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Abstract: Stranded beach litter is a ubiquitous issue. Manual monitoring and retrieval can be cost
and labour intensive. Therefore, automatic litter monitoring and retrieval is an essential mitigation
strategy. In this paper, we present important foundational blocks that can be expanded into an
autonomous monitoring-and-retrieval pipeline based on drone surveys and object detection using
deep learning. Drone footage collected on the islands of Malta and Gozo in Sicily (Italy) and the
Red Sea coast was combined with publicly available litter datasets and used to train an object
detection algorithm (YOLOv5) to detect litter objects in footage recorded during drone surveys.
Across all classes of litter objects, the 50%–95% mean average precision (mAP50-95) was 0.252, with
the performance on single well-represented classes reaching up to 0.674. We also present an approach
to geolocate objects detected by the algorithm, assigning latitude and longitude coordinates to each
detection. In combination with beach morphology information derived from digital elevation models
(DEMs) for path finding and identifying inaccessible areas for an autonomous litter retrieval robot,
this research provides important building blocks for an automated monitoring-and-retrieval pipeline.

Keywords: beach litter; object detection; drone surveys; unmanned aerial vehicles (UAVs); deep
learning; yolov5; geolocation; litter monitoring; beach cleaning; digital elevation models; unmanned
aircraft systems

1. Introduction

Marine litter has been identified as a ubiquitous issue [1–4] with ecological [5] and so-
cioeconomic impacts [6–9]. Marine litter is increasing in amount and results in a number of
negative effects on marine flora and fauna [5], and research suggests more than 250,000 tons
of plastic litter can be found in the world’s oceans [1]. It follows various pathways, with
one final sink for litter being the seafloor [10,11], where litter might accumulate either in
its original form or in smaller pieces, which may result in the creation of microplastics
due to fragmentation (or when already at a small initial size as primary microplastics) [12].
Alternatively, if the buoyancy of the litter remains high enough, it can accumulate along
beaches and coastlines [13].

Monitoring and cleaning large areas repeatedly requires a substantial availability
of personnel and a large number of person hours [14,15] and might not be possible in
hard-to-reach areas. Therefore, airborne monitoring and the automatic retrieval of litter
are important steps to streamline detection and mitigation efforts, reduce personnel costs
and cover different types of terrain. This research was conducted within the scope of the
BIOBLU project (“Robotic BIOremediation for coastal debris in BLUE Flag beach and in
a Maritime Protected Area”), one part of which consisted of research establishing and
evaluating the necessary components for a pipeline that automates these steps, while
focusing on the aspects of litter detection using artificial intelligence and the geolocation of
the detected items. This paper presents three essential components of this approach: drone
surveys, object detection and geolocation of detected litter objects.
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Drones or “unmanned aerial vehicles” (UAVs) can record footage at a much higher
resolution than what can be achieved using aeroplane- or satellite-based surveys, as flights
are conducted at a low altitude with high-resolution RGB cameras (20–48 MP). Therefore,
UAV surveys can capture smaller objects that are usually not detected by aeroplane- or
satellite-based surveys. In addition, UAV-based surveys can drastically cut costs when
compared with these methods, but they come at the cost of lower coverage [16].

2. Materials and Methods
2.1. Artificial Intelligence for Object Detection

Object detection is the task of detecting the type as well as location (and maximum
extent) of objects on an image [17]. Object detection algorithms (or models) can be binary
(only detecting one type of object, e.g., “car”) or multiclass (detecting multiple object
categories, e.g., “person”, “car”, “traffic light”).

One type of artificial intelligence algorithm commonly used for object detection tasks is
the Convolutional Neural Network (CNN) [17]. A CNN consists of a series of convolutional
and max pooling layers, which can extract features from images. These features are then
typically passed on to a fully connected network. In order to train the object detection
algorithm for the task of automatically detecting the objects of interest, a labelled dataset
is required—i.e., a set of images in which the objects of interest have been labelled with
rectangular boxes (“bounding boxes”) corresponding to the object category.

