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Abstract

We present the localization and host galaxy of FRB 20190208A, a repeating source of fast radio bursts (FRBs)
discovered using CHIME/FRB. As part of the Pinpointing REpeating ChIme Sources with EVN dishes repeater
localization program on the European VLBI Network (EVN), we monitored FRB 20190208A for 65.6 hr at
~1.4 GHz and detected a single burst, which led to its very long baseline interferometry localization with 260 mas
uncertainty (20). Follow-up optical observations with the MMT Observatory (i 2, 25.7 mag (AB)) found no visible
host at the FRB position. Subsequent deeper observations with the Gran Telescopio Canarias, however, revealed an
extremely faint galaxy (r=27.32 £0.16 mag) very likely (99.95%) associated with FRB 20190208A. Given the
dispersion measure of the FRB (~580 pc cm™ ) even the most conservative redshift estimate (Zmax ~ 0.83) implies
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that this is the lowest-luminosity FRB host to date (S10® L), even less luminous than the dwarf host of
FRB 20121102A. We investigate how localization precision and the depth of optical imaging affect host
association and discuss the implications of such a low-luminosity dwarf galaxy. Unlike the other repeaters with
low-luminosity hosts, FRB 20190208 A has a modest Faraday rotation measure of a few tens of rad m ™2, and EVN
plus Very Large Array observations reveal no associated compact persistent radio source. We also monitored
FRB 20190208A for 40.4 hr over 2 yr as part of the Extragalactic Coherent Light from Astrophysical Transients
repeating FRB monitoring campaign on the Nangay Radio Telescope and detected one burst. Our results
demonstrate that, in some cases, the robust association of an FRB with a host galaxy will require both high

localization precision and deep optical follow-up.

Unified Astronomy Thesaurus concepts: Radio bursts (1339); Radio transient sources (2008); Very long baseline

interferometry (1769); Dwarf galaxies (416)

1. Introduction

Fast radio bursts (FRBs) are a class of extremely luminous,
extragalactic, coherent radio transients that have durations on the
order of milliseconds or less (for a review, see, e.g., E. Petroff
et al. 2022). The majority of FRBs are observed as single events,
but a small fraction (~3%; CHIME/FRB Collaboration et al.
2023) are known to be repeaters (L. G. Spitler et al. 2016), from
which multiple bursts have been detected. The repetition rate
varies significantly among repeaters. While most repeaters have
low repetition rates (~10°~10"" burstshr ' above a fluence
threshold of 5Jyms), on par with the upper limits on the
repetition rates of apparent nonrepeaters (CHIME/FRB
Collaboration et al. 2023), some boast repetition rates about an
order of magnitude larger, e.g., FRB 20201124A (A. E. Lanman
et al. 2022) and FRB 20220912A (R. McKinven & CHIME/
FRB Collaboration 2022). Broadband studies of a few active
repeaters suggest that these rates are likely frequency-dependent
(e.g., A. Josephy et al. 2019; P. Chawla et al. 2020), but most of
the less active CHIME/FRB repeaters have not been well
studied at higher frequencies.

The emission mechanism(s) and progenitor(s) of FRBs are not
fully understood, but their short durations and high brightness
temperatures (~10°" K) suggest neutron star or black hole
origins, with magnetars being strong candidates in particular,
given the energy demands of some high-repetition sources (e.g.,
B. D. Metzger et al. 2017). The magnetar hypothesis was further
reinforced by the detection of an FRB-like burst from the
Galactic magnetar SGR 193542154 (C. D. Bochenek et al.
2020; CHIME/FRB Collaboration et al. 2020).

Identifying the host galaxies of FRBs requires roughly
arcsecond precision (or better) on the localization of the radio
bursts (T. Eftekhari & E. Berger 2017). Studies of FRB hosts
find that the majority are consistent with neutron star
progenitors produced in core-collapse supernovae (CCSNe),
but a small fraction are more consistent with progenitors from
older stellar populations (A. C. Gordon et al. 2023; M. Bhard-
waj et al. 2024; C. J. Law et al. 2024). While there is no clear
statistical distinction between the hosts of repeaters and
nonrepeaters (A. C. Gordon et al. 2023; M. Bhardwaj et al.
2024), tentatively, the hosts of repeaters do extend to lower
masses, while nonrepeater hosts tend to be more optically
luminous (K. E. Heintz et al. 2020; A. C. Gordon et al. 2023).

Of the 45 FRBs that have been associated with a host
galaxy,”” seven repeaters have been localized to milliarcsecond
precision using the European VLBI Network (EVN), thus
enabling characterization of the parsec-scale environment

33 The FRB Community Newsletter (Volume 05, Issue 07, DOI:10.7298/
PREO-VF51).

surrounding the source (B. Marcote et al. 2017, 2020;
F. Kirsten et al. 2022; K. Nimmo et al. 2022b; S. Bhandari
et al. 2023b; D. M. Hewitt et al. 2024; M. P. Snelders et al.
2024). Together with the challenges of acquiring very long
baseline interferometry (VLBI) observations of sporadic
transients, multiwavelength observations with matching resolu-
tion are required to leverage the astrometric precision achieved
for the bursts themselves. These localizations revealed that
some active repeaters are associated with star-forming regions
—ideal birthplaces of magnetars formed via the core collapse
of massive stars (J. S. Chittidi et al. 2021; Y. Dong et al. 2024)
—while some are slightly offset from local peaks of star
formation (C. G. Bassa et al. 2017; S. P. Tendulkar et al. 2021).
One repeater even inhabits a globular cluster (F. Kirsten et al.
2022), necessitating delayed magnetar formation channels,
such as binary neutron star merger or accretion-induced
collapse of a white dwarf, for at least some sources (K. Kremer
et al. 2021).

The focus of this present work is on FRB 20190208A, a
repeater discovered by CHIME /FRB (E. Fonseca et al. 2020).
To date, CHIME /FRB has detected 15 bursts in total from this
source,”* including seven baseband events (with raw-voltage
data recorded) between 2020 January and 2021 December
(R. Mckinven et al. 2023). The bursts show high fractions of
linear polarization and some tentative evidence of minor
fluctuations in the polarization position angle (PPA) toward the
edges of the bursts. The reported dispersion measure (DM) has
been stable around 580 pc cm > across 2020 and 2021, while
the observed Faraday rotation measure (RM) has shown “u-
shaped” evolution over this same period, decreasing from
~30 to ~10rad m 2, before increasing again to ~30rad m 2.
To our knowledge, there are no other detections of
FRB 20190208A in the literature.

In this paper, we present a VLBI localization of
FRB 20190208A using the EVN. Leveraging this precise
localization, we performed optical follow-up observations to
identify the host galaxy and searched for any associated
compact persistent radio emission. We also present the results
of two targeted radio monitoring campaigns at ~1.4 GHz,
which totaled more than 100 hr of exposure and resulted in two
bursts being detected from FRB 20190208A. These are the first
bursts that have been observed from this source by a telescope
other than CHIME/FRB. Section 2 describes the various radio
observations, the source localization, and the properties of the
detected bursts. Section 3 describes the subsequent optical
observations and host galaxy association. In Section 4, we
discuss our results. Detailed descriptions of pipelines,

3 www.chime-frb.ca /repeaters/FRB20190208A
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Figure 1. The left and right panels show bursts B1 and B2, detected in the PRECISE and ECLAT projects, respectively. In each subfigure, a dynamic spectrum of the
burst is shown in panel (c). Bursts B1 and B2 have been dedispersed using DMs of 580.1 and 579.9 pc em™, respectively. The horizontal white lines indicate
channels contaminated by RFI that have been masked. A frequency-averaged (over the entire observing band) total intensity profile of the burst is shown in black in
panel (b). The unbiased linear polarization is shown in red and the circular polarization in blue. In panel (a), the probability density function of the PPA, at each time
step, is shown. The bursts have been derotated according to their respective RMs (46.5 rad m 2 for BI and —5.2 rad m ™2 for B2), and the PPA is referenced to infinite
frequency. In panel (d), the time-averaged frequency spectrum (integrated over the burst duration indicated by the horizontal purple bar in panel (b)) is shown in

purple. Note that the observing bandwidths differ between the two instruments.

observation logs, and analyses of the bursts are presented in
Appendices A—C. Throughout this work, we assume Planck18
cosmological parameters (Planck Collaboration et al. 2020).

2. Radio Observations and Interferometric Localization
2.1. EVN Observations

We observed the FRB 20190208A field 38 times between
2021 February and 2023 August using an ad hoc array of EVN
dishes, in “EVN-Lite” mode,35 at a central frequency of
~1.4GHz. The total exposure time on FRB 20190208A,
accounting for phase-referencing scans of a nearby calibrator,
was 65.6 hr. These observations were carried out as part of the
ongoing FRB VLBI localization campaign called Pinpointing
REpeating ChIme Sources with EVN dishes (PRECISE; PI:
F. Kirsten; see, e.g., B. Marcote et al. 2022). We detected a
single burst (which we will refer to as B1) in one observation,
described below. The other observations had a similar setup in
terms of calibrator source selection, observing strategy, and
recording details, but the array configuration somewhat differed
depending on the availability of dishes. In all observations, the
100 m Effelsberg telescope participated, and these single-dish
data were searched for bursts.

