding the parameters.We note this in our results, as both a
purely repulsive and an attraction-repulsion potential was proposed as fair solutions. Compared to some
classical potentials, the six parameters of (2.1) dwarfs the three parameters of the Morse potential, and
the two parameters of the Lennard–Jones potential. Also, (2.1) is purely motivated by mathematical
convenience and lack any derivation from fundamental theory. This is not entirely the case for the
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INFERENCE ON AN INTERACTING DIFFUSION SYSTEM 271

Lennard–Jones and Morse potentials, however. The functional form of the Lennard–Jones potential is
given as

ULJ(r) = D
((ρ

r

)12 − (ρ

r

)6)

and this expression is based on the fact that the intra-molecular London dispersion force asymptotically
decays at a rate of proportional to r−6. The power of r12 in the repulsive part of this potential is chosen
for mathematical convenience. In the case of the Morse potential, it was introduced as an empirical
construct, but recently, justification for its functional form has been found based on first-order principles
in quantum mechanics Costa Filho et al. (2013). The Morse potential is given by

UMorse(r) = D
(
1 − e−a(r−r0)

)2
.

While biological systems are magnitude orders away from quantum mechanics based arguments, a
Lennard–Jones style derivation based on perturbation theory could be motivated by biological principles,
and is an area of future research. As it stands, the potential employed in the current study works well for
simulation, but is far too complex for accurate inference given the current algorithm and realistic data.
Perhaps with the previously discussed improvements this could be mitigated somewhat, and perhaps the
flexible potential given by (2.1) holds some merit in future applications. Mathematical modelling must
always operate at the intersection of capturing enough reality to be useful and leaving out enough detail
to be tractable. What we were interested in with this model is capturing intra-cellular adhesion-repulsion
behaviour and under some type of noise influence. With the above considerations, we can hopefully do
this to an even higher degree of precision in future research.

6.2 Inference algorithm development

The inference algorithm is essentially based on the idea of a Gibbs sampler, albeit forgoing the extra
information that a Bayesian approach gives us in favor of point estimates. More precisely, we use a
pure Gibbs sampler when appropriate, i.e. for the diffusion coefficients, and then use a particle filter
to approximate the likelihood function of the interaction parameters. This idea is usually referred to as
SMC-within-Gibbs Schön & Lindsten (2015) and while intuitively easy to understand, it comes with an
array of issues regarding variance of simulated distributions and mixing speed of the underlying Markov
chains. Both of these issues can be mitigated by designing a particle Gibbs sampler Chopin & Singh
(2015) for this problem. A way to reduce the variance in the surrogate distribution (2.13) is to reconsider
what underlying stochastic process is used when propagating from observation k to observation k + 1.
As it stands, we do not use the k + 1:th observation for variance reduction. In computational finance,
the method we employ here is known as the Pedersen sampler. Various improvements on this scheme
has been proposed, see e.g. Durham & Gallant (2002). One could also implement guided proposals
Meulen & Schauer (2017) for similar purposes. All of the suggested improvements condition the interim
samples in the particle filter (2.10)–(2.12) on a future observation in some way. The presence of multiple
local maxima when the algorithm was applied to in vitro data indicate that variance reduction might
be needed for more accurate results. Another issue is that in the scoring algorithm for the particle
swarm optimization model, we make use of the mean-field approximation of P(x, t) (see Equation (4.6)).
The mean-field assumption is a poor approximation, especially when close-range interactions play an
important role Bruna et al. (2017). An improvement that can be considered is to use closure at the
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2-particle density function (2PD). We acquire this by first making the assumption that the full density
can be factorized as

P(x, t) =
Nt∏

i=1

Nt∏
j=i+1

P2(xi, xj, t).

This assumption is not a completely unreasonable one to make, as the interactions that drive the particle
system are evaluated pairwise. The tricky part now is to approximate P2(xi, xj, t) in a suitable manner. In
Bruna et al. (2017), a number of different methods are evaluated, among them is the composite expansion
as covered in Hinch (1991), which is given by

P2(xi, xj, t) ∝ p(xi, t)p(xj, t)e
−U(‖xi−xj‖).