In order to evaluate the performance of the trained model, this dataset is usually
split into three parts: a training set, validation set and test set. The training set is used to
train the model, and the performance of the trained model is then evaluated against the
validation set. Depending on the training setup, the validation set may be used multiple
times, and therefore the test set serves as a reference to evaluate the algorithm performance
against data that it has never encountered before during training or validation. This gives
an overview of how well the algorithm is able to “generalise”—i.e., to apply the behaviour
learned during the training phase to new, unseen instances. If the performance on the test
set is lower than that on the validation set, the algorithm suffers from “overfitting”, which
occurs when the model has been optimised to cater too closely to the characteristics of the
validation data, and therefore struggles with new data that does not exhibit these same
characteristics.

2.2. Object Detection Training Dataset Creation

The dataset used in the course of this research contained images from a variety of
sources. Footage from drone surveys conducted on beaches in Malta and Gozo, Sicily, as
well as along the Red Sea coast were used (see Figure 1 and Table 1) in addition to versions
of existing datasets, including the TACO dataset [18] with manually adjusted classes and
manually labelled versions of Kaggle datasets [19,20], as well as litter objects manually
photographed by the authors using a Nokia X10 mobile phone with a 48 MP camera [21].
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vided by [23]). 
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Tono Mela 38.185146 15.211505 Italy Survey 

Mortelle 38.273681 15.613148 Italy Survey 
Catania Campus 37.5369902 15.0698772 Italy Survey 

Station 21 27.785 35.1792 Red Sea Martin et al. [22] 
Station 23 25.7008 36.8118 Red Sea Martin et al. [22] 
Station 30 20.7501 39.4539 Red Sea Martin et al. [22] 
Station 40 18.5069 40.663 Red Sea Martin et al. [22] 

Surveys in Malta and Gozo (see Figure 2) were conducted using a DJI Phantom 4 Pro 
2.0 (P4P2) drone equipped with a 20 MP RGB camera. Surveys in Italy were conducted 
using a DJI Mavic 2 Enterprise Advanced (M2EA) drone, equipped with a 48 MP RGB 
camera, and surveys at the Red Sea coast were conducted using a DJI Phantom 4 Pro [22]. 
Surveys were flown at a 10 m altitude, and footage was recorded in the form of still images 
(Malta, Gozo, Red Sea) or video (Italy). A 3D model of the survey site at Ramla Bay (Gozo) 
can be found at [24]. 

Figure 1. Main drone survey sites on Malta/Gozo (red dots) and Sicily (green dots), as well as survey
locations of additional drone footage used for algorithm training that was recorded by [22] along the
Red Sea coast (Coordinate Reference System: WGS 84 (EPSG:4326), background shapefile provided
by [23]).

Table 1. Locations of survey sites (coordinates in WGS 84 (EPSG:4326)).

Location Latitude Longitude Region Reference/Source

Paradise Bay 35.981757 14.33372 Malta Survey
Gnejna Bay 35.920815 14.344291 Malta Survey
Ramla Bay 36.061839 14.284407 Malta Survey
Tono Mela 38.185146 15.211505 Italy Survey
Mortelle 38.273681 15.613148 Italy Survey

Catania Campus 37.5369902 15.0698772 Italy Survey
Station 21 27.785 35.1792 Red Sea Martin et al. [22]
Station 23 25.7008 36.8118 Red Sea Martin et al. [22]
Station 30 20.7501 39.4539 Red Sea Martin et al. [22]
Station 40 18.5069 40.663 Red Sea Martin et al. [22]

Surveys in Malta and Gozo (see Figure 2) were conducted using a DJI Phantom 4 Pro
2.0 (P4P2) drone equipped with a 20 MP RGB camera. Surveys in Italy were conducted
using a DJI Mavic 2 Enterprise Advanced (M2EA) drone, equipped with a 48 MP RGB
camera, and surveys at the Red Sea coast were conducted using a DJI Phantom 4 Pro [22].
Surveys were flown at a 10 m altitude, and footage was recorded in the form of still images
(Malta, Gozo, Red Sea) or video (Italy). A 3D model of the survey site at Ramla Bay (Gozo)
can be found at [24].
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software [25]. In addition, objects that were not litter but still prominent in the images 
were labelled as well to reduce ambiguity during training. In total, 67 classes were used 
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Figure 2. Setting up the DJI Phantom 4 Pro 2.0 (P4P2) drone for surveys in Ramla Bay (Gozo).

