
Ranking approaches for similarity-based web element location

Downloaded from: https://research.chalmers.se, 2024-12-19 11:33 UTC

Citation for the original published paper (version of record):
Coppola, R., Feldt, R., Nass, M. et al (2025). Ranking approaches for similarity-based web element
location. Journal of Systems and Software, 222. http://dx.doi.org/10.1016/j.jss.2024.112286

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

The Journal of Systems and Software 222 (2025) 112286

A
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Ranking approaches for similarity-based web element location✩

Riccardo Coppola a,∗, Robert Feldt b, Michel Nass c, Emil Alégroth c

a Politecnico di Torino, Turin, Italy
b Chalmers University of Technology, Göteborg, Sweden
c Blekinge Institute of Technology, Karlskrona, Sweden

A R T I C L E I N F O

Keywords:
GUI testing
Test automation
Test case robustness
Web element locators
XPath locators

A B S T R A C T

Context: GUI-based tests for web applications are frequently broken by fragility, i.e. regression tests fail due
to changing properties of the web elements. The most influential factor for fragility are the locators used in
the scripts, i.e. the means of identifying the elements of the GUI.
Objective: We extend a state-of-the-art Multi-Locator solution that considers 14 locators from the DOM model
of a web application, and identifies overlapping nodes in the DOM tree (VON-Similo). We augment the
approach with standard Machine Learning and Learning to Rank (LTR) approaches to aid the location of
web elements.
Method: We document an experiment with a ground truth of 1163 web element pairs, taken from different
releases of 40 web applications, to compare the robustness of the algorithms to locator weight change, and
the performance of LTR approaches in terms of MeanRank and PctAtN.
Results: Using LTR algorithms, we obtain a maximum probability of finding the correct target at the first
position of 88.4% (lowest 82.57%), and among the first three positions of 94.79% (lowest 91.86%). The best
mean rank of the correct candidate is 1.57.
Conclusion: The similarity-based approach proved to be highly dependable in the context of web application
testing, where a low percentage of matching errors can still be accepted.
1. Introduction

Testing is essential in ensuring software quality, but it is typically
very time-consuming and therefore costly (Grechanik et al., 2009c,a).
Despite the challenges, many reports emphasize the efficiency and
cost-effectiveness of test automation in contributing to delivering high-
quality software releases (Olan, 2003; Adamoli et al., 2011; Alegroth
et al., 2013). Automated regression testing is a widely adopted ap-
proach in software development to evaluate and ensure the quality of
each release. This method, when applied at the Graphical User Interface
(GUI) level, involves creating a suite of test scripts that emulate user
scenarios and verify the software’s behavior using oracles (Liebel et al.,
2013; Mahmud et al., 2014). However, new software releases often
include changes that can disrupt automated regression tests, leading to
the need for test maintenance. Maintenance is, therefore, a continuous
activity that requires additional effort and expenses to keep the test
suite working and relevant, over time. For GUI tests, these maintenance
costs are exceptionally high since GUI structure, components, and logic
frequently change with each release (Tonella et al., 2014; Alégroth

✩ Editor: Dr. Dario Di Nucci.
∗ Corresponding author.
E-mail addresses: riccardo.coppola@polito.it (R. Coppola), robert.feldt@chalmers.se (R. Feldt), michel.nass@bth.se (M. Nass), emil.alegroth@bth.se

(E. Alégroth).

and Feldt, 2017; Dobslaw et al., 2019; Nass et al., 2021). GUI level
regression tests are thereby affected by changes to the GUIs appearance
as well as the underlying logic and structure. The design of GUIs,
intended for human use, creates additional difficulties for automation.
Issues related to the synchronization between the test scripts and the
application under test, which are less common in lower-level testing
methods such as unit testing, add to these challenges (Olan, 2003; Nass
et al., 2021).

Automated testing of GUI applications can be performed using
various methods, but the most common for web apps is to base it on
information from the Document Object Model (DOM) (Online, 2022b).
A similar approach can also apply to desktop GUI testing, where meta-
information about GUI elements is typically accessible through the OS
or the specific GUI library being used. In DOM-based testing, GUI web
elements used in tests, such as buttons, text fields, labels, etc., are
located using DOM properties like element attributes, element text, IDs,
XPaths (Online, 2022c), and CSS selectors (Online, 2022a).
https://doi.org/10.1016/j.jss.2024.112286
Received 23 April 2024; Received in revised form 11 November 2024; Accepted 15
vailable online 3 December 2024
164-1212/© 2024 The Authors. Published by Elsevier Inc. This is an open access ar
 November 2024

ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
mailto:riccardo.coppola@polito.it
mailto:robert.feldt@chalmers.se
mailto:michel.nass@bth.se
mailto:emil.alegroth@bth.se
https://doi.org/10.1016/j.jss.2024.112286
https://doi.org/10.1016/j.jss.2024.112286
http://creativecommons.org/licenses/by/4.0/

R. Coppola et al.

e
c

a
N
e
a
(
o

c

r

a
p
t
d
c
s
t

t
S

c
o
a
t
o
w
n
u
h
M
p

f
a
p
o
t
a
r

F
a
s
s

The Journal of Systems & Software 222 (2025) 112286
However, DOM properties are prone to change, impacting the sta-
bility of automated test execution as the application evolves. This
sensitivity is known as ‘‘test script fragility’’, manifesting as test failures
with false positive – Tests incorrectly reporting defective behaviors –
test results, and frequently causes increased maintenance, cost, and
decreased quality, as reported by researchers (Memon et al., 2001;
Grechanik et al., 2009b; Alegroth et al., 2015; Alégroth et al., 2018;
Mahmud et al., 2014; Moreira et al., 2017; Coppola et al., 2018, 2019).
Of course, significant changes to a SUT should result in a test failure, as
it may indicate a defect. However, changes that unintentionally lead to
test failures, even with minor modifications to the website, can break
test execution, even though a manual tester would consider the test
successful. These minor test failures lead to unnecessary debugging and
maintenance, especially when the cause of failure is small and hard to
detect. In the literature, unpredictable test scripts are often referred to
as fragile or lacking robustness (Eladawy et al., 2018).

Research has had limited success in addressing the challenge of
robust GUI element localization (Nass et al., 2021). Some studies have
explored new locator methods such as image recognition (Yeh et al.,
2009) or multi-locators (Leotta et al., 2016). However, despite these
efforts, web element localization remains an unresolved challenge, and
more research is needed to enhance the robustness and maintainability
of GUI testing techniques and tools (Nass et al., 2021).

In our previous works, we have proposed a novel approach to web
lement localization for web applications, with a locator algorithm
alled Similarity-based web element localization (Similo) (Nass et al.,

2022). The primary purpose of Similo is to increase the robustness
of locating web elements by comparing the similarity of multiple
web element attributes to achieve high stability and robustness in
the execution of GUI-based tests over time. Similo takes advantage of
information from multiple attributes by considering a weighted sum
of the results of the comparisons of individual attributes of the web
elements. To improve the approach further, the Similo algorithm has
lso been extended with a concept referred to as Visual Overlapping
odes (VON), which was designed to extend the set of matching web
lements for each target by leveraging the common structure of web
pplications (Nass et al., 2023a). The benefits of the VON approaches
in terms of localization precision and accuracy) have been validated
n an experimental sample of web applications.

In this work, we conceptualize and empirically evaluate a new lo-
ator finding strategy, based on learning to rank algorithms, which we

deem beneficial towards full automation of GUI testing activities. The
core difference from related works is that previous solutions evaluated
the locator problem as a binary classification task (using a similarity
threshold for matching web elements), i.e., either finding or failing
to find the best candidate matching the target. Failed localization’s
thereby results in prematurely terminated test execution or neces-
sary human intervention. Even though existing approaches do provide
ranked lists of candidates for a given target, no ML techniques are used
to optimize the outcome of the ranking. Since the so called Learning-to-
Rank (LtR) algorithms directly targets the optimization of ML models
that can rank a large set of items, they are a natural choice to evaluate
for the ranking of web elements. While there are many potential search
and/or optimization methods that could be used to rank items we
note that LtR algorithms have previously been investigated in software
engineering, e.g. for ranking defect proneness of modules (Yu et al.,
2023), and that some of the standard approaches that is based on
andom forests, showed promising results. Here, we thus focus on such

classic LtR approaches and what they can provide in our problem
setting.

The main contributions of the present work are the following:

• We introduce Machine Learning (ML) and Learning to Rank (LTR)
approaches for web element localization, building upon our pre-
vious contributions, including the SIMILO algorithm (Nass et al.,
2022) and the Visually Overlapping Nodes (VON) concept (Nass
 c

2
et al., 2023a). We then compare the ML and LTR approaches with
the state-of-the-art and evaluate the benefits that can be obtained
with such techniques to reduce test execution fragility;

• We analyze the benefits of the Ranking-based approach to loca-
tor identification in both the original SIMILO and VON-SIMILO
setting.

• We finally discuss the benefits and drawbacks of such an approach
and its feasibility in a real-world testing scenario.

The results that we collected when evaluating Learning to Rank
lgorithms to similarity-based locators for web application testing hold
romise for an application of the techniques in state-of-the-art au-
omated layout-based web application testing tools. The results we
ocument in the present manuscript demonstrate that LTR approaches
an be effectively applied to solve the task of correctly ranking corre-
pondent web elements in the layouts of web pages that evolve over
ime, with a peak ranking performance of 88.45%.

This paper is structured as follows. Section 2 presents related work,
and gives a background of web element locators and the VON Similo
approach. Section 3 covers the details of the proposed Similo algorithm.
The design, research questions, and procedure of the empirical study
are presented in Section 4, and the results in Section 5. In Section 6,
we discuss the results and sample use cases to motivate the use of
he compared techniques. We state conclusions and future work in
ection 8.

2. Background and related work

This section provides background information about automated
web application GUI testing, state-of-the-art multi-locator approaches
for web testing, and Learning To Rank algorithms along with their
utilization in the Software Engineering literature.

2.1. Property-based GUI testing and test fragility

GUI testing is a software testing technique that involves executing
test cases – either manually or automatically – against the graphical
user interface (GUI) of an application to ensure that it is working as
intended.

Alégroth et al. proposed a classification of GUI testing techniques in
generations, according to the nature of the locators they use (Alégroth
et al., 2015): first generation, or coordinate-based, techniques use exact
oordinates on the screen to identify web elements; second generation,
r property-based, techniques leverage the values of the web element
ttributes defined in the DOM of the webpage (e.g., for web applica-
ions: ids, text content, content descriptions, xpaths); third generation,
r visual, techniques leverage the exact graphical appearance of the
eb elements to identify and interact with them. First-generation tech-
iques have been largely abandoned due to the inherent fragility of
sing exact coordinates; at the same time, third-generation techniques
ave been shown to be fragile to change (Coppola et al., 2021).
ost research and practice, thereby, has been, and still is, focused on

roperty-based web application GUI testing.
In the web domain, a web element locator is defined as a method,

unction, approach, or algorithm that can locate a web element in
 given web page according to a specific parameter. State-of-the-art
roperty-based techniques and tools typically make use of conditions
n the attributes of the web elements in the HTML DOM tree. Popular
esting tools (e.g., Selenium) provide the possibility to use locators such
s XPath or CSS expressions to locate elements on the web page. We
efer to these types of locators as single-locators.

