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Abstract
The recent progress in nanotechnology has allowed the fabrication of smaller and
smaller devices. On the one hand, this development allows to fit more of such
devices on a chip, improving its performance. On the other hand, as the size of
the device decreases, new phenomena emerge, such as quantum effects and sizable
fluctuations. Indeed, when the size of the device is comparable with the coher-
ence length, the quantum nature of particles cannot be neglected. Furthermore,
the smaller a device is, the more it is affected by random changes in one of its
few components, leading to fluctuations and noise that are comparable with the
average quantities. While these phenomena pose new challenges, they also offer
new opportunities both in terms of understanding the underlying physical system,
and of realizing new devices that exploit such phenomena.

This thesis studies, from a theoretical perspective, the noise in such nanodevices
where both quantum effects and fluctuations play an important role. While noise
has already been investigated for systems at thermodynamic equilibrium, most
devices need to operate out of equilibrium in order to be useful. Here we show
that such out-of-equilibrium conditions set constraints on how large or how small
the noise can be, and how these constraints affect the precision of the device.

The appended papers discuss these constraints starting from a quantum trans-
port perspective, and study the impact they have on the performance of thermal
machines. In this thesis we do not follow the same route. Instead, we first
introduce out-of-equilibrium fluctuations in the context of quantum stochastic
thermodynamics, and then use this framework to describe transport. This differ-
ent approach aims at providing a broader perspective on the constraints on noise
found in the appended papers, putting them into context with previously known
results such as the fluctuation-dissipation theorem, and both thermodynamic and
kinetic uncertainty relations.

Keywords: quantum transport, quantum thermodynamics, out-of-equilibrium
noise, limits on precision
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1 Introduction
Thermodynamics was developed to quantify and optimize the performance of en-
gines. From its early stages, it was clear that a macroscopic engine in contact with
a single thermal reservoir could not perform any useful task, such as producing
work. For the engine to function, it must interact with (at least) two thermal
reservoirs at different temperatures [1]. This out-of-equilibrium condition, created
by the temperature difference, is what allows the engine to operate. In such
setups, the laws of thermodynamics describe energy transformations, e.g. heat
conversion into work by a heat engine, and establish fundamental limits on the
efficiency of these processes. These laws were originally formulated by observing
macroscopic systems, i.e. systems made of a huge number of inaccessible degrees
of freedom, such as the position and momentum of all particles in a mole.

Today, the developments in nanotechnology allow to realize and observe small-
scale systems, which are instead made of few degrees of freedom, as, for example,
the single electron transistor [2], in which the addition or removal of a single elec-
tron determines the operation of the device. One could then use thermodynamics
to understand the limitations of such small-scale devices. However, the original
laws of thermodynamics do not capture completely the behavior of small-scale
systems because in such systems fluctuations (or noise), i.e. deviations from the
average behavior, cannot be neglected. Furthermore, quantum effects, such as
interference, tunneling and entanglement, affect the system’s behavior when the
system’s size is smaller than its coherence length, which is typically achieved by
cooling down the system to temperatures ranging from 100 K to sub-Kelvin [3].
To tackle these new challenges and understand what new opportunities they may
offer, thermodynamics has evolved to account for the effects of fluctuations and
quantum effects. This evolution came in the form of stochastic [4, 5] and quan-
tum thermodynamics [6], which provide tools for understanding out-of-equilibrium
processes.

In the appended papers we study the noise in such small-scale devices operating
out-of-equilibrium in the context of quantum transport [7, 8]. This framework
focuses on studing the current flows in devices described by quantum mechanics.
Concretely, quantum transport studies the properties of the current operators,
such as its average and its noise. Typically, a lot of focus is put on charge and
energy currents because these are crucial when it comes to power production.
However, depending on the context, different currents, for instance spin currents,
may be considered. In the appended papers, we derive constraints on the current
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2 Chapter 1. Introduction

noise that depend on the out-of-equilibrium conditions that the system is subject
to. This is particularly interesting when the transport systems considered are
viewed as an instance of a thermodynamic engine [9, 10]. Indeed, using quantum
transport, one can study the heat flowing into reservoirs that are connected by a
central system, which may act as an engine. Then, the thermodynamic constraints
on the noise derived in the appended papers allow for a better understanding of
the performance in such out-of-equilibrium, quantum systems.

This thesis aims at connecting the quantum stochastic thermodynamics frame-
work with the quantum transport one. Indeed, the tools and techniques developed
in quantum stochastic thermodynamics can provide additional insights into the
fluctuations in the currents studied in quantum transport. To this end, we first
describe fluctuations from a point of view based on quantum stochastic thermody-
namics, and then use this framework to derive the same statistics obtained with
transport techniques. This allows us to put the results of the appended paper
into context with previously obtained results in the field of quantum stochastic
thermodynamics, and to understand in what ways they are similar, and where
they differ.

1.1 Fluctuations in small-scale systems
In classical thermodynamics fluctuations are often neglected because their relative
strength decreases with the number of elements N in the system. This can be
understood by considering a “macroscopic” observable Q = ∑N

i=1 qi given by the
sum of “microscopic”, independent and identically distributed observables {qi}N

i=1.
Its first two moments are

〈Q〉 = N〈q〉, 〈Q2〉 =
∑
ij

〈qiqj〉 = N〈q2〉 + N(N − 1)〈q〉2, (1.1)

where 〈qk〉 = 〈qk
i 〉 for all i ∈ {1, · · · , N} are the moments of the microscopic

variables. Comparing the variance Var[Q] ≡ 〈Q2〉−〈Q〉2 with the squared average
〈Q〉2, the precision of Q is

〈Q〉2

Var[Q] = N2〈q〉2

NVar[q] ∼ N. (1.2)

So, in the thermodynamic limit, i.e. when N is large, the average behavior dom-
inates over the fluctuations around such average. However, when the system
considered has a small number of elements, i.e. N ∼ 1, this is no longer true. We
refer to such systems as small-scale systems. Indeed, in small-scale systems the
fluctuations of variables around their average are comparable with the average
itself.

On the one hand, the sizable fluctuations mean that small-scale systems are
noisy. In particular, one may wonder how precise these small-scale systems can
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be. This question is answered by trade-off relations, which often take the form of
inequalities limiting from above the precision on the right-hand side of Eq. (1.2).
Examples of such trade-off relations are the thermodynamic uncertainty relation
(TUR) [11–19] and the kinetic uncertainty relation (KUR) [20–27], which were
initially derived for classical Markovian systems, and are now being investigated
in quantum systems as well.

While noise is a hindrance to precision, it can, on the other hand, provide ad-
ditional insight into the system. Indeed, the presence of sizable noise allows to
access more information about, for instance, the underlying probability distribu-
tion governing the behavior of our system. Thanks to this additional information,
noise measurements are a valuable tool in sensing, and see use in, for instance, the
detection of (fractional) charges [28–31], thermometry [32–36], tomography [37–
39]. These applications of noise measurements are possible because the noise is
connected to other physical quantities. For example, in the case of thermometry,
the so-called Johnson-Nyquist noise [40, 41] of a charge current is proportional to
the temperature of the sample. The Johnson-Nyquist noise is an early instance
of the fluctuation-dissipation theorem (FDT), which was further generalized into
the Green-Kubo relations [42–44]. This pivotal result in the study of fluctuations
establishes a relation between the correlations (which quantify the fluctuations,
e.g. Var[Q]) and the response of the system to external perturbations (which is
then related to the dissipation).

However, the FDT holds for systems close to equilibrium. Importantly, many
devices, engines in particular, operate out of equilibrium, e.g. under a voltage or a
temperature bias, where fluctuations have more intricate features. To understand
such features, fluctuation theorems (FTs) have been developed [45–57]. These
results allow, for example, to develop an extension of the FDT to the presence
of a voltage bias, albeit in the weakly coupled, equal temperature regime [58,
59], and also to prove that the FDT relation between correlation and response
holds in nonequilibrium setups where the average current vanishes [60, 61]. In this
thesis we investigate how the presence of both a temperature bias and possibly
finite average currents affect the relation between the current correlations and its
average value. Indeed, both ingredients are crucial for a whole class of devices,
namely thermal machines.

In particular, Papers I-IV are dedicated to the study of out-of-equilibrium noise
in the presence of a temperature bias. There, we show that, even in regimes where
the FDT does not hold, there are constraints on this out-of-equilibrium noise.
Instead, Papers V,VI study the noise in out-of-equilibrium setups that go beyond
the presence of a temperature bias. Indeed, we consider nonthermal reservoir,
which cannot be described by unique intensive properties, such as a temperature,
but instead are described by an arbitrary, energy-dependent average occupation
number. Even in those more general out-of-equilibrium conditions we provide
constraints on the current noise.



4 Chapter 1. Introduction

(a) (b)

Figure 1.1: (a): False-coloured scanning electron microscope picture of a thermoelec-
tric heat engine. A temperature bias is established between the metallic leads (yellow)
using the heaters (blue and red), and induces a current through a nanowire (green).
Source: [62]. (b): Experimental realization of a Szilard engine using a single-electron
box. A single (excess) electron is on one of two metallic islands. Measuring the posi-
tion of the electron allows to extract work in a feedback operation. Source: [63].

1.2 Engines at the nanoscale
The developments in nanofabrication techniques have made it possible to real-
ize engines using small-scale systems. As discussed previously, these devices are
typically noisier than their macroscopic counterparts due to the significant role
of fluctuations. However, reducing the size of the system not only presents chal-
lenges, but also offers opportunities to improve the efficiency of engines. This
is the case, for instance, in thermoelectric heat engines, where heat is converted
into electrical power [62, 64–66]. In such devices, nanostructured materials can
be engineered to improve the efficiency of power production [67–69], as happens
for example in the device shown in Fig. 1.1(a).

Furthermore, the presence of sizable fluctuations also allows for the develop-
ment of new kinds of devices. A foundational example is the Szilard engine [70],
where the information gained by measuring fluctuations allows to extract work
from a single thermal reservoir. While this seemingly violates the second law of
thermodynamics, it actually highlights the role of information and its connections
to thermodynamics [71]. These small-scale systems are not just a theoretical con-
struction, but are also being realized [63, 72, 73], as is the case in the device shown
in Fig. 1.1(b).

In addition to fluctuations, quantum effects also appear in small-scale systems
where the decoherence time is larger than the typical time-scale of the system’s
dynamics. These phenomena, which include interference and entanglement, also
affect the behavior of small-scale systems, and can be exploited to devise thermal
machines with different goals, such as work extraction or refriferation [74–84],
or even generation of entangled states [85–87]. However, the delicate nature of
quantum states raises concerns about whether it is actually worthwhile to rely on
such states in thermal machines.
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Indeed, since realizing small-scale devices requires a considerable amount of
effort, it is critical to understand and quantify their performance accounting not
only for average work or heat, but also for their fluctuations. To this end, trade-
off relations have attracted increasing interest as a way to formulate constraints
on the performance of large classes of devices. The constraints on the out-of-
equilibrium noise derived in the appended papers can be understood as instances
of such trade-off relations. For example, in Paper III we study systems where
coherent transport makes the thermodynamic uncertainty relation fail [88–96],
and we develop a trade-off relation between the charge current and its noise. This
result allows us to limit the precision of electrical power production in the presence
of coherent transport in terms of the heat dissipated in the cold reservoir, as later
discussed in Sec. 4.1. While in Paper III the trade-off relation between current and
noise holds for the particle current, the constraint developed in Paper VI applied
to arbitrary currents, and highlights the difference in the achievable precision
between fermionic and bosonic transport.

1.3 Organization of this thesis
Having introduced the general context behind the appended papers, as well as
the goal of this thesis, we now move on to a more detailed discussion of the the-
oretical background and the main results of the appended papers. Specifically,
Chapter 2 gives an overview of a common framework in the field of quantum
stochastic thermodynamics, namely the two-point measurement scheme. Within
this framework, we discuss the results on out-of-equilibrium fluctuations intro-
duced in Sec. 1.1: the fluctuation theorems, the fluctuation-dissipation theorem,
and both the thermodynamic and the kinetic uncertainty relation. These results
serve both as a starting point and as means of comparison for the constraints on
out-of-equilibrium noise derived in the appended papers.

Then, in Chapter 3 we discuss the transport statistics using the two-point mea-
surement scheme. While this is not how it is presented in the appended papers,
the derivations in Chapter 3 show how the two-point measurement and the quan-
tum transport approach lead to the same statistics, and therefore helps in giving
a broader perspective on the study of out-of-equilibrium noise.

The discussion of the main results of the appended papers is then provided in
Chapter 4. Finally, the conclusions are drawn in Chapter 5.





2 Fluctuations out of equilibrium
In this chapter we discuss a general framework to describe out-of-equilibrium
fluctuations in quantum systems: The two-point measurement scheme. Using this
framework we show some general properties of the out-of-equilibrium fluctuations,
and use them to derive the fluctuation-dissipation theorem and trade-off relations
on the precision of observables.

2.1 Two-point measurement scheme
An isolated quantum system described by the density matrix ρ(t) evolves accord-
ing to the von Neumann equation [97]

∂tρ(t) = − i

�
[Ĥ(t), ρ(t)], (2.1)

where Ĥ(t) is the generally time-dependent Hamiltonian of the system. The
formal solution is given in terms of the unitary transformation of the state,

ρ(t) = Û(t, 0)ρ(0)Û †(t, 0) (2.2)

with the unitary operator Û(t, 0). This is obtained from the system’s Hamiltonian
through the so-called time-ordered exponential

Û(t, 0) = T
{

exp
[
− i

�

∫ t

0
Ĥ(s)ds

]}
. (2.3)

Here, T {•} denotes the time-ordering operation. However, the unitary trans-
formation of Eq. (2.2) does not describe the effect that measurements have on
the system. Consider for instance the measurement of the observable Â = Â† on
the state ρ(0). The hermiticity of the observable guarantees that it can always
be decomposed as Â = ∑

a aΠ̂a, where Π̂a = Π̂2
a are the projectors on the ob-

servable’s eigenspaces. Then, an ideal measurement of Â distinguishes perfectly
these eigenspaces. The probability of observing the outcome a when measuring
the state ρ(0) is given by the Born rule

p(a, 0) = Tr
{
Π̂aρ(0)

}
, (2.4)

7



8 2 Fluctuations out of equilibrium

and the state after the measurement collapses to the state

ρ(0|a, 0) = Π̂aρ(0)Π̂a

p(a, 0) , (2.5)

which is conditioned on the outcome a of the measurement.
We now combine the unitary transformation of Eq. (2.2) with the transfor-

mation induced by the measurements of Eq. (2.5) to access the statistics before
and after the unitary transformation. This is particularly interesting when the
(stochastic) change in an observable, e.g. the energy of the system, is consid-
ered. The protocol that we consider here is the two-point measurement scheme,
sketched in Fig. 2.1(a), which is characterized by the following steps:

0. At the beginning of the protocol the system is in the state ρ(0).

1. An ideal measurement of the observable Â = ∑
a aΠ̂a is performed at t =

0. Calling a the outcome of the measurement, the probability p(a, 0) of
obtaining such an outcome is given by Eq. (2.4) and the post-measurement
state ρ(0|a, 0) is given by Eq. (2.5).

2. The system undergoes a unitary transformation until time t. In contrast
with Eq. (2.2), here the initial state is the post-measurement state ρ(0|a, 0),
and the final state of the transformation is

ρ(t|a, 0) = Û(t, 0)ρ(0|a, 0)Û †(t, 0). (2.6)

3. An ideal measurement of the observable B̂ = ∑
b b ˆ̃Πb is performed at time

t. The observable B̂ is also decomposed in terms of projectors ˆ̃Πb = ˆ̃Π
2

b .
However, these projectors are in general different from the projectors of
the observable Â, meaning that the two observable may not have the same
eigenspaces and therefore may not commute. Calling b the outcome of this
second measurement, the probability of obtaining such an outcome given that
the outcome of the first measurement was a follows by the Born rule Eq. (2.4)
applied to the state ρ(t|a, 0). The probability thus reads

p(b, t|a, 0) = Tr
{ ˆ̃Πbρ(t|a, 0) ˆ̃Πb

}

= Tr
⎧⎨⎩ ˆ̃ΠbÛ(t, 0)

⎛⎝Π̂aρ(0)Π̂a

p(a, 0)

⎞⎠ Û †(t, 0) ˆ̃Πb

⎫⎬⎭ .
(2.7)

Therefore, the joint probability distribution of observing the outcome a at time
0 and the outcome b at time t is given by

p(b, t; a, 0) = Tr
{ ˆ̃ΠbÛ(t, 0)Π̂aρ(0)Π̂aÛ †(t, 0) ˆ̃Πb

}
. (2.8)
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ρ(0)

a

Û

b

(a)

ρtr(0)

a

Û†

b

(b)

Figure 2.1: Forward (a) and time-reversed (b) two-point measurement schemes. In
the forward (time-reversed) protocol the observable Â (B̂) is measured on the initial
state ρ(0) (ρtr(0)), and the measurement has outcome a (b). Then, the system evolves
according to the unitary Û (Û†). Finally, the observable B̂ (Â) is measured on the
system, and the measurement has outcome b (a).

Note that the presence of the first measurement affects the statistics of the second
outcome because the measurement back action destroys the coherences between
the different eigenspaces of Â. Concretely, this means that the marginal proba-
bility for the second outcome p(b, t) does not coincide with the probability p̃(b, t)
of a protocol in which the first measurement did not happen

p(b, t) =
∑
a

p(b, t; a, 0) = Tr
{

ˆ̃ΠbÛ(t, 0)
(∑

a
Π̂aρ(0)Π̂a

)
Û †(t, 0) ˆ̃Πb

}

�= Tr
{ ˆ̃ΠbÛ(t, 0)ρ(0)Û †(t, 0) ˆ̃Πb

}
= p̃(b, t).

(2.9)

2.2 Fluctuation theorems
The two-point measurement scheme offers a simple framework where one can
study the thermodynamics of the process, and in particular, its irreversibility.
However, the two-point probability distribution of Eq. (2.8) on its own is not
sufficient to quantify the irreversibility of a (stochastic) process. Indeed, one typ-
ically compares the probability of a process with the probability of its “opposite”
process. For example, drawing from a classical thermodynamics intuition, we
want to compare the probability of heat flowing from a hot bath to a cold bath
to the probability of heat flowing from the cold bath to the hot bath. Following
this idea, we consider the time-reversed process, in which the order of the mea-
surement and the unitary transformation of the system are inverted [6, 51, 98].
This process is sketched in Fig. 2.1(b), and is described by the following steps:
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0. At the beginning of the time-reversed protocol the system is in the state
ρtr(0).

1. An ideal measurement of the observable B̂ = ∑
b b ˆ̃Πb is performed at t = 0,

and has outcome b.

2. The system undergoes a unitary transformation until time t. In contrast with
Eq. (2.2), here the initial state is the post-measurement state ρtr(0|b, 0), and
the final state of the transformation is

ρtr(t|b, 0) = Û †(t, 0)ρtr(0|b, 0)Û(t, 0). (2.10)

3. An ideal measurement of the observable Â = ∑
a aΠ̂a is performed at time t

and has outcome a. Similarly to the conditional probability, see Eq. (2.7),
of “forward” process described in Sec. 2.1, the probability of observing the
outcome a given that the first measurement of the time-reversed process had
outcome b is given by

ptr(a, t|b, 0) = Tr
{
Π̂aρtr(t|b, 0)Π̂a

}
= Tr

⎧⎪⎨⎪⎩Π̂aÛ †(t, 0)

⎛⎜⎝ ˆ̃Πbρ
tr(0) ˆ̃Πb

ptr(b, 0)

⎞⎟⎠ Û(t, 0)Π̂a

⎫⎪⎬⎪⎭ .
(2.11)

Therefore, the joint probability distribution in the time-reversed process is

ptr(a, t; b, 0) = Tr
{

Π̂aÛ †(t, 0) ˆ̃Πbρ
tr(0) ˆ̃ΠbÛ(t, 0)Π̂a

}
. (2.12)

We then compare the probability of the forward process Eq. (2.8) with the prob-
ability of the time-reversed process Eq. (2.12) using the entropy change

σ(b, t; a, 0) ≡ log
(

p(b, t; a, 0)
ptr(a, t; b, 0)

)
. (2.13)

To discuss the properties of this stochastic entropy change, we introduce the
probabilities p(σ) and ptr(σ) of observing the entropy change σ in the forward
and time-reversed process, respectively. These probabilities are given by

p(σ) =
∑
b,a

p(b, t; a, 0)δ(σ − σ(b, t; a, 0)), (2.14a)

ptr(σ) =
∑
a,b

ptr(a, t; b, 0)δ(σ − σtr(a, t; b, 0)), (2.14b)

where σtr(a, t; b, 0) is the entropy change in the time-reversed process. Note that,
since the time-reversed of the time-reversed process corresponds to the forward
one, the entropy change fulfils

σtr(a, t; b, 0) ≡ log
(

ptr(a, t; b, 0)
ptrtr(b, t; a, 0)

)
= −σ(b, t; a, 0). (2.15)
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Then, the probabilities in Eq. (2.14) obey

p(σ) = eσ
∑
b,a

ptr(a, t; b, 0)δ(σ − σ(b, t; a, 0)) ⇒ p(σ)
ptr(−σ) = eσ, (2.16)

which is referred to as detailed fluctuation theorem [51]. From this result it is im-
mediate to see that the entropy change also obeys the integral fluctuation theorem

〈e−σ〉 =
∑
a,b

ptr(a, t; b, 0) = 1. (2.17)

Interestingly, using Jensen inequality on Eq. (2.17), one also finds the second law
〈σ〉 ≥ 0, meaning that, on average, the entropy change is positive. Note that, to
derive the detailed fluctuation theorem of Eq. (2.16) we did not use the proto-
col underlying the time-reversed process, but only the definition of the entropy
change Eq. (2.13) and its anti-symmetry property Eq. (2.15). The independence
of Eq. (2.16) from the specific details of the “opposite” process makes the detailed
fluctuation theorem a rather general result. This generality is reflected in the fact
that the fluctuation theorems Eqs. (2.16, 2.17) are informational properties of the
entropy change defined in Eq. (2.13). For all these relations to be of use, we need
the entropy change to be expressed in terms of physical and measurable quantites.