We detected B1 (left panel in Figure 1) in an observation on
2021 October 17, lasting from 08:49UT to 11:23UT
(PRECISE project code PR187A), using nine EVN dishes:
Badary, Effelsberg, Irbene, Medicina, Onsala, Svetloe, Torun,
Urumgqi, and Zelenchukskaya. Detailed descriptions of the
observational setup and search pipeline are presented in
Appendix A.

35 EVN-Lite is a new initiative to address rare/transient phenomena requiring
hundreds of hours of observing time with ad hoc subarrays of radio telescopes
that form the EVN, outside the regular EVN observing sessions.

We observed a test pulsar, PSR B2255+-58, for 5 minutes at
the beginning and end of the observation to assess data quality
and verify the polarimetric calibration. After the first test pulsar
scan, we observed J1419+4-5423 for 5 minutes to use as a fringe
finder and bandpass calibrator. For phase referencing, we
alternated between 1.5 minute scans of our chosen phase
calibrator, J1852+4855 (2°0 offset from the preliminary
FRB 20190208A position36), and 5.5 minute scans of
FRB 20190208A. Finally, we also observed the source J1850
+4959 (1°1 offset from the phase calibrator) as an interfero-
metric check source (see Section 2.5 and Appendix A). The
total exposure time on FRB 20190208 A during this one session
with a detected burst was ~97 minutes.

2.2. Nangay Radio Telescope Observations

The Extragalactic Coherent Light from Astrophysical
Transients (ECLAT; PI: D.Hewitt) observing campaign on
the Nancay Radio Telescope (NRT) has been performing
targeted follow-up observations of repeating FRBs since the
start of 2022. About 20 CHIME/FRB repeaters are observed
for approximately 1 hr week ' each. Observations are
conducted at a central frequency of 1.484 GHz using the low-
frequency receiver (1.1-1.8 GHz) of the focal plane and
receiver system, Foyer Optimisé pour le Radio Télescope.
The Nancay Ultimate Pulsar Processing Instrument (NUPPI;
G. Desvignes et al. 2011) records full-polarization data (on a
linear basis) with 32 bit sampling, 16 us time resolution, and a
total observing bandwidth of 512 MHz—consisting of eight
64 MHz subbands divided into 4 MHz channels. We applied
coherent dedispersion (i.e., dedispersion within spectral

36 An arcminute-level position for FRB 20190208A was made available
through a Memorandum of Understanding between the PRECISE project and
the CHIME/FRB Collaboration.
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channels) at a DM of 579 pccm > for FRB 20190208A."
Additionally, a 10s observation of a 3.33 Hz pulsed noise
diode is also acquired with each ECLAT FRB observation for
polarimetric calibration.

Between 2022 February and 2023 December, FRB 20190208A
was observed 52 times, resulting in a total exposure time of
40.4 hr. The search pipeline is summarized in Appendix B. We
detected a single FRB 20190208A burst in our ECLAT observa-
tions on 2023 May 17, which we will refer to as B2 (right panel in
Figure 1).

2.3. Very Large Array Observations

We searched for persistent radio continuum emission in the
field of FRB 20190208A using the Karl G. Jansky Very Large
Array (VLA) in the C configuration. Observations were
conducted on 2021 October 19 23:36:00 UT as part of program
VLA/22B-126 (PL: S.Bhandari) in the 4-8 GHz C band,
divided into 32 x 128 MHz spectral windows and centered at a
frequency of 6 GHz. Sources 3C 286 and J1852+4855 were
used as flux and phase calibrators, respectively. The target field
was observed for 71.6 minutes, yielding an rms noise of
4 pJybeam™', but no persistent radio source (PRS) was
detected at the position of FRB 20190208A. We used the
VLA pipeline calibration and performed imaging, with
Briggs’s weighting (robust = 0.5) and a cell size of 17, in
CASA (J. P. McMullin et al. 2007; I. M. van Bemmel et al.
2022) using the task tclean. The resulting synthesized beam
size was 372 x 2”8.

2.4. Properties of the Bursts

The properties of bursts Bl and B2 are summarized in
Table 1. In this section, we briefly summarize these properties,
while detailed descriptions of the analyses are presented in
Appendix C.

We estimate the DM of Bl and B2 to be 580.1 and
579.9 pccm >, respectively, which is consistent with previous
estimates by CHIME/FRB (E. Fonseca et al. 2020; R. Mckinven
et al. 2023). The estimated DM contribution from the Milky Way
thin/thick-disk interstellar medium is 71.5pc cm > (using
NE2001p; S. K. Ocker & J. M. Cordes 2024). The expected
scattering timescales from the Milky Way at the center
frequencies of the PRECISE and ECLAT observing bands are
0.137 and 0.103 us, respectively, significantly smaller than the
time resolution of our data. The lack of substantial scattering is
also visible in the burst profiles (Figure 1) and bodes well for
probing the bursts for microstructure. To do so, we produced
filter-bank data for B1 at time resolutions of 64, 16, and 4 us but
find no prominent structure on these timescales. We find RMs
of +465+165 and —52+ 49radm ? for Bl and B2,
respectively. These values have not been corrected for the
Galactic RM contribution for this line of sight (+4 +12rad m 2
S. Hutschenreuter et al. 2022) or the expected ionospheric
contributions of 1.07 4 0.07 and 1.39 +0.09 rad m~> for B1 and
B2, respectively. Taking uncertainties into account, the RM for
B1 is consistent with RM gy, = 25.75 4= 18 rad m ™2 measured for a
CHIME/FRB FRB 20190208A burst detected 8 days earlier
(R. Mckinven et al. 2023). All together, these burst properties and
propagation effects indicate a relatively clean line of sight toward
the source.

37 This is the rounded DM of the most recent FRB 20190208 A burst detected
by CHIME/FRB at the start of ECLAT monitoring.
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Table 1

Properties of the Bursts Detected from FRB 20190208A at 1.4 GHz
Property B1 B2
Telescope EVN NRT
TOA? 59504.40346933 60081.13824472
Burst width” (ms) 1.13 £ 0.03 0.65 + 0.03
Fluence® (Jy ms) 1.70 £ 0.34 0.95+0.19
Bandwidth® (MHz) >97+5 191 +8
DMsn® (pc cm ™) 580.01 £ 0.26 580.03 +0.14
DMgued (pc cm ™) 580.24 +0.23 579.84 +0.29
RMpe¢ (rad m~?) +46.5 £ 16.5 —52449
RM;ono" (rad m™2) 1.07 &+ 0.07 1.39 £ 0.09

Notes.

 The burst time of arrival at the solar system barycenter in TDB, corrected to
infinite frequency for a DM of 580 pc cm > and using a DM constant of
1/(2.41 x 107*) MHz? pc ' cm® s. Measured at the time bin corresponding to
the peak flux density. The position for Effelsberg is X = 4033947.2355 m,
Y =486990.7943 m, Z=4900431.0017 m, and for the NRT, X=
432416581 m, Y = 165927.11 m, Z = 4670132.83 m.

® FWHM of a Gaussian fit to the frequency-averaged profile.

€ We assume an uncertainty of approximately 20%, dominated by the
uncertainty on the system equivalent flux density.

4 FWHM of a Gaussian fit to the time-averaged spectrum.

e_ DM determined from S/N optimization (see Appendix C.1).

" DM determined from structure optimization using DM_phase (A. Seymour
et al. 2019; see Appendix C.1).

€ See Appendices C.3 and C.4. We caution that there is a sign ambiguity.

" The expected ionospheric RM contributions using IonFR (C. Sotomayor-B-
eltran et al. 2013).

FRB 20190208 A appears to be more active at CHIME /FRB
frequencies than at ~1.4GHz. To quantify the frequency-
dependent activity, we calculate the statistical spectral index,
which compares the rates at two different frequencies, taking
into account instrumental sensitivity. We find values of
Qs NRT/CHIME = -2.30+£0.46 and Qs EFF/CHIME = -2.96 £ 0.49.
Within the errors, these values are more or less comparable to
what has been measured for other repeaters like FRB 20121102A
(L. J. M. Houben et al. 2019) and FRB 20180916B (P. Chawla
et al. 2020). Notably, all these sources appear to be less active at
higher frequencies.

2.5. EVN Correlation and Localization

A detailed description of correlation passes, the step-by-step
localization procedure, and the FRB positional uncertainty
estimation is presented in Appendix A.

The PRECISE data underwent multiple correlation iterations
at the Joint Institute for VLBI ERIC (JIVE) in the Netherlands
(EVN correlation proposal EK050; PI: F. Kirsten) using the
software correlator SFXC (A. Keimpema et al. 2015).