Single-locators are a reported source of fragility for GUI tests.
ragility is defined as the lack of robustness of the locators to identify
 web element after changes in the GUI definition of the SUT. Several
tudies in the literature have identified single-locators as a common
ource of fragility since the attributes of web elements are often
hanged during updates of an application.

R. Coppola et al.

m
m

m
i

c

X

t
t

t
c
i
t
e
n

r
c

t
M
f
M
b
u
d
a
D

r

O
t

r
p
b
t
(
d
t
s
i
p
i
t

b
p
5

i

h

a

t

t
c

The Journal of Systems & Software 222 (2025) 112286
Fragility leads to false positive test results, where test failures are
not caused by actual defects in the SUT, but by failing locators in the
test code itself (Coppola et al., 2018).

When a locator cannot be found in the DOM tree of the current web
page, after the SUT is updated, it is typically referred to as a Broken
locator (Leotta et al., 2015).

Furthermore, the test fragility issue is increasing with the grow-
ing complexity of web applications and adoption of new frameworks,
as well as the use of dynamic generations of attributes of web ele-

ents (Ricca et al., 2019). As a consequence, the demand for test case
aintenance has increased.

Web application testing literature has addressed the fragility prob-
lem with different approaches. For instance, some efforts in literature
have proposed repair strategies to automatically fix broken locators .
Other solutions have tried to mitigate the issue by increasing the num-
ber of attributes involved in web element location, therefore providing
multiple possibilities for how to identify the same web element in case
some attributes are no longer able to identify it. Leotta et al. proposed
a new type of web element locator, named multi-locator, which selects
the best locator among a candidate set of locators produced by different
algorithms (e.g., using XPaths, IDs, or text content); this selection
is based on a voting procedure that assigns different weights to the
different locator generation algorithms (Leotta et al., 2015).

Montoto et al. proposed a single-locator algorithm, which generates
ultiple XPath expressions to use as locators through a bottom-up

terative strategy; the algorithm starts from simple XPath expressions
and concatenates sub-expressions until it is able to identify the desired
target elements (Montoto et al., 2011). The algorithm works in the
same fashion as a multi-locator approach since the XPath is initially
omposed by taking into account the textual content of the sought web

element; then, if the XPath is not unique, the ancestors of the web
element and their attribute values are used, iteratively, until the root
is reached.

Other single-locator algorithms for generating robust XPath’s are
ROBULA (Leotta et al., 2014) and ROBULA+ (Leotta et al., 2016),
proposed by Leotta et al.

The ROBULA+ algorithm (Leotta et al., 2016) generates generic
Path locators selecting all the nodes in the DOM tree, then iteratively

applies transformations to generate specialized XPath expressions, se-
lecting only the element of interest for a test sequence. The implementa-
ion of the tool employs several heuristic prioritization and black listing
echniques for the selection of the XPath corresponding to the web

elements of interest and collects multiple data points for each element
to be stored and used in XPaths, such as tag names and attributes.

2.2. Learning to rank in software engineering

Learning to Rank (LtR), sometimes also known as Machine-Learned
ranking (MLR), is a general approach in Machine Learning (ML) with
he goal to rank a set of items as a whole (Liu et al., 2009). This is, in
ontrast to simpler and earlier approaches in ML, where such ranking
s a side effect of predicting values/scores per individual item and
hen post-sorting the items to get a ranking. The canonical application
xample is in information retrieval, where a large list of documents
eeds to be ranked based on their relevance for a search query.

In modern LtR solutions, there are three main approaches of how
the ranking is actually achieved (Cao et al., 2007; Liu et al., 2009). In
the pointwise approach, a single value is predicted per individual item
and then used to sort items from high to low (or low to high, depending
on setup). The problem is thus seen as a regression problem where a
anking score is the output to be predicted. Almost any ML algorithm
an be used for this purpose in the LtR setting. In the pairwise approach,

the machine learning (ML) model takes information about two items
as input and then indicates which one should be ranked higher. By
calling the learning function multiple times, one can then produce (at

least) a partial order of all the items. Finally, in the listwise approach r

3
the ML model directly outputs the ranked list by trying to optimize
one of the LtR-specific loss functions (that can take the full list into
account). Even though early empirical studies indicated that listwise
approaches performed better, recent studies have shown that even
traditional, pointwise approaches can be competitive and sometimes
more robust (Ibrahim, 2020).

While any traditional ML algorithm can be used in the LtR set-
ing, studies typically use either Random Forests, Gradient Boosting
achines, or Neural Networks. The main difference lies in the loss

unction used while training the models. For example, while traditional
L and the pointwise LtR setting typically use traditional accuracy-

ased loss functions such as mean root square error, the pairwise setting
ses variants of classification accuracy, and listwise LtR approaches
irectly try to quantify how close to the top the most relevant items
re ranked. They thus typically all use loss functions like Normalized
iscounted Cumulative Gain (NDCG) (Järvelin and Kekäläinen, 2017)

or Expected Reciprocal Rank (ERR) (Chapelle et al., 2009) which can
eflect multiple levels of relevance.

Learning to rank algorithms has been applied to several Software
Engineering problems. Safdari et al. use the history of previously local-
ized bugs and their dependencies as features to rank files in terms of
their likelihood of being the root cause of a bug (Safdari et al., 2019).

ther studies have used the approach for bug triaging to improve
he efficiency of bug assignee recommendation based on similar issues

fixed previously, Tian et al. (2016) or to predict defect-prone software
modules (Yang et al., 2014).

Projects receive many bug reports, and resolving these reports takes
considerable time and human resources. To aid developers in the
esolution of bug reports, various automated techniques have been pro-
osed to identify and recommend developers to address newly reported
ugs. Two families of bug assignee recommendation techniques include
hose that recommend developers who have fixed similar bugs before
a.k.a. activity-based techniques), and those that recommend suitable
evelopers based on the location of the bug (a.k.a. location-based
echniques). Previously, each of these techniques has been investigated
eparately. In this work, we propose a unified model that combines
nformation from both developers’ previous activities and suspicious
rogram locations associated with a bug report in the form of sim-
larity features. We have evaluated our proposed approach on more
han 11,000 bug reports from Eclipse JDT, Eclipse SWT and ArgoUML

projects. Our experiments show that our unified model can outperform
a location-based baseline by Anvik et al. and an activity-based baseline
y Shokripour et al. In terms of correct recommendations at top-1
osition, our unified model outperforms the activity-based baseline
0.0

A number of recent studies applied LtR algorithms to test case
prioritization. Bertolino et al. combined it with reinforcement learning
for test selection and prioritization in Continuous Integration. Their
approach automatically extracts code changes and test metrics to prior-
tize the features to be tested by obtaining a ranked test list (Bertolino

et al., 2020). ML-based test case prioritization in the context of CI builds
as been explored also by Yaraghi et al. (2022). A similar approach was

also evaluated in an industrial case study (Omri and Sinz, 2022).

3. A data-driven ranking perspective for web element selection

In this section, we outline the different components of the Similo
pproach (Nass et al., 2023a), describing both the original Similo algo-

rithm as well as the extension VON Similo.owever, we note that even
hough they are both based on calculating the similarity score between

a target web element and a large set of candidate web elements,
heir conceptualizations and empirical evaluations views them as binary
lassification models; they either match the correct target element or not.

The main argument of this paper is rather that they can be seen as
anking models, returning a whole list of candidate elements, ordered by

R. Coppola et al.

m

m

l
w
u

i
p
t
e

e
t

s
t
p

r
D
i
a
w
c
e
c
(
d
p
K
s
v

T
a
o

s

w
i
c
s
e
D
w
s
r

r

e
p
r
p
i
t

s
c

The Journal of Systems & Software 222 (2025) 112286
similarity to the target. Also, by tuning any such model in a data-driven
anner it should be possible to further improve performance.

From this new perspective, i.e. web element selection as data-driven
ranking, it is natural to consider machine learning (ML) models that di-
rectly target ranking problems. Below, after establishing preliminaries
and introducing the Similo and VON Similo algorithms, we then present
the ML algorithms we consider in the following, e.g. Learning-to-Rank
models as well as simple classification algorithms as baselines.

3.1. Preliminaries

Similo is a multi-locator based approach for GUI-testing of web
applications. The objective of Similo is to find the candidate web
element with the highest similarity to the target one. Similo uses

ore information than a single locator, similar to the multi-locator
approaches discussed in the Related Work section. However, instead
of using multiple single-locators, like the solution from Leotta et al.
(2016), Similo finds the candidate web element with the highest simi-
arity score by comparing multiple locator parameters from the target
ith each candidate. Additionally, the approach can be extended by
sing the concept of visually overlapping nodes (VON) that exploits the

hierarchical structure of how modern web applications are constructed
n the document object model (DOM) (Wood et al., 1998) to improve
erformance. DOM nodes that overlap visually (i.e., when comparing
heir location and size) do, according to the VON concept, represent
quivalently valid targets.

For the remainder of the paper, we will consider a scenario in which
the Similo algorithm is applied to find web elements in the current
version of the SUT (named v2) based on the identification of web
lements from a previous version of the SUT (named v1). We adopt
he following nomenclature:

• Equivalent: web elements that are considered as equivalent with
any other, according to the Visual Overlap heuristics that are
defined for the VON Similo algorithm;

• Target: web element to be identified, taken from the DOM hier-
archy of v1 of the SUT;

• Target set: set of the web elements that are equivalent (according
to the VON Similo heuristic) to the current target, in the DOM
hierarchy of v1 of the SUT;

• Candidate: web element, in v2 of the SUT, that is checked with
the Similo algorithm to evaluate its as a match to the target web
element;

• Match: a web element(s) that is/are provided by the Similo
algorithms as the corresponding one(s) to the target web element,
which also represent the output from the algorithms. If a ranking
approach is used, the algorithms return a list of possible matches
ranked by similarity rather than a single match. In this case,
the candidate with the highest similarity score (the most likely
match) is placed at rank 1 of the output list.

• Oracle (Correct Match): candidate web element in v2 that is
associated to the target (set) actually equivalent to the target (set)
in v1. The oracle was, in this experiment, defined during prior
manual exploration of the application and is used to verify the
correctness of the matches provided by the algorithm.

3.2. Standard similo approach

This section provides an overview of the standard Similo approach.
The interested reader can refer to the original paper discussing the
technique for additional details (Nass et al., 2022).

Similo is a multi-locator approach based on a weighted similarity
core computed on the difference between the locator parameters of
he web elements on the current web page (candidates), and the locator
arameters of the sought target element.
 a

4
To evaluate the correctness of a candidate as a match for the current
target web element, Similo uses 14 different locator parameters with
corresponding operators and weights, as summarized in Fig. 1. The
locator parameters Tag, Class, Name, Id, HRef, Alt, XPath and ID
elative XPath, Location, Visible Text are collected directly from the
OM-tree of the web page. IsButton is a derived boolean parameter, that

s set to true or false according to the values of the attributes Tag, Type,
nd Class. Neighbor Text contains a space-separated concatenation of
ords collected from the visible text of nearby web elements. Specific

omparison operators that return a value between zero and one (or
xactly zero or one) were selected for each locator parameter. Some lo-
ator parameters were compared by the Java method equalsIgnoreCase
e.g., Tag, Name, and Id). Others were compared using Levenshtein
istance, word comparison, or Euclidean distance. In Similo, the locator
arameters were divided into two groups based on a related study by
irikuni et al. which identified what locator parameters have higher
tability and uniqueness. Based on this work, we assigned a weight
alue of 1.5 to the most stable locator parameters (regular lines in

Fig. 1) and a value of 0.5 to the remaining ones (dashed lines in Fig. 1).
he weights were selected based on expert judgement for the SIMILO
lgorithm, without empirical assessment of the effects of their selection
n the provided results.