The choice of the time-reversed process helps towards this direction. Indeed,
when the measurement projectors are one-dimensional, i.e. Π̂a = |a〉〈a| and
ˆ̃Πb = |b̃〉〈b̃|, the joint probability distributions of forward and time-reversed process
become

p(b, t; a, 0) = | 〈b̃|Û(t, 0)|a〉 |2p(a, 0), (2.18a)
ptr(a, t; b, 0) = | 〈a|Û †(t, 0)|b̃〉 |2ptr(b, 0). (2.18b)

Then, then entropy change does not depend any longer on the unitary dynamics
of the system, but only on the initial states of forward, i.e. ρ(0), and time-reversed
process, i.e. ρtr(0), namely

σ(b, t; a, 0) = log
(

p(a, 0)
ptr(b, 0)

)
= log

( 〈a|ρ(0)|a〉
〈b̃|ρtr(0)|b̃〉

)
. (2.19)

While the initial state of the forward process ρ(0) is determined by the specific
system and process considered, the initial state of the time-reversed process ρtr(0)
can be arbitrary and still result in the detailed fluctuation theorem Eq. (2.16).
Then, different choices of ρtr(0) lead to different entropy changes, and reflect what
can and cannot be accessed through measurements [98, 99].

As a relevant thermodynamic example, let’s consider a bipartite system, where
the left (L) and right (R) subsystems are initially prepared in Gibbs states at dif-
ferent inverse temperatures βL/R = (kBTL/R)−1 and chemical potentials μL/R [100].
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Thus the initial state reads

ρ(0) = τL ⊗ τR = e−βL(ĤL−μLN̂L)

ZL
⊗ e−βR(ĤR−μRN̂R)

ZR
, (2.20)

where ĤL/R and N̂L/R are the Hamiltonians and number operators of the L/R
subsystems. Here, for simplicity, we assume that [ĤL/R, N̂L/R] = 0. This also
allows us to consider as measurements the joint measurements of energy and
particle number of both subsystems, namely a → (EL,a, NL,a, ER,a, NR,a) and b →
(EL,b, NL,b, ER,b, NR,b). Finally, as the initial state of the time-reversed protocol,
we consider the same state as the forward process ρtr(0) = ρ(0), see Eq. (2.20).
Then, the stochastic entropy change is given by

σ(b, t; a, 0) = βL (ΔEL − μLΔNL) + βR (ΔER − μRΔNR) (2.21)

where ΔEL/R = EL/R,b − EL/R,a and ΔNL/R = NL/R,b − NL/R,a are the stochastic
energy and particle number change in the process, respectively. Additionally, if
the unitary transformation preserves both total energy, [Û(t, 0), ĤL + ĤR] = 0,
and particle number, [Û(t, 0), N̂L + N̂R] = 0, we write Eq. (2.21) as

σ(b, t; a, 0) = (βL − βR) ΔEL + (βRμR − βLμL) ΔNL (2.22)

since ΔEL + ΔER = 0 = ΔNL + ΔNR. Furthermore, defining the stochastic heat
change ΔQL ≡ ΔEL − μLΔNL we see that the average entropy change reads

〈σ〉 = (βL − βR) 〈ΔQL〉 ≥ 0. (2.23)

This confirms our classical thermodynamics intuition: Heat flows into L subsystem
(on average), i.e. 〈ΔQL〉 ≥ 0, only when the L subsystem is colder than the R
one, i.e. βL ≥ βR.

2.3 Fluctuation-dissipation theorem
In the previous section we discussed general properties of the probability distribu-
tion in the fluctuation theorems. However, it is often easier to access the (typically
first few) moments of a measured observable Q. Then, it is interesting to know
how the fluctuation theorems affect the moments. From a theorerical perspective,
to calculate the moments of a stochastic variable Q it is often useful to consider
the moment generating function GQ(λ) [101], defined as

GQ(λ) ≡ 〈eiλQ〉. (2.24)

Indeed, the n-th moment of Q is obtained from the generating function by evalu-
ating its n-th derivative at λ = 0, namely

〈Qn〉 = (−i)n ∂nGQ

∂λn

∣∣∣∣∣
λ=0

. (2.25)
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We now study how the generating function behaves in the two-point measurement
scheme described in Sec. 2.1 to find how the fluctuation theorems discussed in
Sec. 2.2 affect the moments of Q. We therefore focus on stochastic variables
in the two-point measurement scheme Q(b, t; a, 0) that are anti-symmetric under
time-reversal, i.e. Q(b, t; a, 0) = −Qtr(a, t; b, 0). Using the definition of entropy
change Eq. (2.13) we find

GQ(λ) =
∑
b,a

eiλQ(b,t;a,0)p(b, t; a, 0)

=
∑
b,a

eiλQ(b,t;a,0)+σ(b,t;a,0)ptr(a, t; b, 0)

=
∑
b,a

e−iλQtr(a,t;b,0)−σtr(a,t;b,0)ptr(a, t; b, 0) = 〈e−iλQ−σ〉tr,

(2.26)

where once again we relate averages in the forward process with averages in the
time-reversed process, here denoted with 〈•〉tr. The property in Eq. (2.26) be-
comes particularly useful when the stochastic entropy change can be written as

σ =
∑
x

AxQx = 	A · 	Q, (2.27)

where Ax are called affinities or thermodynamic forces, and Qx are the corre-
sponding extensive quantities. For instance, this is the case in Eq. (2.22), where
the entropy change is given in terms of the stochastic energy and particle number
change. In this case, the corresponding affinities and extensive quantities are

Energy change: Ae = βL − βR Qe = ΔEL,
Particle number change: An = βRμR − βLμL Qp = ΔNL.

(2.28)

Note that the affinities 	A are not stochastic, but consist of biases driving the sys-
tem out of equilibrium. In particular, for 	A = 0, the system is in thermodynamic
equilibrium. Combining Eq. (2.26) and Eq. (2.27), the moment generating func-
tion of the stochastic variables 	Q entering the entropy production in Eq. (2.27)
fulfils

G �Q(	λ, 	A) ≡ 〈ei�λ· �Q〉 = Gtr
�Q
(i 	A − 	λ, 	A) (2.29)

where we keep track of the dependence on the affinities 	A of the generating func-
tions. The relation in Eq. (2.29) highlights how the dissipation induced by the
affinities 	A links the forward and time-reversed processes [48, 51, 102].

Furthermore, Eq. (2.29) becomes particularly useful when the forward and time-
reversed probabilities as well as the extensive quantities 	Q entering the entropy
change satisfy

p(b, t; a, 0) = ptr(b, t; a, 0), Q(b, t; a, 0) = Qtr(b, t; a, 0). (2.30)
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This is the case in nondriven systems in which the forward and time-reversed
processes have the same initial state, ρ(0) = ρtr(0), and the same observable
is measured twice in the two-point measurement scheme. Then, the generating
function is invariant under time-reversal,

G �Q(	λ, 	A) = Gtr
�Q
(	λ, 	A), (2.31)

and Eq. (2.29) reduces to

G �Q(	λ, 	A) = G �Q(i 	A − 	λ, 	A). (2.32)

Crucially, this is a symmetry on the generating function of the forward process
alone. It allows us to establish relations between the moments 	Q and their re-
sponse coefficients to the affinities. Indeed, on the one hand, we perform a series
expansion of the averages 〈Qx〉 around the equilibrium point 	A = 0 as

〈Qx〉 = 〈Qx〉| �A=0 +
∑
y

LxyAy + O(A2) (2.33)

where Lxy are the linear-response coefficients around equilibrium.

Lxy ≡ ∂〈Qx〉
∂Ay

∣∣∣∣∣
�A=0

. (2.34)

On the other hand, we use the relation between the moments and the generating
function Eq. (2.25) and the symmetry Eq. (2.32) to expand the averages 〈Qx〉 in a
series expansion around 	A = 0 starting from the generating function. Concretely,
we have

〈Qx〉 = −i
∂G �Q

∂λx

∣∣∣∣∣�λ=0
= i

∂G �Q

∂λx

∣∣∣∣∣�λ=i �A

= i
∂G �Q

∂λx

∣∣∣∣∣�λ= �A=0
+

∑
y

⎛⎝−
∂2G �Q

∂λx∂λy

∣∣∣∣∣∣�λ= �A=0

+ i
∂2G �Q

∂λx∂Ay

∣∣∣∣∣∣�λ= �A=0

⎞⎠ Ay + O(A2)

= − 〈Qx〉| �A=0 +
∑
y

(
〈QxQy〉| �A=0 − Lxy

)
Ay + O(A2),

(2.35)

where we recognized the second moment 〈QxQy〉 and the linear response coefficient
Lxy. Comparing the different expansions Eq. (2.33) and Eq. (2.35) term by term
we find

〈Qx〉| �A=0 = 0, (2.36a)
〈QxQy〉| �A=0 = 2Lxy, (2.36b)

for the first two terms. Unsuprisingly, Eq. (2.36a) tells us that at equilibrium
there is no average change in the extensive quantities Qx. However, Eq. (2.36b)
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tells us that the correlations in these extensive quantities are proportional to the
linear response coefficient. This statement is the celebrated fluctuation-dissipation
theorem [42, 44]. Here, the “fluctuation” corresponds to 〈QxQy〉| �A=0, while the
linear-response coefficient is connected to the dissipation happening in the system.
Indeed, from Eq. (2.36b) one can directly relate the right-hand side of Eq. (2.36b)
to the average entropy change∑

x,y
〈QxQy〉| �A=0 AxAy = 2

∑
x,y

AxLxyAy ≈ 2
∑
x

Ax〈Qx〉 = 2〈σ〉. (2.37)

Note that, while in Eq. (2.36) we only showed how the first two moments of
	Q are connected to the response coefficients, one can continue the expansions in
Eqs. (2.33, 2.35) to arbitrary orders and establish the so-called generalized Green-
Kubo relations between higher moments and higher response coefficients [48, 50,
51]. We also stress that, since the expansions (2.33, 2.35) are centered around
equilibrium, both moments and response coefficients are evaluated at the equilib-
rium point. Therefore, the out-of-equilibrium correlations do generally not obey
the fluctuation-dissipation theorem.

Example:
Consider the bipartite system discussed in Sec. 2.2, in which the stochastic en-
tropy change is given in Eq. (2.21). For simplicity, consider the case in which
there is no temperure bias, such that we can describe the whole system with a
single inverse temperature β ≡ βL = βR. Instead, the chemical potential differ-
ence Δμ ≡ μR − μL is nonzero. The affinity associated to the particle-number
change Qp = ΔNL then reads Ap = βΔμ, and the fluctuation-dissipation the-
orem in Eq. (2.36b) yields

〈ΔN2
L〉

∣∣∣
Δμ=0

= 2 ∂〈ΔNL〉
∂βΔμ

∣∣∣∣∣
Δμ=0

= 2kBT
∂〈ΔNL〉

∂Δμ

∣∣∣∣∣
Δμ=0

where β = (kBT )−1. In particular, if we are interested in an electronic system,
the chemical potential difference is typically written in terms of the voltage bias
V as Δμ = qV , where q is the electron charge. Additionally, in the long-time
limit t → ∞, the average charge current 〈I〉 and its zero-frequency noise SI are
given by

〈I〉 = q〈ΔNL〉
t

, SI = q2〈ΔN2
L〉

t
.

Then, the fluctuation-dissipation theorem gives the Johnson-Nyquist noise [40,
41]

SI
∣∣∣
V =0

= 2kBT

R
,

where the resistance R is given by 1/R ≡ ∂〈I〉
∂V

∣∣∣
V =0

.
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2.4 Trade-off relations
In the previous section we have presented the fluctuation-dissipation theorem, ac-
cording to which the fluctuations at equilibrium are determined by the response
coefficients. However, as discussed in Sec. 1.2, many devices operate out of equi-
librium, and, at the nanoscale, fluctuations have a sizable impact on the perfor-
mance of the device. Therefore, to understand the precision of these devices we
need to evaluate the fluctuations in an out-of-equilibrium condition. Then, the
simple relation between fluctuations and response of Eq. (2.36b) does not gener-
ally hold [60, 61]. However, it is still possible to estimate how precise these devices
can possibly be by means of trade-off relations [103]. These kind of relations put
an upper bound on the ratio between the average and the standard deviation of an
observable. In this section, we present two topical trade-off relations: the thermo-
dynamic uncertainty relation (TUR) [11–19] and the kinetic uncertainty relation
(KUR) [20–27]. Both TUR and KUR were first derived in classical Markovian
systems, and, since then, they have been and are being investigated in quantum or
non-Markovian system. While both relations give an upper limit on the precision,
in the thermodynamic uncertainty relation, the maximum attainable precision is
given by the dissipation, quantified by the average entropy production. Instead,
in the kinetic uncertainty relation, the upper limit on the precision is given by the
activity, quantified by the average number of transitions. This difference makes
the two relations complement each other close to and far from equilibrium. Indeed,
close to equilibrium, the average dissipation is small while the activity is generally
not. Thus, close to equilibrium the TUR provides a stronger constraint on the
precision than the KUR. Conversely, far from equilibrium, the average dissipation
is typically much larger than the activity, thereby making the KUR a stronger
constraint on the precision than the TUR. This interplay between dissipation and
activity has also been combined in the so-called thermokinetic uncertainty rela-
tion, which also encompasses the intermediate out-of-equilibrium regimes [104–
106].

2.4.1 Thermodynamic uncertainty relation
First, we derive the TUR in the two-point measurement scheme in a purely math-
ematical way: Instead of using the entropy change of Eq. (2.13), we construct the
proof by defining a suitable stochastic entropy change, and only afterwards we
discuss the connections of this entropy to other definitions of entropy.

To begin with, we consider a “current-like” observable Q of the initial measure-
ment outcome a and the final outcome b which is anti-symmetric with respect to
the outcome order, namely

Q(b, t; a, 0) = −Q(a, t; b, 0). (2.38)
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ρ(0)
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Û
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Figure 2.2: (a) Forward process with oucomes a, b.(b) “Opposite” process. The ini-
tial state ρ(0) undergoes the same series of measurements and unitary transformations
as in the forward process, but the order of the measurement outcomes b, a is inverted.
(c) Interrupted process in which the unitary transformation is replaced with the iden-
tity, and the measurements have the same outcome a.

Example:
If the two measurement of the scheme measure the same operator Â =∑

a λa |a〉〈a|, then the change in the observed eigenvalue is a “current-like” ob-
servable,

Q(b, t; a, 0) = λb − λa = −Q(a, t; b, 0).

Given a total ordering “ � ” on the outcome space Ω � a, b, we can partition
such a space according to whether the final outcome is equal, larger, or smaller
than the initial outcome. This is done by defining the spaces

D0 ≡ {(a, a)|a ∈ Ω} , D≺� ≡
{
(b, a) ∈ Ω2|b ≺� a

}
, (2.39)

which satisfy D0 ∪ D� ∪ D≺ = Ω2 and have the property

(a, b) ∈ D� ⇔ (b, a) ∈ D≺.

Note that, because Q is anti-symmetric, it vanishes when evaluated on any element
of D0. We use the decomposition of the outcome space Ω2 of the two measurements
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together with the anti-simmetry of Q to write the first two moments of Q as

〈Q〉 =
∑

(b,a)∈Ω2
Q(b, t; a, 0)p(b, t; a, 0)

=
∑

(b,a)∈D�

Q(b, t; a, 0) [p(b, t; a, 0) − p(a, t; b, 0)] , (2.40a)

〈Q2〉 =
∑

(b,a)∈Ω2
[Q(b, t; a, 0)]2p(b, t; a, 0)

=
∑

(b,a)∈D�

[Q(b, t; a, 0)]2 [p(b, t; a, 0) + p(a, t; b, 0)] , (2.40b)

where we restricted the sum to the elements of D�. Note that now the probability
of the forward process sketched in 2.2(a) p(b, t; a, 0) appears together with the
probability p(a, t; b, 0) which differs only in the order of the outcome, as depicted
in 2.2(b). In particular, this latter probability is generally not the probability of
the time-reversed process. The sum of the probabilities in Eq. (2.40b) suggests
us to consider a probability distribution w(b, a) defined on D0 ∪ D� alone as

w(b, a) ≡
{

p(b, t; a, 0) if (b, a) ∈ D0
p(b, t; a, 0) + p(a, t; b, 0) if (b, a) ∈ D�

. (2.41)

Essentially, while the probability p distinguishes between the order of the out-
comes, w does not. Furthermore, we can write the first two moments of Q of
Eq. (2.40) as averages with respect to the probability distribution w, here de-
noted with 〈•〉w, namely

〈Q〉 = 〈Q tanh
(

σ̃

2

)
〉w, (2.42a)

〈Q2〉 = 〈Q2〉w, (2.42b)

where we introduced the entropy change σ̃, defined through

eσ̃ ≡ p(b, t; a, 0)
p(a, t; b, 0) → σ̃(b, a) ≡ log

(
p(b, t; a, 0)
p(a, t; b, 0)

)
. (2.43)

Note that this entropy change σ̃ is generally different from the one in Eq. (2.13)
because here we are not considering the time-reversed process. Instead, here
the “opposite” process follows the same protocol as the forward process, but the
outcomes of the measurements have opposite order. From the definition Eq. (2.43)
it is immediate to see that σ̃ fulfils the integral fluctuation theorem

〈e−σ̃〉 = 1 ⇒ 〈σ̃〉 ≥ 0, (2.44)

and is therefore positive on average. Furthermore, σ̃ is anti-symmetric

σ̃(b, a) = −σ̃(a, b), (2.45)
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meaning that one can apply Eqs. (2.40, 2.42) to any odd function of σ̃.
Now that most definitions are in place, we establish the inequality at the core

of the thermodynamic uncertainty relation. We start using Eq. (2.42a) to write
the squared average 〈Q〉2 as an average over the probability w. Then, we use
Cauchy-Schwarz inequality,

〈Q〉2 = 〈Q tanh
(

σ̃

2

)
〉2
w ≤ 〈Q2〉w〈tanh2

(
σ̃

2

)
〉w = 〈Q2〉〈tanh2

(
σ̃

2

)
〉w, (2.46)

where in the last equality we used Eq. (2.42b). Furthermore, since σ̃ is anti-
symmetric, from Eq. (2.42a) we also have

〈tanh
(

σ̃

2

)
〉 = 〈tanh2

(
σ̃

2

)
〉w. (2.47)

Then, the trade-off relation setting an upper limit to the signal-to-noise ratio of
the observable Q reads

〈Q〉2

Var[Q] ≤
〈tanh

(
σ̃
2

)
〉

1 − 〈tanh
(

σ̃
2

)
〉
. (2.48)

Here, the upper bound on the right-hand side is still rather complicated as it
involves the average of functions of the entropy change. A simpler constraint is
obtained close to equilibrium, i.e. when σ̃ � 1. Then, Eq. (2.48) reduces to

〈Q〉2

Var[Q] ≤ 〈σ̃〉
2 , (2.49)

which was first proven for classical Markovian systems [11]. Therefore, close to
equilibrium, the average entropy change 〈σ̃〉 sets a fundamental constraint on
the “current-like” observables Q. In the general case in which σ̃ ≮ 1, it is still
possible to write the upper limit on the precision as a function of the average
entropy change as

〈Q〉2

Var[Q] ≤ sinh2
[
h(〈σ̃〉)

2

]
, (2.50)

where h(x) is the inverse function of x tanh(x/2) [107]. However, as mentioned
before, the entropy change σ̃ entering Eqs. (2.48, 2.49, 2.50), is generally different
from the entropy change defined in Eq. (2.13) by comparing the forward process
with its time-reversed. An important case in which these two definitions of en-
tropy change coincide is the one of processes invariant under time reversal. This
symmetry is met when Eq. (2.30) is fulfilled, which then guarantees that the two
definition of entropy change, Eq. (2.13) and Eq. (2.43), coincide. Then, one can
indeed replace σ̃ → σ in the TURs Eqs. (2.48, 2.49, 2.50). In this case, the TUR
gives a fundamental constraint on the precision of “current-like” observables in
terms of the dissipation incurred in the process. However, if the system is not
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invariant under time reversal, which is for instance the case in the presence of
feedback, then the replacement σ̃ → σ cannot be done. In this case, the TUR
formulations with the entropy change σ in Eq. (2.13) need to include combinations
of averages on the forward and the time-reversed process [16].