Since YOLOv5 requires images for training, still frames were extracted from drone
survey videos at an interval of 1 image per second. In cases where multiple images showing
the same location with little or no difference (e.g., when the drone was travelling at a slow
speed), only one of those images was used in training in order to avoid duplicates.

Image Processing and Labelling

As using the drone survey images at full resolution for training initially exceeded
the memory limits of the graphics processing unit (GPU) used for training, the images
obtained from the drone surveys were cut into six square or near-square tiles (two rows,
three columns of tiles) so that the resolution did not need to be reduced in the training
process. The tile aspect ratio depends on the aspect ratio of the original image, and the
maximum tile edge length was 1824 pixels.

Images were manually screened, and litter objects were labelled using the labelme
software [25]. In addition, objects that were not litter but still prominent in the images
were labelled as well to reduce ambiguity during training. In total, 67 classes were used for
categorising labels. A table containing all 67 classes can be found in the Supplementary
Materials in Table S1. For simplification and visualisation purposes, metaclasses were
assigned based on their material and common waste separation schemes, and categories
not aligning with these groups were classified as “Other”. Instances that occurred in less
than 10 images in the total dataset were assigned the metaclass “N img < 10”. Grouped
instance counts of different litter types can be seen in Figure 3. The number of annotations
and images per class can be found in the Supplementary Materials in Table S1.
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Figure 3. Number of annotations (i.e., instances) per material group. Bars depict meta groups that
the 67 label classes were assigned to based on litter materials. Classes that were not litter objects were
categorised as “Other”, and small classes that were present on fewer than 10 images were labelled
“N img < 10”.

After image selection and labelling, the dataset consisted of a total of 4126 images and
10,611 annotations, with 1154 images showing no litter objects (“background images”). The
dataset was split into a training, validation and test portion of the proportions of 0.6, 0.2
and 0.2, respectively. For the number of images and annotations in each set, see Table 2.

Table 2. Annotation and image counts for the training, validation and test set.

Set Images Annotations Background Images

Training 2476 6124 701
Validation 825 2190 229

Test 825 2297 224
TOTAL 4126 10611 1154

2.3. Object Detection Algorithm Training

Common algorithms for object detection tasks are Convolutional Neural Networks
(CNNs). In this paper, the YOLOv5 [26] architecture was used (derived from the original
YOLO algorithm developed in 2016 [27]), as its single-stage architecture allows for faster
detection speeds than other commonly used two-stage detectors (e.g., Faster R-CNN) [28].
Two-stage detectors first produce region proposals indicating regions of interest, and
then they conduct object detection on those regions in a second step, while single-stage
detectors perform both tasks in one neural net. The YOLO algorithm—instead of using
region proposals—handles the full image, covers it with a grid and lets each cell handle
those predictions whose BBOX centres fall within that cell [27]. The YOLOv5 network
uses a CSP-Darknet53 as the backbone network, i.e., a Darknet53 Convolutional Neural
Network following a Cross Stage Partial (CSP) Network strategy [26]. This backbone
part of the algorithm is mainly used for extracting features from the input image. The
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next stage, the neck of the YOLOv5 algorithm, aggregates the features and allows the
algorithm to generalise well across different scales, and uses fast Spatial Pyramid Pooling
(SPPF) and CSP-PAN, i.e., a Cross Stage Partial Path Aggregation Network (PAN) with
BottleneckCSP [26]. The last part of the YOLOv5 network—the head—uses a YOLOv3
head and is responsible for producing the final output of the predictions: the predicted
classes, the corresponding bounding boxes, and the confidence per prediction [26]. For an
overview of the general YOLOv5 architecture, see Figure 4.
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Figure 4. General architecture of the YOLOv5l network. The backbone consists of a Cross Stage
Partial Darknet53 Convolutional Neural Network (CSP-Darknet53), responsible mainly for feature
extraction. Spatial Pyramid Pooling (SPPF) provides feature pyramids that are used in the neck by
a Cross Stage Partial Path Aggregation Network for feature aggregation. The head consists of a
YOLOv3 head and provides the final output of the detector: the prediction classes, bounding boxes
and confidence values.