In the original version proposed for Similo, the algorithm selected
a single candidate web element from v2 – the one with the highest
imilarity score – as the Match for a given target web element in v1 of

the web application. Since the algorithm provided a matching element
for every target, it is only possible to have one of two results when
evaluating the correctness of the matches: a match is considered a true
positive if the candidate web element is the correct selection for the
current target (i.e., the oracle), and a false positive otherwise.

In addition to the standard behavior that always returns a single
match, the Similo algorithm can be used as a binary classifier by
comparing the Similo score with a fixed threshold (which serves as
a parameter for the algorithm). If the computed score is higher than
the threshold, the candidate web element is considered a match for the
target element.

3.3. Visually overlapping nodes (VON) Similo

VON Similo is an extension of the original Similo algorithm, which
considers the possible visual overlap between different web elements in
a given page hierarchy (Nass et al., 2023a). A characteristic of modern

eb applications is that they are built as a hierarchical structure that
s modeled within the DOM. As an example, it is possible that a div tag
ontains a button which in turn contains a text label, all these elements
haring the same visual portion of the screen. From a DOM perspective,
ach element is considered a unique entity, and it is described by a
OM node identifiable through an absolute XPath. However, multiple
eb elements can be rendered – from a visual perspective – inside a

ingle entity that is visualized on screen (e.g., a button) due to their
elative size and placement.

We call the single human-visible rendered entity a widget, and we
efer to the set of overlapping web elements as equivalent web elements.

Fig. 2 visualizes this many-to-one connection, showing how web
lements can be contained in other web elements yet, from a visual
erspective, occupy the same – or a very similar – area of the screen. We
efer to this phenomenon as visually overlapping nodes (VON), where
roperty-based localization approaches, like Similo, can utilize VON to
ncrease the number of correctly located candidate web elements. In
he sample case, while web elements W2 and W3 are represented with

different XPaths in the DOM, both visually point to the same (or almost
equal) screen area or web element. This phenomenon implies that both
web elements (W2 and W3) can be equally correct matches for the
ame target element or, vice-versa, equally correct targets for the same
andidate web element. By using this heuristic concept of equivalence,

ny property-based localization approach can use VON to increase the

R. Coppola et al. The Journal of Systems & Software 222 (2025) 112286
Fig. 1. Graphical representation of the computation of similarity score between two different sets of locator parameters. The attributes in blue and red are, respectively, used by
the Similo and VON-Similo versions of the algorithm. The Full-Similo attribute set considers the union of the two attribute sets. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
number of DOM nodes that can be matched when identifying the same
web element.

Given a web element W1, we define the set of equivalent web
elements e0,. . . ,e𝑁 as the set of web elements that satisfy the following
properties:

1. The ratio between the overlapping areas of the web elements on
the screen, and the union of the areas of the two web elements,
is higher than a set threshold value. This threshold is computed
as,
∩(𝑅1, 𝑅2)
∪(𝑅1, 𝑅2)

where: 𝑅1 and 𝑅2 are the rectangles occupied on the screen by
the two web elements; the set intersection symbol indicates the
size (in pixels) of the common area occupied on the screen by 𝑅1
and 𝑅2, and the set union symbol indicates the size (in pixels)
of the union of 𝑅1 and 𝑅2.
By experimenting with different threshold values to identify
visually overlapping nodes, we finally selected 0.85 as a value
for the threshold that allowed us to avoid a definition of visual
overlap that was too loose (thereby considering visually separate
GUI elements as overlapping) or too strict (thereby finding none
or a few visually overlapping nodes).

2. The center of the web element W2 is contained in the rectangle
R1.

Hence, rather than relying on finding one specific DOM node, or
absolute XPath, any located DOM node that belongs to the same visual
element is deemed a correct match. The presence of equivalent web
elements, therefore, creates a target set for a single target made up of
all web elements that are equivalent to the target.

In addition to the extension of the target set, VON Similo also sub-
stitutes the attributes compared in the original Similo, by incorporating
inside the attribute set of each web element the information of all its
equivalent web elements. The following function is used to compute
the equivalent-based set of attributes:

This approach mitigates test execution fragility by, as mentioned,
increasing the number of candidate DOM nodes that can be correct
5
matches (i.e., corresponding to oracles) when identifying one and the
same web element. Essentially, the approach will be more robust as
long as only one or a subset of these nodes change between two
revisions.

The addition of the VON concept allows the addition of a new set
of locator parameters (e.g., VON-tag, VON-id, or VON-xpath) stored
and utilized by the Similo algorithm. Each VON locator parameter is
no longer a single value but is instead a list of parameters, that are
collected from all the visually overlapping web elements of a DOM
node. Therefore, in addition to the extended target set, the VON Similo
algorithm also allows the extension of the attribute set by considering
the attributes with information from equivalent nodes.

To compare the attributes of the extended VON Similo attributes,
the following comparison function is used: given the set ep1 (set of
values of the attribute for w1 and all its equivalents web elements:
p1.1, p1.2, . . . , p1.𝑁) and ep2 (set of values of the attribute for w2 and
all its equivalent web elements: p2.1, p2.2, . . . , p2∶𝑀), the result of the
comparison is the highest value among the individual comparisons of
all possible combinations of values from ep1 and ep2.

Fig. 3 presents a visualization of the process of how visually over-
lapping nodes are utilized in VON Similo. In the first step, denoted A in
the figure, a set of target web elements (denoted T𝑥 ∈ TS) and candidate
web elements (denoted C𝑦 ∈ CS) are available, where |TS| ≤ |CS|. In
the second step, denoted B in the figure, a pre-analysis of TS and CS is
performed, clustering all target and candidate web elements according
to the visual web elements they are associated with, using the formula
presented previously in this section. The outcome of the pre-analysis is
clusters TS1-TS𝑖 and CS1-CS𝑗 containing components with overlapping
target areas on the screen but otherwise with an unknown overlap in
terms of locator properties. In step 3, denoted C in the figure, each
target web element T𝑥 ∈ 𝑇 𝑆𝑖 is compared to every other candidate
web element C𝑦 ∈ 𝐶 𝑆𝑗 , and a similarity score is calculated. After the
comparison, the maximum similarity score of each cluster is kept and
associated with all target web elements T𝑛-T𝑚 ∈ TS𝑖, resulting in a
mapping between T𝑖 and C𝑗 as visualized in the last step of the figure,
denoted D. This mapping implies that (from a DOM perspective) a given
target web element T𝑖 may not be mapped to the candidate component
C = T that was initially used when the target was set in the previous
𝑖 𝑖

R. Coppola et al. The Journal of Systems & Software 222 (2025) 112286
Fig. 2. A visualization of a hierarchy of web elements represented both visually and from a DOM perspective. It shows that although W2 and W3 are unique entities, they appear
to be the same visual component or, at least, overlap visually. Therefore, for the VON concept, w2 and w3 are considered as equivalent web elements, and are not equivalent
to w1. Note that, for readability of the image, the exceeding contour of w2 is significantly larger than that of w3, while in common layout hierarchies several widgets share the
exact area on screen.
Fig. 3. Visualization of how visually overlapping nodes are implemented in VON Similo.
version of the SUT. In Fig. 3, T1 is equivalent to C9 but is mapped to
its parent component C6. However, from a visual perspective, this is
irrelevant since both C6 and C9 point to the same visual area, T1. The
benefit of this approach is that the number of valid matching candidates
increases, implying that for clusters where a target web element cannot
be mapped to a suitable candidate using the original Similo approach,
a functioning candidate can still be associated.

In Nass et al. (2023a), we evaluated the benefits introduced by using
the VON concept, and performed the comparison between the original
and VON Similo. In this evaluation, both the algorithms were compared
as binary classifiers, evaluating the correctness of the classification of
candidate web elements as corresponding to target web elements. In
this evaluation, standard accuracy and precision measures for binary
classifiers were applied by computing the percentage of true and false
positives and true and false negatives in classification.

3.4. Limitations of the existing Similo algorithms

While the evaluation of the previously defined Similo algorithms
provided encouraging results compared to the prior state-of-the-art,
there are several limitations that might reduce their effectiveness in
real testing scenarios.
6
First, both algorithms employ fixed and manually selected weights
to calculate the combined similarity score for all locators. Although
these weights are in line with existing literature in the field (Kirinuki
et al., 2019) and are compatible with the distribution and variability
of web elements in common web applications (Nass et al., 2023a),
having a dynamic and data-driven adaptation of the weights to relevant
sets of targets and candidates can be a significant improvement for the
performance of the algorithms.

Both Similo and VON Similo algorithms provided a similarity score
for each candidate web element, given a target, and therefore such
similarity scores could be used to provide a list of all the candidates
ranked by similarity. The initial implementation of the two algorithms,
however, did not provide such a list, only providing a single result, the
most similar candidate, for each target web element.

In a second evaluation of the approaches, we evaluated the ac-
curacy of the algorithms when considered as Binary Classifiers. Both
algorithms proved efficient in such context, providing high measures
for Accuracy, Precision, and Recall. However, using the algorithms as
binary classifiers would imply, in an automated setting, potentially
returning a list of multiple candidate web elements as matches for
the original target (i.e., all candidate matches yielding a score above

R. Coppola et al.

a
t
c
a
t
p
a
o
i

i

a
a
o
p
b
o
w
c

o

p
o
l
a
l
e

l

f

o
t

d
d

l

d

S

a
c
a

t

l

w

The Journal of Systems & Software 222 (2025) 112286
the defined threshold for a match). In these cases, especially if the
lgorithms are employed for web element localization in automated
esting procedures, it may be beneficial to obtain a ranking of all the
andidates identified as matching (by the binary classifier) to allow
utomatic selection of the best candidate for a given target. In a way,
he ranking perspective is thus the more natural one; however, in
rior work the binary classification and select-most-similar uses of the
lgorithms did not consider the full list of ranked candidates; a missed
pportunity. Having a ranked array of candidate widgets as an output
s seen as a better opportunity of robustness for locating algorithms in

practice, since they allow for continuing the execution of test sequences
in case the top-ranked widget is not the exact oracle and cannot be
nteracted in the webpage.

The use of a threshold similarity score needed for binary classifi-
cation poses another limitation. When none of the candidates yields
 score above the threshold after comparison while there should be
 correct match with a given target. In these cases, the application
f the algorithm provides a false negative result, since no matches are
rovided for a valid target. This no-match situation is detrimental for
oth completely automated test procedures, in which the execution
f the test case would end, and manually-supervised test procedures,
here the tester would benefit of the indication of several possible

andidates before deciding for the absence of a match.
Finally, the match threshold is an additional hyper-parameter of the

algorithm that would require careful tuning for each individual (type
f) SUT where the algorithm is applied.

The mentioned limitations of the previous experimental setups and
roposed use scenarios suggest that viewing the problems as a ranking
f all of the candidate web elements is the more natural and less
imiting one. Tuning the models in a data-driven manner is also natural
nd should be investigated. In the following, we introduce the machine
earning algorithms and models we have considered and experimentally
valuated.