Here the discussion was limited to the two-point measurement scheme. How-
ever, both classical and quantum Markovian dynamics are characterized by tra-
jectories describing the evolution of the state in time. To treat these cases, one
needs to consider a multi-measurement process, where an arbitrary number n of
measurement takes place. Then, the trajectories are determined by the sequence
of outcomes of such measurements, and the same procedure discussed here can be
applied, see App. A.

2.4.2 Kinetic uncertainty relation
Similarly to the TUR, the kinetic uncertainty relation (KUR) emerges when we
compare the probability of the forward process with a different, but similar, prob-
ability distribution. However, the comparison needed to find the KUR is different
from the one used in Sec. 2.4.1. Indeed, for the KUR, we begin by considering
the difference between the average values of the observable Q in the arbitrary
probability distributions p and w on the same outcome space Ω � ω, namely

〈Q〉 − 〈Q〉w =
∫

Ω
dωQ(ω)[p(ω) − w(ω)] =

∫
Ω

dω[Q(ω) − 〈Q〉][p(ω) − w(ω)]. (2.51)

By means of Cauchy-Schwarz inequality, this difference in average Q is limited by

|〈Q〉 − 〈Q〉w|2 ≤ Var[Q]
∫

Ω
dω

(
1 − w(ω)

p(ω)

)2

p(ω). (2.52)

The KUR was first derived for Markov jump systems in continuous time using
Eq. (2.52) [20]. In particular, the probability distribution p describing the system
is compared with the probability distribution w obtained by rescaling all the
transition rates Wij between states i, j of the process with a continuous parameter
α, namely Wij → (1 + α)Wij [20, 108]. Then, in the limit α → 0, in which the
original probability distribution p and the rescaled one w become infinitesimely
close, Eq. (2.52) leads to

(
t〈Q̇〉

)2

Var[Q] ≤ 〈K〉 ≡
∑

i,j �=i

〈nij〉, (2.53)

which is the KUR. Similarly to the TUR in Eq. (2.49), Eq. (2.53) provides an
upper limit to the signal-to-noise ratio of the observable Q. The crucial difference
is that the upper limit is not given by the average entropy production, but by the
activity 〈K〉, which quantifies the average number of jumps in the time t, 〈nij〉,
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between any different states i, j. In the long-time limit, where the system reaches
its steady-state, the activity fulfils

〈K〉
t

t→∞→
∑

i,j �=i

Wijp
ss
j , (2.54)

where pss
j is the steady-state probability of the system being in state j.

Generalizations of Eq. (2.53) to quantum Markovian dynamics have been es-
tablished using the same rescaling technique of the rates. In the quantum case,
the presence of coherent dynamics allows to achieve higher precision [22, 25, 27].
However, finding an equivalent of Eq. (2.53) in the two-point measurement scheme
described in Sec. 2.1 is not straightforward because the discrete nature of the setup
clashes with the (continuous) rescaling technique. Here, we attempt to establish
a constraint in which, in the same spirit as the KUR in Eq. (2.53), the precision
is limited by how often transitions happen. We start by comparing the two-point
probability p(b, t; a, 0) with the probability

w(b, t; a, 0) = δabp(a, 0) (2.55)

corresponding to a process in which the unitary transformation between the two
measurements is replaced by the identity transformation, such that both mea-
surements have the same outcome, see 2.2(c). In contrast, the probability dis-
tribution p(b, t; a, 0) generally contains transitions between different measurement
outcomes. The difference between the average values of an observable Q in the
two probability distributions at the left-hand side of Eq. (2.52) then reads

〈Q〉 − 〈Q〉w =
∑
b,a

[Q(b, t; a, 0) − Q(a, t; a, 0)]p(b, t; a, 0) = 〈δQ〉 (2.56)

where we introduced the change in Q due to the transition a → b,

δQ(b, t; a, 0) ≡ Q(b, t; a, 0) − Q(a, t; a, 0). (2.57)

The right-hand side of Eq. (2.52) contains the average

〈
(

1 − w

p

)2
〉 =

∑
b,a

(
1 − δbap(a, 0)

p(b, t; a, 0)

)2

p(b, t; a, 0)

=
∑
b,a

(
1 − δba

p(b, t|a, 0)

)2
p(b, t; a, 0)

=
∑

a,b �=a

p(b, t; a, 0) +
∑
a

(
1 − 1

p(a, t|a, 0)

)2
p(a, t; a, 0),

(2.58)

in which we separated the contribution in which a transition happens, a �= b,
from the one in which the measurement yields the same outcome, a = b. We now
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introduce the probability K(a) of having a transition from the initial outcome a
to any other outcome b �= a, namely

K(a) ≡ 1 − p(a, t|a, 0) =
∑
b �=a

p(b, t|a, 0). (2.59)

In terms of this probability, Eq. (2.58) becomes

〈
(

1 − w

p

)2
〉 =

∑
a

[
K(a) + K2(a)

1 − K(a)

]
p(a, 0)

=
∑
a

K(a)
1 − K(a)p(a, 0).

(2.60)

Then, from inequality (2.52) we find

〈δQ〉2

Var[Q] ≤
∑
a

K(a)
1 − K(a)p(a, 0). (2.61)

Note that, if the observable Q vanishes on the realizations in which no transition
occur, then δQ = Q, and Eq. (2.61) provides a limit on the precision of Q. Here,
the maximum attainable precision is given in terms of the probability K(a) of
experiencing a transition from the outcome a. Interestingly, a similar probability
has recently been used to limit the precision in quantum thermal machines [109,
110]. Furthermore, when the transition probability is small, K(a) � 1, we can
approximate Eq. (2.61) as

〈δQ〉2

Var[Q] ≤
∑
a

K(a)p(a, 0) = K, (2.62)

where K ≡ ∑
a,b �=a p(b, t; a, 0) is the probability of a transition happening. Here,

the similarity with the KUR is more clear. Indeed, in Eq. (2.53) the upper limit on
the precision is given by the number of jumps between any two different states,
and in Eq. (2.62) is given by the probability of a transition between any two
different outcomes. In this sense, both Eq. (2.53) and Eq. (2.62) provide a limit
on the precision which is given how “active” a system is. However, they are not
equivalent because the KUR of Eq. (2.53) relies on a state trajectory in the full
time interval of the process, whereas the constraint of Eq. (2.61) is based on a state
trajectory that consists of only two points. To see whether a connection between
the two can be established, extending Eq. (2.61) to the multi-measurement process
discussed in App. A is necessary.

2.5 Two-point measurement and transport
In this section we discussed the two-point measurement scheme as a way to ac-
cess the statistics of a quantum process. By comparing different variations of
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such processes, e.g. the forward and the time-reversed ones, fluctuation theorems
are established. These results are then used to prove the fluctuation-dissipation
theorems and trade-off relations on the precision.

In the following chapter, we use the two-point measurement scheme as a lens
through which we describe quantum transport setups. In the appended papers,
the out-of-equilibrium fluctuations in such transport setups are studied, but they
are not discussed from the two-point measurement point of view. In this thesis,
we instead show how the same statistics is obtained from the two-point measure-
ment framework. This connection between two-point measurement scheme and
quantum transport allows us to borrow some of the ideas and techiques discussed
in this section and apply them to transport. For instance, Papers I-IV are based
on the comparison between two variations of the same process. However, instead
of comparing the forward and the time-reversed process, we compare a process
that starts in a state where a temperature bias is present to the same process
starting from the state in which the temperature bias is absent. This results in
constraints between the noise and the current that complement the fluctuation-
dissipation theorem discussed in Sec. 2.3 to out-of-equilibrium regimes. Further-
more, in Paper V we establish trade-off relations between entropy production and
noise. Later, in Paper VI, we used the results of Paper V to establish a limit
on the precision of currents in a quantum transport setup. Here, the maximum
attainable precision is determined by the particle current noise. Intuitively, the
particle current noise accounts for the transitions in the number of transferred
particles. For this reason, it plays a similar role to the activity discussed for the
KUR in Sec. 2.4.2 in a quantum transport setup.





3 Statistics in quantum transport
This chapter is dedicated to the theoretical frameworks used in the appended
papers to describe transport, namely scattering theory and the perturbative ap-
proach. These frameworks have been used extensively in the field of quantum
transport, where a lot of emphasis is placed on the current operator. In this chap-
ter, we provide equivalent formulations of such frameworks focusing instead on
the outcomes of a two-point measurement scheme, thereby bridging the formalism
described in Sec. 2 with the ones of quantum transport.

First, in Sec. 3.1, we provide an alternative description of the scattering theory
introduced by Landauer and Büttiker in Refs. [111–113]. This approach relies on
large coherence length (compared to the size of the device), and weak particle-
particle interaction. These assumptions allow to consider single-particle wave-
functions propagating on a potential landscape, meaning that the full unitary
evolution of the system can be “broken down” in a composition of single-particle
evolutions. Typically, this framework is formulated in second quantization, and
the average and correlations between current operators are calculated from the
expectation values of the field operators describing incident particle fluxes. We
refer to this approach as the “traditional” approach from now on. Here, instead,
we first obtain the density matrix of the system, and then use it to calculate the
conditional probabilities of finding n particles in the final state given a specific
initial state. These probabilities are then used to calculate the average and the
variance of the change of particle number, leading to the same results as the tra-
ditional approach. Even though this approach gets to the same results in a more
complicated way, it also allows us to look into the entropy production at different
stages of the process, which is typically hard to describe within the traditional
approach, but highly relevant in the context of quantum thermodynamics.

In Sec. 3.2, we describe a different, yet common, theoretical approach to quan-
tum transport, namely a perturbative approach for weak coupling. Again, we
describe it through the lens of the two-point measurement scheme. This approach
relies on having a weak coupling, which allows for a perturbative expansion. This
means that the full unitary evolution of the system can be approximated up to the
lowest order in the coupling strength. In contrast with scattering theory, where
the coupling can be strong but particle-particle interactions are negligible, here
the particle-particle interactions can be strong. Similarly to Sec. 3.1, we first cal-
culate the transition probabilities conditioned on an initial state and then study
the statistics of the change in an observable.

25
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â1 b̂1

âr

b̂r â2
b̂2

r 2

1

Figure 3.1: Sketch of r leads connecting r reservoirs (labeled 1, 2, . . . , r) to a central
scatterer. The coherent scattering of incoming particle fluxes in the leads, described
by the field operators âα, maps them into outgoing particle fluxes, described by the
field operators b̂α.

r 2

1

ρin

(a)

r 2

1
(b)

r 2

1

ρout

(c)

Figure 3.2: Single-shot description of a scattering event. The incoming particles in
the leads, highlighted by the red boxes, described by the state ρin (a) enter the central
conductor where they scatter coherently (b). After the scattering event, the outgoing
particles in the leads are described by the state ρout (c).

3.1 Scattering theory revisited
The setup of scattering theory consists of r leads (labeled with greek letters
α, β, . . . ) connected to a central conductor, where the scattering process takes
place. Furthermore, lead α supports Mα different transport channels (labeled
with roman letters i, j, . . . ).

In the stationary case, an incoming particle to the scattering region at energy
E is eventually scattered into an outgoing particle at the same energy. In the
field-theoretical approach to scattering theory, one associates the field operators
âαi(E) and b̂αi(E) to the incoming and outgoing particle fluxes in lead α and
channel i, respectively, see Fig. 3.1. Then, the scattering process relates such field
operators through

b̂αi(E) =
∑
βj

sαi,βj(E)âβj(E), (3.1)

where s(E) is a unitary matrix referred to as scattering matrix. This matrix de-
scribes the evolution of a single-particle state. With these key ingredients one can
calculate the average of the current operator and its correlations. Note that these
ingredients do not include the density matrix of the system, which is somehow
hidden in the traditional approach. Here, we want to explicitely show how the
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density matrix enters these calculations, and also use it to understand entropy
production in these coherent systems. To this end, instead of focusing on the
fields of incoming and outgoing particle fluxes, we focus on the state of the par-
ticles in the leads before and after the scattering process. We consider the Fock
space of particles in the leads at a specific energy E, which, from now onward, is
not specified unless needed. Calling the empty state, namely the state with no
particles,

|∅〉 ≡ |0 · · · 0︸ ︷︷ ︸
M1

· · · 0 · · · 0︸ ︷︷ ︸
Mr

〉 , (3.2)

we write all other states through the application of the creation operators ĉ†
αi(

[ĉ†
α1i1]

nα1i1 · · · [ĉ†
αkik

]nαkik

)
|∅〉 = |0 · · · 0nα1i1 · · · nαkik

0 · · · 0〉 . (3.3)

Here, we distinguish the operators ĉαi from the previously discussed âαi, b̂αi be-
cause the former describe annihilation of particles, while the latter describe anni-
hilation of particle fluxes.

Note that, if the considered particles are fermions, then nαkik
∈ {0, 1}, whereas

they can be any natural number for bosons. Furthermore, the states in Eq. (3.3)
are not normalized (for bosons), but have norm

〈0 · · · 0nα1i1 · · · nαkik
0 · · · 0|0 · · · 0nα1i1 · · · nαkik

0 · · · 0〉 = (nα1i1!) · · · (nαkik
!). (3.4)

Now that we have specified a basis, we can write any possible density matrix of
the leads. In Sec. 3.1.1, we will see that the density matrix contains too much
information when it comes to calculating the particle current and its noise. How-
ever, in Sec. 3.1.2 this additional information is instrumental for understanding
the correlation entropy produced by the scattering event, and how this relates to
the thermodynamic entropy production.

Example:
For two single-channel fermionic leads, i.e. r = 2 and M1 = M2 = 1, we can
drop the channel index and write the basis of the Fock space as

|∅〉 = |00〉 , c†
1 |∅〉 = |10〉 , c†

2 |∅〉 = |01〉 , c†
1c

†
2 |∅〉 = −c†

2c
†
1 |∅〉 = |11〉 ,

where the basis states correspond to the following sketches.

|00〉 |10〉 |01〉 |11〉

Crucially, the scattering process transforms an initial density matrix ρin, which
describes the state of the incoming particles in the leads, into a final density



28 3 Statistics in quantum transport

matrix ρout, which describes the state of the outgoing particles in the leads, as
depicted in Fig. 3.2. Analogously to Eq. (3.1), the scattering process evolves the
state by mapping the creation operators into the linear superposition,

ĉ†
αi →

∑
βj

sβj,αiĉ
†
βj (3.5)

determined by the scattering matrix. Intuitively, Eq. (3.5) describes a particle in
αi evolving into a superposition over all other leads and channels, whose ampli-
tudes are determined by the scattering matrix. The single-particle evolution of
Eq. (3.5) is then used to evolve any multi-particle state through

∏
x

[ĉ†
αxix

]nx |∅〉 →
∏
x

⎡⎣∑
βj

sβj,αxix ĉ†
βj

⎤⎦nx

|∅〉 . (3.6)

Example:
For two single-channel fermionic leads, the empty state is left unchanged,

|00〉 → |00〉 ,

as there are no fermions to scatter. The remaining basis vectors evolve according
to

|10〉 → s11 |10〉 + s21 |01〉 , |01〉 → s12 |10〉 + s22 |01〉 , |11〉 → det(s) |11〉 ,

where the unitarity of s guarantees the normalization. These evolutions can
also be represented as the following sketches, where the solid (dashed) arrows
represent transmission (reflection) processes.

Therefore, given any initial state ρin, we can calculate the final state ρout by
means of Eq. (3.6). The initial states that we consider here are diagonal in the
number basis and uncorrelated between different channels. This assumption is in
particular verified when each lead is connected to a thermal reservoir of temper-
ature Tα and chemical potential μα. These reservoirs “prepare” the initial state
by (probabilistically) injecting particles into the leads. In this case of thermal
reservoirs, the average occupation number fα(E) of the reservoir fully determines
the distribution of the initial state and is given by the Fermi or Bose distribution

fα(E) = 1
exp

[
E−μα

kBTα

]
± 1

(3.7)
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for fermions (upper sign) and bosons (lower sign), respectively. In particular, for
fermions each channel of lead α is occupied with probability fα, and is empty
with probability 1 − fα. Instead, for bosons the probability of having n particles
in a channel of lead α is proportional to exp

[
−nE−μα

kBTα

]
=

[
fα

1+fα

]n. These simple
initial states make the calculatiions of the particle current and its noise easier, as
we will show in Sec. 3.1.1.
Example:
For two single-channel fermionic leads connected to reservoirs described by the
average occupation fα ∈ [0, 1], the initial state is a mixture of the possible
number basis states weighted by the joint probabilities, i.e.

ρin = f−
1 f−

2 |00〉〈00| + f1f
−
2 |10〉〈10| + f−

1 f2 |01〉〈01| + f1f2 |11〉〈11| ,

where f−
α ≡ 1 − fα. By evolving the initial state one finds the final state

ρout =

⎛⎜⎜⎜⎜⎝
f−

1 f−
2 0 0 0

0 f1f
−
2 |s11|2 + f2f

−
1 |s12|2 f1f

−
2 s11s

∗
21 + f2f

−
1 s12s

∗
22 0

0 f1f
−
2 s∗

11s21 + f2f
−
1 s∗

12s22 f1f
−
2 |s21|2 + f2f

−
1 |s22|2 0

0 0 0 f1f2

⎞⎟⎟⎟⎟⎠ ,

where we highlighted the block structure corresponding to different amounts of
total number of particles.

Even with these assumptions on the initial states, the full density matrix con-
tains too much information if one is interested in properties of a single lead like,
for instance, the particle current flowing in a lead γ. It is therefore convenient to
consider the marginal state on such a lead. In particular, given an initial state
with k particles in the leads −→

αi ≡ (α1i1, · · · , αkik), the final state conditioned on
such an initial state −→

αi, ρout|−→αi
, is obtained according to Eq. (3.6),

|−→αi〉〈−→αi| ≡
(
ĉ†

α1i1 · · · ĉ†
αkik

)
|∅〉〈∅| (ĉαkik

· · · ĉα1i1) → ρout|−→αi
. (3.8)

Then, we need to reduce this state ρout|−→αi
to lead γ. The marginal state on lead

γ is obtained by tracing out all other leads, namely

ρ
γ|−→αi

≡ Trγ

{
ρout|−→αi

}
, (3.9)

where γ represents the complement to γ. Particle number conservation of the scat-
tering evolution makes this reduced density matrix have a block-diagonal structure
in the Fock subspaces, i.e.

ρ
γ|−→αi

=

⎛⎜⎜⎜⎝
ρ

γ,0|−→αi
0 · · ·

0 ρ
γ,1|−→αi

· · ·
... ... . . .

⎞⎟⎟⎟⎠ , (3.10)
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where ρ
γ,n|−→αi

is the block in the subspace with n particles. If one is interested
in the correlations that the scattering event generates between different channels,
then all the entries of these block-matrices carry relevant information. However,
if one is interested in the particle current, only the probability p

n|−→αi
of finding n

particles in the final state given the initial state −→
αi matters. This probability is

simply given by the trace of the corresponding matrix block, i.e.

p
n|−→αi

= Tr
{

ρ
γ,n|−→αi

}
. (3.11)

The difference between fermionic and bosonic statistics is reflected in this condi-
tional probability, which reads

p
n|−→αi

= 1
〈−→αi|−→αi〉 k!

⎛⎝k

n

⎞⎠ ∑
σ,σ′∈Sk

⎧⎨⎩(∓1)σ+σ′
⎡⎣ n∏

ξ=1

⎛⎝∑
l

sγl,σ(αξiξ)s
∗
γl,σ′(αξiξ)

⎞⎠⎤⎦ ×

×
⎡⎣ k∏

ξ=n+1

⎛⎝δσ(αξiξ)σ′(αξiξ) −
∑

l

sγl,σ(αξiξ)s
∗
γl,σ′(αξiξ)

⎞⎠⎤⎦⎫⎬⎭ ,

(3.12)

where the upper/lower sign refers to fermions/bosons. A detailed derivation of
Eq. (3.12) is found in App. B. Here, Sk is the group of permutation of k elements,
and (−1)σ indicates the sign of the permutation σ. In Eq. (3.12) the first product
represents the distribution of n of the initial k particles in any channel l of lead
γ, whereas the second product represents the distribution of the remaining k − n
particles in any other lead. In the last product, the unitarity of the scattering
matrix s was used. The prefactor 〈−→αi|−→αi〉

−1
is needed to normalize the initial

state (in the bosonic case, since it is always 1 in the fermionic case), while 1
k!