Training was conducted on a cluster node running Ubuntu 20.04 LTS, CUDA version
11.4, NVIDIA driver version 470.141.03, utilising a NVIDIA A100 GPU with 80 GB GPU
memory. For training, the yolov5l6.pt pretrained weights were used. The maximum num-
ber of epochs was set to 5000, the batch size was set to 16 and the image size was set to
1856 pixels, which allowed for the efficient use of the available GPU memory. All other set-
tings were left at default values (specified in the YOLOv5 file “hyp.scratch-low.yaml” [26]).

The performance of the detection was measured in terms of precision (P), recall (R)
and mean average precision (mAP). P is a measure of the likelihood of a detected object
to have been detected correctly (i.e., is a measure of the accuracy of the predictions). R
describes the proportion of objects that have been detected out of all objects that should
have been detected (i.e., gives an estimate of the coverage of the algorithm).

P and R are calculated using ratios of True Positive (TP), False Negative (FN) as well
as False Positive (FP) values (see Equations (1) and (2)). TP describes the proportion of
correctly detected litter objects, FN describes the proportion of objects that were erroneously
classified as the background (i.e., “missed” objects) and FP describes irrelevant background
features that were erroneously detected by the algorithm.

P = TP/(TP + FP) (1)

R = TP/(TP + FN) (2)



Electronics 2023, 12, 198 7 of 17

Usually, P decreases with an increasing R [29]. If P is plotted as a function of R (a
so-called precision–recall curve), the area under the curve (AUC) is a useful metric of
assessing P over increasing R. In order to assess the performance of multiple classes, the
average AUC across classes is calculated, resulting in the mAP metric. mAP values depend
on the threshold of the overlap between the prediction and the ground truth box. This
overlap is calculated using the Intersection-over-Union (IoU) ratio. IoU is calculated as
depicted in Equation (3), where A and B are the ground-truth box and the prediction box,
respectively.

IoU(A, B) = A∩B/A∪B (3)

Predictions with bounding boxes that have an IoU value above a set threshold are
regarded as correctly capturing the object, while boxes with an IoU below the threshold are
considered FP. In this paper, we used the mAP metric of mAP@50-95 (average of mAPs
of thresholds from 50% to 95%, in steps of 5%) to compare the performance of different
classes.

A single metric that combines both P and R values is the F1 score, which is the
harmonic mean between P and R and is calculated using Equation (4) [17]. As such, the
F1 score is also a measure of whether P and R are both similarly high and penalises high
differences between P and R [17].

F1 = 2/((1/P) + (1/R)) (4)

2.4. Geolocation of Object Detections

In order to deliver useful information to a robot for debris retrieval, predictions
made by the YOLOv5 algorithm need to be geolocated so that their coordinates can be
communicated to the robot. In order to be able to retrieve coordinates for the predictions,
the original footage needs to come with the GPS coordinates of the drone at the time of
recording either embedded in the metadata (in case of image footage) or contained in a
metadata-subtitle file (.srt, in the case of video footage).

After running the predictions, the results can then, in combination with the GPS
information from the image metadata or video subtitle file, be georeferenced so that every
prediction comes with a corresponding GPS coordinate. The geolocation of prediction
boxes incorporates the following steps:

1. Calculation of pixel size of the footage.
2. Calculation of the distance (in m) between Meridians and Parallels at the latitude of

recording.
3. Calculation of the horizontal and vertical distance of the prediction box centre from

the image centre.
4. Transformation of the prediction distance to the real-world distance and the calcula-

tion of the prediction coordinates.