We calibrated and imaged the EVN data using standard
interferometric techniques in AIPS (E. W. Greisen 2003) and
DIFMAP (M. C. Shepherd et al. 1994). Calibration solutions
were derived from the fringe finder (J1419+4-5423) and phase
calibrator (J1852+4-4855, with a positional uncertainty of
Aa=0.15mas, A6=0.10mas from the RFC 2023B cata-
log®®) before being applied to the interferometric check source
(J1850+4-4959) to verity that the calibration was successful and
to help assess the precision of our localization. Using DIFMAP,
with a natural weighting scheme and cell size of 1 mas (in each

38 astrogeo.org /sol/rfc/rfc_2023b/rfc_2023b_cat.html
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Figure 2. Dirty map of BI, the burst from FRB 20190208A detected in
PRECISE observations. The cyan plus sign indicates the position of the phase
center, the green star shows the position of the pixel with the peak brightness,
and the white cross marks the center of the Gaussian ellipse.

dimension), we imaged the check source and measured its
position. Compared to its position in the RFC 2023B catalog
(which has an uncertainty of Aa = 0.20 mas, Ad = 0.15 mas),
we found a positional offset of Aa = 1.46 mas, Ad = 0.03 mas.
Given our synthesized beam size of 54 x 23 mas, we thus
conclude that our calibration was successful. The calibration
solutions were then applied to the target field of
FRB 20190208A before imaging (again using DIFMAP with
natural weighting and a cell size of 1 mas).

Unfortunately, the spectral extent of B1 was covered by the
observing bands of only three dishes: Effelsberg, Onsala, and
Toruri (Figure 7). Fortunately, however, the two baselines
given by these dishes are oriented nearly orthogonal with
respect to each other, and so the fringe pattern forms a cross-
like shape, shown in Figure 2. Although the subarcsecond
position of FRB 20190208A is clear from this map, the
relatively poor uv-coverage results in less precise localization
compared to previous EVN VLBI localizations of repeaters,
though still on par with what is expected from localizations of
individual bursts (see, e.g., K. Nimmo et al. 2022b;
D. M. Hewitt et al. 2024).

In the case of FRB?20190208A presented here, there are
multiple side lobes of comparable brightness, where the fringes
from the baselines intersect. Providing a statistical confidence
region for the FRB position is thus nontrivial. To quantify the
localization region, we fit a 2D Gaussian function to all pixels
where the absolute value of the dirty map of the burst is above
30. This 2D Gaussian fit has o, = 127 mas, o, =265 mas, and
0 =0.217 rad (measured clockwise in the dirty map presented in
Figure 2). The ellipses shown in Figure 2 are the 1o, 20, and 30
contours of this Gaussian fit. These are not traditional confidence
error ellipses; rather, these ellipses contain 68.3%, 95.4%, and
99.7% of the map pixels with power above 30. The center
position of this 2D Gaussian (the white cross in the map) is
located near the nominal peak brightness position (the green star).

The position we find for FRB 20190208 A, with conservative
uncertainty estimates from the 2-o, contour of the 2D Gaussian
fit, is

R.A. (J2000) = 18"54™11527 + 260 mas,

decl. (J2000) = 4+46°55'217 67 + 260 mas.
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3. Optical Observations and Host Galaxy Association
3.1. MMT Observations

We observed the field of FRB 20190208A using the
Binospec imaging spectrograph (D. Fabricant et al. 2019)
mounted on the 6.5 m MMT Observatory on 2022 May 31 UT
(PI: A. Nugent; Program 2022A-UAO-G193) in the i band for a
total of 2235 s of exposure. We used the custom POTPyRI
pipeline®® to apply bias and flat-field corrections, perform
cosmic-ray rejection and image coaddition, and perform
astrometric calibration to the Gaia DR3 catalog (Gaia
Collaboration et al. 2023) on the final coadded image stack.
While there are extended sources in the vicinity (Figure 3), no
source was detected at the VLBI position of FRB 20190208 A
(determined in Section 2.5). To obtain a photometric limit at
this position, we performed aperture photometry at the FRB
position and the surrounding extended sources using a custom
script based on the aperture_photometry module of
photutils (L. Bradley et al. 2021)* and calculated a 30
limit of i 22 25.7 mag (AB) at the position of FRB 20190208A.

We also obtained 2 x 900 s of spectroscopy of two sources in
the field (O8 and O9; see Section 3.3 and Figure 3 for the
naming convention) with MMT /Binospec, in which the slit was
aligned to capture both sources. O8 was initially considered to be
a plausible host, and the nearby O9 was able to be covered in the
same slit. We used the 270 lines mm™' grating with the LP3800
blocking filter and a central wavelength of 6500 A to cover a
wavelength range of 3850-9150 A. The data were reduced using
the Python Spectroscopic Data Reduction Pipeline (PypeIt;
J. X. Prochaska et al. 2020a, 2020b) in the quicklook reduction
mode to identify the redshifts of galaxies O8 and O9. For galaxy
08, we identify eight spectral features at a common redshift of
7=0.1935 % 0.0203. For galaxy 09, we identify three emission
features at a common redshift of z=0.5473 4 0.0004.

3.2. Gran Telescopio Canarias (GTC) Observations

The absence of an obvious source at the position of
FRB 20190208 A motivated deeper follow-up. Thus, we
obtained observations with the Optical System for Imaging
and low Resolution Integrated Spectroscopy (OSIRIS; J. Cepa
et al. 2000) mounted on the 10.4 m GTC on 2024 June 29 and
July 1 UT (PI: A. Gil de Paz; Program GTCMULTIPLE2G-
24A) in the Sloan r band for a total of 11,520 s of exposure.
The data were collected during gray time, and the seeing varied
in the range 076-079. The data reduction, including bias
subtraction and flat-fielding, was performed using standard
routines of the Image Reduction and Analysis Facility package,
and the cosmic rays were removed with the L.A.Cosmic
algorithm (P. G. van Dokkum 2001). We used a set of Gaia
DR3 stars in the target vicinity for the astrometric calibration.
The formal rms uncertainties of the astrometric solution were
AR.A. ~ 0”06 and Adecl ~0”11. We determined the photo-
metric zero-point 28.43 +0.01 using several stars from the
Pan-STARRS catalog (H. A. Flewelling et al. 2020). To
convert their magnitudes to the Sloan Digital Sky Survey
photometric system, we used the transformation equations from
J. L. Tonry et al. (2012).

The resulting combined image is presented on the right-hand
side of Figure 3. At the position of FRB 20190208A, we detect

3 hips: //github.com/CIERA-Transients/POTPyRI
40 https: //github.com/charliekilpatrick /photometry
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Figure 3. Left: MMT i-band image of the field surrounding the FRB 20190208 A localization. No host is visible, with a 3¢ limit of i 2> 25.7 mag (AB) at the position
of FRB 20190208A. Right: GTC r-band image showing the same field but achieving about 2 mag greater depth (see Section 3). The dashed black box indicates the
region that was considered in host association, and the nine sources that were identified as potential candidate hosts are marked by black circles (see Section 3.3). The
green crosshair indicates the FRB position—note that the EVN burst localization region is much smaller, roughly the pixel scale in this image. In the GTC image, the
FRB position is spatially coincident with source O4 (also see Table 2), which is not visible in the MMT image. The gray disk in the bottom right of the inset indicates
the effective point-spread function of the GTC image. The seeing varied in the range 076-0"9 during the GTC observations.

a faint unresolved source with r =27.32 + 0.16 mag. For both
the GTC and Binospec images, we perform photometry on
sources O1-09 in Figure 3, which are listed in Table 2,
together with the priors and results of our Probabilistic
Association of Transients to their Hosts (PATH) analysis.

3.3. Host Galaxy Association

We use PATH (K. Aggarwal et al. 2021b) to determine the
most likely host galaxy. PATH is a Bayesian framework that
incorporates priors on the magnitudes of surrounding galaxies,
their sizes, and the transient’s offset from them to calculate
posteriors of association for all candidate galaxies, P(O|x). We
use the GTC/OSIRIS r-band image for this analysis, because it
is the deepest image available for this field. For the magnitude
prior, we use the default “inverse” prior, which gives higher
weight to brighter galaxies. For the offset prior, we use the
default “exponential” prior truncated at six effective radii from
the galaxy candidates. Finally, we assume a value of 0.05 for
the prior that the host is undetected, P(U), which is a
conservative assumption given the depth of the GTC image.

To select galaxy candidates, we consider a 20" x 20” region
around FRB 20190208A and use SExtractor (E. Bertin &
S. Arnouts 1996) to identify all objects that are likely galaxies
per the SExtractor star—galaxy classifier, resulting in nine
objects that we label O1-09. We run PATH using the positions
determined by SExtractor, photometry as described in
Table 2, and estimations for the effective radii of the objects
combined with our prior assumptions. O4, the object spatially
coincident with the FRB source, is unambiguously favored as
the host with P(Olx) = 0.9995; all other objects receive
negligible posteriors, and the posterior on the host being
undetected, P(U|x), is similarly negligible at 5 x 107°. We
report the P(O|x) values for each object in Table 2 along with
their magnitudes, spectroscopic redshift (if known), and offset
from FRB 20190208A.