(
k
n

)
removes the double-counting encountered when we permute the n particles that
ended up in lead γ or the k − n particles in the remaining leads.

To calculate expectation values over the conditional probability Eq. (3.12) it is
convenient to exploit the recursive relation

p
n|−→αi

= 1
k − n

k∑
x=1

p
n|−→αi\{αxix} − n + 1

k − n
p

n+1|−→αi
, for n < k, (3.13)

fulfilled by both fermions and bosons. The derivation of Eq. (3.13) and its use
in calculating the average number and variance of transferred particles is found
in App. B. Note that this relation is recursive both in the number n of particles
in lead γ after the scattering process, and in the number k of particles in the
initial state. Indeed, Eq. (3.13) contains the probability p

n+1|−→αi
of ending up

with n + 1 particles after the scattering process given the same initial state.
Furthermore, it also contains the probability p

n|−→αi\{αxix} which is conditioned on
the initial state −→

αi\{αxix} = (α1i1, · · · , αx−1ix−1, αx+1ix+1, · · · , αkik) obtained by
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n

k p
n|−→αi

Figure 3.3: Schematic representation of the recursive relation Eq. (3.13) for the
probability p

n|−→αi
of ending with n particles given the initial state −→

αi containing k

particles. Particle number conservation implies that for n > k the probability vanishes.
For n < k, p

n|−→αi
is determined by the “adjacent” probabilities p

n+1|−→αi
and by p

n|−→βj
,

with −→
βj containing k−1 particles, as indicated by the arrows. The boundary condition

of the recursive relation is set by the probabilities on the diagonal, i.e. n = k.

removing one of the initial particles. Therefore, the initial state of this conditional
probability has k − 1 particles. This means that, if one knows the conditional
probability p

m|−→βj
for all m and for all initial states −→

βj with k − 1 particles, and
the probability p

k|−→αi
conditioned on the initial state −→

αi with k particles, then
we can recursively calculate all the conditional probabilities p

n|−→αi
. The recursive

procedure is schematically depicted in Fig. 3.3, and turns out to be particularly
useful to calculate the expectation values of quantities like, for instance, the change
in particle number induced by the scattering process and its variance, as shown
in App. B.

3.1.1 Current and noise
Now that we have the probabilities of having n scattered particles in a specific
lead γ, we can study the statistics of the net amount of particles flowing into
one lead by studying the change in the lead particle number before and after the
scattering process. To access this change it is natural to measure the particle
number before and after the scattering process. This corresponds to a two-point
measurement scheme with the following protocol:

1. We measure the particle number in a given lead γ, i.e. the observable
N̂γ = ∑

i ĉ†
γiĉγi, on the initial state ρin. We call Nin,γ the outcome of the

measurement occuring with probability P (Nin,γ) and label ρin|Nin,γ
the corre-

sponding state conditioned on the outcome of the measurement.

2. The system undergoes the scattering process, which transforms the initial
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state ρin|Nin,γ
into the output state ρout|Nin,γ

according to Eq. (3.6).

3. We measure again the particle number N̂γ in lead γ on the scattered state
ρout|Nin,γ

. We call Nout,γ the outcome of the measurement occuring with
probability P (Nout,γ|Nin,γ).

We are then interested in the statistics of the stochastic variable Qγ ≡ Nout,γ −
Nin,γ, which counts the net amount of particles flowing into lead γ on a single
realization of the protocol. In general, the average of Qγ is given by

〈Qγ〉 =
∑

Nout,γ ,Nin,γ

(Nout,γ − Nin,γ)P (Nout,γ|Nin,γ)P (Nin,γ), (3.14)

and its variance by

Var [Qγ] =
∑

Nout,γ ,Nin,γ

(Nout,γ − Nin,γ)2P (Nout,γ|Nin,γ)P (Nin,γ) − 〈Qγ〉2. (3.15)

Then, given any initial state ρin, we can apply the two-point measurement protocol
combined with the scattering evolution to find the statistics of the observable Qγ

As mentioned previously, a relevant choice of initial state is given by the states
“prepared” by thermal reservoirs, which randomly inject uncorrelated particles in
the leads. These initial states take the form

ρin =
⊗
βj

⎛⎝∑
nβj

pnβj

|nβj〉〈nβj|
〈nβj|nβj〉

⎞⎠ (3.16)

where the tensor product spans over the different leads and channels. Here, pnβj
is

the probability of injecting nβj particles in lead β, channel j. Clearly, for fermions
we have only two possible values of nβj, namely nβj ∈ {0, 1}, whereas for bosons
any possible natural number is admissible, nβj ∈ �. We furthermore consider the
case in which the injection probability pnβj

does not depend on the specific channel
in the lead. For fermions, the probability of injecting one particle corresponds to
the average occupation of the reservoir at the energy E that we are considering,
given by fβ(E) ∈ [0, 1], namely

pnβj=1 = fβ(E). (3.17)

The probability of injecting zero particles is then given by pnβj=0 = 1 − fβ(E).
In the thermal case, the average particle number fβ(E) over different energies is
given by the Fermi distribution of Eq. (3.7) (upper sign). Instead, for bosons the
probability of injecting nβj is related to the average particle number fβ(E) ≥ 0
through

pnβj
= 1

1 + fβ(E)

[
fβ(E)

1 + fβ(E)

]nβj

. (3.18)



33

This exponential behaviour with respect to the particle number is understood by
considering, at the chosen energy E, a thermal reservoir with temperature Tβ(E)
and chemical potential μβ(E) which are specific to that energy. In turn, this
means that particles in each energy interval dE interact with different thermal
reservoirs, and across different energies the average occupation number f(E) is
generally nonthermal. However, if these intensive parameters of the reservoir
are energy-independent, then fβ(E) is given by the Bose distribution of Eq. (3.7)
(lower sign). Note that, given the initial occupation probabilities Eqs. (3.17, 3.18),
the variance of the initial particle number is given in terms of the average number
of particles fβ(E) through

Var[nβj] = fβ(E)[1 ∓ fβ(E)], (3.19)

where the upper/lower sign refers to fermions/bosons.
With these assumptions on the initial state, we can calculate the average and

the variance of the number of transferred particles Qγ, see App. B for the detailed
derivations. Here, it is convenient to write the results in terms of the scattering
submatrices tαβ which map the Mβ channels of lead β into the Mα channels of lead
α according to [tαβ]ij = sαi,βj. In particular, the scattering matrix s is written in
terms of the submatrices tαβ with the following block structure

s =

⎛⎜⎜⎜⎜⎜⎝
t11 t12 · · · t1r

t21 t22 · · · t2r
... ... . . . ...

tr1 tr2 · · · trr

⎞⎟⎟⎟⎟⎟⎠ . (3.20)

Indeed, in terms of the submatrices tαβ, the average number of transferred parti-
cles reads

〈Qγ〉 =
∑
α

Tr
{
tγαt†

γα

}
(fα − fγ) (3.21)

for both fermions and bosons. Instead, the variance of the transferred particle
number displays a difference between them beyond the difference in the average
occupation number, namely

Var[Qγ] =
∑
α �=γ

Tr
{
tγαt†

γα

}
[fα(1 ∓ fγ) + fγ(1 ∓ fα)] +

∓
∑
αβ

Tr
{
tγαt†

γαtγβt†
γβ

}
[fα − fγ][fβ − fγ].

(3.22)

Here, the different signs for fermions and bosons (upper and lower, respectively)
emerge not only because of the different sign in the variance of the initial particle
number, see Eq. (3.19), but also because of the difference in the exchange statistics
during the scattering process, see Eq. (3.12). In particular, the sign of the last
contribution in Eq. (3.22) reflects the anti-bunching and bunching of fermionic
and bosonic particles, respectively.
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This description essentially focuses on “single-shot” scattering events, where
an initial state is prepared and then scattered. To finally complete the connec-
tion to Landauer-Büttiker scattering theory we need to find the average current
and its noise from this single-shot description. Here, it is important to note that
the lack of particle-particle interaction guarantees the independence between dif-
ferent scattering events. Therefore, it is sufficient to know how many of such
events occur in a unit time. We now assume that all the particles in the in-
finitesimal energy interval [E, E + dE] around the energy E that we are focusing
on move with velocity v(E). Then, the charge current is the energy interval is
dIγ = qv(E)Qγ(E)g(E)dE, with g(E) being the density of states. In the one-
dimensional leads the density of states is g(E) = [hv(E)]−1 [114]. This makes the
charge current in the infinitesimal energy interval take the simple form

dIγ(E) = q

h
Qγ(E)dE. (3.23)

The total current Iγ is then obtained by integrating over the energy, and its
average value reads

Iγ ≡ 〈Iγ〉 = q

h

∫
dE〈Qγ〉 = q

h

∫
dE

∑
α

Tr
{
tγαt†

γα

}
(fα − fγ) , (3.24)

which is the Landauer-Büttiker formula. Here, the trace Tr
{
tαγt†

αγ

}
is the trans-

mission from lead α to lead γ accounting for all possible channels. In the single-
channel case this transmission is simply the probability of being transmitted from
α to γ.

Furthermore, the statistical independence between different scattering events
allows to write the zero-frequency noise of the charge current in terms of the
variance of the transferred particle number through

SI
γγ = q2

h

∫
dEVar[Qγ], (3.25)

as detailed in App. C. Again, as expected, this coincides with the zero-frequency
noise obtained with the traditional approach [114].

The same procedure can be applied to the transport of a possibly energy-
dependent observable X trasferred by the particles, as is the case for energy and
heat currents. To do so, we just need to replace the charge q with the energy-
dependent quantity x(E) carried by each particle under the integration signs.
Then, the average current of X and its noise read

I(X)
γ = 1

h

∫
dEx(E)〈Qγ〉, (3.26a)

S(X)
γγ = 1

h

∫
dE[x(E)]2Var[Qγ]. (3.26b)
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Classical and quantum noise contributions

Clearly, the noise is more cumbersome to work with compared to the average
currents. To simplify the treatment of the zero-frequency noise, we split it into
two terms, a “classical” and a “quantum” contribution, given by

S(X),cl
γγ = 1

h

∑
α �=γ

∫
dE[x(E)]2Tr

{
tγαt†

γα

}
[fα(1 ∓ fγ) + fγ(1 ∓ fα)] , (3.27a)

S(X),qu
γγ = ∓1

h

∑
αβ

∫
dE[x(E)]2Tr

{
tγαt†

γαtγβt†
γβ

}
[fα − fγ][fβ − fγ], (3.27b)

respectively. The classical contribution is quadratic in the scattering matrix el-
ements, and is therefore linear in the transmission probability between different
leads. Instead, the quantum contribution is quadratic in the transmission prob-
ability. This means that, in the tunneling regime, i.e. when the transmission
probability is small, the classical contribution to the noise approximates the full
noise well. Furthermore, the quantum contribution is negligible compared to the
classical one also close to equilibrium, i.e. when fα ≈ fβ, even far from the tunnel-
ing regime. Indeed, at equilibrium the noise is given by the classical contribution
only, which also fulfils the fluctuation-dissipation theorem discussed in Sec. 2.3.
When both the tunneling regime and the close to equilibrium condition are not ful-
filled, the quantum contribution of Eq. (3.27b) to the noise needs to be accounted
for. This strongly-coupled, out-of-equilibrium condition is interesting when study-
ing the effect of quantum phenomena (in this case particle intereference) on the
performance of thermal machines. In particular, the noise, and therefore the pre-
cision, of such machines is affected significantly. Within this context, Papers III,
V, VI provide constraint on such out-of-equilibrium noise which also include the
quantum noise contribution Eq. (3.27b), thereby establishing limits on the current
precision in devices described by scattering theory. Furthermore, from Eq. (3.27b)
we already see a crucial difference between fermions and bosons: The quantum
contribution to the noise is negative for fermions and positive for bosons. This
reflects the anti-bunching/bunching properties of the particles. Indeed, the inte-
grand in Eq. (3.27b) emerges from the exchange statistics in scattering processes
with two particles.

Note that, while the distinction between classical and quantum contribution to
the noise is appealing from both a technical and a conceptual point of view, it is
by no means the only way to split the noise in multiple contributions. Indeed,
depending on the context and the system considered, splitting the noise in different
contributions, as, for instance, thermal and shot noise, may be more useful. This
is indeed the case in Papers I-III. However, only the full noise can typically be
accessed experimentally, so it is important to note that statements on a single
contribution may not apply to the full noise unless that contribution dominates
over the other.
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Figure 3.4: The input state ρin is prepared by the baths 1, 2, · · · , r and enters the
central conductor, where the scattering process happens. After the scattering, the
output state ρout is established in the leads, where it then couples to the baths. The
baths reset the output state into the input state to close the cycle. In the scattering
process the entropy ΔSL is produced in the leads. In the reset process the entropy
−ΔSL is produced in the leads, and the entropy ΔSB is generated in the baths.

3.1.2 Entropy production and fluctuations
Now that we have access to the input and output density matrices, we can study
how the von Neumann entropy of such states behaves, and how this entropy
change relates to the thermodynamic entropy production in the baths. Since the
scattering evolution between initial and final states is unitary, the von Neumann
entropy of the input state ρin and output state ρout coincide, i.e.

SvN[ρin] = SvN[ρout]. (3.28)

However, the scattering process creates correlations between different leads. This
means that, if one focuses on the marginal state on one specific lead, say γ, i.e.
ργ,in/out = Trγ

{
ρin/out

}
, the von Neumann entropies of input and output states

are generally different
SvN[ργ,in] �= SvN[ργ,out]. (3.29)

Example:
For two single-channel fermionic leads, the marginal input state on the first lead
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reads
ρ1,in =

(
f−

1 0
0 f1

)
,

with f−
1 = 1−f1. Instead, after the scattering event, the marginal output state

on the same lead reads

ρ1,out =
(

(1 − |s12|2)f−
1 + |s12|2f−

2 0
0 (1 − |s12|2)f1 + |s12|2f2

)
,

with |s12|2 = |s21|2 being the transmission probability. Clearly, for |s12|2 �= 0
and f2 �= f1, the states are different and have different von Neumann entropies.

On each lead the von Neumann entropy can either increase or decrease. How-
ever, if the initial state is a tensor product on the leads, i.e. ρin = ⊗

α ρα,in,
the total entropy production ΔSL accounting for all leads is always positive.
Indeed, this entropy difference can be written in terms of a relative entropy
D[ρ||σ] ≡ Tr {ρ[log ρ − log σ]} as

1
kB

ΔSL ≡
∑
γ

(SvN[ργ,out] − SvN[ργ,in]) = D[ρout||
⊗
γ

ργ,out] ≥ 0, (3.30)

where we used the conservation of entropy under the unitary transformation
Eq. (3.28). While this entropy production gives us insights into the correlations
created in the scattering process [115–117], it is completely oblivious to the ther-
modynamic entropy prodution in the baths. Indeed, while the effect of the baths
enters this entropy productions through the input state, how the output state
couples and induces dissipation in the baths is not included in the description.

Here, we clarify the difference and the connection between the entropy produc-
tion in the leads and the one in the baths. Since each lead is coupled to a different
bath, we focus on one specific lead and its bath, say γ. This also allows us to work
only with the marginal state on such a lead because the remaining leads do not
participate in the coupling. Furthermore, we assume the dissipation to the bath to
happen far from the central conductor, such that the lead-bath coupling does not
affect the coherent scattering evolution of the lead states [118–120], as depicted
in Fig. 3.4. Note that this description is reminiscent of the Markovian embedding
technique used to deal with systems strongly coupled to the reservoirs [121, 122].

We focus now on the lead-bath interaction happening after the scattering pro-
cess took place which resets the lead state to the input state, as shown in Fig. 3.4.
Calling t = 0 the starting time of the lead-bath coupling, we assume the state of
lead (L) γ and the corresponding bath (B) to be uncorrelated at that time, i.e.
ρLB,γ(0) = ρL,γ(0) ⊗ ρB,γ(0). Furthermore, since the coupling happens after the
scattering process, the state of the lead at t = 0 corresponds to the output state
of the scattering process, namely ρL,γ(0) = ργ,out. The lead-bath system evolves
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unitarily under the Hamiltonian

Ĥ(t) = ĤL,γ + ĤB,γ + V̂γ, (3.31)

where V̂γ is the weak (possibly time-dependent) coupling between lead and bath.
Having an uncorrelated state at t = 0 in the lead-bath system allows to write the
second law of thermodynamics as

kBD[ρLB,γ(t)||ρL,γ(t) ⊗ ρB,γ(t)] = ΔSL,γ(t) + ΔSB,γ(t) ≥ 0 (3.32)

where ΔSL/B,γ(t) ≡ kB
(
SvN[ρL/B,γ(t)] − SvN[ρL/B,γ(0)]

)
is the entropy difference

of lead/bath [123]. When the bath is sufficiently large such that its state is weakly
perturbed by the interaction with the lead, and when it is in a thermal state
ρB,γ(0) ∝ exp[−(ĤB,γ − μγN̂B,γ)/kBTγ], its entropy production obeys Clausius’
relation,

ΔSB,γ(t) ≈ ΔQB,γ(t)
Tγ

, (3.33)

connecting the entropy production to the absorbed heat ΔQB,γ(t) and the bath
temperature Tγ, as detailed in App. D.

To completely reset the state of the lead to the input state ργ,in (which was
initially prepared by the bath), we let the lead and the bath interact until the
time τ at which the lead’s state fully relaxes to ργ,in. Therefore, the entropy
difference of the lead is exacly opposite to the one produced during the scattering
process,

1
kB

ΔSL,γ(τ) = SvN[ργ,in] − SvN[ργ,out]. (3.34)

This means that, in the full cycle made of scattering process and reset of the lead
state, depicted in Fig. 3.4, the thermodynamic entropy production ΔΣ is only
given by the entropy production in the baths ΔSB,γ(τ),

ΔΣ =
∑
γ

[ΔSL,γ(τ) + ΔSB,γ(τ)] + ΔSL =
∑
γ

ΔSB,γ(τ) ≡ ΔSB. (3.35)

Note that, combining the inequalities of Eqs. (3.30, 3.32) we see that the thermo-
dynamic entropy production ΔΣ also obeys the second law.

ΔΣ = ΔSB ≥ ΔSL ≥ 0. (3.36)

In our description of the scattering process we could focus on one specific energy
E because particles at different energies do neither interact nor mix. If this
property also applies to the coupling with the bath, we can extend this single-
energy description. Then, the bath is described by the state

ρB,γ(0) = 1
ZB,γ

exp
[
−E − μγ(E)

kBTγ(E) N̂B,γ

]
(3.37)
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where N̂B,γ is the number operator of the bath at the energy E, and Tγ(E), μγ(E)
are the temperature and chemical potential, respectively. Note that the energy
dependence of the intensive quantities Tγ(E), μγ(E) is equivalent to considering
many baths with different temperatures and chemical potentials that connect to
the leads only in narrow energy windows that do not overlap. Having focused
only on the energy E, we write the entropy production in the bath in terms of
the change in the bath particle number ΔNB,γ ≡ Tr

{
N̂B,γ[ρB,γ(t) − ρB,γ(0)]

}
as

ΔQγ

kBTγ(E) = E − μγ(E)
kBTγ(E) ΔNB,γ = log

(1 ∓ fγ(E)
fγ(E)

)
ΔNB,γ, (3.38)

where we expressed the amount of heat transferred by each particle, E − μγ(E),
in terms of the average occupation number fγ(E). Again, the upper/lower sign
corresponds to fermionic/bosonic particles. Furthermore, assuming that particles
are conserved during the lead-bath interaction, the change in the bath particle
number satisfies ΔNB,γ + ΔNL,γ = 0, where ΔNL,γ ≡ Tr

{
N̂L,γ[ρL,γ(t) − ρL,γ(0)]

}
is the change in the lead particle number. This leads to

ΔQγ

kBTγ(E) = − log
(1 ∓ fγ(E)

fγ(E)

)
ΔNL,γ = log

(1 ∓ fγ(E)
fγ(E)

)
〈Qγ〉, (3.39)

where we recognize that, since ρL,γ(t) = ργ,in, and ρL,γ(0) = ργ,out, the change in
the lead particle number ΔNL,γ in the interaction with the bath is the opposite
of the average number of transferred particles 〈Qγ〉 during the scattering process.
This connection between the bath entropy production and the stochastic number
of transferred particles Qγ extends to each realization when we introduce the
stochastic entropy production sγ as

sγ ≡ kB log
(1 ∓ fγ(E)

fγ(E)

)
Qγ. (3.40)

This allows us to study the fluctuations in the entropy production through Eq. (3.26),
and was done, for instance, in Paper V.

To summarize, in this Section we discussed Landauer-Büttiker theory from an
alternative point of view, in which the measurement of the particle number plays
a crucial role in determining the fluctuations of the currents. Furthermore, with
this approach we can distinguish between the entropy produced in the scattering
and the one produced in the baths, as well as introduce a notion of stochastic
entropy production. In this description, we considered ideal measurements of the
particle numbers in the leads. These measurements did not destroy any coher-
ence in the states because the latter were already (block-)diagonal in the particle
number eigenspaces. This approach opens up for the possibility of having gener-
alized measurements that are not ideal, or that affect the states in a non-trivial
way. A possible playground in which the action of such generalized measurements
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can be investigated are periodically driven coherent scatterers. Here, the driving
establishes coherences between different energies. Thus, a measurement of, e.g.,
the energy of the state would affect the statistics of energy transport.