3.5. Machine learning approaches for ranking web elements

There are specific ML algorithms developed for ranking problems,
e.g. Learning-to-Rank (Liu et al., 2009). However, even basic ML al-
gorithms used for binary classification actually predicts the probability
of a match after which a threshold is applied to give a binary output.
This is in line with how we previously proposed to threshold and use
the Similo approaches as binary classifiers. We thus have selected both
a Learning-to-Rank algorithm and included two basic ML algorithms
used for binary classification as baselines. This should allow us to better
understand if any benefits from these comes mainly from their machine
learning, data-driven nature, or from being specifically developed for
ranking problems.

There are many Learning-to-Rank algorithms and models in the
ML literature, but much like models based on gradient boosted trees
frequently are among the best performing, traditional ML algorithms
(Nielsen, 2016), they have also shown good performance for test
case prioritization when used as a Learning-to-Rank approach (Lin
et al., 2021). We thus use the mature and high-performing XGBoost
ibrary (Chen et al., 2019) in its Learning-to-Rank (LtR) setting.

The XGBoost package includes multiple different objective (loss)
unctions, corresponding to the major LtR approaches in the literature.

We thus include three different objective functions, to cover a breadth
f different LtR approaches. We also consider if increasing the size of
he model itself has any major effect on performance. We thus evaluate

a total of six (6) different LtR variants: two different model sizes (the
efault of 100 sub-trees and one setting with 200 sub-trees) times three
ifferent objective functions:

• NDCG: (Normalized Discounted Cumulative Gain): a ranking quality
metric that evaluates how closely a given ranking aligns with an
ideal ordering, where all relevant items are positioned at the top.
7
NDCG at position K is calculated by dividing the Discounted Cu-
mulative Gain (DCG) by the ideal DCG, which represents a perfect
ranking scenario. DCG quantifies the total relevance of items in
a list, applying a discount factor that accounts for the decreasing
importance of items as they appear lower in the ranking. NDCG
is the default objective function for XGBoost;

• MAP (Mean Average Precision): a ranking quality metric used
for tasks with binary relevance, i.e. when the true score 𝑦 of
a document d to be ranked can be only 0 (non relevant) or 1
(relevant).

• PW (Pairwise): it considers pairs of documents and tries to min-
imize the number of incorrectly ordered pairs. Also known as
LambdaMART, because it combines MART (Multiple Additive
Regression Trees) and LambdaRank, this is the original version
of the pairwise loss function (also known as RankNet).

For the basic ML algorithms used as baselines we have included
ogistic regression (LaValley, 2008) as well as a random forest vari-

ant; both used in the binary classification setting but extracting their
predicted probability as a ranking (similarity) score.

We included logistic regression since it is one of the simplest. Its
model has the same form as Similo itself, i.e. a simple linear model with
a weight per feature. However, while the Similo weights are manually
selected logistic regression optimizes the weights based on the training
ata.

We included the random forest algorithm (Rigatti, 2017) since
it is frequently among the most well-performing ML algorithms in
evaluations, even within software engineering (Kaur and Kaur, 2018).
pecifically, we have used the randomForestSRC R library (Ishwaran

et al., 2022), in its default settings, in our experimental evaluation
below.

4. Evaluation

The goal of this work is to evaluate the benefits introduced by the
pplication of machine learning and learning to rank algorithms in the
ontext of similarity-based multi-locators for web element localization
nd web application GUI testing.

In our evaluation, we always consider the extended target set ob-
ained by applying the VON concept.

The evaluation that we performed is manyfold. We perform an
evaluation of the impact of weight variation on the algorithm, to
understand the benefits that could be introduced by the application of
machine learning-based algorithms to automatically infer the weights
from web element distributions.

Building on top of the first experimental results of the evaluation
of Similo and VON Similo as a binary classifier, we evaluate the
benefits provided by the extended attribute sets. Finally, to address the
limitations discussed in the previous section of the paper, we evalu-
ate the applicability of learning to rank algorithms for web element
ocalization of Similo.

In particular, we consider three different approaches with static
eights:

• Similo: the original approach using the standard attribute set (14
attributes considering no equivalent attributes);

• VON Similo: the VON approach using the enhanced attribute set
(14 attributes, VON attributes in blue in Fig. 1 used instead of
correspondent non-equivalent ones);

• Full-Similo: both original and enhanced VON attributes are used
(22 attributes, all in Fig. 1).

Since our previous works demonstrated the benefits of extending the
target space, we will perform all our evaluations with the VON target
space (i.e., considering equivalent web elements for both targets and
candidate web elements).

R. Coppola et al.

c
l

t
w
o
T
w
o

d

T

c

w
V
m

t
t

The Journal of Systems & Software 222 (2025) 112286
4.1. Research questions

To address the goals of our evaluation, we formulated the following
set of Research Questions:

• RQ1: What is the robustness of the web element localization
strategies based on the Similo, VON Similo and Full-Similo at-
tribute sets?

The aim of RQ1 is to evaluate the robustness of three different
ombinations of web element attributes, without applying machine
earning algorithms, to infer the weight for each attribute.

The original SIMILO and Von-SIMILO algorithms utilized two fixed
weights (0.5 and 1.5) for the different attributes used in web ele-
ment comparison. Although these weights guaranteed satisfying results,
it was worth performing an additional investigation to understand
whether the algorithms were sensitive to modifications in the weights
applied to the attribute sets.

For that purpose, we sample random weight sets and run the al-
gorithms on a common set of targets and candidates to evaluate the
impact of the weights on web element localization.

• RQ2: What is the benefit of applying traditional Machine Learn-
ing or Learning to Rank algorithms to optimize web element
localization?

The aim of RQ2 is to verify whether Machine Learning and Learning
o Rank algorithms can improve effectiveness when applied to the
eights for web element localization over a set of manually selected
racles for pairs of different versions of the selected benchmark SUTs.
o this purpose, we compare multiple ML and LtR approaches for
eight optimization, and we adopt standard metrics for the evaluation
f the ranked results.

4.2. Methodology

This section illustrates the methodology that was used to collect
the experimental subjects, details the experimental evaluation and lists
the measurements taken to answer each research question in our study
design.

A preliminary step for our methodology was the construction of a
ata set of pairing matches between target and candidate web elements

taken from two different versions of each application in our sample set.
hese pairings were used as an oracle to perform the evaluation which

was performed according to the following steps:

1. Application Collection: The sample of subject applications used
in our evaluation was reused from the study by Nass et al.
(2023a). The set consists of the 40 top-rated web applications
in the United States from the Alexa ranking web application.12

We only excluded mirrored web applications to improve the
diversity of the sample and applications with adult content due
to ethical reasons. The details of all the web elements within
the selected applications can be found listed in the replication
package (Coppola et al., 2024).

2. Application Version Selection: to acquire two versions for each
SUT (denoted v1 and v2) with enough differences to be suitable
for our study, we used the Internet Archive web application.3
We replicated a design employed by Leotta et al. where the
newer version (v2) is represented by the currently available
application online at the time the data set was created (in this
case, published in December 2020). An R months older version

1 http://www.alexa.com.
2 Since the experiment, the website providing the site ranking (i.e., alexa.

om) has been discontinued, and is no longer publicly available.
3 http://web.archive.org.
8
of the application (v1) was also acquired from the Internet
Archive, where R randomly varied between 12 and 60 months,
36 months on average backward in time. This difference in time
between the application samples was perceived as adequate to
see graphical and functional differences, enabling evaluation of
the web element finding robustness of the approach for both
minor and significant changes. The assertion that 36 months,
on average, was enough was verified through manual inspec-
tion. Note that minor application changes are perceived to have
higher construct validity for regular operations of the approach
in practice, e.g. in a continuous integration environment. Still,
more significant application changes cannot be excluded from
the dataset since such occur when companies re-brand or make
more extensive technological updates to their web applications.

3. Correspondent web element Selection: we manually selected wid-
gets from both versions of each application’s homepage, e.g., its
start page. This design choice may have delimited the gener-
alizability of the results, but analysis of the collected sample
suggests any such effects to be minor. Furthermore, this sam-
pling became necessary since the Internet archive only stores
static pages, meaning that javascripts, databases, etc., do not
pertain to full functionality. Specifically, widgets were sampled
from each SUT according to the following criteria: (i) it is
possible to perform actions on the widget (e.g. click or type); (ii)
it is possible to use the widget for assertions or synchronization;
(iii) the widget is associated with a core feature(s) of the SUT;
(iv) the widget was present in both v1 and v2 of the SUT’s
homepage. This selection was performed manually, resulting in
a set of 442, 1-to-1, matched pairs of corresponding widgets that
were applicable to the experiment.

4. Equivalent web elements Selection: The 442 pairs was then au-
tomatically extended by applying the web element equivalence
definition of the VON concept. This effectively expanded the 1-
to-1 matching into a 1-to-many matching, extending the oracle
from 442 matching pairs to 1163 matching pairs.

4.3. Analysis method

To evaluate the robustness (our effectiveness metric) of Similo,
VON Similo and Similo-ML, the three algorithms were executed on the
equivalent pairs of web elements between consecutive releases of the
SUTs, to identify whether the original target web element would be
correctly associated to a corresponding candidate web element.

The evaluation of all algorithms was performed as a ranking prob-
lem where all web elements were ranked for similarity to a target

eb element. To achieve this, minor changes were made to Similo and
ON Similo which changed their output from returning a single, best
atching, web element to a list of the most similar web elements.

Below, we list the metrics that were used to evaluate the results.
All the metrics refer to an output in the form of an ordered list of
possible matches provided by one of the variants of Similo, following
he assumption that a lower rank (closer to 1), is a better match for the
arget web element.

• MeanRank: the mean rank is computed as the average of the ranks
of the executions of a given ranking algorithm over the whole set
of targets. The rank is defined as the position, in the ranked list
of candidates, of the first candidate matching that matches the
target (note that in the case of the Similo algorithm there is only
one matching candidate). The mean rank is therefore computed
as the average of the ranks (average position of the candidate web
elements) obtained for all the searched targets. Note that due to
the VON concept, the list of ranked candidates can contain more
than one possible match. This metric is considered the best pre-
dictor for our purposes since we seek their capability in avoiding
the worst case (where no match is found) over optimizing that
the correct web element is always ranked as the first item in the
output list;

http://www.alexa.com
http://www.alexa.com
http://www.alexa.com
http://web.archive.org

R. Coppola et al.

b
h
i

p

t
t
w
u

o

a

p

r

T

V

m
w

o
v
v
S

P

e
e
r

p

9

r
w
r

T

t
e
c
i
w
w
o

n
a
s
o

L

The Journal of Systems & Software 222 (2025) 112286
• MaxRank: the MaxRank is the highest rank (worst performance)
obtained for one of the targets in the target set. It can be con-
sidered the worst case scenario for a given ranking algorithm;

• PctAtN ; percentage of cases in which the first correct match is
ranked among the first 𝑁 items in the output list provided by the
algorithm. Note that PctAt1 corresponds to the recall of a binary
classifier where we have a true positive if, and only if, the first
item in the output list is a correct match.

Since the purpose of the experiments are to evaluate the ranking
ehavior of the algorithms, we do not present the results of their be-
avior as binary classifiers in this manuscript. Instead we refer readers
nterested in such results to our previous work (Nass et al., 2023a).

4.3.1. Robustness evaluation
To answer RQ1 we want to understand how sensitive the different

Similo algorithms are to the choice of weights associated with their
attribute sets, as presented in Fig. 1. The weights that were used in the
original variants of both Similo and VON Similo were either the distinct
values 0.5 or 1.5, depending on locator.