Table 2

Properties of the Host and Surrounding Galaxies of FRB 20190208A

Galaxy r Offset P(O) P(O|x) Redshift
(arcsec)

0Ol 23.23 £0.02 8.97 0.054 0.0
02 26.02 £+ 0.05 8.72 0.006 0.0
03 26.72 £ 0.09 4.95 0.004 ~0
04 27.17 £ 0.16 0.10 0.003 0.9995
05 25.69 £ 0.04 2.11 0.008  0.00017
06 25.01 £ 0.05 3.72 0.006 ~0
o7 24.80 £+ 0.02 4.27 0.015 ~0
08 20.31 £ 0.02 8.70 0.790  0.00028  0.1935 £ 0.0203
09 23.05 £ 0.05 7.74 0.063 0.0 0.5473 £+ 0.0004

The host galaxy of FRB 20190208A is too faint to obtain a
redshift using current ground-based spectroscopy; this might
yet still be feasible with the Hubble Space Telescope or JWST.
To determine a conservative upper limit on the redshift, which
would allow us to constrain the maximum possible host galaxy
luminosity, we calculate P(z|DM) following J. P. Macquart
et al. (2020). Throughout, we use the model parameter values
used in C. W. James et al. (2020) and Planck18 cosmological
parameters (Planck Collaboration et al. 2020). We account for
the expected Galactic DM using a flat distribution with a +20%
spread centered on 71.5 pccm > (from NE2001p; S. K. Ocker
& J. M. Cordes 2024), the Galactic halo contribution is a flat
distribution between 25 and 80pccm > (J. X. Prochaska &
Y. Zheng 2019; S. Yamasaki & T. Totani 2020), and we fix the
host DM to 0 pccm * in order to place the most conservative
limit on the maximum redshift. The field around FRB
20190208A (Figure 3) is crowded with other galaxies,
implying that there might be a significant contribution to the
DM from intervening circumgalactic media. We account for
this by introducing scatter in the DM component from the
intergalactic medium to make the final probability density
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function (PDF). The PDF is plotted in Figure 5 (in orange) with
the 99% confidence interval defining the maximum redshift:
Zmax ~ 0.83. The mean of this distribution, which conserva-
tively assumes no host contribution to the DM, is z ~ 0.67.

Note that scattering measurements can be used to constrain
the host DM contribution under the assumption that the
scattering is dominated by the host galaxy disk (J. M. Cordes
et al. 2022). In our case, we have not measured a scattering
timescale in the FRB 20190208A bursts but place an upper
limit of <0.65 ms using the shortest-duration burst, B2. This
upper limit is, unfortunately, not meaningfully constraining for
the range of host DMs in our case, using a flat prior on the
fluctuation parameter between 0.5 and 2 (pc? km)~'/3. We
compare the PDF determined following J. P. Macquart et al.
(2020), plotted in orange in Figure 5, with the PDF calculated
following the J. M. Cordes et al. (2022) framework, plotted in
pink, using our upper limit on the scattering timescale. This
highlights that the upper limit on the redshift results in a
comparable galaxy luminosity (~10% L.) regardless of the
assumed PDF (the J. P. Macquart et al. 2020 PDF is skewed
low, since it accounts for some DM contribution from
intervening structure, which the J. M. Cordes et al. 2022
framework does not consider). In contrast, the lower bound on
the redshift is unconstrained, since the scattering timescale does
not meaningfully constrain the maximum DM host.

4. Discussion

4.1. The Importance of Precise Localization and Deep Optical
Observations

The unambiguous association of FRB 20190208A to its host
is due to both its 260 mas localization and the depth of the
GTC image used for the PATH analysis, the combination of
which are not always afforded for FRBs. To explore the
sensitivity of the posteriors to the localization uncertainty for
FRB 20190208A, we artificially increased the localization
uncertainty region from 0”5 to 120", while keeping all other
assumptions fixed, and noted how the posteriors changed.
Figure 4 shows the P(O|x) for each candidate host galaxy (with
O4 being the true host) and the P(Ulx) as a function of
localization uncertainty (radius-equivalent).

Figure 4 shows that for localization sizes <17, O4 is
correctly identified as the true host with P(Olx) = 0.8. For a
robust association, which we define as P(Olx) 209, a
localization precision on the order of a few 100 mas, or less,
is needed. Once the localization size increases to beyond a few
arcseconds, the host association becomes less clear, as evident
by several candidates with low but comparable P(O|x). At
worse precision (=8"), the data begin to lose constraining
power as P(Ol|x) becomes dominated by the prior; if the
localization was truly on this scale, the brightest and largest
galaxy, O8, would have been identified as the host with
reasonable confidence (defined as P(O|x) 2 0.8). This exercise
highlights the importance of subarcsecond localizations in
making robust associations with the true host, especially if a
significant fraction of the FRB population originate from faint
or low-luminosity galaxies.

In the case of FRB 20190208A, the VLBI localization,
coupled with the lack of clear host within ~10” in shallower
imaging, motivated extremely deep imaging. In previous
PATH analyses of this system based on shallower MMT
imaging, the FRB appeared significantly offset from all known

Hewitt et al.

1.0

i Reasonable Association
0.8 T
i
1
C
k]
0.61 ©
= N
> |
) 8
o -
044 ®©
=)
2
(%}
<
1
i
024 v/ R\ ..
1
i
1
Sl
1
0.0+
1071 100 10t 102

Localization Size (arcsec)

Figure 4. PATH posteriors, P(O|x), for the FRB 20190208A field as a function
of increasing assumed localization uncertainty (radius-equivalent). The actual
1-0, localization precision of the source is shown by the dashed vertical line.
The P(O|x) for objects Ol to O9 are represented by solid curves and their
priors, P(O), by horizontal dotted lines with corresponding colors (see legend).
Shaded gray regions illustrate reasonable and robust host associations (defined
as P(O|x) > 0.8 and >0.9, respectively).

candidates, as the coincident galaxy was not detected. This
demonstrates that, in some cases—perhaps particularly when
the FRB position is significantly offset from its putative host or
apparently hostless—deep optical imaging, in addition to high-
precision localization, may be necessary for a robust host
association.

4.2. The Implications of a Low-luminosity Dwarf Host

Figure 5 shows the r-band AB magnitude against redshift for
a sample of published FRB host galaxies, including data from
V. Ravi et al. (2019), M. Bhardwaj et al. (2021, 2024),
A. C. Gordon et al. (2023, 2024), K. Lee-Waddell et al. (2023),
F. H. Panther et al. (2023), A. L. Ibik et al. (2024), C. J. Law
et al. (2024), K. M. Rajwade et al. (2024). Overplotted is the
characteristic luminosity, L™ as a function of redshift, based on
the Schechter galaxy luminosity function of field galaxies
(P. Schechter 1976). Also shown are such curves scaled down
in orders of magnitude, with data compiled from W. R. Brown
et al. (2001), C. Wolf et al. (2003), C. N. A. Willmer et al.
(2006), N. A. Reddy & C. C. Steidel (2009), S. L. Finkelstein
et al. (2015), and K. E. Heintz et al. (2020).

The host galaxy of FRB20190208A is very faint, less
luminous than the host galaxy of FRB 20121102A (~0.01L%;
C. G. Bassa et al. 2017; S. P. Tendulkar et al. 2017), and
potentially as faint as a ~0.001L" galaxy, depending on the true
redshift. Considering the extremes, for zpg=10.1935 and
Zmax ~ 0.83, the corresponding luminosities are ~10%% L., and
~10%2 L., respectively. The plausible range of redshifts of the
host thus implies that O4 is the lowest-luminosity FRB host
galaxy to date. In future, if the redshift of O4 can be
determined, it will be possible to comment on whether this host
galaxy is an outlier in the FRB population or merely an extreme
case still consistent with the current population of (repeating)
FRB host galaxies.

In addition to FRB 20190208A and FRB 20121102A, there
are a few other low-luminosity FRB hosts (for both repeating
and apparently nonrepeating sources), such as the hosts of
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Figure 5. The r-band AB magnitude vs. inferred redshift for the host of
FRB 20190208A against a background of published FRB host galaxies
(references in the main text). We show the placement of L field galaxies and
scale them in orders of magnitude down to 0.001L". The true magnitude of O4
is indicated by the horizontal dashed line. Overplotted on this line are two
probability density functions (PDFs) for the redshift, described in detail in

Section 3.3. The orange redshift PDF indicates a conservative estimate, where

DMj,0sc = 0 pc cm™3, using the framework from J. P. Macquart et al. (2020).

The pink redshift PDF uses an upper limit on scattering to constrain DMy,
using the framework from J. M. Cordes et al. (2022). The most probable
inferred redshift range for FRB 20190208A indicates that the host is consistent
with a <0.01L" galaxy.