3.2 Perturbative approach to transport
In the previous section we described transport in a system with negligible particle-
particle interaction, such that the unitary evolution of the system could be split
into single-particle evolutions. Here instead we present a framework where particle-
particle interactions can be sizable. However, this framework is limited to the weak
coupling regime. In particular, the coupling strength is treated perturbatively, and
transport quantities are calculated under this approximation.

The system is described by the Hamiltonian Ĥ = Ĥ0 + V̂ (t), where Ĥ0 is the
arbitrary unperturbed Hamiltonian and V̂ (t) is the weak coupling of the form

V̂ (t) = Âe−iωt + Â†eiωt, (3.41)

where ω is the frequency of the external driving, as sketched in Fig. 3.5. De-
pending on the context, this frequency has different origins. For example, if one
considers an atom coupled to a single bosonic mode, within the rotating wave ap-
proximation, the coupling takes the form of Eq. (3.41) with ω being the detuning
between the cavity and atom frequencies. There, one typically applies a unitary
transformation to move into the so-called rotating frame, where the unperturbed
Hamiltonian Ĥ0 is modified and V̂ (t) loses its time-dependence [124]. Amusingly,
the opposite transformation is often sought after in tunnel-coupled electronic sys-
tems subject to a voltage bias. There, the unpertubed Hamiltonian Ĥ0 contains
a term of the form μN̂ , with μ being the chemical potential and N̂ being the
number operator, while the tunnel coupling takes the form of Eq. (3.41) with
ω = 0. In such systems, one often applies a unitary transformation (sometimes
called gauge transformation) to eliminate the chemical potential dependence in
the unperturbed Hamiltonian to gain the frequency ω = Δμ/� in the tunnel
coupling [58].

Ĥ0
Â

Â†

�ω

�ω

Figure 3.5: Sketch of a system with unperturbed Hamiltonian Ĥ0 weakly driven with
the coupling operators Â, Â† while absorbing or emitting energy quanta �ω.
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3.2.1 Time evolution and transition rates
The full unitary evolution of the system from time 0 to time t is given by Û(t, 0)

Û(t, 0) = T
{

e− i
�

∫ t

0 ds[Ĥ0+V̂ (t)]
}

≈ Û0(t, 0) + δÛ(t, 0) (3.42)

where T {· · · } is the time-ordering operation. We approximate this unitary evo-
lution up to the first order contribution in the coupling V̂ (t) using the terms

Û0(t, 0) ≡ e−iĤ0t/�, (3.43a)

δÛ(t, 0) ≡ − i

�

∫ t

0
dx Û0(t, x)V̂ (x)Û0(x, 0). (3.43b)

From Eq. (3.43b), we already see how the coupling V̂ (t) induces transitions in the
system. In particular, since the coupling V̂ (t) does not generally commute with
the unperturbed Hamiltonian Ĥ0, transitions between the eigenstates {|a〉} of the
unperturbed Hamiltonian Ĥ0 will happen. Here, we are interested in the rates
of such transitions. To this end, we employ the two-point measurement scheme
described in Sec. 2.1. First, a measurement is done at t = 0 on the initial state
ρ(0) which has outcome a with probability

p(a, 0) = Tr {|a〉〈a| ρ(0)} . (3.44)

Then, we let the system evolve for time t and perform a second measurement.
From now on we define εba ≡ εb − εa the difference of two energy eigenenergies
Ĥ0 |a〉 = εa |a〉 and the matrix element Aba ≡ 〈b|Â|a〉. The second measurement
is then performed and has outcome b with probability

p(b, t|a, 0) = | 〈b|Û(t, 0)|a〉 |2 (3.45)

conditioned on the outcome of the first measurement. In the case b �= a, we
expand perturbatively the (conditioned) probability in Eq. (3.45) associated to
the outcome b as

p(b, t|a, 0) ≈ | 〈b|Û0(t, 0) + δÛ(t, 0)|a〉 |2

≈
∣∣∣∣∣∣δba − i

⎡⎣Aba
e−iωt − e−iεbat/�

εba − �ω
+ A∗

ab

eiωt − e−iεbat/�

εba + �ω

⎤⎦∣∣∣∣∣∣
2

≈ |Aba|2
2 − 2 cos

[(
εba

�
− ω

)
t
]

(εba − �ω)2 + |Aab|2
2 − 2 cos

[(
εba

�
+ ω

)
t
]

(εba + �ω)2 ,

(3.46)

where we assumed that the coupling operator Â satisfies AabAba = 0 for all a, b.
This means that only one of the transitions |a〉 → |b〉 and |b〉 → |a〉 is possible
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with the absorption of one quantum �ω. Taking the time-derivative yields

∂tp(b, t|a, 0) ≈ 2
�

|Aba|2
sin

[(
εba

�
− ω

)
t
]

εba − �ω
+ 2

�
|Aab|2

sin
[(

εba

�
+ ω

)
t
]

εba + �ω
,

t→∞→ 2π

�
|Aba|2δ (εba − �ω) + 2π

�
|Aab|2δ (εba + �ω) ,

(3.47)

where the long-time limit is taken while keeping |Aba|t
�

� 1 such that the perturba-
tive approach remains valid. Now, suppose witout loss of generality that Aba �= 0
and Aab = 0, then only the first term in Eq. (3.47) does not vanish. In this case,
the transition rate of the process |a〉 → |b〉 in which one quantum �ω was absorbed
reads

Γa→b = ∂tp(b, t|a, 0)p(a) = 2π

�
δ(εba − �ω)|Aba|2pa. (3.48)

Conversely, in the time-derivative of the conditional probability p(a, t|b, 0), only
the second term in Eq. (3.47) contributes. Then, the transition of the process
|b〉 → |a〉 in which one quantum �ω was emitted reads

Γa←b = ∂tp(a, t|b, 0)p(b) = 2π

�
δ(εba − �ω)|Aba|2pb. (3.49)

Note that these transition rates satisfy

Γa→b

Γa←b
= pa

pb
. (3.50)

A the special case is the one in which the system is prepared in a Gibbs state
with inverse temperature β ≡ (kBT )−1

ρ(0) = τ = e−βĤ0

Z
, (3.51)

where Z = Tr
{

e−βĤ0
}

is the partition function. Indeed, for this thermal state,
Eq. (3.50) loses the dependence on the initial and final states’ energies, and reduces
to the detailed balance condition

Γa→b

Γa←b
= e−β(εa−εb) = eβ�ω (3.52)

because of the delta distribution in the transition rates, see Eqs. (3.48, 3.49). This
property is used later in Sec. 3.2.2 to link the average current with its noise in
systems without any temperature bias.

Indeed, the transition rates of Eqs. (3.48, 3.49) can be used to calculate trans-
port properties. For instance, summing over all possible initial and final states
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we find the spectral representation of absorption and emission rates [42]

Γ→ =
∑
a,b

Γa→b =
∑
a,b

2π

�
δ(εba − �ω)|Aba|2pa, (3.53a)

Γ← =
∑
a,b

Γa←b =
∑
a,b

2π

�
δ(εba − �ω)|Aba|2pb. (3.53b)

3.2.2 Current and noise
It is also possible to consider not only the absorption and emission rates, but
also the rate of change in an observable Ô. Here we assume that such an observ-
able Ô commutes with the unperturbed Hamiltonian Ĥ0, i.e. [Ô, Ĥ0] = 0. This
guarantees that {|a〉} is also an eigenbasis of Ô. We refer to the corresponding
eigenvalues as {qa}, i.e. Ô |a〉 = qa |a〉. Then, we calculate the average current
I associated to the change in Ô and its zero-frequency noise SI . Specifically, we
define for the transition a → b from the state |a〉 to the state |b〉 the stochastic
variable Q ≡ qb − qa accounting for the change in the observable Ô. Then, taking
the time-derivative of the average and variance of Q we have

I = ∂t〈Q〉 =
∑
a,b

(qb − qa)(Γa→b − Γa←b), (3.54a)

SI = ∂tVar[Q] ≈
∑
a,b

(qb − qa)2(Γa→b + Γa←b). (3.54b)

In the noise, the contribution of 〈Q〉2 is neglected because it is at higher order in
the coupling.

In the special case when the observable Ô fulfils the following commutation
relation with the coupling operator Â

[Ô, Â] = qÂ, (3.55)

the current and its noise can be simplified. Indeed, the commutation relation of
Eq. (3.55) means that each transition induced by Â transfers exactly the amount
q of the observable.

Example:
Consider the tunneling Hamiltonian

V̂ (t) = g
(
(â†)nb̂e−iωt + b̂†(â)neiωt

)
,

with â, b̂ bosonic ladder operators. Then, the Â operator is Â = g(â†)nb̂. Let the
considered observable be the number operator Ô = â†â. Then, the commutator
between the number operator and the Â operator reads

[Ô, Â] = g[â†â, (â†)n]b̂ = gn(â†)nb̂
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meaning that q = n is the number of particles “a” created by removing a particle
“b”.
If instead the coupling is

V̂ (t) = g
(
(â†)nb̂ + (â†)mĉ

)
e−iωt + h.c.

and the observable considered is again the particle number Ô = â†â, then the
commutator reads

[Ô, Â] = g[â†â, (â†)nb̂ + (â†)mĉ] = g
(
n(â†)nb̂ + m(â†)mĉ

)
�= qÂ.

In this case the coupling operator contains two processes that generate a differ-
ent number of particles, and the commutation relation of Eq. (3.55) no longer
holds.

Then, the average current and its noise take on the simpler form

I =
∑
a,b

q(Γa→b − Γa←b) = q (Γ→ − Γ←) , (3.56a)

SI =
∑
a,b

q2(Γa→b + Γa←b) = q2 (Γ→ + Γ←) , (3.56b)

and become proportional to the difference and the sum of the absorption and
emission rates, respectively. In this form it is easy to see that the noise is always
super-Poissonian [125, 126], i.e. SI ≥ |qI|, since both absorption and emission
rates are positive by definition. Furthermore, if the state is prepared in the Gibbs
state Eq. (3.51) we can use the simplified detailed balance relation of Eq. (3.52)
to relate the average current and its noise. Starting from Eq. (3.56b) we have [58,
59]

SI = q2 ∑
a,b

Γa→b

(
1 + Γa←b

Γa→b

)
= q2 ∑

a,b

Γa→b

(
1 + e−β�ω

)

= q2 ∑
a,b

Γa→b

(
1 − e−β�ω

)
coth

(
β�ω

2

)
= qI coth

(
β�ω

2

)
.

(3.57)

This well known result relates the noise and the current even in the presence of
an external drive, and has proven particularly useful in the context of electronic
transport, where the driving frequency is associated to the voltage bias [58, 59,
125]. Indeed, the ω-dependence of Eq. (3.57) allows to explore two different
regimes, and the transition between them. The first regime happens for small
driving frequencies, i.e. β�ω � 1. Then, Eq. (3.57) reduces to the Johnson-
Nyquist noise [40, 41] which we discussed in Sec. 2.3,

SI ≈ 2qkBT ∂ωI|ω=0 (3.58)
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where we substituted β−1 = kBT to highlight the dependence on the temperature.
Indeed, this relation enables to infer the temperature of a sample by measuring
the current noise SI , and the conductance q ∂ωI|ω=0. Instead, for large driving
frequencies, i.e. β�ω � 1, Eq. (3.57) reduces to

SI ≈ |qI|, (3.59)

making the noise proportional to the current. This is referred to as Schottky
regime [114], and is used to determine the amount q of the observable transferred
by taking the ratio of the measured noise and current. For instance, this technique
has been used to detect Cooper pair transfers [30, 31], or even the exchange of
fractional charges in the fractional quantum Hall effect [28, 29]. Naturally, the
current and the noise of Eqs. (3.54, 3.56) can be and have been derived without
the use of the two-point measurement scheme by studying the current operator

Î(t) = − i

�

[
Ô, Ĥ(t)

]
. (3.60)

The average current is obtained by taking the expectation value of Î, and the
noise through the current-current correlations as

I = 〈Î(t)〉, (3.61a)

SI =
∫ ∞

−∞
dt〈δÎ(t)δÎ(0)〉, (3.61b)

with δÎ(t) ≡ Î(t) − I. Under the same assumptions of weak-coupling and absence
of a temperature bias, Eq. (3.57) is derived. Beyond these assumptions, the
relation between the noise and the current is not straigthforward, and the noise
can have more intricate features. However, these features cannot be arbitrary.
Indeed, in Chapter 4, we show that there are constraints on the noise that depend
on the thermodynamic condition of the system. Specifically, in Paper IV and in
Sec. 4.2 we study the noise within the weak-coupling approximation presented in
this section, but we allow for a temperature bias. This makes the simple detailed
balance relation of Eq. (3.52) break down, and, consequently, the noise does not
satisfy Eq. (3.57) any more. Still, the transition rates (and therefore also the noise)
are constrained by the heat dissipation required to establish the temperature bias.





4 Constraints on out-of-equilibrium
noise

This chapter puts in relation the main results of the appended papers. All of them
put forward inequalities involving the noise in out-of-equilibrium systems. Specif-
ically, Sec. 4.1 summarizes the main results of Papers I-III, Sec. 4.2 addresses
Paper IV, and Sec. 4.3 focuses on Papers V,VI. In the former two sections we
establish constraints on the out-of-equilibrium noise generated by a temperature
bias, which is of interest for heat engines. These results therefore go beyond the
fluctuation-dissipation theorem decribed in Sec. 2.3, where the response coeffi-
cients are calculated at equilibrium, as in Eq. (2.36b). Additionally, the presence
of a temperature bias complements previous relations between current and noise
that require a uniform temperature in the system, as in Eq. (3.57). Crucially, the
constraints of Papers I-IV can be saturated in the presence of a large temperature
bias. Thus, they provide additional insigths into the noise in far-from-equilibrium
setups. In Sec. 4.3 the constraints on the noise take the form of an upper-bound
on the precision of an arbitrary current, namely on the ratio betwen the squared
average current and its noise. We identify such a constraint with the kinetic
uncertainty relations discussed in Sec. 2.4.2. Indeed, in the classical limit, the
upper-bound reduces to the dynamical activity, see Eq. (2.54). However, when
quantum effects are included, the precision can exceed the limit set by the (clas-
sical) dynamical activity. In Markovian open quantum systems the dynamical
activity was modified to take into account the (coherent) quantum dynamics [22,
24, 25, 27]. In a similar fashion, in Paper VI we show how the limits on the pre-
cision are modified in coherent scatterers. Furthermore, we express these limits
in terms of experimentally accessible quantities, like the particle current and its
noise. Interestingly, the limits on the precision depend strongly on whether the
system is bosonic or fermionic. This difference is, at its core, due to the bunching
or anti-bunching of bosons or fermions, respectively, which diminish or enhance
the maximum attainable precision.

4.1 Out-of-equilibrium fluctuation-dissipation bound
Papers I-III deal with the noise in fermionic systems described by scattering the-
ory, see Sec. 3.1, subject to external temperature, chemical potential, or spin
biases. Papers I, II focus on a two-terminal setup under a combination of biases

47
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E

f(E)

ε̃

Figure 4.1: A hot (red) and a cold (blue) Fermi distribution as functions of energy.
They cross only at the energy ε̃. For energies larger than ε̃ the hotter distribution is
larger than the cold one, and vice-versa.

for which the average current vanishes. This condition is particularly relevant
when studying devices operating close to their thermovoltage, where the average
charge current vanishes, or in the stalling condition for other kinds of currents.
Furthermore, having out-of-equilibrium noise at zero average current has recently
attracted interest in the context of the so-called delta-T noise [34–36]. This noise
is an instance of out-of-equilibrium noise generated by a temperature bias, hence
the name. Indeed, in the presence of a temperature bias, the noise is not simply
the sum of thermal noises at different temperatures, but some additional noise
is also present. This additional out-of-equilibrium noise was measured recently
for the first time, paving the way for both experimental and theoretical studies
on the opportunities for spectroscopy offered by the delta-T noise [92, 127–138].
Papers I, II were written within this context, and extend the analysis of delta-T
noise to other kinds of currents and to more general bias combinations.

Paper III generalizes the results of Papers I, II to arbitrary many terminals and
arbitrary biases, thereby allowing for nonvanishing average charge current. This
allowed us to extend the reach of Paper III beyond the delta-T noise and to com-
pare its results with the fluctuation-dissipation theorem and the thermodynamic
uncertainty relation, which we discussed in Chapter 2. Indeed, the results of Pa-
per III not only hold when the system is producing power, but they also establish
constraints between this average power produced and its noise. For this reason
we now focus on the inequalities published in Paper III, which relate the average
charge current (or power) to their noise at a given out-of-equilibrium condition.

The main idea that allowed to prove such inequalities is the observation that,
given two Fermi distributions at different temperatures and possibly different
chemical potentials, say fhot(E) and fcold(E), there is exactly one energy ε̃ for
which fhot(ε̃) = fcold(ε̃). Calling Thot/cold, μhot/cold the temperatures and chemical
potentials of the hot/cold Fermi distribution such that Thot > Tcold, this crossing
energy reads

ε̃ = μcoldThot − μhotTcold

Thot − Tcold
. (4.1)

The crossing energy is not only unique, but also determines which Fermi distri-
bution is larger. Indeed, for E ≷ ε̃, we always have that fhot(E) ≷ fcold(E),
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(a)

I, SI

r 2

1

(b)

I = 0, SI
eq,hot

r 2

1

Figure 4.2: (a): Out-of-equilibrium setup in which reservoir 1 is the hottest. The
other reservoirs 2, · · · , r have different temperatures and chemical potentials. An av-
erage current I flows into reservoir 1 with noise SI . (b): Hot equilibrium setup in
which all reservoirs have the same (hot) temperature and chemical potential as reser-
voir 1. On average, no current flows into reservoir 1, but there is still the equilibrium
noise SI

eq,hot.

as shown in Fig. 4.1. If transport were to happen only at energies close to ε̃,
it would be hard to distinguish between the out-of-equilibrium setup, where the
temperature and potential bias are present, and the equilibrium setup. This prop-
erty of the Fermi distributions suggests to compare the out-of-equilibrium setup
in which the terminals have different temperatures and chemical potentials with
the equilibrium setup in which there is no bias. Such a comparison is not only
appealing from a technical point of view, but also from a practical one: Before
operating the device out of equilibrium, it is often useful to “benchmark” its noise
at equilibrium. Indeed, this equilibrium noise acts a natural reference for the out-
of-equilibrium noise, especially since, at equilibrium, the fluctuation-dissipation
theorem discussed in Sec. 2.3 applies, and the equilibrium noise takes a much
simpler form.

First, we compare the out-of-equilibrium setup, see Fig. 4.2a, to the hot equilib-
rium setup, see Fig. 4.2b. In the latter, all temperatures and chemical potentials
are the same as the hottest terminal in the out-of-equilibrium setup. We focus on
the difference between the charge-current noise measured in the hottest contact
in these two setups, i.e. SI − SI

eq,hot. Here, we use the crossing property of the
Fermi distributions discussed previously combined with the fact that fhot(E) is
a monotonically decreasing function of energy to establish an inequality between
this excess charge-current noise and the average current I in the out-of-equilibrium
setup. Note that the crossing property and the monotonicity of the occupations
fhot/cold(E) are the necessary conditions to establish the inequality. This means
that, while having thermal Fermi distributions as occupations is sufficient, the
result also holds for more general nonthermal occupations, i.e. occupations that
do not have a well-defined temperature and chemical potential, as long as they
satisfy the crossing and monotonicity conditions. In the two-terminal case the
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inequality reads
SI − SI

eq,hot ≤ −qIhot tanh
( Δμ

2kBΔT

)
, (4.2)

where q is the particle charge and the biases are defined as ΔT ≡ Thot −Tcold > 0,
Δμ ≡ μhot − μcold. The average current Ihot in the out-of-equilibrium setup is
positive when flowing into the hot contact, and SI is its noise, whereas SI

eq,hot is
the current noise in the hot equilibrium setup. Notably, Eq. (4.2) holds for any
temperatures Thot > Tcold, any chemical potentials, and any scattering matrix.
The same insight can also be used to compare the noise in the out-of-equilibrium
setup with the noise in the cold equilibrium setup. In this equilibrium setup all
temperatures and chemical potentials are the same as the coldest terminal in the
out-of-equilibrium setup. In constrast with Eq. (4.2), the inequality generated
by this comparison has the opposite direction, and applies only to the classical
component of the out-of-equilibrium noise SI,cl, namely

SI,cl − SI
eq,cold ≥ −qIcold tanh

( Δμ

2kBΔT

)
, (4.3)

where the average current Icold is positive when flowing into the cold contact,
and SI

eq, cold is the current noise in the cold equilibrium setup. Indeed, one would
expect the (large) hot thermal noise SI

eq,hot to be an upper-bound for the out-of-
equilibrium noise, and the (small) cold thermal noise SI

eq,cold to be a lower-bound.
This intuition is confirmed and honed by Eqs. (4.2, 4.3), where the average current
and the biases affect the upper and lower bounds. However, the change in the
direction of the inequality in Eq. (4.3) is the reason why it is limited to the
classical noise contribution [Eq. (3.27a)] only. Indeed, unlike Eq. (4.2), here we
cannot use the negativity of the quantum contribution to the noise [Eq. (3.27b)]
of fermionic particles to extend the inequality to the full current noise. Still, in
the weak-coupling regime, the quantum noise contributions are negligible, and
Eq. (4.3) provides a lower bound on the out-of-equilbrium noise.