In this experiment, we sample the weights to optimize the output
erformance, allowing these values to vary uniformly from 0.0 to 1.5.

We allow values of 0.0 since that would correspond to a locator not
providing value to the localization of a web element. The top value of
the range is indeed arbitrary, and was kept at 1.5 for continuity with
the previous work.

Weights were then sampled randomly 1000 times for each of the
hree algorithms, original Similo, VON Similo, and Similo Full, respec-
ively. Together with the original weights used by the three algorithms,
e acquired 3002 unique weight vectors which we then evaluated
sing 10-fold cross-validation.

For each of the sampled weight vectors per locator set we then find
the best and the worst in terms of output performance (in relation to the
metrics discussed above) and present the results. To provide a summary
f the results, we also calculate the mean values per output metric.

4.3.2. Evaluation of ML and LtR algorithms
To answer RQ2 we want to evaluate the benefits of the application

of different Machine Learning and Learning to Rank algorithms for
the identification of web elements based on vectors of comparisons of
the presented locator parameter sets. As traditional Machine Learning
algorithms, we evaluate Logistic Regression (from now on referred to
s LogReg), and Random Forest. As Learning to Rank approaches, we

evaluate several configurations of the XGBoost LtR approach (namely:
airwise, map, ndcg, and XGBoost-200).

The results provided by the different algorithms are then compared
to the standard, fixed weight approaches. We separate the results based
on the attribute sets that were selected among the three alternatives
epresented in Fig. 1.

To evaluate the ML approaches, we apply the 10-fold validation
technique. This involves splitting the available dataset into ten subsets.

he split for the 10-fold validation was made by considering all the
web elements of individual applications so that the folds were roughly
equal-sized. We applied random weights to all folds, and then averaged
the results over all the folds. While this is not theoretically necessary
when no training is involved, we deemed that valuable to ensure the
comparability of the results that are provided for RQ1 and RQ2.

5. Results

5.1. RQ1: Robustness

In Table 1, we report all the evaluation metrics for the original,
ON, and Full versions of Similo with one hundred sampled sets of

weights each. The complete set of results, including all the different
9
results obtained for each randomly-sampled set of weights, is included
in the online appendix of the paper (Coppola et al., 2024).

Of the hundred sampled sets of weights, we report the results for
the weight sets optimizing the mean rank and the PctAt1, the average
of the metrics over all the random sets, and the worst value for each

etric. We also compare these results with the standard set of default
eights described in previous sections.

In Fig. 4, we report the density of the distribution of the MeanRank
btained by the 3000 random weights combinations used (1000 per
ersion, plus the 3 standard algorithms). In the graph, we overlay
ertical lines representing the standard versions of the Similo (red) and
imilo-VON (blue) algorithms. We do the same in Fig. 5 for the PctAt1

metric. For sake of brevity, we do not report similar graphs for the other
ctAtN metrics, since they had a similar shape to the one for PctAt1.

For the original version of the algorithm, we obtain a minimum
mean rank for the best case of 1.77, meaning that in the typical
xecution of the algorithm, a correct match is found for a target web
lement at most at the second position of the produced output list of
anked candidates.

With the best weight set to maximize PctAt1, a correct match is
rovided as the first item of the output list in 90.50% of cases, and in

the first 10 results of the output list in 96.60% of the cases.
For VON Similo, we obtain a best mean rank of 1.89, and a best

PctAt1 of 87.56%. In addition, we get a PctAt3 of 95.25%, PctAt5 of
6.83%, and PctAt10 of 97.96%. As such, we conclude that original

Similo outperforms VON Similo in Mean Rank and best achievable
PctAt1, while Similo-VON achieves a lower Max Rank (31 compared
to 68) and best PctAt3, PctAt5 and PctAt10.

For both Similo and VON Similo, the standard version of the algo-
ithms, with statically set weights of 0.5 and 1.5, generally performed
orse than with the best optimized weights, but better than the average

andom weights.
The implications of these results are manyfold: first, we conclude

that the selection of weights has a relevant impact on the algorithms’
performance, suggesting that the adoption of learning techniques to
infer the best possible set of weights provides a benefit. Second, we
deduce that our intuitive, literature-based selection of weights was not
well-suited to minimize the MeanRank of the algorithms’ output but
was instead more suited to placing the correct matching web element
as the first item of the output list, i.e., optimization of PctAt1.

In our results, we see that the Full version of the algorithm, which
performs 22 different attribute comparisons, had an average perfor-
mance worse than both Similo and VON Similo, in terms of MeanRank.

he best possible MeanRank obtained with the Full version (2.71) was
almost one index higher in the output list than the best MeanRank
for the other two algorithms. On the other hand, the Full version of
he algorithm obtained the best PctAt1 of the three algorithms. The
xplanation for this result is assumed to be that using 22 attribute
omparisons in Similo Full, instead of 14 in the other algorithms, signif-
cantly expands the vector space of possible weight vectors. Therefore,
e cannot rule out that extending the number of randomly-generated
eight vectors would result in a vector (global optima) that could
utperform the other algorithms also in terms of MeanRank.

5.2. RQ2: Evaluation of ML and LtR algorithms

Based on the results collected to answer RQ1, we deemed that
o significant advantage is provided by considering the full set of
ttributes for web element location (i.e., using the Full-Similo attribute
et). Therefore, we evaluated the application of ML and LtR approaches
n the smaller Similo and VON Similo attribute sets.

In Table 2 we report the results of the 10-fold cross validation of the
tR algorithms and traditional ML solutions, applied with, and without,

the VON concept. The complete set of results, providing the ranking
for all the target web elements and for all the considered methods, is
included in the online appendix of the paper (Coppola et al., 2024).

R. Coppola et al.

Fig. 4. Distribution densities of Mean Ranks for the 3000 considered variants of the Similo algorithm. Vertical intercepts for Similo - original (red) and Similo - VON (blue). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Distribution densities of PctAt1 for the 3000 considered variants of the Similo algorithm. Vertical intercepts for Similo - original (red) and Similo - VON (blue). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Frequencies of ranks for the different algorithms with the Similo attribute set.

The Journal of Systems & Software 222 (2025) 112286

10

R. Coppola et al. The Journal of Systems & Software 222 (2025) 112286
Table 1
Results of the three algorithms with randomly-sampled weights.

Feature set MeanR MaxR PctAt1 PctAt3 PctAt5 PctAt10

Original

Best MeanRank 1.77 68 81.00 92.08 96.61 98.42
Best PcAt1 3.65 471 90.50 93.44 94.57 96.60
Original SIMILO (Nass et al., 2023b) 4.28 321 88.00 91.86 93.89 95.70
Average all 3.84 322 84.07 90.99 93.38 95.79
Worst all 7.92 777 74.89 85.29 87.33 90.95

VON

Best MeanRank 1.89 31 83.48 95.48 97.29 97.96
Best PcAt1 2.61 286 87.56 95.25 96.83 97.96
VON-Similo (Nass et al., 2023a) 3.13 402 85.52 93.34 95.70 97.06
Average all 3.90 297 83.19 91.74 94.02 96.67
Worst all 8.23 459 75.11 83.48 87.33 91.86

Full

Best MeanRank 2.71 287 87.56 95.25 96.83 98.42
Best PcAt1 3.84 389 92.08 95.93 97.29 98.87
Average all 5.12 373 88.59 94.39 95.81 97.30
Worst all 10.92 485 82.81 89.82 92.31 94.57
Table 2
Results for the evaluation of ML and LtR algorithms.

Attr. set Method MeanRank At1 At3 At5 At10 MaxRank Rank

VON XGBoost-200 LtR pw 1.937 84.163 94.796 95.701 97.511 115 11
VON XGBoost LtR pw 1.980 86.652 94.118 95.249 97.738 124 13
VON XGBoost-200 LtR map 1.803 85.52 94.344 95.928 97.738 83 9
VON XGBoost LtR map 1.785 84.842 94.344 95.701 97.964 78 7
VON XGBoost-200 LtR ndcg 1.765 85.747 94.344 95.475 97.738 54 8
VON XGBoost LtR ndcg 1.817 83.71 93.891 95.701 97.511 58 10
VON RandomForest 1.937 82.579 94.570 95.701 97.059 60 12
VON LogReg 2.387 85.747 94.344 95.249 96.380 172 14
VON Standard 2.801 85.520 94.344 95.701 97.059 402 16

Similo XGBoost-200 LtR pw 1.846 88.235 94.118 96.833 98.190 133 4
Similo XGBoost LtR pw 1.613 88.462 93.665 97.285 98.643 53 3
Similo XGBoost-200 LtR map 1.896 88.235 93.344 96.606 97.964 137 6
Similo XGBoost LtR map 1.588 88.009 94.570 96.154 98.416 49 2
Similo XGBoost-200 LtR ndcg 1.857 87.330 93.665 97.059 98.643 146 5
Similo XGBoost LtR ndcg 1.570 88.462 93.891 96.833 98.869 49 1
Similo RandomForest 2.740 87.104 92.986 93.439 96.154 152 15
Similo LogReg 4.029 88.009 92.760 94.344 96.380 268 17
Similo Standard 4.278 88.009 91.855 93.891 95.701 321 18
Fig. 7. Frequencies of ranks for the different algorithms with the VON attribute set.
In the table, we report the mean over the folds of the mean rank for
each target, the At1, At3, At5 and At10 percentages, and the max rank
for each target. The last column of the table indicates the relative
11
positioning of the algorithms in terms of obtained mean rank. In Fig. 6
we report the distribution of the ranks for the 9 algorithms with the
Similo attributes. The ranks are distributed in the following bins: 1

R. Coppola et al.

a

V
a
T
t
i
o
h
w
A
4

s

B

l
S
s

m
r
a

t

p
d
w
l
s
r
i
m
o
w
r
d

s
o

w
1
b
e
t

p
m
a

t
o
t
o
p
w
p
r

The Journal of Systems & Software 222 (2025) 112286
(perfect match at first position), 2–3 (contributing to the At3 metric),
4–5 (contributing to the At5 metric), 6–10 (contributing to the At10
metric), 11–100, and 101–442. In Fig. 7 we do the same for the 9
lgorithms with the Von attribute set.

The first conclusion that can be drawn from the table is that the
ON Similo algorithm with standard weights outperforms the Similo
lgorithm with standard weights when used to solve a ranking problem.
he former, in fact, obtains an average MeanRank of 2.801 (meaning
hat, on average, the first correct candidate for the target is found at
ndex 3 in the output list of ranked candidates) against a MeanRank
f 4.278 for the latter. VON with standard weights also presents a
igher At3, At5 and At10 percentage compared to Similo with standard
eights. On the other hand Similo, with standard weights, has a better
t1 percentage than VON, and a lower MaxRank (321 compared to
02). This last result is principally related to the different nature of

the Similo and VON algorithms: by creating a set of equivalents for
a given target, the algorithm increases the chances that at least one
of the different correct matches is found among the first few positions
in the ranked list of candidates. The Similo algorithm instead – since
it involves the comparisons only of individual web elements and not
web element sets – is more likely to find the web elements at first
hot (i.e., higher PcAt1) or fail at placing the correct matches at a high

position in the list (i.e., lower PcAtN, with N higher than 1).
With the use of traditional Machine Learning approaches, the VON

algorithm still outperforms the original Similo algorithm. We per-
formed the 10-fold analysis with the weights obtained by the appli-
cation of RandomForest and Logistic Regression. The best result that
we get with traditional Machine Learning algorithms is a mean rank of
1.937 for VON Similo, compared to a mean rank of 2.740 for Similo. It
is worth noting that Similo achieves a better At1 percentage (88.46%
compared to 86.65%) while At3, At5 and At10 are comparable between
the two versions of the algorithm. We observe a similar relationship
between VON Similo with LogReg-computed weights (MeanRank of
2.387, At1 of 85.747) compared to Similo with LogReg-computed
weights (MeanRank of 4.029, At1 of 88.009).