FRB 20190520B (C. H. Niu et al. 2022) and FRB 20210117A
(S. Bhandari et al. 2023a). Furthermore, no host galaxy was
detected for FRB 20210912A, discovered by Australian Square
Kilometre Array Pathfinder (ASKAP), despite deep optical
(R>26.7mag) and near-infrared (K; > 24.9 mag) follow-up
observations (L. Marnoch et al. 2023). These authors
concluded that either the host galaxy of FRB 20210912A is
intrinsically dim or the burst was exceptionally bright. If the
source is situated at z < 0.7, it would be fainter than any FRB
host galaxy previously detected. Alternatively, the host could
be as luminous as or more luminous than that of
FRB 20121102A, if situated further away at z > 0.7. The low
luminosity of the host of FRB 20190208A presented in this
work strengthens the feasibility of the scenario where the host
of FRB 20210912A is a low-luminosity dwarf galaxy.
Recently, it has been shown that there is a significant deficit
of low-mass FRB host galaxies in the local Universe
(K. Sharma et al. 2024). This implies that high metallicity
may play a crucial role in the production of FRB progenitors,
and that FRBs may come from magnetars formed in a
subpopulation of CCSNe. While various studies have shown
that FRBs do not track stellar mass (K. E. Heintz et al. 2020;
S. Bhandari et al. 2022; K. Sharma et al. 2024), the association
of FRB 20190208A with a faint dwarf galaxy is still consistent
with the host population of CCSNe, which have been proposed
to be the dominant formation channel for FRB sources in the
local Universe (M. Bhardwaj et al. 2024). For example,
D. A. Perley et al. (2020) found that approximately 7% of
CCSNe in the Zwicky Transient Facility Bright Transient
Survey occur in very low-luminosity galaxies (absolute i-band
magnitude M; > —16 mag). Notably, the faintest Type II host
galaxy in their sample, SN 2024rnu at z = 0.032, has
M;=-11.84 mag, comparable to the lower magnitude limit
estimated for the host of FRB 20190208A. Similar findings
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have been reported by I. Arcavi et al. (2010) and K. Taggart &
D. A. Perley (2021) using unbiased samples of nearby CCSN
host galaxies from the Palomar Transient Factory and the All-
Sky Automated Survey for Supernovae.

Alternatively, this FRB source may be one of a few outlier
cases associated with extreme transients like superluminous
supernovae (SLSNe) and long gamma-ray bursts (LGRBs),
which predominantly occur in dwarf galaxies with high specific
star formation rates (e.g., A. S. Fruchter et al. 2006; S. Savaglio
et al. 2009; S. Schulze et al. 2018). The idea that FRBs may be
linked to extremely massive progenitor stars, thought to be
responsible for these extreme transients, was already put
forward when the host galaxy of FRB20121102A was
identified as a low-metallicity dwarf (S. P. Tendulkar et al.
2017). The magnetars, hypothesized to power H-poor SLSNe
(D. Kasen & L. Bildsten 2010), could potentially produce
FRBs as well (B. D. Metzger et al. 2017). The preference these
extreme transients have for low-mass galaxies signals that these
galaxies provide certain conditions (e.g., in terms of metalli-
city; S. Schulze et al. 2018) that are conducive to their
production. At present, we lack sufficient evidence to strongly
favor either scenario.

Finally, it is worth noting that the environments of the least
massive star-forming galaxies are representative of the earliest
starburst galaxies in the Universe. The discovery of multiple
FRBs in such galaxies could thus bode well for high-redshift
FRB searches.

4.3. The Lack of a Compact PRS

Two sources of FRBs are coincident with compact
PRSs with flat spectra and a spectral luminosity of
~10®ergs 'Hz ': FRB20121102A (B. Marcote et al.
2017) and FRB 20190520B (C. H. Niu et al. 2022; S. Bhandari
et al. 2023b). These FRBs also have remarkably high RM
values. The PRSs have been hypothesized to be magnetized
neutron stars embedded in supernova remnants, wind nebulae
(e.g., B. Margalit & B. D. Metzger 2018), or ultraluminous
X-ray source hypernebulae (N. Sridhar & B. D. Metzger 2022).
Notably, some of the most active repeaters to date
(FRB 20201124A, FRB20220912A, and FRB 20240114A)
do not exhibit a PRS of similar luminosity (K. Nimmo et al.
2022b; D. M. Hewitt et al. 2024; A. Kumar et al. 2024),
although G. Bruni et al. (2023) have detected a possible low-
luminosity  (~10*"ergs 'Hz™') PRS associated with
FRB 20201124A.

This low luminosity is consistent with the theoretical relation
predicted between the luminosity of a PRS and RM if the PRS
is the main contributor to the RM (Y.-P. Yang et al. 2020).
However, this low-luminosity PRS is quite different from those
associated with FRB 20121102A or FRB 20190520B. Con-
straints on the size are 100 times larger, the spectrum is
inverted and not flat, and the host galaxy is a barred spiral as
opposed to a dwarf galaxy (H. Xu et al. 2022; Y. Dong et al.
2024).

We performed a search for a PRS associated with
FRB 20190208A using our EVN observations at 1.382 GHz,
as well as the VLA in the C configuration at 6 GHz. With the
EVN, we found no persistent radio emission on milliarcsecond
scales in the 2 x 2 arcsec” region surrounding the position of
FRB 20190208A. The image had an rms of 31 zJybeam ',
resulting in a 50 upper limit of 155 pJy beam ™' (see the left
panel of Figure 8). Similarly, using the VLA image
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(4 Jy beam ™' rms), we could rule out the presence of a PRS
above a 30 flux density limit of 12 zJy beam ' (right panel of
Figure 8). A PRS of spectral luminosity 2 x 10%°ergs ' Hz '
(comparable to those of FRB 20121102A and FRB 20190520B)
would have a flux density of ~420 uJy at zog =0.1935 and
~10 pJy at Zyax ~ 0.83. Our data thus rule out the presence of
such a luminous PRS associated with FRB 20190208A assum-
ing reasonable redshifts.

Given the modest RM of FRB 20190208A (R. Mckinven
et al. 2023; Appendices C.3 and C.4), the aforementioned
RM-luminosity relation suggests a PRS luminosity of
<10%%erg s~ ' Hz ', resulting in an expected flux density well
below our detection capability even at the closest feasible
redshift.

4.4. Exploring Alternative Host Scenarios

At least one repeater, FRB 20200120E (M. Bhardwaj et al.
2021), is located in a globular cluster (F. Kirsten et al. 2022).
Globular clusters tend to be within a few tens of kiloparsecs
from the center of their host galaxies but can also be over 100
kpc away, since they trace the dark matter halo of the host (e.g.,
M. Reina-Campos et al. 2022). Even in the Milky Way, there
are globular clusters beyond 100 kpc from the Galactic center
(W. E. Harris 1996). Alternatively, satellite galaxies in the
Local Group are typically within a few hundred kiloparsecs of
their hosts (see, e.g., A. W. McConnachie 2012). It thus
remains plausible that the host galaxy of FRB 20190208A is a
low-luminosity satellite of another galaxy in the field, or even a
(very luminous) globular cluster. We discuss these options only
for the galaxies for which we have measured spectroscopic
redshifts, O8 and 09, although depending on the redshift of
other galaxies in the field, the discussion may be applicable to
them as well.

If FRB 20190208A is associated with galaxy O8 (z = 0.1935),
the impact parameter is ~28 kpc. Assuming similar offsets as
seen for the Milky Way, this is broadly consistent with the offsets
of both satellite galaxies and globular clusters discussed above.
At this redshift, a globular cluster would have to be extremely
luminous, M,=-12.6 mag. Perhaps the biggest challenge to
association with OS is the consequent unexplained DM excess.
Having accounted for contributions from the halo and disk of the
Milky Way, there would be an excess of (~300pccm °),
comparable to the local DM contributions seen in
FRB 20121102A and FRB 20190520B. However, the absence
of a PRS and the lack of substantial scattering or Faraday rotation
in the bursts from FRB 20190208A hints at the absence of a
significant local environment contribution to the DM.

In the case of association with O9 (z = 0.547), the large DM-
excess discrepancy would be solved, and the larger impact
parameter (~50kpc) would still be consistent with the
FRB 20190208A host being a satellite dwarf galaxy of O9.
However, a globular cluster origin becomes implausible given
the relatively large offset and, more importantly, the implied
luminosity at such a distance (M, =—15.2).

Lastly, further opposing a globular cluster origin, although
the bursts from FRB 20200120E are similar in terms of
narrowbandedness and polarimetry, they are ~30 times shorter
in duration and ~10” times less luminous than those of other
extragalactic FRBs (K. Nimmo et al. 2023). It is unknown
whether these properties are linked to its globular cluster origin.
The FRB 20190208A bursts, on the other hand, have more
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typical durations and spectral energies (see also E. Fonseca
et al. 2020).

5. Summary

Using the EVN in EVN-Lite mode, we monitored
FRB 20190208A over 3 yr, accumulating 65.6 hr of observations
as part of the PRECISE campaign, and detected a single burst
(B1) during this period. With the ECLAT monitoring campaign
on the NRT, we obtained an additional 40.4 hr of exposure at
~1.4 GHz, leading to the detection of one more burst (B2).