The log likelihood is now, up to an additive constant,

�̂2PD(θ) =
K∑

k=1

[ Nk∑
i=1

log(p̂ik(x
i
k; xk−1, θ , σ

2)) − (tk − tk−1)u(xk−1; θ)
]
,

where u is the expression from (2.4). The additional term punishes configurations that lead to high
intracellular tension in the observed system, which should improve the scoring algorithm further. Better
yet, this penalty term is completely derived from the underlying mechanics, giving it further justification,
compared to the current penalty that is based on the algorithm designer’s subjective choice.

6.3 Analysis of results on the in silico data

For the high-frequency observations, the algorithm performed well on the considered synthetic data set.
Importantly, the attractive and equilibrium portions of the potential were accurately inferred, whereas the
repulsive component was more difficult to identify correctly. However, the amplitude of the repulsion
is still large enough to effectively model volume exclusion. When analysing Table 5, one can note that
the exact parameter values does not converge towards the ground truth presented in Table 3 for smaller
Δt. We remind ourselves that the fitness (4.9) can be high even for parameter configurations that are
quite different from the underlying truth. This implies a parameter identifiability issue for our model;
we see that multiple widely different parameter configurations can lead to similar-looking potentials.
The lower frequency data resulted in the particle swarm settling for flatter interaction potential (i.e.
less adhesion). Note however that a completely flat interaction landscape is actually a local maxima
when optimizing (4.9), meaning that the algorithm settled for a ‘safe’ solution. It is a known issue with
particle swarm optimization that it can settle for non-global maxima, and that seems to be the case here.
Reasonably, the large variance stemming from the Monte Carlo-scheme (2.10)–(2.12) when forward-
propagating the particle filter can make evaluations of the objective (4.9) difficult. Alas, in a future
implementation, more care will be put into reducing variance in this step. Bench marking using the
in silico experiments suggests that the diffusion coefficients are accurately predicted by our algorithm,
which could indicate one of two things. Either, the propagation of our SDE system (2.2) is so heavily
dominated by the isotropic diffusion term that the interaction potential barely affects the inference, or
the algorithm carefully accounts for discrepancies generated by (2.1), providing adequate inference on
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diffusion coefficient under many different circumstances. Nevertheless, the results in this study further
validates the method introduced in Lindwall & Gerlee (2023).

6.4 Analysis of results on the in vitro data

The local maxima discovered by the algorithm for the in vitro data set (see Table 6 and Fig. 10) gives
some merit to the model, while also elucidating how complicated accurate modelling of glioblastoma
multiforme is. First we can note that even after rescaling the problem so that the peak of the radial
distribution function (see Fig. 1) equals to r = 1 in our length scale, the shape of glioblastoma is irregular
enough in size to allow about 60% of that distance to be equilibrium, as seen in potential 1 and 5 in
Fig. 9. Despite two local maxima existing in the parameter space, the inference on the diffusivity of
population settled nicely in both cases. The reason for this can perhaps be explained by the following
two arguments. Either the population was sparse enough that the exclusion and attraction modelled by
the potential did not influence their diffusivity by much, or the diffusivity was accurately accounted for
the θ found in Table 6. Notably, parameter sets explored during the run of the algorithm resulted in quite
a variety of distributions over the diffusion coefficients, indicating that θ did have an impact. The best
five all agreeing on the diffusion coefficients indicate that we can be confident in the inference on the
diffusivity. One can note that the mean of (σ ∗)2/2 given the σ ∗ presented in Fig. 10 is 1.70 · 10−5[cell
diameter]2/second. In the unit of [cm]2/day, this is three orders of magnitude lower than the values
presented by Swanson et al. Swanson et al. (2000). However, Swanson et al. estimated the diffusion
coefficient for a solid tumour, making the situations not one-to-one comparable.

7. Conclusions

In this paper, we have introduced an interacting particle system model for glioblastoma migration, and
constructed a maximum likelihood algorithm to conduct inference on said model. The strengths and
weaknesses of the model has been assessed through analysis and simulation, and a somewhat promising
result has been achievedwhen applying themodel and inference algorithm to in vitro data of glioblastoma
migration. Improvements on both the model and the inference algorithm has been suggested as future
venues of research.
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