Among the Learning-to-Rank algorithms tested, the best option
proved to be XGBoost LtR ndcg for Similo and XGBoost LtR ndcg 200
for Von.. The original Similo algorithm outperforms the VON Similo
algorithm, with a mean rank of 1.570 and At1 of 88.462% compared
to Von’s 1.765, and At1 of 85.747%. The best At3, At5 and At10
percentages are obtained, respectively, for VON XGBoost-200 Pairwise
(94.796%), Similo XGBoost LtR Pairwise (97.285%) and Similo XG-

oost LtR ndcg (98.869%). The results suggests that the extension of the
number of matches and the use of the VON Similo parameters, which
have overlap of attributes with the same purpose, it is not beneficial
for optimization of the mean rank.

6. Discussion

In this work we have compared two conventional weighted, multi-
ocator, algorithms for web element identification, Similo and VON
imilo, with several learning-to-rank (LTR) algorithms to achieve the
ame goal.

The results of the evaluation show that there are benefits associated
with the choice of algorithm in terms of effectiveness and optimization
goal, i.e. mean-rank or rank-at-X.

In the scope of this work, we applied algorithms to optimize the
ean ranking of the first correct occurrence of a correct match in the

anked list of selected candidates. These results allowed us to reach
 best MeanRank of 1.57 by using the XGBoost LTR ndcg technique,

with the original set of attributes of the Similo algorithm. This result
is an additional improvement to the best result obtained by sampling
random weights for the attributes used by the algorithm, confirming
a significant impact of the weight selection on the results of the
study. In our previous work (Nass et al., 2023a) we performed – on
he same benchmark – an evaluation of the Similo and VON Similo
 c

12
algorithms as binary classifiers. The results discussed in the present
aper answer a different ranking problem, and therefore, they are not
irectly comparable with those previously discussed. In previous results
e obtained 95% top accuracy for VON Similo, a figure that, however,

eaves the possibility that multiple different positives are found for the
ame target web element, without any ranking. PcAt1, evaluated for the
anking algorithms, can be considered as mostly equivalent to the recall
n a classification problem (since it defines the possibility that a correct
atch is placed first in the ranking). We see (Table 1) that we can

btain a top PcAt1 of 92% with randomly sampled weights, and >88%
ith LTR algorithms, while still optimizing for lower MeanRank. These

esults show therefore that the application of algorithms specifically
esigned to optimize MeanRank have a limited detrimental effect on

one-shot finding of the correct target.
Using LTR, as applied in the experiment, represents a paradigm

hift in the approach to web element identification since the algorithms
utput a list of web elements of decreasing probability of being the

sought target. This differs from the traditional approach to web element
identification, where algorithms provide binary outputs, i.e. either a
found target or not. Hence, if a false-positive is reported—A test case
fails to identify an existing target—with the conventional approach, the
test case would require manual maintenance. In contrast, LTR provides
a list of probable web elements that can be iterated upon in descending
order. As a consequence, test cases driven by this approach can perform
better than conventional algorithms, mitigating maintenance costs of
broken locators, but at the expense of higher test execution cost—Test
cases may have to iterate over several web elements of the output to
complete execution. In a scenario where iteration is required, in the
best case, the target web element is found at the second index of the
output list, but, in the worst case, the target, assuming an output list of
fixed length, is not an element of the ranked list at all. By comparing
the best results obtained with machine learning approaches for ranking
(Table 2) and results obtained with random sampling of the weights, we

ere able to provide an improvement of the MeanRank of 0.20 (from
.77 to 1.57 for the standard Similo approach). Therefore, it might
e possible that a specific selection of fixed weights can provide an
fficient-enough compromise for the ranking scenario without requiring
he application of ML algorithms.

For longer test cases, i.e. with many steps, which may also have sev-
eral components with targets not ranked in top positions, this approach
will add a significant cost to the test execution time. However, these
additional costs should then be weighed against the cost of manual
root-cause analysis, maintenance and re-execution of the test case with
a conventional web element identification approach. The cost of re-
running test cases (by trying to use other web elements in the ranked
candidate list) can indeed be exponential if multiple correct matches
are ranked high in separate steps of the test cases. While the high
percentage of PcAt1 suggests that this might be a remote scenario, a
ossible solution in real testing environments would be resorting to
anual analysis only at the end of a fixed amount of iterations of the

lgorithm still resulting in failing test cases.
LTR-based web element localization is also associated with algo-

rithm training costs. The algorithms used in this work were based on
training data from a general set of websites with attributes common to
most websites on the web. However, there is potential to optimize this
training for a certain website, or development context, to potentially
make it achieve even better results through dynamic weight optimiza-
ion. Worth noting is that both Similo and VON Similo support weight
ptimization as well, but currently do not contain any mechanisms
o do so automatically, i.e. requiring manual optimization. However,
ur analysis of the weights’ impact on the conventional algorithms’
erformance, through using random weighting, show that the used
eight-vector has an impact on performance but that the algorithms
erform well also with manually applied, intuitively set, weights. This
esult is interesting, as it shows that a targeted, conventional, algorithm
an outperform learning approaches for certain software problems.

R. Coppola et al.

c

a
t

o

o
e

f
s
a
a
w
1
e
4

m
e

o
(
t
o

o

r

w
(

s

The Journal of Systems & Software 222 (2025) 112286
Furthermore, based on the experimental results, we can derive a
lear trade-off between the conventional and learning approaches. In

scenarios where cost (e.g., execution and implementation costs) are
in focus, the conventional algorithms are more suitable, particularly
when also factoring in that the learning approach is associated with
dditional costs to train the algorithms. However, in scenarios where
est case robustness is more important than cost, LTR based web

element localization can perform better.
In this study we have focused on evaluating some of the standard

and well-performing ML-based LtR approaches. Future work should
investigate if there are any benefits to using other search and optimiza-
tion algorithms and approaches for web element ranking. Inspiration
can be found, for example, within defect prediction where Yu et al.
(2023) found that unsupervised LtR approaches were among the best
nes for ranking software modules.

Another important result from this work relates to VON Similo’s use
f equivalent web elements, meaning the use of visual overlap of web
lements, to expand the target space. Experimental results show that

when used with fixed weights, the VON Similo algorithm outperforms
the algorithm without the VON concept. In contrast, by optimizing the
weights with the objective of minimizing the mean rank, the original
Similo algorithm – which does not consider the overlap between web
elements – outperforms VON Similo, as shown in the experiment for
RQ1.

Finally, we must consider the implications of these results in prac-
tice. Robust web element identification is perceived as one of the
undamental challenges of automated GUI-based testing, and has been
o since the 1980s (Nass et al., 2021). The results of this work
re promising, showing that the considered algorithms may provide
 maximum 92.08% of correct match at first position (Full similo
ith random weights) and 98.8$ of correct matches within the first
0 positions in the ranked list of candidates. In the context of the
xperimental subjects that were used, this translate to 406 to 436 out of
42 target web elements matched with the manually-identified oracles.

Although impressive, consider that even at 98 percent success-rate, we
can expect two failures every 100 automated GUI interactions. Since
GUI interactions can have a one-to-many mapping with GUI test cases,
a failing interaction may have an impact on multiple test cases — as
an extreme example, if a failing interaction occurs in the login or main
screen of an application, all the test cases involving a login will fail. In
a test suite in the order of hundreds of test cases, the cost of root-cause
analysis and maintenance may therefore still be significant.

Another results that emerged by analyzing all the combinations of
weights that were used, is the lack of combinations that are able to
provide 100% PctAt1, i.e. perfect matching for all the targets in the
considered web applications. We can motivate this result with two (not

utually exclusive) explanations: (i) the properties of some target web
lements underwent significant changes between the two considered

versions of the application, and could therefore not be identified based
nly on layout properties without considering their visual appearance;
ii) since the attribute weights were optimized for an entire run, over all
argets in our dataset, it is possible that they could not provide globally
ptimal behavior for all individual, specific cases.

7. Threats to validity

Internal validity threats concern factors that may affect a dependent
variable and were not considered in the study. The main internal
validity threat in our study is related to the fact that we have considered
couples of releases where the time span between v1 and v2 is variable.
This randomization of the time span between releases allows us to
keep into account more variability for the web elements composing
the SUTs. On the other hand, it is possible that the time component
has a significant effect on the variability of the attribute values that we
did not take into account. Longitudinal studies on the variability of the
13
attributes during the evolution of a web application would be needed
to clarify this issue.

Another internal validity threat is a consequence of how the VON
concept is utilized for the creation of the candidate set. Since the VON
concept allows the generation of a set of multiple candidates, all of
which will be considered as valid matches if the threshold approach
is used, it is possible that using the algorithms without ranking would
result true positives that are completely unrelated to the actual target
web element.

The concept of equivalent web elements in VON-Similo is based
n a concept of closeness to a given web element on the screen

where the test is captured or executed. The distances for the selection
of equivalents are relative, so there is no impact of page and web
element size on the selection of web elements. However, if changes in
the viewport size result in a modification of the arrangement of web
elements on the screen (especially if some web element is completely
emoved), the set of equivalents for a given web element will vary. As

a consequence, the results of the application of the algorithm may vary
ith possible changes in the viewport where the test cases are defined

i.e., on v1 of the web application).
Several threats to validity are related to the design of the algorithm

and the selection of ML/LTR techniques and parameters. Albeit the
election that we performed for LTR/ML algorithms is grounded in

the literature (Yu et al., 2023), there are additional feature-selection
approaches (e.g., PCA) that could provide beneficial results if applied
in a context similar to the one where SIMILO is used. Without further
comparisons, we cannot conclude that the best algorithms among those
that we selected are the optimal LTR algorithms for ranking of pairs of
corresponding candidate and target web elements. For RQ1, we relied
on the selection of random sets of weights for the attributes used in the
SIMILO algorithm, with the objective of assessing whether it could be
possible to obtain relevant variations in the outcome of the algorithm
by varying the standard weights. The results that are reported for
RQ1 in Table 1 suggest an important impact of the weights on the
ranking results. Although the number of random selections used for
the selection is high, it is however possible that combinations able to
achieve significantly better results exist even if only random weight
selection is applied.

External validity threats concern the generalizability of the results.
Although we selected a relatively large number of experimental sub-
jects, the selection was made based upon the popularity of the web
applications according to use. It is possible that some categories of web
applications (or web elements composing them) are underrepresented
in our sample and therefore our results may not be generalizable to
them.