The detection of Bl enabled the VLBI localization of
FRB 20190208A to R.A. (J2000) = 18"54™11527 + 260 mas,
decl. (J2000) = +46°55'217 67 4+ 260 mas. Initial optical
observations with the MMT (3¢ limit of i = 25.7 mag (AB))
revealed no host at the FRB position. Follow-up observations
with the GTC revealed a faint source (r = 27.32 4 0.16 mag) at
the position of FRB 20190208A. Even the most conservative
redshift estimate inferred from the DM, z,.x ~ 0.83, indicates
that the FRB 20190208 A host is less luminous that the dwarf
host galaxy of FRB20121102A, making it the lowest-
luminosity FRB host galaxy to date.

There has been an emerging trend where many FRB host
galaxies are massive and star-forming. A low-luminosity FRB
host galaxy, such as presented here, might still be consistent
with the framework where the majority of FRBs are produced
by magnetars formed via CCSNe but could also be part of a
subpopulation where the FRB progenitor is linked to extreme
transient events such as LGRBs or SLSNe (requiring low
metallicity).

In the coming decade, the number of host associations will
drastically increase with the advent of large-scale localization
projects such as the CRACO upgrade on the ASKAP
(R. M. Shannon et al. 2024), the Deep Synoptic Array
(G. Hallinan et al. 2019), the Canadian Hydrogen Observatory
and Radio-transient Detector (K. Vanderlinde et al. 2019), and
CHIME/FRB outriggers (A. E. Lanman et al. 2024). Many
scenarios may arise where localization regions are offset from
potential host galaxies. In some cases, robust FRB host
associations will require both high-precision localization and
deep optical follow-up observations.
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Appendix A
EVN Observations and Data Processing

We have provided an observation log as a supplementary
text file that shows all the FRB 20190208A observations
conducted with a subarray of EVN dishes in “EVN-Lite” mode
as part of the PRECISE FRB localization campaign. During all
38 observations, only a single burst (B1) was detected on 2021
October 17UT (MJD 59504) in PRECISE observing run
PR187A. This is also shown in Figure 6.

During PR187A, most stations recorded dual-polarization
raw-voltage data with 2 bit sampling. At Irbene, only left
circular polarization data were recorded. These data were in
MARKSB (A. Whitney 2004) format for Svetloe, Badary, and
Zelenchukskaya and VLBI Data Interchange format (A. Whit-
ney et al. 2010) for all other stations. With the exception of
Urumgi, all stations record on a circular basis. In postproces-
sing, linear basis polarization data from Urumqi were
transformed to circular basis using the PolConvert program
(I. Marti-Vidal et al. 2016). All stations recorded either four or
eight 32 MHz subbands, as shown in Figure 7. Unfortunately,
B1 occurred in a part of the band with less-than-optimal
coverage, as shown by the shaded orange region of this figure.

We used the PRECISE pipeline (F. Kirsten et al. 2021) to
search the raw voltages recorded at Effelsberg for bursts. First,
we used digifil from the software suite Digital Signal
Processing Software for Pulsar Astronomy (W. van Straten &
M. Bailes 2011) to create Stokes/ filter-bank data from the
raw-voltage data, with time and frequency resolutions of 64 us
and 62.5 kHz, respectively. We then searched these filter-bank
data over a DM range of 529-629 pc cm ° for transient signals
above a signal-to-noise ratio (S/N) threshold of 7 using the
transient-detection software Heimdall.** Thereafter, the
pipeline fed the candidates from the search to FETCH
(D. Agarwal & K. Aggarwal 2020), a machine learning
convolutional neural network that assigns a probability that a
given transient signal is astrophysical in origin using various
deep-learning models. In the PRECISE project, we have
empirically determined that the FETCH models “A” and “H”
complement each other well in terms of completeness and
number of false positives. Finally, we manually inspected all
the candidates for which either of these two models assigned a
probability of higher than 0.5 of being astrophysical.

In the first correlation pass at JIVE with SFXC (A. Keimp-
ema et al. 2015), all nontarget scans were correlated with the

42 Sourceforge.net /projects /heimdall-astro/
* hutps: //github.com/CIERA-Transients/POTPyRI
4 sourceforge.net/projects /heimdall-astro/
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Figure 6. All known bursts. detected from FRB 20190208A are indicated by
dashed vertical lines. Bursts detected by CHIM}E/ FRB are indicated in gray,
while the bursts detected by PRECISE (B1) and ECLAT (B2) are in orange and
purple, respectively. The MJD is shown on the bottom axis and the
corresponding calendar date on the top axis. The solid orange curve shows
the cumulative time (in hours) that FRB 20190208A has been observed by

PRECISE, while the solid purple shows the same but for the ECLAT project on
the NRT.

standard 2s integration time and 8 x 32 MHz subbands,
consisting of 64 channels each. These data were used to
provide an accurate calibration that could be applied to the
burst data correlated in the following passes. Initially,
FRB 20190208A’s position (derived from the CHIME/FRB
baseband data) was only known with arcminute precision, and
we used this position as the phase center in our initial
correlations: R.A. (J2000) = 18"54™09:4320, decl. (J2000) =
46°55'34" 680. In order to first establish the burst position to an
uncertainty of about 17, burst B1 was coherently dedispersed
(intrachannel dedispersion) using a DM of 580.467 pc cm
before a correlation gate was selected manually around the
arrival time of B1 to optimize the S/N. We then derived the
delay residuals for each baseline by fringe-fitting these data; the
delay residuals are proportional to the angular offset between
the burst position and the phase center. This method is known
as delay mapping. A detailed description of this technique has
previously been presented in B. Marcote et al. (2020). Using
the delay-mapping position as the phase center, a second
correlation pass was conducted on the burst data to finally
image the burst. In the third and final correlation pass, all target
scans were correlated using the same time and frequency
integration as for the calibrators for deep imaging to search for
persistent radio emission using the same position for the target
as derived from the burst correlation.

To calibrate and image the correlated EVN data, we used
ATIPS (E. W. Greisen 2003) and DIFMAP (M. C. Shepherd
et al. 1994). These procedures have also been described in
previous PRECISE localization papers (e.g., B. Marcote et al.
2020), but we repeat them here for the sake of completeness
and convenience. The EVN provides the correlated visibilities
in FITS-IDI format, together with calibration pipeline products.
We first loaded these correlated visibilities into AIPS before
applying the calibration table containing the a priori gain
correction and parallactic angle correction, the a priori flagging
table, and the bandpass calibration table. We then manually
flagged the radio frequency interference (RFI) in the fringe
finder (J1419+4-5423) scan and the edges of each subband
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Figure 7. The frequency coverage for different antennas in our PRECISE
observations are shown here by horizontal purple bars. The edges of subbands
are indicated by dashed black vertical lines. The shaded orange region indicates
the spectral extent of burst B1.

where the signal becomes weaker (~15% of the data). Next, we
corrected for ionospheric dispersive delays using Jet Propulsion
Laboratory maps of total electron content during the observa-
tion at the different EVN sites. Each subband has a different
signal path that induces phase jumps between subbands, as well
as phase slopes within them. With Effelsberg as a reference
antenna, we used the fringe finder scan to correct for these
instrumental delays. Thereafter, we performed a global fringe
fit, using the fringe finder and phase calibrator (J1852+-4855),
to correct the delays and rates of the phases, as a function of
both time and frequency, for all the calibrators during the entire
observation. We manually inspected the solutions and flagged
those where the calibration failed. These solutions were applied
to the check source (J18504-4959) for verification and then to
the target field before imaging.

In previous PRECISE localizations, the uncertainty on the
FRB position was taken to be the quadrature sum of multiple
factors: the statistical uncertainty derived from the shape and
size of the synthesized beam normalized by the S/N, the
statistical uncertainty on the position of the phase calibrator, an
estimate of the uncertainty from phase referencing due to the
angular separation between the phase calibrator and FRB, an
estimate of the frequency-dependent shift in the phase
calibrator position from the International Celestial Reference
Frame, and the statistical uncertainty on the positions of the
interferometric check source. All of these contributions are
typically on the order of milliarcseconds or less, and the total
uncertainty was often dominated by the phase-referencing
uncertainty estimate.

This approach is effective when the visibilities of multiple
bursts can be stacked to obtain sufficient uv-coverage for a
single point source to become visible in the dirty map. The
precision to which the FRB position is then known is
approximately equivalent to 20% of the synthesized beam
size. With poor uv-coverage side lobes becoming large in
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Figure 8. Radio continuum maps from our 1.4 GHz EVN observations (uncleaned; left) and the VLA observations in C configuration at 6 GHz (cleaned; right) to
search for persistent radio emission. The rms is 31 and 4 ;Jy beam ™' for the EVN and VLA images, respectively. The ellipses in the EVN image are centered on the
VLBI position of FRB 20190208A and are described in Section 2.5. The white circle in the VLA image also indicates the FRB position but is much larger than the

aforementioned ellipses. We find no PRSs associated with FRB 20190208A.

amplitude, and while the addition of amplitudes will cause the
S/N of different side lobes to vary, the addition of phases can
cause the entire fringe pattern to shift. This means that the true
FRB position is not necessarily on top of a local maximum of a
side lobe. Due to the ambiguity in the case of FRB 20190208 A
presented here, we conservatively transform 2 X oy of the 2D
Gaussian fit into the R.A. and decl. reference frame to obtain a
quasi-positional error on the FRB position.