Both Eqs. (4.2, 4.3) can be generalized to the multi-terminal case, see Paper III,
and, for Ihot = 0, Eq. (4.2) reproduces the results of Papers I, II. In these latter
papers, instead of splitting the noise into a “classical” and a “quantum” contri-
bution, we decompose it in the sum of thermal noise contributions ΘI

hot/cold and
a shot noise contribution SI

shot, i.e. SI = ΘI
hot + ΘI

cold + SI
shot. The thermal and

shot contributions are given by

ΘI
hot/cold ≡ q2

h

∫
dED(E)fhot/cold(E)[1 − fhot/cold(E)], (4.4a)

SI
shot ≡ q2

h

∫
dED(E)[1 − D(E)][fhot(E) − fcold(E)]2, (4.4b)

where D(E) is the transmission probability at energy E. This decomposition is
common in the context of delta-T noise, where one is particularly interested in
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the deviations of the total noise from the thermal noise alone. Indeed, when no
bias is present, the noise is given only by the thermal noise. In particular, in hot
equilibrium setup the noise reads SI

eq,hot = 2ΘI
hot. Instead, when a temperature

bias is present, the additional noise SI
shot is present on top of the thermal noises at

the different temperatures ΘI
hot +ΘI

cold. For this reason, we identify the shot noise
contribution with the delta-T noise. Then, substituting this noise decomposition
into Eq. (4.2) we find

SI
shot ≤ ΘI

hot − ΘI
cold − qIhot tanh

( Δμ

2kBΔT

)
Ihot=0= ΘI

hot − ΘI
cold. (4.5)

In the zero-current condition Ihot = 0, Eq. (4.5) reduces to the constraint of
Papers I, II, which states that the shot noise contribution that arises out-of-
equilibrium is limited by the difference in the thermal noises. However, as shown
in Papers I, II, Eq. (4.5) does not hold for any kind of current. Indeed, energy
and heat currents do not fulfil such an inequality because the quantity transferred
is energy-dependent. Then, with an appropriate choice of the scattering matrix,
it is possible to violate the inequality even in the absence of an average current.
This is not the case for the particle and the charge current, where the quantity
transferred is energy-independent.

This requirement of constant amount of quantity transferred is not peculiar of
the results presented here, but is also necessary to derive the relation between
current and noise of Eq. (3.57). However, unlike the extension of the fluctuation-
dissipation theorem of Eq. (3.57), the fluctuation-dissipation bound of Eq. (4.2)
also holds in the presence of a temperature bias and is not limited to the weak-
coupling regime. A crucial difference is furthermore that Eq. (3.57) is an equality,
whereas Eq. (4.2) is an inequality. Thus, if the temperature bias is much smaller
than the chemical potential bias |Δμ|, Eq. (4.2) is less informative than Eq. (3.57).
However, the fluctuation-dissipation bound shines when the temperature bias is
sizable, i.e. when Eq. (3.57) does not hold. Indeed, inequality Eq. (4.2) can
be saturated when one takes the weak-coupling limit [which is also required for
Eq. (3.57)], and when the temperature bias ΔT is the largest energy scale, such
that kBThot � γ � kBTcold, where γ is the energy-width of the transmission win-
dow generated by the scattering matrix. The latter requirement is in stark con-
trast with Eq. (3.57), where instead the temperature bias needs to be the smallest
energy scale. Thus, the fluctuation-dissipation bound of Eq. (4.2) complements
the previously known results on noise by including the effect of a temperature
bias, and, by becoming an equality in the far-from-equilibrium case where the
temperature bias is large.

Having a temperature bias is not only interesting in the context of out-of-
equilibrium noise, but is also instrumental for thermoelectric devices. There,
the temperature bias is used to drive a current against a chemical potential bias
Δμ, thereby generating the average (electro-chemical) power P = Ihot

Δμ
q . This
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connection between the power and the current allows us to study how the noise
is related to the power using Eq. (4.2). A first connection between them is seen
in the large temperature bias limit, where Eq. (4.2) becomes

SI − SI
eq,hot ≤ − q2

2kB

P

ΔT
, for kBΔT � |Δμ|, (4.6)

which tells us that, if the device is generating power, i.e. P > 0, then the noise
in the out-of-equilibrium setup is necessarily smaller than the noise in the hot
equilibrium setup. Conversely, if the device is dissipating power, i.e. P < 0, then
the out-of-equilibrium noise can be larger than the hot equilibrium noise, but by
at most a factor proportional to the power.

Furthermore, since the power P is proportional to the current, one can write
Eq. (4.2) for the noise of the power SP rather than current noise SI . Then, using
the decomposition in thermal noise and shot noise of Eq. (4.4), we find

SP ≥ ΘP
hot − ΘP

cold − SP
shot ≥ PΔμ tanh

( Δμ

2kBΔT

)
, (4.7)

where SP is the noise in the power, while ΘP
hot/cold and SP

shot are its hot/cold
thermal and shot noise contributions. Equation 4.7 tells us that, to have large
average power P , it is necessary to have large hot thermal noise ΘP

hot, and small
cold thermal noise ΘP

cold and shot noise SP
shot. This is understood in terms of having

a large hot temperature, a small cold temperature, and a scattering matrix that is
either fully transmitting or fully reflecting, which does not produce any “friction”
in the particle flow. Furthermore, the inequalities of Eq. (4.7) tells us that that a
minimum amout of noise in the power output is required to produce the average
power P .

The necessity of having noise to produce a finite average power reminds us of
the thermodynamic uncertainty relation of Sec. 2.4.1. However, unlike Eq. (4.7),
the TUR can be violated in systems described by scattering theory [88, 89, 91–
96]. Such violations of the TUR are also possible when the device is producing
power [90]. Furthermore, in contrast with the TUR, Eq. (4.7) does not expliticitely
contain the entropy production. We address this latter issue by using the first
and second law of thermodynamics to make Eq. (4.7) resemble the thermodynamic
uncertainty relation, as detailed in App. E. We obtain the following constraint on
the precision of the power output

P 2

SP
≤ σ̇cold

kBg
(

Δμ
kBΔT

) ≥ σ̇

kBg
(

Δμ
kBΔT

) , (4.8)

where g(x) ≡ x tanh(x/2), while σ̇ and σ̇cold are, respectively, the global en-
tropy production rate and the entropy current in the cold contact. The second
inequality of Eq. (4.8) stems from requiring positive power production P > 0.
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Crucially, this second inequality shows that it is not the global entropy produc-
tion σ̇ that sets a limit on the power precision, but only the entropy production in
the cold contact σ̇cold. Furthermore, the biases determining the out-of-equilibrium
condition, Δμ and ΔT also affect the maximum precision by entering in the func-
tion g(Δμ/kBΔT ). Moreover, one can write the limit on the power precision of
Eq. (4.8) in terms of the efficiency η ≡ P/(−Jhot) as

P

SP

η

1 − η
kBTcoldg

( Δμ

kBΔT

)
≤ 1, (4.9)

which now gives a trade-off relation between the average power P , its noise SP ,
and the efficiency η at which the power is produced. The crucial difference of
having the local entropy production σ̇cold instead of the global one σ̇ in Eq. (4.8)
is now reflected in the 1 − η term at the denominator. Indeed, in the TUR,
the efficiency shows up as η/(ηC − η), with ηC being the Carnot efficiency [12].
Interestingly, when Thot � Tcold, this difference becomes negligible as ηC ≈ 1. In
this case, Eq. (4.9) tells us that, as long as the noise SP does not diverge, when
the efficiency η approaches the Carnot efficiency ηC ≈ 1, the average power P
necessarily approaches 0. However, at finite temperature Thot, Eq. (4.9) does not
forbid finite power production at Carnot efficiency. Still, this was shown to be
impossible by finding the maximum efficiency at any given power output [139,
140]. However, when maximizing the efficiency, one does not take into account
the noise SP of the power output. Therefore, if one is interested not only in the
average power P and the efficiency η at which this power is produced, but also in
the noise SP of the output power, Eq. (4.9) provides a trade-off relation between
them.

4.2 Thermodynamic and energetic costs of
transition rates

While the results presented in Sec. 4.1 hold in the presence of arbitrary biases, they
were derived within the scattering theory formalism, in which particle-particle in-
teractions are neglected. Therefore, the extent to which those results hold in the
presence of possibly strong interactions is an open question. Still, the idea pre-
sented in Sec. 4.1 of comparing the out-of-equilibrium setup with the equilibrium
one does not depend on the formalism used to describe transport. Indeed, in
Paper IV we use this idea, albeit in a slightly different fashion, on the formalism
described in Sec. 3.2. Here, two subsystems, L and R, have possibly strong (lo-
cal) interactions, thereby going beyond the scattering theory formalism used in
Sec. 4.1, but they are coupled weakly. Specifically, the subsystems are described
by their own arbitrary Hamiltonians ĤL,R, while the coupling takes the form of
Eq. (3.41), and is treated perturbatively. This coupling induces transitions be-
tween the subsystems at the rates Γ�, see Eq. (3.53), which fully determine the
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average current and its noise. For this reason, we compare the out-of-equilibrium
setup with the equilibrium one already at the level of the transition rates to find
how they are constrained out of equilibrium.

Already at this point we can understand why the comparison between the out-
of-equilibrium setup and the equilibrium one differs from the one in Sec. 4.1: Since
we are considering arbitrary Hamiltonians ĤL,R, the state occupation in each sub-
system is generally not described by the Fermi function. Indeed, each local Hamil-
tonian can also describe bosons, or even a combination of bosons and fermions.
Furthermore, even if the subsystems were comprised solely by fermions, the pres-
ence of interactions disrupts the single-particle average occupation described by
the Fermi function. Therefore, to compare the out-of-equilibrium setup in which
a temperature bias is present with the one in which it is absent, we consider states
that are tensor products of Gibbs states τα(β), namely

ρ(βL, βR) = τL(βL) ⊗ τR(βR) = e−βLĤL

ZL(βL) ⊗ e−βRĤR

ZR(βR) , (4.10)

where βα is the inverse temperature of the α ∈ {L, R} subsystems, and Zα(β) =
Trα

{
e−βĤα

}
is the corresponding partition function. Note that this choice of

states is well justified within the weak-coupling approach. The occupation prob-
ability p(L)

n (β) of the eigenstate |n〉 of ĤL with energy ε(L)
n , follows a Boltzmann

distribution,

p(L)
n (β) = e−βε

(L)
n

ZL(β) , (4.11)

satisfying the same properties that were highlighted for the Fermi functions in
Sec. 4.1. Namely, two such occupations at different temperatures, p(L)

n (βL) and
p(L)

n (βR), with βR > βL, cross exactly once at the energy ε̃(L), given by

ε̃(L) = 1
βR − βL

log ZL(βL)
ZL(βR) . (4.12)

Furthermore, as in Sec. 4.1, for ε(L)
n ≷ ε̃(L) we always have p(L)

n (βL) ≷ p(L)
n (βR), as

shown in Fig. 4.3. This means that the following inequality holds for any βR > βL

[p(L)
n (βL) − p(L)

n (βR)][ε(L)
n − ε̃(L)] ≥ 0. (4.13)

This property only depends on the properties of the Gibbs state, and can therefore
be used to constraint the two-point probability distributions discussed in Sec. 2.1.
Indeed, multiplying Eq. (4.13) by the conditioned probability Eq. (3.45) we find
an inequality that relates the probabilities of observing the same transition under
different (thermal) initial conditions. Since we are exploiting only the properties
of the initial states, this inequality holds for any unitary transformation. How-
ever, we now focus on the case in which the unitary transformation is treated
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Figure 4.3: A hot (red) and a cold (blue) Boltzmann distribution as functions of
energy. They cross only at the energy ε̃(L). For energies larger than ε̃(L) the hotter
distribution is larger, and vice-versa.

perturbatively in the coupling, as discussed in Sec. 3.2, which allows for a simpler
description of the current and its noise.

Like in Sec. 4.1, if all transitions happened close to energy ε̃(L), the rates
Γ�(βL, βR) in the setup with the temperature bias, in which the state is ρ(βL, βR),
would coincide with the rates Γ�(βR, βR) in the setup without the temperature
bias, in which the state is ρ(βR, βR). Furthermore, when the temperature bias is
absent, the current and its noise obtained from the rates satisfy Eq. (3.57), which
extends the fluctuation-dissipation theorem. For these reasons, we compare the
out-of-equilibrium setup determined by a temperature bias with the equilibrium
one in which the subsystems have the same temperature. In this comparison we
only change the L subsystem’s temperature, and keep the full Hamiltonian (in-
cluding the coupling between the subsystems) unchanged. We study two different
ways to implement such a comparison: The first one can be understood in terms
of a fictitious thermodynamic cycle in which we heat up and cool down the L
subsystem using a cold and a hot bath, while the second one consists of a heat-
ing stroke in which the temperature of the L subsystem slowly increases. These
two fictitious protocol implementations are depicted in Fig. 4.4 and lead to two
similar constraints on the out-of-equilibrium transition rates. The main difference
between them is that, in the thermodynamic cycle, the heat dissipation plays a
crucial role in the constraint, whereas in the heating stroke the energy needed to
change the temperature of the L subsystem does.

Let’s discuss the thermodynamic cycle first, see Fig. 4.4a. Other than the two
subsystems L, R, we also include two macroscopic baths that we use to change
the temperature of the L subsystem. Starting from the equilibrium condition in
which both subsystem are at the cold temperature kBTR = 1/βR, the following
protocol is carried out.
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Figure 4.4: (a): Thermodynamic cycle of a fictitious experiment. (i) The subsys-
tem have the same (cold) temperature. (ii) The L subsystem is heated up by a bath,
extracting work in the process. (iii) The subsystems have different temperatures. (iv)
The L subsystems is cooled down to its initial temperature by a bath, extracting work
in the process. (b): Heating stroke of the L subsystem. As the temperature increases
from TR to TL, the transition rates and the absorbed energy at each intermediate tem-
perature are monitored.

(i) Equilibrium rates: Transitions happen between the two subsystems at the
rates Γ�(βR, βR).

(ii) Heating: The hot bath at temperature kBTL = 1/βL is brought into contact
with the L subsystem. Heat flows from the bath and is dissipated in the sub-
system until the latter reaches the bath temperature TL. While the heating
takes place it is possible to extract at most the work −ΔF

(h)
L , where

ΔF
(h)
L ≡ ΔUL − TLΔSL (4.14)

is the nonequilibrium free energy change. This depends on the internal energy
variation ΔUL and entropy variation ΔSL, given by

ΔUL ≡ UL(βL) − UL(βR) = Tr
{
ĤL [ρ(βL, βR) − ρ(βR, βR)]

}
(4.15a)

ΔSL ≡ SvN [τL(βL)] − SvN [τL(βR)] , (4.15b)
where SvN[ρ] ≡ −kBTr {ρ log ρ} is the von Neumann entropy. Interestingly,
when the work extraction is maximized, the energy change in the system is
lower-bounded by

ΔUL ≥ −ΔF
(h)
L

TR

TL − TR
≡ −ΔF

(h)
L η(c), (4.16)
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where η(c) is the Carnot efficiency of a refrigerator. Crucially, at the end of
the heating process there is a temperature bias between the two subsystems.

(iii) Out-of-equilibrium rates: In the out-of-equilibrium setup transitions happen
between the two subsystems at the rates Γ�(βL, βR).

(iv) Cooling: To get back to the initial condition, the cold bath at temperature
kBTR = 1/βR is brought into contact with the L subsystem. Heat flows from
the subsystem and is dissipated into the bath until the former reaches the
bath temperature TR. Similarly to the heating step, one can extract at most
the work −ΔF

(c)
L , where

ΔF
(c)
L ≡ −ΔUL + TRΔSL (4.17)

is the nonequilibrium free energy change. Interestingly, when the work ex-
traction is maximized, the heat dissipated in the cold bath is lower-bounded
by

ΔQcold ≥ −ΔF
(c)
L

TR

TL − TR
≡ −ΔF

(c)
L η(h), (4.18)

where η(h) is the Carnot efficiency of a heat pump.

We use the quantities encountered in this cycle to define a thermodynamic cost
as

W(Thermo)
� ≡ −ΔF

(c)
L η(h)Γ�(βL, βR) − ΔF

(h)
L η(c)Γ�(βR, βR), (4.19)

in which the equilibrium and out-of-equilibrium rates are weighted by a lower-
bound of the heat dissipated to establish and deplete, respectively, the tempera-
ture bias. By definition, this cost is positive W(Thermo)

� ≥ 0. However, using the
crossing property of the occupation probabilities, we prove that this thermody-
namic cost is limited by

W(Thermo)
� ≥ W(Resp)

� (4.20)

where the rate response W(Resp)
� is defined as

W(Resp)
� ≡ ∂LΓ�(βL, βR) − ∂LΓ�(βR, βR). (4.21)

Here, ∂Lf(x, y) ≡ ∂f
∂x(x, y) is the derivative with respect to the left argument.

Thus, W(Resp)
� corresponds to the difference between the out-of-equilibrium re-

sponse and the equilibrium response of the rates.
Notably, the rate response W(Resp)

� acts as lower bound also for the constraint
obtained in the heating stroke, see Fig. 4.4b. However, unlike Eq. (4.19), the
cost associated to this process involves only the internal energy UL(β). In the
heating stroke, we continuously increase the temperature of the L subsystem from
the colder TR to the hotter TL. At each intermediate temperature kBT = 1/β
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transition events between the two subsystems happen at the rates Γ�(β, βR), and
to reach the next (infinitesimally larger) temperature, the energy dUL(β) needs
to be provided to the L subsystem. Then, similarly to the thermodynamic cost of
Eq. (4.19), we define the energetic cost by weighting the transition rates by the
energy required to change the temperature of the L subsystem

W(Energy)
� ≡

∫ UL(βL)

UL(βR)
Γ�(β, βR)d[UL(β)]. (4.22)

Like the thermodynamic cost, the energetic cost is also positive W(Energy)
� ≥ 0 by

definition, and lower-bounded by the rate response
W(Energy)

� ≥ W(Resp)
� . (4.23)

Note that both thermodynamic and energetic costs take the form of a transport
quantity, namely the transition rates Γ� multiplied by an extensive quantity of
subsystem L, whereas the rate response contains the temperature-derivative of
the transport quantity only. Therefore, taking the thermodynamic limit on the
L subsystem, we expect different scalings between the left- and right-hand sides
of both thermodynamic and energetic constraints. Indeed, in such a limit, the
thermodynamic and energetic costs dominate over the rate response, making both
constraints Eqs. (4.20, 4.23) trivial. Therefore, in small-scale systems, in which the
thermodynamic limit is not fulfilled, the out-of-equilibrium rates are nontrivially
constrained. Then, it is interesting to know not only when such constraints are
possible, but also when they are tight. This happens trivially at equilibrium,
i.e. when βL = βR, for both thermodynamic and energetic constraints since all
the involved quantities vanish, W(Thermo)

� = W(Energy)
� = W(Resp)

� = 0. However,
it is also possible to approach the equality far from equilibrium, as shown in
Paper IV, where neither the thermodynamic/energetic cost nor the rate response
vanish. Specifically, the thermodynamic constraint Eq. (4.20) is saturated when
the transitions happen close to the crossing energy ε̃(L), whereas the energetic
constraint Eq. (4.23) is saturated when the transitions happen close to the internal
energy UL.

The thermodynamic and energetic constraints of Eqs. (4.20, 4.23) go beyond
the results of Sec. 4.1 by allowing for particle-particle interactions, albeit in the
weak-coupling regime, and by focusing on the transition rates. Indeed, one can
connect the statements on the rates to the current and its noise as long as all
transitions transfer the same amount q of the considered observable. This is the
case, for example, when one considers the particle (or charge) current and the
coupling takes the tunneling form V̂ ∝ (ĉ†

LĉR + ĉ†
RĉL). Then, the current and

its noise fulfil Eq. (3.56), the transition rates Γ� can be written in terms of the
average current I and its noise SI as

2q2Γ→ = SI + qI, (4.24a)
2q2Γ← = SI − qI. (4.24b)
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Therefore, the constraints Eqs. (4.20, 4.23) on the transition rates tell us how
much the noise deviates from the Poissonian regime. Still, the results of Paper IV
are not limited to this case in which all transitions transfer the same amount q
of the observable considered. Indeed, independently on what this observable is,
both constraints (4.20, 4.23) are also valid at the level of the individual transition
rates Γa�b between the states |a〉 and |b〉, see Eqs. (3.48, 3.49). For a general
observable that takes value qa/b on the state |a/b〉, the transition Γa→b transfers
the amount qb − qa, producing a current. The noise of such a current is given by a
linear combination of the rates, see Eq. (3.54). Therefore, this noise is also subject
to the thermodynamic and energetic constraints of Eqs. (4.20, 4.23). This is in
constrast with the results of Sec. 4.1, which do not apply when the transferred
quantity depends on the energy at which the transition happens.