Conclusion Validity concern incorrect conclusion from the obser-
vations performed in the study. A possible threat to the conclusion
validity of this study is related to the fact that the algorithm was not
evaluated in a live setting, i.e., in the execution of real test cases of web
applications. However, the purpose of all the versions of the SIMILO
algorithm have a final purpose of pairing a candidate web element
against a set of targets, to find the correct web element to interact with
during the execution of a test case. The atomic operation of ranking and
finding the best target web elements for any candidate is not influenced
by the execution context, since the attributes that are compared for
the web elements can be extracted at any given moment during the
execution of a test sequence, even if they are changed by modifications
in the page structure and content. Moreover, the web element finding
operations in a typical test case for a web application are independent
from each other. Therefore, even though entire test sequences would
have a lower frequency of correct execution than the accuracy of
correctly ranking individual web elements – as motivated and discussed
in the discussion section – we do not deem the offline execution of the
experiment as an invalidating threat for our study. The integration of
the equivalent concept introduced by VON in layout-based testing tools
will also need additional development effort, to define mechanisms

R. Coppola et al.

e
o
m

s
c

t

o
r

p
a

t

t

a
L
t
a
w
t

d

R
t
W
–
C

t
E
K
b
t
r
i

T

The Journal of Systems & Software 222 (2025) 112286
to correctly execute mouse and/or keyboard operations over a set of
quivalent web elements in the current layout hierarchy. The precision
f these mechanisms in executing the correct operations on test scripts
ight require additional validation in future research efforts.

8. Conclusions and future work

In this paper we analyzed the benefits of the application of Learning
to Rank algorithms to similarity-based locators for web application
testing. To this end, we have set up an experiment with Similo, a
olution that was previously evaluated with positive results as a binary
lassifier (i.e., with the objective of defining if a pair of web elements

in separate releases of a web application are a match).
The results of the utilization of Similo in a ranking context are

promising and show that Learning to Rank approaches can be applied
with positive results to find matching web elements in web application
testing, with very high percentages of web elements ranked at first
position (maximum of 88.46%) or among the first three (maximum
of 94.80%). These results suggest that a similarity-based approach
can be highly dependable in a context where a low percentage of
matching errors are still accepted (e.g., in a supervised context, or
for test sequences with few interactions with the SUT). Overall, the
results of the present study held promise for the application of ranking
approaches in the context of property-based web application testing.
To the best of our knowledge, no other approaches in the literature
has been evaluated for its ability to provide a list ordered by similarity
for the selection of web elements to execute test case steps. The Similo
and VON Similo approaches can still be compared to other algorithms
existing in the literature, e.g., Robula+ (Leotta et al., 2016) or Mon-
oto (Montoto et al., 2011). Such comparison holds especially true if

only one-shot locator identification is considered, i.e. the ranked list
f candidates is ignored in favor of only using the top element of the
eturned list of candidates. Our previous research efforts (Nass et al.,

2023a) proved empirically that the base Similo algorithm has a higher
recision in one-shot locator identification. It is worth underlining that
ny available algorithm that involves the computation of a score for

candidate widgets can be modified, in order to provide a list of ranked
possible matches as output instead of a single match. Such modification
would allow the results of other algorithms to be compared to the LtR
Similo approach described in this paper.

As future work, we envision the use of additional machine learning
echniques (e.g., Reinforcement Learning), and include additional at-

tributes and characteristics of the web element, for instance the visual
appearance of the GUI elements that is considered by now only for
what respects the size and position. To evaluate the applicability of the
approach without preliminary learning operations, we aim at defining
globally-learned parameter values and test their capability in providing
precise web element evaluations over diverse sets of web applica-
tions. The inclusion of additional attributes can also be paired with
he adoption of techniques to perform dimensionality reduction (Palo

et al., 2021), such as PCA (Principal Component Analysis), or an ML
lgorithm that does feature selection as part of its training, such as
ASSO (Least Absolute Shrinkage and Selection Operator), to improve
he efficiency of the algorithms and reduce the presence of redundancy
mong features. We also plan to provide a model for the costs of a
rong match in web element location tasks, and use such instrument

o evaluate our LtR and ML approaches. Finally, we envision the
integration of the SIMILO approach in existing layout-based GUI testing
tools to validate the benefits that can be obtained in terms of robustness
of the generated test cases and reduction of test case executions failing
ue to changed locators.
14
CRediT authorship contribution statement

Riccardo Coppola: Writing – review & editing, Writing – origi-
nal draft, Methodology, Investigation, Formal analysis, Data curation.
obert Feldt: Writing – review & editing, Methodology, Investiga-

ion, Formal analysis, Data curation, Conceptualization. Michel Nass:
riting – review & editing, Conceptualization. Emil Alégroth: Writing

 review & editing, Writing – original draft, Validation, Supervision,
onceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
ionships which may be considered as potential competing interests:
mil Alegroth, Michel Nass reports financial support was provided by
KS foundation. Robert Feldt reports financial support was provided
y Swedish Scientific Council. If there are other authors, they declare
hat they have no known competing financial interests or personal
elationships that could have appeared to influence the work reported
n this paper.

Acknowledgments

This work was supported by the KKS foundation, Sweden through
the S.E.R.T. Research Profile project at Blekinge Institute of Technol-
ogy. Robert Feldt has also been supported by the Swedish Scientific
Council (No. 2015-04913, ‘Basing Software Testing on Information

heory’).

Data availability

Data will be made available on request.

References

Adamoli, A., Zaparanuks, D., Jovic, M., Hauswirth, M., 2011. Automated gui
performance testing. Softw. Qual. J. 19 (4), 801–839.

Alegroth, E., Bache, G., Bache, E., 2015. On the industrial applicability of texttest:
An empirical case study. In: 2015 IEEE 8th International Conference on Software
Testing, Verification and Validation. ICST, IEEE, pp. 1–10.

Alégroth, E., Feldt, R., 2017. On the long-term use of visual gui testing in industrial
practice: a case study. Empir. Softw. Eng. 22 (6), 2937–2971.

Alegroth, E., Feldt, R., Olsson, H.H., 2013. Transitioning manual system test suites
to automated testing: An industrial case study. In: 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation. IEEE, pp. 56–65.

Alégroth, E., Gao, Z., Oliveira, R., Memon, A., 2015. Conceptualization and evaluation
of component-based testing unified with visual gui testing: an empirical study.
In: 2015 IEEE 8th International Conference on Software Testing, Verification and
Validation. ICST, IEEE, pp. 1–10.

Alégroth, E., Karlsson, A., Radway, A., 2018. Continuous integration and visual
gui testing: Benefits and drawbacks in industrial practice. In: Software Testing,
Verification and Validation (ICST), 2018 IEEE 11th International Conference on.
IEEE, pp. 172–181.

Bertolino, A., Guerriero, A., Miranda, B., Pietrantuono, R., Russo, S., 2020. Learning-to-
rank vs ranking-to-learn: Strategies for regression testing in continuous integration.
In: Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering. ICSE ’20, Association for Computing Machinery, New York, NY, USA,
pp. 1–12. http://dx.doi.org/10.1145/3377811.3380369.

Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., Li, H., 2007. Learning to rank: from pairwise
approach to listwise approach. In: Proceedings of the 24th International Conference
on Machine Learning. pp. 129–136.

Chapelle, O., Metlzer, D., Zhang, Y., Grinspan, P., 2009. Expected reciprocal rank for
graded relevance. In: Proceedings of the 18th ACM Conference on Information and
Knowledge Management. pp. 621–630.

Chen, T., He, T., Benesty, M., Khotilovich, V., 2019. Package ‘xgboost’. p. 40, R version
90 (1-66).

Coppola, R., Ardito, L., Torchiano, M., 2019. Fragility of layout-based and visual gui
test scripts: An assessment study on a hybrid mobile application. In: Proceedings of
the 10th ACM SIGSOFT International Workshop on Automating TEST Case Design,
Selection, and Evaluation. A-TEST 2019, Association for Computing Machinery,
New York, NY, USA, pp. 28–34. http://dx.doi.org/10.1145/3340433.3342824.

http://refhub.elsevier.com/S0164-1212(24)00330-3/sb1
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb1
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb1
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb2
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb2
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb2
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb2
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb2
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb3
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb3
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb3
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb4
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb4
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb4
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb4
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb4
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb5
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb5
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb5
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb5
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb5
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb5
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb5
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb6
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb6
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb6
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb6
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb6
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb6
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb6
http://dx.doi.org/10.1145/3377811.3380369
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb8
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb8
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb8
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb8
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb8
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb9
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb9
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb9
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb9
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb9
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb10
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb10
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb10
http://dx.doi.org/10.1145/3340433.3342824

R. Coppola et al.

a
h
m
h
m
S
a
s
o
h
t
a
t
q
s
i

c

f
t

The Journal of Systems & Software 222 (2025) 112286
Coppola, R., Ardito, L., Torchiano, M., Alégroth, E., 2021. Translation from layout-based
to visual android test scripts: An empirical evaluation. J. Syst. Softw. 171, 110845.

Coppola, R., Feldt, R., Nass, M., Alegroth, E., 2024. Ltr-similo replication package.
http://dx.doi.org/10.6084/m9.figshare.26311990.

Coppola, R., Morisio, M., Torchiano, M., 2018. Mobile gui testing fragility: a study on
open-source android applications. IEEE Trans. Reliab. 68 (1), 67–90.

Dobslaw, F., Feldt, R., Michaëlsson, D., Haar, P., de Oliveira Neto, F.G., Torkar, R.,
2019. Estimating return on investment for gui test automation frameworks. In: 2019
IEEE 30th International Symposium on Software Reliability Engineering. ISSRE,
IEEE, pp. 271–282.

Eladawy, H.M., Mohamed, A.E., Salem, S.A., 2018. A new algorithm for repairing web-
locators using optimization techniques. In: 2018 13th International Conference on
Computer Engineering and Systems. ICCES, IEEE, pp. 327–331.

Grechanik, M., Xie, Q., Fu, C., 2009a. Creating gui testing tools using accessibility
technologies. In: Software Testing, Verification and Validation Workshops, 2009.
ICSTW’09. International Conference on. IEEE, pp. 243–250.

Grechanik, M., Xie, Q., Fu, C., 2009b. Experimental assessment of manual versus
tool-based maintenance of gui-directed test scripts. In: 2009 IEEE International
Conference on Software Maintenance. IEEE, pp. 9–18.

Grechanik, M., Xie, Q., Fu, C., 2009c. Maintaining and evolving gui-directed test scripts.
In: Proceedings of the 31st International Conference on Software Engineering. IEEE
Computer Society, pp. 408–418.

Ibrahim, M., 2020. An empirical comparison of random forest-based and other
learning-to-rank algorithms. Pattern Anal. Appl. 23 (3), 1133–1155.

Ishwaran, H., Kogalur, U.B., Kogalur, M.U.B., 2022. Package ‘randomforestsrc’. Breast
6 (1).

Järvelin, K., Kekäläinen, J., 2017. Ir evaluation methods for retrieving highly relevant
documents. In: ACM SIGIR Forum. Vol. 51, ACM New York, NY, USA, pp. 243–250.

Kaur, A., Kaur, I., 2018. An empirical evaluation of classification algorithms for fault
prediction in open source projects. J. King Saud Univ.-Comput. Inf. Sci. 30 (1),
2–17.

Kirinuki, H., Tanno, H., Natsukawa, K., 2019. Color: Correct locator recommender
for broken test scripts using various clues in web application. In: 2019 IEEE
26th International Conference on Software Analysis, Evolution and Reengineering.
SANER, Vol. 36, pp. 310–320, (4).