Appendix B
NRT Observations and Data Processing

In the supplementary materials, we have provided an
observation log of the observations from the ECLAT FRB
monitoring campaign on the NRT of FRB 20190208A. Only a
single burst (B2) was detected on 2023 May 17UT
(MJD 60081).

The data recorded by NUPPI were searched for bursts using
the ECLAT pipeline, which has been described in more detail
in D. M. Hewitt et al. (2023). In short, the eight 32 bit, 64 MHz
full-polarization subbands recorded by NUPPI were spliced
together and converted into 8 bit, 512 MHz Stokes [ filter-bank
data, which were then passed in 2 minute blocks to rfifind
from the pulsar software suite PRESTO (S. M. Ransom 2001).
Once the most RFI-contaminated channels were identified, we
masked these channels but refrained from any temporal
masking. Using Heimdall, these masked filter-bank data
were searched for candidates above an S/N of 7. The DM
search range used for FRB20190208A is 558-609 pc cm
(the data were coherently dedispersed to a DM of 579 pc cm >
within each 4 MHz channel). Notably, we searched for
candidates down to the native time resolution of the data
(16 us). Afterward, the FETCH models “A”—“H” classified the
candidates as being astrophysical in origin, and all candidates
for which any model assigned a score above 0.5 were manually
inspected. In the event that bursts are detected, they are
extracted with full polarization information from the 32 bit raw
data. These extracted data are used for all subsequent analyses.

12

Appendix C
Burst Analysis

In Table 1, we tabulated the properties of bursts B1 and B2.
The temporal burst widths and spectral extents quoted are the
FWHM of Gaussian fits to the frequency- and time-averaged
data, respectively. We calculate fluences by first multiplying
the normalized frequency-averaged burst profiles (where noise
has a mean of 0 and standard deviation of 1) with the
radiometer equation to convert to physical units and then
integrating over the extent of the burst in time and the entire
observing band. The system temperature and gain for the NRT
at 1.4 GHz are approximately 35K and 1.4KJy~ !, respec-
tively. The system temperature and gain for Effelsberg are 20 K
and 1.4 K Jy !, respectively. We assume these values, and by
extension our fluences, to have an uncertainty of approxi-
mately 20%.

C.1. DM Determination

Accurate DM determination in the absence of prominent
burst structure or short-timescale features is nontrivial. In these
cases, the DM will likely be overestimated since the intraburst
time—frequency drift (J. W. T. Hessels et al. 2019) cannot easily
be disentangled from dispersion, and S/N will be optimized for
rather than structure. To determine the DM, we made use of
both S/N-optimization and structure-optimization approaches.
For B1, we have baseband data and thus generated a filter-bank
data set, coherently dedispersed to a preliminary DM of
579.8pccm >, with 8 pus time resolution and 250 kHz
frequency resolution. This preliminary DM is similar to the
DM of FRB 20190208A bursts found by CHIME /FRB around
the same period of time (R. Mckinven et al. 2023). For B2, the
burst data we used for this analysis had the native time and
frequency resolution (16 us and 4 MHz) that was recorded at
NRT, coherently dedispersed to a DM of 579 pc cm > used in
the search pipeline. For both B1 and B2, we first flag any
channels contaminated by RFI before performing the analysis.

In order to optimize for S/N, we incoherently dedispersed the
bursts to a range of DMs between 577 and 583 pccm >. For
each DM trial, we measured the peak S/N of the profile obtained
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Figure 9. DM determination by S/N optimization for bursts B1 (left) and B2 (right). The gray data points denote the peak S/N at various DM trials. A Gaussian fit to
the data is shown in black. The center of the Gaussian and its 3¢ error are indicated by the vertical dashed purple lines and the shaded orange regions, respectively.

by averaging the channels where the burst is present. We then
performed a bootstrap fit of a Gaussian function to the S/N-
versus-DM curve to quantify the best DM and estimate the
uncertainty, finding best DMs of 580.01+0.26 and
580.03 £0.14 pccm ° for B1 and B2, respectively (Figure 9).

In order to optimize for burst structure, we made use of
DM_phase (A. Seymour et al. 2019) and considered only the
part of the observing band where the burst is visible while also
limiting fluctuation frequencies to below 0.75ms '. The
resulting DMs for B1 and B2 are 580.24 £0.23 and
579.84 4 0.29 pc cm >, respectively.

The results from both methods are consistent within the
uncertainties for both bursts B1 and B2, suggesting that both
bursts lack any prominent substructure on submillisecond
timescales. For the remainder of analyses in this work, we will
use DMs of 580.1 and 579.9 pccm * for bursts B1 and B2,
respectively. For the Effelsberg data, the smearing in the lowest
250kHz channel, if no coherent dedispersion is applied, is
0.6 ms. We thus create a filter-bank data set for B1, coherently
dedispersed to a DM of 580.1 pccm > to mitigate the DM
smearing. The NRT data for FRB 20190208A were already
coherently dedispersed to a DM of 579 pccm > at the time of
recording. This difference of 0.9 pc cm™~ results in a temporal
smearing of ~16 us at the lowest-frequency channel, which is
equivalent to the time resolution of our data and consequently
negligible.

C.2. Scattering, Scintillation, and High-time-resolution
Analysis

FRBs can be asymmetrically temporally broadened through
scattering, induced by screens of turbulent media along the line
of sight to the source (e.g., K. Nimmo et al. 2024). The
estimated extragalactic pulse broadening (7x) along the line of
sight toward FRB 20190208A is 0.499 us at 1 GHz (NE2001p;
J. M. Cordes & T. J. W. Lazio 2002; S. K. Ocker &
J. M. Cordes 2024). Assuming a 7orv * scaling, the
corresponding expected scattering timescales at the center
frequencies of our PRECISE (1382MHz) and NRT
(1484 MHz) observations are 0.137 and 0.103 us, respectively.
This is much smaller than the time resolution of our NRT
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observations, and we see no prominent scattering tail in either
Bl or B2. CHIME/FRB has reported scattering times of
<1.8 ms at 600 MHz for FRB 20190208 A bursts (E. Fonseca
et al. 2020). The scaled expectation from NE2001 is 3.850 ps.

Alternatively, these scattering screens can also induce
scintillation in the FRB spectra. While there is also no
prominent scintillation visible by eye in the dynamic spectra
of B1 and B2, the expected scintillation bandwidth at 1 GHz
along this line of sight is 0.37 MHz (NE2001p; J. M. Cordes &
T. J. W. Lazio 2002; S. K. Ocker & J. M. Cordes 2024).
Scaling (using v, o< /") to the central frequencies of our
observations yields 1.35 MHz at 1382 MHz and 1.79 MHz at
1484 MHz. We thus expect the scintillation bandwidth to be
detectable in B1 (raw-voltage data), while for the B2 data, the
frequency resolution (4 MHz) is insufficient to resolve the
expected frequency scale. If there are multiple scattering
screens along the line of sight (see, e.g., M. W. Sammons et al.
2023), the corresponding characteristic frequency scales of the
different screens should be present in the autocorrelation
function (ACEF; if there is sufficient resolution to resolve them).
For B1, we produced filter-bank data sets from the raw-voltage
data recorded at Effelsberg with different frequency resolutions
and computed the ACFs using an implementation of
fftconvolve from the scipy.signal package. We then fit a
Lorentzian function to the ACFs of the normalized, time-
averaged FRB spectrum to measure the scintillation bandwidth
(defined as the half-width at half-maximum of this Lorentzian
fit; see, e.g., B. J. Rickett 1990). We found no evidence for a
frequency scale around the frequency lag corresponding to the
expected scintillation bandwidth (~1.35 MHz). Instead, we
measure a scintillation bandwidth of approximately 0.1 MHz,
more than an order of magnitude lower than the expectation.
The ACFs of B1 at different frequency resolutions are shown in
Figure 10.

The lack of substantial scattering and scintillation in the
bursts from FRB 20190208A suggests that the bursts are not
heavily modulated by propagation effects other than dispersion.
Motivated by the presence of submillisecond time structure in
bursts from other repeating FRBs (e.g., K. Nimmo et al.
2021, 2022a; D. M. Hewitt et al. 2023), we investigate to see if
these FRB 20190208A bursts contain such structure. Again we
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Figure 10. The time-averaged spectral ACF of Bl at different frequency
resolutions (quoted in each panel). Lorentzian fits have been overplotted in
colored lines, while the vertical gray line in each panel indicates the measured
scintillation bandwidth for that frequency resolution.
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Figure 11. The frequency-averaged time profile of Bl at different time
resolutions. In each case, the burst has been coherently dedispersed to a DM of
580.1 pc cm ™.

generated filter-bank data sets, coherently dedispersing to a DM
of 580.1 pc cm > (see Appendix C.1), with time resolutions of
64, 16, and 4 pus. As can be seen in Figure 11, we find no
significant temporal structure when probing B1 at these time
resolutions.