Even though the results of this Section and of Sec. 4.1 both stem from the
idea of comparing the out-of-equiliubrium setup generated by a temperature bias
with the corresponding equilibrium setup, their results are different. This is be-
cause the formalisms in which the comparison is made are different. However,
the perturbative approach reproduces the scattering theory results in the weak-
coupling regime under the necessary conditions, e.g. coupling of the tunneling
form, negligible particle-particle interactions. Therefore, one may wonder what
are the necessary conditions on the local Hamiltonians ĤL,R and the coupling V̂
between the subsystems to recover the fluctuation-dissipation bound of Eq. (4.2)
starting from the perturbative approach of Sec. 3.2.

4.3 Kinetic uncertainty relation in quantum
transport

The results in Sections 4.1 and 4.2 focus on comparing out-of-equilibrium and
equilibrium setups because, in the latter, the fluctuation-dissipation theorem (and
its generalizations) hold. This comparison allowed us to find constraints on the
out-of-equilibrium transport properties, most significantly between the charge cur-
rent and its noise. Another way to compare an average current and its noise is
through the precision, namely the ratio between the average current squared and
its noise. As discussed in Sec. 2.4, trade-off relations limiting the maximum at-
tainable precision were proven in classical Markovian systems. These are the ther-
modynamic and the kinetic uncertainty relations (TUR and KUR), see Eq. (2.48)
and Eq. (2.53) respectively. In the former, the limit on the precision is given by
the entropy production, a measure of dissipation, whereas in the latter, it is given
by the activity, a measure of how many transitions happen in the system. How-
ever, the presence of coherent or non-Markovian dynamics was shown to disrupt
such relations [89, 105]. For instance, systems in which transport is described
by scattering theory, see Sec. 3.1, have been pointed out as examples of systems
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where the classical formations of both TUR and KUR are violated. For this
reason, how such relations need to be modified for quantum or non-Markovian
systems is currently being investigated [24, 27, 93]. Paper VI contributes to this
field of research by studying the kinetic uncertainty relation in quantum transport
setups described by scattering theory. Specifically, we show how to recover the
classical formulation of the KUR, and how to include the quantum effects into
the constraint.

The first step in the proof of the kinetic uncertainty relations for quantum
transport was actually published in Paper V in a very different context. There, we
studied the role of noise in nonequilibrium demons [141, 142], i.e. systems in which
a nonthermal contact is used as a resource to decrease the entropy production in
the rest of the system, even in the absence of average energy or particle flow
from the nonthermal contact. In particular, we showed that the average entropy
production in such a nonthermal contact is limited by a combination of its noise
and the particle current noise. This constraint was later extended in Paper VI
to arbitrary currents, and refined in the form of the KUR. For this reason, we
here focus on the results of Paper VI. These follow from applying the simple
inequalities

x2 − |x| + 1
4 ≥ 0 for x ∈ � (4.25a)

x1 + x2 ≥ |x1 − x2| for x1, x2 ≥ 0 (4.25b)

to the noise S(X)
αα of the current I(X)

α , see Eqs. (3.27) and (3.24), respectively.
Then, as one may expect, the classical component of the noise S(X)cl

αα leads to a
kinetic uncertainty relation analogue to the one in Eq. (2.53), namely

(
I(X)

α

)2

S
(X)cl
αα

≤ S(N)cl
αα = Γ→

α + Γ←
α ≡ Kα (4.26)

where the rates of adding (Γ←
α ) or removing a particle (Γ→

α ) from reservoir α read

Γ←
α = 1

h

∫
dE

∑
β �=α

Dαβ(E)fβ(1 ± fα) (4.27a)

Γ→
α = 1

h

∫
dE

∑
β �=α

Dαβ(E)fα(1 ± fβ) (4.27b)

where the upper sign refers to bosons and the lower to fermions. Here, the activity
Kα only counts the transitions involving reservoir α. Indeed, the transitions that
do not involve reservoir α do not contribute to either the current I(X)

α or its noise
S(X)

αα . Thus, we refer to it as a local activity, which sets a tighter constraint on
the precision compared to the global activity, namely Kα ≤ K ≡ ∑

α Kα.
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Of course, the noise can be well approximated by its classical component only
in some specific regimes, for instance in the tunneling regime, where Dαβ � 1 for
α �= β, or close to equilibrium, where fβ ≈ fα. Here, we want to go beyond such
approximations and consider the general case, in which the quantum contributions
are sizable. Then, to extend the KUR of Eq. (4.26) to the full noise, we need
to treat the quantum noise contribution in more detail. Here, the bosonic or
fermionic nature of the particles play a crucial role because, for the former, the
quantum noise contribution is positive, whereas for the latter it is negative. This
difference in sign is a consequence of the bunching or anti-bunching of particles
in a multi-particle scattering process.

Let’s first focus on the bosonic case. There, we use Cauchy-Schwarz inequality
on the space of square-integrable functions to obtain the following lower bound
on the quantum noise contribution

S
(X)qu
αα,bos = 1

h

∫
dE

⎡⎣xα

∑
β

Dαβ(fβ − fα)
⎤⎦2

≥ h

B
(X)
α

(
I(X)

α

)2 (4.28)

where we introduced the bandwidth B(X)
α in terms of the characteristic function

1A(E) of the set A ≡ supp
{
xα

∑
β Dαβ(fβ − fα)

}
, namely

B(X)
α ≡

∫
dE1A(E), 1A(E) =

{
1 for E ∈ A
0 otherwise . (4.29)

Essentially, the bandwidth is the energy range in which there is, on average, a finite
flow (either positive or negative) of the quantity xα. The bound of Eq. (4.28) then
provides a lower limit on the quantum noise contribution for bosonic transport in
terms of the average current and the bandwidth. Intuitively, this inequality is sat-
urated when the flows of xα are equally distributed over the bandwith, such that
bunching effects are minimized. However, if the bandwidth becomes infinitely
large, B(X)

α → ∞, Eq. (4.28) becomes uninformative since it reduces to the posi-
tivity of the quantum noise contribution. Still, even though the bandwidth B(X)

α

may be infinite in a mathematical sense, in a realistic setup we expect it to be
finite because the contributions at large E are typically exponentially suppressed.
For instance, when fα are Bose-Einstein distributions, their temperature kBT sets
a natural energy scale cut-off (which depends on the desired accuracy) on the
bandwidth because the contributions of energy larger than a multiple of kBT can
be neglected.

As a next step, we combine the constraint on the quantum noise contribution of
Eq. (4.28) with the constraint on the precision of Eq. (4.26) to extend the latter to
the full noise. To this end, we use Eq. (4.28) to estimate from above the classical
contribution to the noise by means of the “bunching-modified” noise

S̃
(X)
αα,bos ≡ S

(X)
αα,bos − h

B
(X)
α

(
I(X)

α

)2 ≥ S
(X)cl
αα,bos, (4.30)
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which is defined in terms of experimentally accessible quantities, namely the full
noise, the current, and the bandwidth. With this notion, the classical KUR of
Eq. (4.26) is extended to the full noise as

(
I(X)

α

)2

S
(X)
αα,bos

≤
S̃

(N)
αα,bos

1 + h

B
(X)
α

S̃
(N)
αα,bos

≤ S
(N)
αα,bos. (4.31)

Here, the bosonic bunching allows not only to set the full particle noise S
(N)
αα,bos as

an upper limit on the precision, but also to establish a tighter constraint in terms
of the bunching-modified noise.

For fermions, we follow a different approach compared to the one in Eq. (4.28),
which is required because the fermionic quantum noise contribution is negative.
Using that the fermionic occupation numbers take values between 0 and 1, fα ∈
[0, 1], we find the following lower bound on the quantum noise contribution

S
(X)qu
αα,fer ≥ −1

h

∫
dE [xα]2 [1 − Dαα]

∑
β

Dαβ|fβ − fα|. (4.32)

We first use this inequality on the quantum noise contribution, and only then use
the inequalities of Eq. (4.25) to produce a quadratic form. In particular, calling
Rα ≡ infE∈A Dαα the infimum of the reflection probability in the transmission
window, we find the following limit on the precision in fermionic systems

(
I(X)

α

)2

S
(X)
αα,fer

≤ 1
R2

α

S
(N)
αα,fer ≥ S

(N)
αα,fer. (4.33)

Here, the limit on the precision is not given by the full particle noise S
(N)
αα,fer, but

it is larger. Indeed, the full particle noise divided by the infimum of the reflection
probability squared R2

α is the maximum attainable precision. Equations (4.31) and
(4.33) showcase the effect that bunching and anti-bunching have on the limits on
the precision for bosonic and fermionic transport, respectively. In the bosonic case,
bunching effects provide a more restrictive constraint on the precision, whereas
the anti-bunching effects provide less restrictive contraints in the fermionic case.
This means that fermionic systems can achieve higher precision compared to their
bosonic counterparts. In particular, when the reflection probability vanishes, i.e.
Rα = 0, Eq. (4.33) does not set any limit whatsoever on the precision. In this
case, it is possible to drive large average currents in far-from-equilibrium setups
while the noise remains small due to Pauli exclusion principle. For example,
consider a fully transparent scatterer where a large chemical potential bias Δμ
and uniform temperature T is imposed on the contact. Then, the average particle
current is proportional to chemical potential bias, I(N) ∝ Δμ. Instead, in the
fully transparent case the noise is simply given by the thermal noise, namely
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SI ∝ T . Therefore, by increasing the ratio Δμ/kBT , one can have arbitrarily
large precision.

Furthermore, using the same inequalities Eq. (4.25), we also find a different
limit on the precision of fermionic currents

(
I(X)

α

)2

S
(X)
αα,fer

≤ 1
hRα

∫
dE

∑
β

Dαβ|fβ − fα| ≤ 1
Rα

S
(N)cl
αα,fer. (4.34)

Here, unlike Eq. (4.33), the upper limit on the precision scales with R−1
α , but is

not expressed with the more accessible full particle noise S
(N)
αα,fer. Still, Eq. (4.34)

is particularly interesting when compared to the precision constraint of Eq. (2.61).
There, the precision is limited by K/(1 − K), with K being the probability of a
transition happening. Intuitively, we expect the reflection probability Rα to be
connected to 1 − K, representing the probability of returning into the same state.
Similary, the numerator of the precision constraint in Eq. (4.34) is linear in the
transmission probabilities Dαβ with α �= β and is expected to be connected to K.
However, to confirm this intuition, and establish more concrete connections be-
tween the precision limit of Eq. (2.61) and not only the results of this section, but
also other formulations of the KUR in, for instance, open quantum systems [22,
27], more work is required.





5 Conclusion

5.1 Summary
In this thesis we first discussed out-of-equilibrium fluctuations in the context of
two-point measurement scheme, to then describe transport statistics from the
same perspective. This approach provides a broader context for the constraints
on the out-of-equilibrium noise derived in the appended papers and discussed in
chapter 4, and allows us to compare both results and techniques with the ones
previously known, and discussed in chapter 2.

In particular, by comparing the out-of-equilibrium setup with the same setup
under (hot) equilibrium conditions, we find constraints on the noise as discussed
in Sec. 4.1 and Sec. 4.2. Unlike the fluctuation-dissipation theorem presented in
Sec. 2.3, which links fluctuations and response at equilibrium, these constraints
offer additional insights into the out-of-equilibrium fluctuations generated by a
temperature bias.

Additionally, we established limits on the precision of currents in a quantum
transport setup which recall the kinetic uncertainty relation. Specifically, we find
that the upper limit on the precision is given by the particle current noise, and is
enhanced for fermions and diminished for bosons.

Crucially, all the results discussed in this thesis apply to the out-of-equilibrium
noise, which plays an important role in characterizing the performance of small-
scale engines.

5.2 Open questions
Throughout the thesis, some of the questions opened (or left open) in this thesis
have beed identified. For instance, in Sec. 4.2 we pointed out how Paper III
and Paper IV are based on comparing a system under a temperature bias with
the same system without the bias. However, the resulting constraints differ, see
Eq. (4.2) and Eq. (4.20). Intuitively, we expect that adding assumptions on the
Hamiltonians considered in Paper IV allows to recover the results of Paper III.
However, what are the (strictly) necessary condition is not known.

Furthermore, we mentioned how systems described by steady-state scattering
theory can exhibit violations of the thermodynamic uncertainty relation. It is
important to stress that such violations have been seen when using the thermo-
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dynamic entropy production rate, see Sec. 3.1.2. Therefore, we expect the TUR
to be preserved when the stochastic entropy change discussed in Sec. 2.4.1 is
used. Then, clarifying the connection of this entropy change to the thermody-
namic entropy production rate, as well as to non-Markovian dynamics would be
interesting.

In the case of the kinetic uncertainty relation (KUR), several points need clar-
ification. Even for Markovian open system dynamics, multiple non-equivalent
extensions of the classical KUR have been developed [22, 27]. Giving an intuitive
definition to the activity in the quantum case, where both jumps and coherent
dynamics take place, remains challenging. This challenge persists in the quantum
transport setup studied in Paper VI. There, we instead formulated the precision
bounds in terms of the particle current noise, which corresponds to the activity
only in the classical limit. However, a concrete connection between the particle
current noise and the probability of a transition happening, which we discussed
in Sec. 2.4.2, is still missing.

Finally, a natural question emerging from the results of Paper III is whether
a generalization to periodically driven systems is possible. Although this is an
ongoing project and not included in the thesis, preliminary findings suggest that
it is indeed possible to extend the results to the driven case. The generalization
leads to results similar to the multi-terminal case, with contributions from all
Floquet quanta of the driving.
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Appendix A

Thermodynamic uncertainty relation
in a multi-measurement process
The thermodynamic uncertainty relation also holds for processes in which many
consecutive measurements take place. This generalizes the two-point measure-
ment scheme by repeating the application of a (possibly different) unitary trans-
formation followed by a measurement, as sketched in Fig. A.1(a). Calling ρ(0)
the initial state, Ûi the applied unitary transformation between times ti−1 and ti,
and {Π̂(i)

a }a the complete set of projectors describing the measurement at time
ti, we sequentially combine the unitary evolution Eq. (2.2) with a transformation
induced by the measurements, Eq. (2.5), to calculate the probability of a single
realization of the process. Calling ai the outcome of the i-th measurement, the
stochastic trajectory γ = (an, tn; . . . ; a1, t1; a0, t0) happens with probability

p[γ] = p(an, tn; . . . ; a1, t1; a0, t0)
= Tr

{
Π̂(n)

an
Ûn · · · Π̂(1)

a1 Û1Π̂(0)
a0 ρ(0)Π̂(0)

a0 Û †
1Π̂(1)

a1 · · · Û †
nΠ̂(n)

an

}
.

(A.1)

Then, in the same fashion as in the two-point measurement case, we consider
“current-like” observables Q, which are anti-symmetric under the inversion of the
outcome order, namely

Q[γ] = −Q[γ∗] (A.2)

where γ∗ = (a0, tn; . . . ; an−1, t1; an, t0). Similarly to Eq. (2.43), we define the
entropy change at the trajectory level by comparing the probability of the forward
protocol p[γ], with the probability p[γ∗] of observing the outcomes in the opposite
order,

σ̃[γ] ≡ log
(

p[γ]
p[γ∗]

)
. (A.3)

Again, we stress here that this entropy change is generally different from the one
obtained by comparing the forward and the time-reversed processes. Indeed, as
sketched in Fig. A.1(b), the “opposite” process differs from the forward one only
in the order of the outcomes, not on the order at which measurements and unitary
transformations are applied.
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ρ(0)

a0

Û1 Ûn

a1 an−1 an

(a)

ρ(0)

an

Û1 Ûn

an−1 a1 a0

(b)

Figure A.1: (a) Forward multi-measurement process. The initial state ρ(0) under-
goes a series of measurements and unitary transformations. In a single realization,
the measurements have oucomes a0, . . . , an.(b) “Opposite” multi-measurement pro-
cess. The initial state ρ(0) undergoes the same series of measurements and unitary
transformations as in the forward process, but the order of the measurement outcomes
an, . . . , a0 is inverted.

Then, applying the same techniques as discussed in the two-point measure-
ment case, the thermodynamic uncertainty relation takes on the same forms, i.e.
Eq. (2.50).



Appendix B

Scattering theory revisited
In this Appendix detailed derivations that complement Sec. 3.1 are provided.

B.1 Reduced conditional state and probability
B.1.1 Fermionic scattering
For fermionic particles we use the anticommutation relation of the creation oper-
ators to write the scattering evolution of Eq. (3.5) as

|−→αi〉 →
∑

β1j1<···<βkjk

det
[
S

−→
βj−→
αi

]
|−→βj〉 (B.1)

where |−→αi〉 ≡ ĉ†
α1i1 · · · ĉ†

αkik
|∅〉, and det

[
S

−→
βj−→
αi

]
is the determinant of the matrix

S
−→
βj−→
αi

≡

⎛⎜⎜⎝
sβ1j1,α1i1 · · · sβ1j1,αkik... . . . ...
sβkjk,α1i1 · · · sβkjk,αkik

⎞⎟⎟⎠ . (B.2)

In Eq. (B.1) the summation over the lead-channel indices β1j1, · · · , βkjk is re-
stricted to the k-tuples ordered lexicographically. This ordering is defined through

βj < γl ⇔
{

β < γ,
β = γ, j < l,

(B.3)

where we recall that the lead indices take values in {1, · · · , r}, and the channel
indices of lead β take values in {1, · · · , Mβ}. Without loss of generality, we
calculate the marginal state on lead 1 given the initial state −→

αi. To do so, we
need to evaluate the partial trace on all other leads

ρ1|−→αi
= Tr1

⎧⎨⎩ ∑
β1j1<···<βkjk

∑
γ1l1<···<γklk

det[S
−→
βj−→
αi

] det[S
−→
γl−→
αi

]∗ |−→βj〉〈−→γl |
⎫⎬⎭ . (B.4)
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Crucially, the trace only acts on the ketbra |−→βj〉〈−→γl |. In particular, if the states
|−→βj〉 and |−→γl〉 have different numbers of particles in lead 1, the trace vanishes
because the remaining leads also have different numbers of particles. This is the
reason behind the block structure of Eq. (3.10). If instead both states have n
particles in lead 1, the trace yields

Tr1

{
|−→βj〉〈−→γl |

}
= |−→1x〉〈−→1y|

⎛⎝ n∏
ξ=1

δβξ,1δγξ,1

⎞⎠⎛⎝ k∏
ξ=n+1

δβξjξ,γξlξ [1 − δβξ,1]
⎞⎠ , (B.5)

where the first n lead indices are equal to 1, i.e. β1 = γ1 = · · · = βn = γn = 1,
and we renamed the lead indices j1 = x1, · · · , jn = xn and l1 = y1, · · · , ln = yn,
such that −→1x = (1x1, · · · , 1xn) describes an arrangement of n particles in lead 1.
The ordering introduced in Eq. (B.1) guarantees that the only the first n lead
indices refer to lead 1. Furthermore, the ordering also generates the Kronecker
deltas δβξjξ,γξlξ for ξ = n + 1, · · · , k since the remaining particles must be in the
same state for the trace to be non-vanishing. Then, the diagonal block in the
Fock subspace of n particles reads

ρ1,n|−→αi
=

∑
x1<···<xn

∑
y1<···<yn

∑
1M1<βn+1jn+1<···<βkjk

det
[
S

−→1x
−→
βj−→

αi

]
det

[
S

−→1y
−→
βj−→

αi

]∗
|−→1x〉〈−→1y| .

(B.6)
where −→1x

−→
βj = (1x1, · · · , 1xn, βn+1jn+1, · · · , βkjk) incorporates the constraints emerg-

ing from the Kronecker deltas stemming from the partial trace. The last sum-
mation in Eq. (B.6) is performed on the remaining k − n lead-channel indices
βn+1jn+1, · · · , βkjk and does not allow them to describe a particle in lead 1 through
the constraint 1M1 < βn+1jn+1 · · · < βkjk. The matrix in Eq. (B.6) is still cum-
bersome to work with, and contains too much information if one is interested
only in the number of particles after the scattering process. From now on we
focus instead on the probability p

n|−→αi
of finding n particles after the scattering of

the initial state −→
αi. As stated in Eq. (3.11), this probability is given by the trace

of the corresponding block matrix, namely

p
n|−→αi

= Tr
{

ρ1,n|−→αi

}
=

∑
x1<···<xn

∑
1M1<βn+1jn+1<···<βkjk

∣∣∣∣det
[
S

−→1x
−→
βj−→

αi

]∣∣∣∣2 . (B.7)

Here, we use the properties of the determinant to write this probability in a
more convenient form. In particular, the deteminant vanishes when two rows or
columns are equal, and its absolute value does not change under the exchange
of two rows or columns. This allows us to change the summations from ordered
to unrestrained by taking into account the double-counting emerging from the
permutation of x1, · · · , xn and βn+1jn+1, · · · , βkjk. This leads to

p
n|−→αi

= 1
n!(k − n)!