2.4.1. Pixel Size

A calculation of the real-world pixel size of the footage, also named the ground
sampling distance (GSD), was conducted using Equation (5) provided by [30], which
incorporates the drone camera’s sensor width in millimetres (Sw), the flight altitude in
metres (a), the focal length of the camera in millimetres (f, real focal length, not 35 mm
equivalent) as well as the width of the recorded image in pixels (imW):

GSD = (Sw · a · 100) (f · imW) (5)

2.4.2. Distance between Meridians and Parallels

The distance between the Meridians and Parallels depends on the latitude, due
to the spheroid shape of the Earth. Calculations for the geolocation are based on the
WGS84 spheroid [31] with a semimajor axis of 6,378,137.0 metres (a) and first eccentricity
of 8.1819190842622 × 10−02 (e). From these values, the radii of curvature in metres along
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the Meridians (M) and Parallels (N) at latitude φ can be calculated using Equations (6) and
(7), respectively, provided by [32]:

M = (a(1 − e2))/(1 − e2 · sin2 Φ)(3/2) (6)

N = a/(1 − e2 · sin2 Φ)(1/2) (7)

From these, the distance in metres between Meridians (dlon) and Parallels (dlat) can be
calculated using Equations (8) and (9), respectively:

dlon = (N · π)/180 (8)

dlat = (M · π)/180 (9)

2.4.3. Latitude and Longitude of Prediction Box

The horizontal and vertical offset in pixels of the prediction box centre (which is pro-
vided with the prediction from the algorithm) from the image centre along the latitude and
longitude directions can be calculated using trigonometry, Euclidean distance calculations
as well as dlat, dlon and GSD values (see Figure 5). For a visualisation of the workflow
outlined above, see Figure 6.
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Figure 5. Schematic description of calculation of the location of the centre (Cp, red dot) of the
prediction BBOX (red rectangle). The coordinates of the image centre (Ci, green dot) are known from
image metadata. Horizontal and vertical offset of the prediction box centre (black dashed line) within
the image are calculated from Cp and the image dimensions. Real-world offset of the BBOX centre
along latitude and longitude (red dashed lines) is calculated using the Euclidean distance between
Cp and Ci, the angle (β) of the Euclidean distance combined with the angle of drone yaw (α) and the
previously calculated GSD-, dlat- and dlon values.
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Figure 6. Visualisation of the general workflow with the two main pipelines of training (red) and
prediction (green). For training, image footage from unmanned aerial vehicle (UAV) surveys was
used (either as separate images or as frames from video file), and a subselection of image files was
used to avoid objects appearing on multiple images. Images were subsequently labelled manually,
and the algorithm was trained on the dataset, leading to a trained model. For prediction (green),
this trained model could then be used on UAV survey footage (images or video footage) to predict
litter objects. The predictions were then geolocated, leading to a set of geolocated predictions that are
ready to be used in automated retrieval operations.

3. Results

Regarding the validation of the trained YOLOv5 algorithm against the test set of the
labelled dataset, the performance metrics of the trained network across all classes were
precision = 0.695, recall = 0.288, mAP50 = 0.314 and mAP50-95 = 0.252. Figure 7 provides a
breakdown of the results, grouped by common waste separation categories. The overall F1
score of the trained algorithm was 0.32 at a confidence of 0.235.