Interestingly, while B1 and B2 differ by about a factor of 2
in duration, both have similar temporal morphology, showing a
small shoulder on the leading side of the burst.

C.3. Polarimetry: Effelsberg

Following K. Nimmo et al. (2021), we use a test pulsar (the
5 minute scan of PSR B2255+58 in this case) instead of noise
diode data to calibrate the polarimetry of our observations.
Since the RM and levels of linear and circular polarization of
the pulsar are confidently measured (see, e.g., J. H. Seiradakis
et al. 1995), we determine the calibration solutions required to
reproduce the polarimetric properties of the test pulsar and then
also apply these solutions to the FRB data.
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Figure 12. The RM spectra of FRB 20190208A (top) and PSR B2255+58
(bottom) as a function of instrumental delay. The color map has been saturated
at the normalized 90% power level. The horizontal dashed line in the bottom
panel indicates the known RM of the pulsar, and the vertical line is the
corresponding delay value. In the top panel, the shaded white region shows the
range of delays corresponding to a 2 rad m ™2 deviation in pulsar RM.

Our uncalibrated pulsar data showed negligible levels of
circular polarization, in contrast to ~5% of circular polarization
seen from the known profile (e.g., D. M. Gould &
A. G. Lyne 1998). We interpreted this as leakage between
the two polarization hands, since the Effelsberg receiver has a
circular basis (StokesV = RR — LL). By systematically
exploring a range of values, we determined that the leakage
correction required to reproduce the known circular polariza-
tion profile was approximately 5%. After correcting for this, we
ignore second-order effects and assume the only two factors
that affect StokesQ and U are Faraday rotation and a
frequency-independent delay between the polarization hands.
We performed a brute-force search for the instrumental delay,
given the known RM of the pulsar (—323.5radm % ATNF
Pulsar Catalogue;45 R. N. Manchester et al. 2005), and found a
best-fit delay of —1.598 4 0.03 ns. To illustrate the dependency
between delay and RM, we generated Faraday spectra (RM
range —2000 to 2000 rad m~?) for a range of delays between
—20 and 20ns. In Figure 12, we show a region of this
parameter space zooming in on the area surrounding the known
RM of our pulsar and its corresponding delay.

We proceeded to calibrate the FRB data, first applying the
aforementioned leakage correction, before generating the same
RM-delay plot for burst B1. Given our best delay found from
analyzing the pulsar, the corresponding optimal RM for B1 is
+46.5 4 16.5rad m 2. To estimate the uncertainty on the RM
of B1, we first assume a potential deviation of +2rad m ~ in
the RM of the pulsar (nearly double the expected ionospheric
contribution). This translates to a small range of delays,
indicated by the white shaded region in the top panel of
Figure 12, which in turn translates to a range of potential RMs
for B1. We took this range of RMs (measured at the 90%
power level of the Faraday spectra) as the final error estimate.

After correcting the FRB data for this optimal RM, we
calculated the linear and circular polarization levels. As for
many repeater bursts (e.g., K. Nimmo et al. 2022a, and

45 www.atnf.csiro.au/research /pulsar/psrcat/
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references therein), the burst is nearly 100% linearly polarized,
shows negligible levels of circular polarization, and has a flat
PPA across its duration (Figure 1).

C.4. Polarimetry: NRT

To determine the polarization properties and RM of burst
B2, we calibrated both the burst and a short observation of the
pulsar PSR B0031—-07 with PSRCHIVE tools (A. W. Hotan
et al. 2004). We used the pac command with the complete
RECEPTION calibration model (W. van Straten 2004, 2013),
which also takes into account the ellipticities and orientations
of the polarization hands to model the response of a receptor
with nonideal feeds. Our implementation makes use of a
polarization calibration modeling file, which is generated from
a 1 hr observation of the pulsar J0742—2822 during which the
receiver horn is rotated by 180°. This mimics wide parallactic
angle variation allowing for the implementation of the
RECEPTION model (L. Guillemot et al. 2023).

The polarization properties of PSR B0031—07 slightly vary
across our NRT observing window. Nevertheless, our calibration
enabled us to reproduce the polarization profile at 1369 MHz
(S. Johnston & M. Kerr 2018) and 1642 MHz (D. M. Gould &
A. G. Lyne 1998). Using PSRCHIVE’s rmfit, we found an
RM of 9.40 & 3.75rad m 2 for PSR B0031 —07, consistent with
the known value of 9.89 rad m 2 (R. N. Manchester et al. 2005).
Having confirmed that our calibration was successful, we
applied the same technique to burst B2, resulting in an RM of
—52+49radm % The resulting polarization profile after
correcting for this RM is shown in panels (a) and (b) of
Figure 1 (right). As with B1, the burst is nearly 100% linearly
polarized and nearly 0% circularly polarized and has a
constant PPA.

C.5. Constraints on Frequency-dependent Activity

In Table 3, we tabulate the fluence thresholds, total
observing time, and burst rates using Poissonian statistics for
the PRECISE, ECLAT, and CHIME/FRB (CHIME/FRB
Collaboration et al. 2023) observations. We note here that the
repetition rates for the different telescopes are not calculated
over the same time period (Figure 6). We calculated the fluence
thresholds, Fy,, by assuming a 7= 1ms burst and using the
following adaptation of the radiometer equation:

Fn = S/N x SEFD x |—"

(CI)

leolAl/

Here, S/N is the signal-to-noise threshold used in burst
searches, SEFD is the system equivalent flux density
(approximately 25 Jy for the NRT and 14 Jy for Effelsberg at
~1.4 GHz), ny,, is the number of polarizations recorded (two in
these cases), and Av is the observing bandwidth.

At first glance, the burst rates might seem comparable given
the large uncertainties; however, there is a more than an order
of magnitude difference in the fluence thresholds between low-
and high-frequency detections, and the bursts presented here
are below the fluence threshold of CHIME/FRB.

To better compare the burst rates at different frequencies, we
calculate the statistical spectral index, o, following the
formalism presented in L. J. M. Houben et al. (2019) and also
adopted in P. Chawla et al. (2020). Assuming that burst
energies at a given frequency (v) follow a statistical distribution
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Table 3
Technical Specifications and Detection Rates of Different Monitoring
Campaigns on FRB 20190208A

CHIME/

FRB* Effelsberg NRT
Total observation time® (hr) 65.59 40.42
Fluence threshold (Jy ms) 5 0.13 0.17
Frequency range (MHz) 400-800 1254-1510  1228-1740
Number of bursts detected 15 1 1
Burst rate® (x1072 434738 15757 25793

bursts hr 1)

Notes.

 Values from CHIME/FRB Collaboration et al. (2023).

b For Effelsberg and the NRT, these are the total observation times of
FRB 20190208A from the PRECISE and ECLAT campaigns, respectively, up
until the end of 2023.

¢ These rates are not calculated over the same time period.

that can be described by a power law, the frequency-specific
differential energy distribution of an FRB source is then given
by dN(v)/dE = A(v) E°, where the power-law index, 7, is
assumed to be constant over frequency and time. The statistical
spectral index, ay, is the power-law index relating the
normalization factor A(v) of the differential energy distribution
of an FRB source at different frequencies.

Taking into account the fluence thresholds of two different
instruments, F, min and F, i, operating at two different
frequencies, vy and 15, the burst repetition rates, A\, and )\, are
related as follows:

)
A2 2 R)

Importantly, this assumes that the repetition rates are constant
with time. To then calculate o, we performed 10,000 trials,
sampling different values for the repetition rates and v and solving
for o, The repetition rates were sampled within the 90%
confidence intervals and + from a Gaussian distribution with mean
—2.5 and standard deviation 0.5, which contains the wide range of
values of v measured in the literature (e.g., L. J. M. Houben et al.
2019; J. P. Macquart et al. 2019; P. Chawla et al. 2020;
A. E. Lanman et al. 2022). This resulted in distributions of c, from
which we determined the 95% confidence interval. For
FRB 20190208A, we find Qs NRT/CHIME = 2304046 and
O's EFF/CHIME =-2964+049, using the detections from the
ECLAT and PRECISE observations, respectively, as referenced
to the CHIME/FRB detections.

These values are largely consistent within the errors to what
has been estimated for FRB 20121102A in the comparable
1.2-3.5 GHz frequency range by L. J. M. Houben et al. (2019)
and only negligibly steeper than that for FRB 20180916B in the
slightly lower 0.3-0.8 GHz frequency range by P. Chawla et al.
(2020). Notably, the sign of « is consistently negative for all
three of these repeating sources, implying decreasing bursting
activity with increasing frequency. Future measurements using
detections spanning wider frequency ranges can inform us if
this index remains constant over the whole range of frequencies
that the sources are detected at or if any flattening and/or
steepening is observed at relatively lower and/or higher
frequencies.

(C2)
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