LaValley, M.P., 2008. Logistic regression. Circulation 117 (18), 2395–2399.
Leotta, M., Stocco, A., Ricca, F., Tonella, P., 2014. Reducing web test cases aging by

means of robust xpath locators. In: 2014 IEEE International Symposium on Software
Reliability Engineering Workshops. IEEE, pp. 449–454.

Leotta, M., Stocco, A., Ricca, F., Tonella, P., 2015. Using multi-locators to increase
the robustness of web test cases. In: Software Testing, Verification and Validation
(ICST), 2015 IEEE 8th International Conference on. IEEE, pp. 1–10.

Leotta, M., Stocco, A., Ricca, F., Tonella, P., 2016. Robula+: An algorithm for generating
robust xpath locators for web testing. J. Softw.: Evol. Process 28 (3), 177–204.

Liebel, G., Alégroth, E., Feldt, R., 2013. State-of-practice in gui-based system and
acceptance testing: An industrial multiple-case study. In: 2013 39th Euromicro
Conference on Software Engineering and Advanced Applications. IEEE, pp. 17–24.

Lin, C.-T., Yuan, S.-H., Intasara, J., 2021. A learning-to-rank based approach for
improving regression test case prioritization. In: 2021 28th Asia-Pacific Software
Engineering Conference. APSEC, IEEE, pp. 576–577.

Liu, T.-Y., et al., 2009. Learning to rank for information retrieval. Found. Trends® Inf.
Retr. 3 (3), 225–331.

Mahmud, J., Cypher, A., Haber, E., Lau, T., 2014. Design and industrial evaluation of a
tool supporting semi-automated website testing. Softw. Test. Verif. Reliab. 24 (1),
61–82.

Memon, A.M., Pollack, M.E., Soffa, M.L., 2001. Hierarchical gui test case generation
using automated planning. IEEE Trans. Softw. Eng. 27 (2), 144–155.

Montoto, P., Pan, A., Raposo, J., Bellas, F., López, J., 2011. Automated browsing in
ajax websites. Data Knowl. Eng. 70 (3), 269–283.

Moreira, R.M., Paiva, A.C., Nabuco, M., Memon, A., 2017. Pattern-based gui testing:
Bridging the gap between design and quality assurance. Softw. Test. Verif. Reliab.
27 (3), e1629.

Nass, M., Alégroth, E., Feldt, R., 2021. Why many challenges with gui test automation
(will) remain. Inf. Softw. Technol. 138, 106625.

Nass, M., Alégroth, E., Feldt, R., Coppola, R., 2023a. Robust web element identification
for evolving applications by considering visual overlaps. In: 2023 IEEE Conference
on Software Testing, Verification and Validation. ICST, IEEE, pp. 258–268.

Nass, M., Alégroth, E., Feldt, R., Leotta, M., Ricca, F., 2022. Similarity-based web
element localization for robust test automation. ACM Trans. Softw. Eng. Methodol.
32 (3), 1–30. http://dx.doi.org/10.1145/3571855.

Nass, M., Alégroth, E., Feldt, R., Leotta, M., Ricca, F., 2023b. Similarity-based web
element localization for robust test automation. ACM Trans. Softw. Eng. Methodol.
32 (3), 1–30.

Nielsen, D., 2016. Tree Boosting with Xgboost-Why Does Xgboost Win Every Machine
Learning Competition? (Master’s thesis). NTNU.

Olan, M., 2003. Unit testing: test early, test often. J. Comput. Sci. Coll. 19 (2), 319–328.
Omri, S., Sinz, C., 2022. Learning to rank for test case prioritization. In: 2022 IEEE/ACM

15th International Workshop on Search-Based Software Testing. SBST, IEEE, pp.
16–24.
15
Online, 2022a. Css selectors. URL https://en.wikipedia.org/wiki/CSS.
Online, 2022b. Dom. URL https://www.w3.org/TR/WD-DOM/introduction.html.
Online, 2022c. Xpath. URL https://en.wikipedia.org/wiki/XPath.
Palo, H.K., Sahoo, S., Subudhi, A.K., 2021. Dimensionality reduction techniques:

Principles, benefits, and limitations. In: Data Analytics in Bioinformatics: A Machine
Learning Perspective. pp. 77–107.

Ricca, F., Leotta, M., Stocco, A., 2019. Three open problems in the context of e2e web
testing and a vision: Neonate. In: Advances in Computers. Vol. 113, Elsevier, pp.
89–133.

Rigatti, S.J., 2017. Random forest. J. Insur. Med. 47 (1), 31–39.
Safdari, N., Alrubaye, H., Aljedaani, W., Baez, B.B., DiStasi, A., Mkaouer, M.W., 2019.

Learning to rank faulty source files for dependent bug reports. In: Big Data:
Learning, Analytics, and Applications. Vol. 10989, SPIE, pp. 60–78.

Tian, Y., Wijedasa, D., Lo, D., Le Goues, C., 2016. Learning to rank for bug report
assignee recommendation. In: 2016 IEEE 24th International Conference on Program
Comprehension. ICPC, IEEE, pp. 1–10.

Tonella, P., Ricca, F., Marchetto, A., 2014. Recent advances in web testing. In: Advances
in Computers. Vol. 93, Elsevier, pp. 1–51.

Wood, L., Le Hors, A., Apparao, V., Byrne, S., Champion, M., Isaacs, S., Jacobs, I.,
Nicol, G., Robie, J., Sutor, R., et al., 1998. Document object model (dom) level 1
specification. W3C Recomm. 1.

Yang, X., Tang, K., Yao, X., 2014. A learning-to-rank approach to software defect
prediction. IEEE Trans. Reliab. 64 (1), 234–246.

Yaraghi, A.S., Bagherzadeh, M., Kahani, N., Briand, L., 2022. Scalable and accurate
test case prioritization in continuous integration contexts. IEEE Trans. Softw. Eng.
1–24. http://dx.doi.org/10.1109/TSE.2022.3184842.

Yeh, T., Chang, T.-H., Miller, R.C., 2009. Sikuli: using gui screenshots for search and
automation. In: Proceedings of the 22nd Annual ACM Symposium on User Interface
Software and Technology. pp. 183–192.

Yu, X., Dai, H., Li, L., Gu, X., Keung, J.W., Bennin, K.E., Li, F., Liu, J., 2023. Finding
the best learning to rank algorithms for effort-aware defect prediction. Inf. Softw.
Technol. 157, 107165.

Riccardo Coppola received his Ph.D. in Automation and Computer Engineering at the
Polytechnic University of Turin, where he currently serves as Assistant Professor in the
SoftEng research group. His research interests include automated GUI testing for web
and mobile applications, the evaluation of nonfunctional properties of software, and
the application of gamification to Software Engineering practices.

Robert Feldt is professor of Software Engineering at Chalmers University of Technology
nd Mid Sweden University. He is passionate about a wide range of topics from
uman factors and automation to statistics, causal and bayesian analysis, and applied
achine learning (ML). His primary focus is on software testing and quality, along with
umancentered software engineering. Lately, he is also been working on using ML in
edicine/healthcare and materials science. He often collaborates with companies in

weden, Europe, and Asia, while also leading more basic research. In 2002, he earned
 Ph.D. in Computer Engineering from Chalmers University of Technology. He also
tudied Psychology at Gothenburg University in the 1990s. Beyond academia, he brings
ver 30 years of experience as an IT, software, and AI/ML consultant. In recent years,
e has worked as an AI strategist helping upper management learn about AI and change
heir organizations through AI/ML-based improvement projects. Dr. Feldt contributes
s the coEditor in Chief of the Empirical Software Engineering journal and serves on
he editorial boards of two other journals, STVR (software testing) and SQJ (software
uality). He has published more than 165 peer-reviewed, scientific papers and won
everal best paper awards. He has a patent on a method for testing and prioritizing
nputs to Deep Neural Nets.

Michel Nass (Ph.D.): Dr. Nass is, at the time of writing, a project assistant at Blekinge
Institute of Technology. He successfully defended his dissertation " On overcoming
hallenges with GUI-based test automation" in 2024. His research focus is within the

area of GUI-based testing with special interest in technical solutions such as tools and
rameworks to support efficient and effective testing in industrial practice. In addition
o his academic career, Dr. Nass has been active for over 30 years as an industrial

consultant in software engineering, specialized in testing, verification and validation.

Emil Alégroth (Ph.D.): Dr. Alégroth is a senior lecturer at Blekinge Institute of
Technology. His research focus is on empirical software engineering research in close
collaboration with industry. His research focus in the area of automated GUI testing,
but has also conducted and published research in the related areas of model-based
testing, software compliance, quality assurance, security testing, test methods, GenAI-
based testing and more. In addition to his research background, Dr. Alégroth has almost
10 years of industrial experience as an expert QA consultant in industry.

http://refhub.elsevier.com/S0164-1212(24)00330-3/sb12
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb12
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb12
http://dx.doi.org/10.6084/m9.figshare.26311990
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb14
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb14
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb14
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb15
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb15
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb15
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb15
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb15
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb15
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb15
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb16
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb16
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb16
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb16
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb16
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb17
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb17
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb17
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb17
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb17
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb18
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb18
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb18
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb18
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb18
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb19
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb19
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb19
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb19
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb19
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb20
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb20
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb20
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb21
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb21
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb21
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb22
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb22
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb22
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb23
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb23
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb23
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb23
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb23
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb24
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb24
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb24
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb24
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb24
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb24
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb24
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb25
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb26
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb26
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb26
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb26
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb26
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb27
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb27
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb27
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb27
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb27
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb28
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb28
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb28
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb29
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb29
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb29
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb29
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb29
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb30
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb30
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb30
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb30
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb30
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb31
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb31
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb31
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb32
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb32
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb32
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb32
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb32
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb33
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb33
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb33
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb34
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb34
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb34
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb35
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb35
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb35
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb35
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb35
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb36
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb36
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb36
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb37
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb37
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb37
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb37
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb37
http://dx.doi.org/10.1145/3571855
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb39
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb39
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb39
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb39
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb39
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb40
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb40
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb40
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb41
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb42
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb42
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb42
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb42
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb42
https://en.wikipedia.org/wiki/CSS
https://www.w3.org/TR/WD-DOM/introduction.html
https://en.wikipedia.org/wiki/XPath
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb46
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb46
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb46
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb46
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb46
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb47
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb47
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb47
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb47
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb47
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb48
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb49
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb49
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb49
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb49
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb49
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb50
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb50
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb50
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb50
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb50
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb51
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb51
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb51
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb52
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb52
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb52
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb52
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb52
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb53
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb53
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb53
http://dx.doi.org/10.1109/TSE.2022.3184842
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb55
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb55
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb55
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb55
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb55
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb56
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb56
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb56
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb56
http://refhub.elsevier.com/S0164-1212(24)00330-3/sb56

	Ranking approaches for similarity-based web element location
	Introduction
	Background and Related Work
	Property-based GUI testing and Test Fragility
	Learning to Rank in Software Engineering

	A Data-driven Ranking Perspective for Web Element Selection
	Preliminaries
	Standard Similo approach
	Visually overlapping nodes (VON) Similo
	Limitations of the existing Similo algorithms
	Machine Learning approaches for ranking web elements

	Evaluation
	Research Questions
	Methodology
	Analysis Method
	Robustness evaluation
	Evaluation of ML and LtR algorithms

	Results
	RQ1: Robustness
	RQ2: Evaluation of ML and LtR algorithms

	Discussion
	Threats to Validity
	Conclusions and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