Considering that small classes are prone to overfitting [17] and the fact that we there-
fore focused on more abundant classes that appeared in more than 100 images, the top ten
classes on which the algorithm performed most reliably were the categories “plastic bottle”
(mAP50-95: 0.674), “metal can” (“mAP50-95: 0.516), “plastic bottlecap” (mAP50-95: 0.483),
“plastic container” (mAP50-95: 0.447), “shoe” (mAP50-95: 0.43), “cardboard” (mAP50-95:
0.369), “pop tab” (mAP50-95: 0.366), “rope & string” (mAP50-95: 0.337), “wood” (mAP50-
95: 0.324) and “glass bottle” (mAP50-95: 0.317). For the precision, recall and mAP50 values
for these as well as the other classes, see Table S1 in the Supplementary Materials.
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Figure 7. Mean average precision across intersect-over-union thresholds between 50% and 95%
(mAP50-95) scores for grouped litter classes. Original classes were assigned metaclasses based on
common waste separation protocols. Classes that were not common litter classes were grouped into
“Other”. Classes that occurred on fewer than 10 images in the dataset were assigned the metaclass
“N img < 10”.

For comprehensive, per-class mAP50-95 values, see Figure 8. Additionally, a table
with the corresponding values can be found in the Supplementary Materials in Table S1.
The per-class confusion matrix from the validation against the test set confirmed the above
mentioned results and showed that the majority of the mislabelled objects were found in the
“background” category, indicating False Negatives during the prediction (see Figure S1).

After the detections were geolocated, each detection was associated with latitude and
longitude values. For an example of geolocated predictions from an image set recorded at
Paradise Bay, see Figure 9.
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were present on fewer than 10 images were labelled “N img < 10”.
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Figure 9. Geolocated object detections, colour-coded by their corresponding class, on Paradise Bay,
at the northwestern coast of Malta. Coordinate Reference System: WGS 84 (EPSG:4326), overview
shapefile provided by [23].

4. Discussion

The object detection and geolocation approach outlined in the sections above provides
essential information that can be used for automatic retrieval. High-performance metrics
were observed for classes that were frequent but also for some that were infrequent in the
dataset. Since deep learning algorithms require large amounts of training data in order to
be reliable and able to generalise [17], a recommendation would be to increase the amount
of training data to bring classes that have a small number of images and/or instances in
the training dataset to an even level compared to the larger classes. This would also make a
comparison between the (previously imbalanced) classes more informative.

While drone surveys are mostly unaffected by ground morphology (except when
encountering cliffs, for example, or flying at very low altitudes), automatic retrieval via
robots requires detailed information about beach morphology, and in order to conduct
ground surveys in a safe way, it is essential to identify those areas which are accessible to
the robot and to distinguish them from inaccessible ones. This includes features such as
boulders or rocky terrain, runoff channels or break-off edges due to erosion. Since these
features can be subject to change over time, due to seasonality, weather events or long-
term topography changes [33,34], it is important to collect up-to-date beach morphology
information before deploying a robot for automatic retrieval missions.

UAVs are a useful platform for collecting beach morphology information. Common
UAV-based methods include Lidar [35], a laser-based technique that has been shown to
perform well for beach morphology monitoring and constructing digital elevation models
(DEMs) [36,37], as well as Structure-from-Motion (SfM) photogrammetry, which utilises
RGB images to recreate the 3D structure of the surveyed area and is commonly used for
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beach landform analyses and has been shown to perform well in comparison to aeroplane-
based Lidar surveys by building high-resolution digital elevation models (DEMs) [38].
Furthermore, photogrammetry allows researchers to generate a high-resolution ortho-
mosaic alongside the DEM, which facilitates the correct interpretation of the latter (see
Figure 10).
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The correct interpretation of the DEM is crucial when deploying autonomous robots
for litter retrieval. The output derived from SfM photogrammetry can be used to detect
inaccessible and/or impassable areas and optimise their path [36,37,39]. In addition, when
surveys are repeated over time, DEMs and orthomosaics can be used to analyse beach
morphology changes over time and assess local trends such as net losses or gains.

One example of using SfM photogrammetry for beach monitoring is a study by Colica
et al. [38]. They used a DJI Phantom 4 Pro drone, equipped with a camera with a resolution
of 20 Megapixels and 1” Exmor R CMOS image sensor, to create a high-resolution DEM of
Ramla Bay beach (Gozo). The acquisition interval of the images and the flight plan were
programmed through the DJI Ground Station app, and the set parameters were an 85%
forward and 70% side overlap of the images with a pixel resolution of 5472 × 3648 acquired
at a flight altitude of about 60 m above sea level. The dataset includes 1021 nadiral
images that were processed using the commercial software Agisoft Metashape [40], which
allows one to set different parameters to control the photogrammetric reconstruction
process including the accuracy parameter during image alignment, which controls the
size and resolution of the images on which the software will detect the key points that
are useful to the image alignment. In this phase, with the accuracy parameters set to the
highest, a “sparse” point cloud containing approximately 722,000 points was produced.
Subsequently, the 56 Ground Control Points (GCPs) measured with the Topcon HiPer HR
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DGNSS receivers [41] in a Base + Rover configuration showed a horizontal accuracy of 3 mm
± 0.1 part per million and a vertical accuracy of 3.5 mm± 0.4 part per million. Subsequently,
the dense point cloud (about 94 million points) and depth maps with ultrahigh quality
and mild filtering mode were calculated. From these, the DEM was then generated with a
resolution of 1.47 cm/px and the orthomosaic with a resolution of 1.37 cm/px.

From the DEM, accessibility to a ground robot can be derived, e.g., by conducting a
traversability analysis and providing a 2D costmap [39]. The costmap can be fed into a
path-planning algorithm such as a D* algorithm [42] and then provide a series of waypoints
to cover the accessible areas of interest as efficiently as possible (at a minimum cost, based
on the cost map), as demonstrated by [39]. In addition, when surveys are repeated over
time, DEMs should be constructed repeatedly as well in order to account for beach topology
changes and identify newly inaccessible areas, for example. These repeatedly collected
DEMs can also be used to analyse beach morphology changes over time and assess local
trends such as net losses or gains.

Geolocating single frames from video footage or overlapping images from an image
set will result in multiple detections of the same objects, as YOLOv5 does not natively allow
for the tracking of objects. One possible approach to remedy these “double detections” is
to cluster the geolocated points, e.g., by using clustering algorithms such as OPTICS or
DBSCAN clustering [43,44], but clustering might not be possible on beaches where a high
density of litter objects is present. In this case, using an algorithm that is capable of tracking
objects across different images or video frames might be a worthwhile approach.

Clustering should also be considered when running object detection on drone video
footage where the GPS recording frequency is not matched to the framerate of the recorded
footage, as a mismatch of recording frequencies between the GPS and camera can distort
GPS positioning along the UAVs flight direction.

5. Conclusions and Outlook

The object detection algorithm trained in the context of this paper performed well on
recognising common beach litter categories such as plastic bottles, metal cans and plastic
bottle caps, and the geolocation provided necessary information for later automatic retrieval
when merged with additional information about accessibility derived from DEMs. For
further improvement of the performance and reliability of the algorithm, more instances
should be added to the classes that were underrepresented in the current dataset to reach a
more balanced number of annotations and images per class. In order to reduce the number
of double detections on overlapping footage, clustering and/or object tracking algorithms
should be explored.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/electronics12010198/s1, Table S1: Name, number of annotations
per class, number of images in which each class occurs, precision, recall, mean average precision at
50% intersect-over-union (IoU) threshold (mAP50) and at 50% to 95% IoU (in 5% steps, mAP50-95)
values per class. Empty fields indicate classes that did not appear in the test set due to the low
number of images available in the training set and the metaclass; Figure S1: Confusion matrix from
the validation against the test set. The x-axis represents the actual categories of objects, while the
y-axis represents the categories of the detections as predicted by the algorithm. Values in the matrix
represent the proportion of predictions for detections of each category. Perfect predictions with no
misclassifications will lead to a single line of 1.0 values running across the matrix from the top left to
the bottom right. The fact that many misclassifications have been predicted as “background” and are
therefore accumulating at the bottom of the matrix indicates False Negative (FN) predictions (i.e.,
missed objects that should have been detected).

https://www.mdpi.com/article/10.3390/electronics12010198/s1
https://www.mdpi.com/article/10.3390/electronics12010198/s1
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