∑
x1,··· ,xn

∑
1M1<βn+1jn+1,··· ,βkjk

∣∣∣∣det
[
S1�x

−→
βj−→

αi

]∣∣∣∣2 . (B.8)
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Now, we explicitely write the determinants in terms of summations over the per-
mutations of the matrix columns and use the unitarity of the scattering matrix,
namely ∑

γl

sαi,γls
∗
βj,γl =

∑
γl

s∗
γl,βjsγl,αi = δαi,βj, (B.9)

to find

p
n|−→αi

= 1
n!(k − n)!

∑
σ,σ′∈Sk

⎧⎨⎩(−1)σ+σ′
⎡⎣ n∏

ξ=1

(∑
x

s1x,σ(αξiξ)s
∗
1x,σ′(αξiξ)

)⎤⎦ ×

×
⎡⎣ k∏

ξ=n+1

(
δσ(αξiξ)σ′(αξiξ) −

∑
x

s1x,σ(αξiξ)s
∗
1x,σ′(αξiξ)

)⎤⎦⎫⎬⎭ .

(B.10)

Note that this form of the conditional probability corresponds to Eq. (3.12) since,
for fermions, 〈−→αi|−→αi〉 = 1 for all admissible initial states.

The product structure of Eq. (3.12), or equivalently Eq. (B.10), is the key
element behind the recursive relation of Eq. (3.13), which we now show. Indeed,
for n < k, we split off the last term of the second product and expand it, obtaining

p
n|−→αi

= 1
n!(k − n)!

∑
σ,σ′∈Sk

⎧⎨⎩(−1)σ+σ′
⎡⎣ n∏

ξ=1

(∑
x

s1x,σ(αξiξ)s
∗
1x,σ′(αξiξ)

)⎤⎦ ×

×
⎡⎣ k−1∏

ξ=n+1

(
δσ(αξiξ)σ′(αξiξ) −

∑
x

s1x,σ(αξiξ)s
∗
1x,σ′(αξiξ)

)⎤⎦ δσ(αkik)σ′(αkik)+

− (−1)σ+σ′
⎡⎣ n∏

ξ=1

(∑
x

s1x,σ(αξiξ)s
∗
1x,σ′(αξiξ)

)⎤⎦(∑
x

s1x,σ(αkik)s
∗
1x,σ′(αkik)

)
×

×
⎡⎣ k−1∏

ξ=n+1

(
δσ(αξiξ)σ′(αξiξ) −

∑
x

s1x,σ(αξiξ)s
∗
1x,σ′(αξiξ)

)⎤⎦⎫⎬⎭ .

(B.11)

Here, we notice that the first contribution resembles the probability of having n
particles in lead 1 after the scattering process of an initial state that has k − 1 of
the k particles of −→

αi. In particular, the Kronecker delta δσ(αkik)σ′(αkik) selecs only
the permutations that can be decomposed as

σ = σ̃ ◦ πx, σ′ = σ̃′ ◦ πx

with πx exchanging x and k, and σ̃, σ̃′ being permutations of the k−1 elements that
do not include x. Then, the sign associated to the permutations fulfils (−1)σ+σ′ =
(−1)σ̃+σ̃′, and we can reduce the summation from the permutations of k elements
to the permutations of k − 1 elements. The second contribution of Eq. (B.11) is
instead proportional to the probability of having n + 1 particles in lead 1 after
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the scattering process of the initial state −→
αi. Combining everything together we

get the recursive relation of Eq. (3.13), namely

p
n|−→αi

= 1
k − n

k∑
x=1

p
n|−→αi\{αx,ix} − n + 1

k − n
p

n+1|−→αi
, for n < k, (B.12)

where −→
αi \ {αx, ix} denotes the state −→

αi without the x-th particle.
To solve this recursive relation a boundary condition is required. This is given

by the probability of having all the particles in the initial state in the desired
lead after the scattering process. For fermions, this is given by setting n = k in
Eq. (B.10) and reads

p
k|−→αi

= 1
k!

∑
x1,··· ,xk

∣∣∣∣det
[
S

−→1x−→
αi

]∣∣∣∣2 . (B.13)

Note that, if there are more fermions than the number of channels in the lead,
i.e. k > M1, then the probability p

k|−→αi
must vanish because of Pauli exclusion

principle. This is confirmed in the presence of the determinants in Eq. (B.13),
which, for k > M1, vanish because (by pidgeonhole principle) at least two rows of
the matrices considered are equal.

B.1.2 Bosonic scattering
For bosonic particles we use the commutation of the creation operators to write
the scattering evolution of Eq. (3.5) as

|−→αi〉 →
∑

β1j1≤···≤βkjk

perm
[
S

−→
βj−→
αi

]
〈−→βj|−→βj〉

|−→βj〉 (B.14)

where instead of the determinant we now have the permanent of the matrix given
in Eq. (B.2). Furthermore, since the indices βxjx can now take on the same value,
to avoid double-counting, we divide the permanent by

〈−→βj|−→βj〉 = n
−→
βj
11 ! · · · n

−→
βj
rMr

! (B.15)

where n
−→
βj
γl is the number of particles in lead γ, channel l in the state |−→βj〉. As for

the fermionic case, we calculate without loss of generality the marginal state on
lead 1, namely

ρ1|−→αi
= 1

〈−→αi|−→αi〉
Tr1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

β1j1≤···≤βkjk

∑
γ1l1≤···≤γklk

perm
[
S

−→
βj−→
αi

]
〈−→βj|−→βj〉

perm
[
S

−→
γl−→
αi

]∗

〈−→γl |−→γl〉
|−→βj〉〈−→γl |

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

(B.16)
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where the prefactor 〈−→αi|−→αi〉
−1

guarantees the normalization of the density matrix.
Again, we first evaluate the partial trace since it only acts on the ketbra |−→βj〉〈−→γl |.
As in the fermionic case, the bra and the ket may have different numbers of
particles in each channel, but the total number of particles in lead 1 must be
equal for the trace not to vanish. As for the fermionic case, this is what leads to
the block structure in the Fock basis of the reduced density matrix, see Eq. (3.10).
Thus, calling n the number of particles in lead 1 for both −→

βj and −→
γl , the partial

trace reads

Tr1

{
|−→βj〉〈−→γl |

}
= |−→1x〉〈−→1y|

⎛⎝ n∏
ξ=1

δβξ,1δγξ,1

⎞⎠ ×

×
⎛⎝ k∏

ξ=n+1
δβξjξ,γξlξ [1 − δβξ,1]

⎞⎠ n
−→
βj
21 ! · · · n

−→
βj
rMr

!,
(B.17)

where the ordering introduced in Eq. (B.14) guarantees the first n lead indices
βξ, γξ for ξ = 1, · · · , n to be equal to 1. The remaining k − n particles in both
ket and bra must be described by the same collection of indices. Here, the factor
n

−→
βj
21 ! · · · n

−→
βj
rMr

! appears because the states |−→βj〉 are not normalized in the bosonic
case. Then, the diagonal block in the Fock subspace of n particles reads

ρ1,n|−→αi
= 1

〈−→αi|−→αi〉
∑

x1≤···≤xn
y1≤···≤yn

1M1<βn+1jn+1≤···≤βkjk

perm
[
S

−→1x
−→
βj−→

αi

]
perm

[
S

−→1y
−→
βj−→

αi

]∗

〈−→1x
−→
βj|−→1x

−→
βj〉 〈−→1y|−→1y〉

|1	x〉〈1	y| , (B.18)

where −→1x
−→
βj = (1x1, · · · , 1xn, βn+1jn+1, · · · , βkjk) incorporates the constraints emerg-

ing from the Kronecker deltas stemming from the partial trace. Again, the block
matrix of Eq. (B.18) is cumbersome to work with, especially if one is interested
in the number of particles transferred during the scattering process. In that case,
the probability p

n|−→αi
of having n particles in the lead after the scattering of the

initial state −→
αi is sufficient. This probability is given by the trace of the block

matrix ρ1,n|−→αi
and reads

p
n|−→αi

= Tr
{

ρ1,n|−→αi

}
= 1

〈−→αi|−→αi〉
∑

x1≤···≤xn
1M1<βn+1jn+1≤···≤βkjk

∣∣∣∣perm
[
S

−→1x
−→
βj−→

αi

]∣∣∣∣2
〈−→1x

−→
βj|−→1x

−→
βj〉

. (B.19)

Here, we use the properties of the permanent to write this probability in a more
convenient form. In particular, the permanent does not change when two rows or
columns are exchanged. This allows us to change the summations from ordered
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to unrestrained by taking into account the double-counting emerging from the
permutations of x1, · · · , xn and βn+1jn+1, · · · , βkjk. This leads to

p
n|−→αi

= 1
〈−→αi|−→αi〉

∑
x1,··· ,xn

1M1<βn+1jn+1,··· ,βkjk

〈−→1x
−→
βj|−→1x

−→
βj〉

n!(k − n)!

∣∣∣∣perm
[
S

−→1x
−→
βj−→

αi

]∣∣∣∣2
〈−→1x

−→
βj|−→1x

−→
βj〉

=
⎛⎝k

n

⎞⎠ 1
k! 〈−→αi|−→αi〉

∑
x1,··· ,xn

1M1<βn+1jn+1,··· ,βkjk

∣∣∣∣perm
[
S1−→x −→

βj−→
αi

]∣∣∣∣2 ,

(B.20)

where the factor 〈−→1x
−→
βj|−→1x

−→
βj〉 at the numerator stems from counting the permu-

tations with repeated indices. Now, we explicitely write the permanents in terms
of summations over the permutations of the matrix columns and use the unitarity
of the scattering matrix [Eq. (B.9)] to find

p
n|−→αi

=
⎛⎝k

n

⎞⎠ 1
k! 〈−→αi|−→αi〉

∑
σ,σ′∈Sk

⎧⎨⎩
⎛⎝ n∏

ξ=1

∑
x

s1x,σ(αξiξ)s
∗
1x,σ′(αξiξ)

⎞⎠ ×

×
⎛⎝ k∏

ξ=n+1

[
δσ(αξiξ),σ′(αξiξ) −

∑
x

s1x,σ(αξiξ)s
∗
1x,σ′(αξiξ)

]⎞⎠⎫⎬⎭ ,

(B.21)

which corresponds to Eq. (3.12).
In the same fashion as the fermionic case, we use the product structure of

Eq. (B.21) to show that the recursive relation Eq. (3.13) holds. For n < k, we
split off the last term of the product and expand it as

p
n|−→αi

=
⎛⎝k

n

⎞⎠ 1
k! 〈−→αi|−→αi〉

∑
σ,σ′∈Sk

⎧⎨⎩δσ(αkik),σ′(αkik)

⎛⎝ n∏
ξ=1

∑
x

s1x,σ(αξiξ)s
∗
1x,σ′(αξiξ)

⎞⎠ ×

×
⎛⎝ k−1∏

ξ=n+1

[
δσ(αξiξ),σ′(αξiξ) −

∑
x

s1x,σ(αξiξ)s
∗
1x,σ′(αξiξ)

]⎞⎠ +

−
⎛⎝ n∏

ξ=1

∑
x

s1x,σ(αξiξ)s
∗
1x,σ′(αξiξ)

⎞⎠[∑
x

s1x,σ(αkik)s
∗
1x,σ′(αkik)

]
×

×
⎛⎝ k−1∏

ξ=n+1

[
δσ(αξiξ),σ′(αξiξ) −

∑
x

s1x,σ(αξiξ)s
∗
1x,σ′(αξiξ)

]⎞⎠⎫⎬⎭ .

(B.22)

Here, we notice that the first contribution resembles the probability of having n
particles in lead 1 after the scattering process of an initial state that has k − 1
of the k particles of −→

αi. In particular, the Kronecker delta δσ(αkik)σ′(αkik) tells us
which particle has been removed from the state −→

αi. Let the permutation σ map
the k-th label into the x-th label, i.e. σ(αkik) = αxix. Since we are dealing with
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bosons, the final label is repeated n
−→
αi
αxix

≥ 1 times, meaning that there can be
multiple particles in the same state. Then, the second permutation σ′ can map
the k-th label into n

−→
αi
αxix

different labels while fulfilling the condition imposed by
the Kronecker delta. Luckily, this additional multiplicity combines with the norm
of |−→αi〉 as

n
−→
αi
αxix

〈−→αi|−→αi〉
= 1

〈−→αi \ {αxix}|−→αi \ {αxix}〉
,

leading to the norm of the initial state with k − 1 particles. The second contri-
bution of Eq. (B.22) is directly proportional to the probability of having n + 1
particles in lead 1 after the scattering of the initial state −→

αi. Combining everything
together we get the recursive relation of Eq. (3.13), namely

p
n|−→αi

= 1
k − n

k∑
x=1

p
n|−→αi\{αx,ix} − n + 1

k − n
p

n+1|−→αi
, for n < k, (B.23)

which is exactly the same as the fermionic one. The difference between the
fermionic and bosonic case stems from the boundary condition necessary to solve
for the probabilities. In the bosonic case, the boundary condition for n = k reads

p
k|−→αi

= 1
k! 〈−→αi|−→αi〉

∑
σ,σ′∈Sk

⎛⎝ k∏
ξ=1

∑
x

s1x,σ(αξiξ)s
∗
1x,σ′(αξiξ)

⎞⎠ . (B.24)

B.1.3 Useful properties of the conditional probability
Since both fermionic and bosonic scattering processes exhibit the same recursive
relation on the conditional probabilities, it is useful to look into what properties
of expectation values emerge from such a recursive relation. In particular, we
consider here expectation values of a variable f0(n,

−→
αi), i.e.

∑
−→
αi

∑
n

f0(n,
−→
αi)p

n|−→αi
p−→

αi
=

∞∑
k=0

∑
−→
αi,|−→αi|=k

⎛⎝ k∑
n=0

f0(n,
−→
αi)pn|αi

⎞⎠ p−→
αi

, (B.25)

where we ordered the sum according to the number of particles |−→αi| in the ini-
tial state. Here, we focus on the summation over the final number of particles n
because it contains the conditional probability. Furthermore, to ease the nota-
tion, we drop the −→

αi dependence of the function f0 that we are calculating the
expectation value of.

The goal is to write the conditioned expectation value as a sum over the bound-
ary conditions of the conditional probabilities. To this end, we start by “unravel-
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ing” the conditional probabilities with the recursive relation,

k∑
n=0

f0(n)p
n|−→αi

= f0(k)p
k|−→αi

+
k−1∑
n=0

f0(n)p
n|−→αi

= f0(k)p
k|−→αi

+
k−1∑
n=0

f0(n)
k − n

⎛⎝ k∑
x=1

p
n|−→αi\{αxix} − (n + 1)p

n+1|−→αi

⎞⎠
= f0(k)p

k|−→αi
+

⎡⎣k−1∑
n=0

f0(n)
k − n

k∑
x=1

p
n|−→αi\{αxix}

⎤⎦ −
k∑

n=0

nf0(n − 1)
k − n + 1 p

n|−→αi

= [f0(k) − kf0(k − 1)] p
k|−→αi

+
⎡⎣k−1∑

n=0

f0(n)
k − n

k∑
x=1

p
n|−→αi\{αxix}

⎤⎦ +

−
k−1∑
n=0

nf0(n − 1)
k − n + 1 p

n|−→αi

(B.26)

and so on. The end result reads

k∑
n=0

f0(n)p
n|−→αi

=
⎡⎣ k∑

i=0
(−1)if0(k − i)

⎛⎝k

i

⎞⎠⎤⎦ p
k|−→αi

+
k−1∑
n=0

f1(n)
k∑

x=1
p

n|−→αi\{αxix}, (B.27)

where

f1(n) ≡
n∑

i=0

(−1)if0(n − i)
k
(

k−1
n

)
⎛⎝ k

n − i

⎞⎠. (B.28)

For completeness, we now prove Eq. (B.27) by manipulating the right-hand side.
First, we use the recursive relation Eq. (3.13) on the conditional probabilities to
write the right-hand side of Eq. (B.27) as

RHS =
⎡⎣ k∑

i=0
(−1)if0(k − i)

⎛⎝k

i

⎞⎠⎤⎦ p
k|−→αi

+
k−1∑
n=0

f1(n)
[
(k − n)p

n|−→αi
+ (n + 1)p

n+1|−→αi

]

=
⎡⎣ k∑

i=0
(−1)if0(k − i)

⎛⎝k

i

⎞⎠⎤⎦ p
k|−→αi

+

+
k−1∑
n=0

[f1(n)(k − n) + f1(n − 1)n] p
n|−→αi

+ f1(k − 1)kp
k|−→αi

.

(B.29)

Here, we have two contributions: one proportional to p
k|−→αi

and one to p
n�=k|−→αi

.
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Let’s treat them separately. The first contribution has the proportionality factor⎡⎣ k∑
i=0

(−1)if0(k − i)
⎛⎝k

i

⎞⎠⎤⎦ + f1(k − 1)k =

=
⎡⎣ k∑

i=0
(−1)if0(k − i)

⎛⎝k

i

⎞⎠⎤⎦ k−1∑
i=0

(−1)if0(k − 1 − i)
⎛⎝ k

k − 1 − i

⎞⎠
= f0(k) −

k−1∑
i=0

(−1)if0(k − 1 − i)
⎡⎣⎛⎝ k

1 + i

⎞⎠ −
⎛⎝ k

k − 1 − i

⎞⎠⎤⎦
= f0(k),

(B.30)

where we used the definition of f1(n) and the symmetry property of the binomial
coefficient

(
k
n

)
=

(
k

k−n

)
. The second contribution has the proportionality factor

f1(n)(k − n) + f1(n − 1)n =

=
n∑

i=0

(−1)if0(n − i)(k − n)
k
(

k−1
n

)
⎛⎝ k

n − i

⎞⎠ +
n−1∑
i=0

(−1)if0(n − 1 − i)n
k
(

k−1
n−1

)
⎛⎝ k

n − 1 − i

⎞⎠
= f0(n)(k − n)

k
(

k−1
n

)
⎛⎝k

n

⎞⎠ −
n−1∑
i=0

(−1)if0(n − 1 − i)
⎛⎝ k

n − 1 − i

⎞⎠⎡⎣ k − n

k
(

k−1
n

) − n

k
(

k−1
n−1

)
⎤⎦

= f0(n),
(B.31)

where the square-bracket contribution vanishes. Putting everything together we
have indeed proven Eq. (B.27) using the recursive relation Eq. (3.13).

Note that Eq. (B.27) is still a recursive relation: The expectation value given
an initial state −→

αi of k particles is given in terms of the boundary condition, i.e.
having all k particles in the final state, and in terms of the expectation values of a
possibly different function given the initial states with k−1 particles obtained from−→
αi by removing one of its particles. For some relevant choices of f0, additional
calculations are carried out below.

Normalization of probabilities

An instructive example is given by considering f0(n) = 1. In this case, the
expectation value

k∑
n=0

p
n|−→αi

= 1

because the probabilities are normalized. Here, we verify that this is the case
given the recursive relation of Eq. (B.27). The first step is finding f1(n), namely

f1(n) =
n∑

i=0

(−1)i

k
(

k−1
n

)
⎛⎝ k

n − i

⎞⎠ = 1
k
(

k−1
n

)
⎛⎝k − 1

n

⎞⎠ = 1
k

(B.32)



80 B Scattering theory revisited

(
k−1
0

) (
k−1
1

) (
k−1
2

) (k−1
n−2

) (
k−1
n−1

) (
k−1
n

)
(
k
0

) (
k
1

) (
k
2

) (
k

n−2

) (
k

n−1

) (
k
n

)
Figure B.1: Two consecutive rows of Pascal triangle. The sum in Eq. (B.32) runs
over the lower row with alternate signs. Each entry in the lower row is given by the
sum of two entries in the upper row depicted with the arrows. Black and red arrows
indicate opposite signs in the sum. The only contribution that does not cancel out is
therefore

(k−1
n

)
.

where we used the property⎛⎝k

n

⎞⎠ +
⎛⎝ k

n + 1

⎞⎠ =
⎛⎝k + 1

n + 1

⎞⎠
to identify a telescopic sum on the Pascal triangle, as shown in Fig. B.1. Further-
more, the p

k|−→αi
contribution vanishes whenever k > 0 since

k∑
i=0

(−1)k

⎛⎝k

i

⎞⎠ = (1 − 1)k = 0.

With these considerations, we find
k∑

n=0
p

n|−→αi
= 1

k

k−1∑
n=0

k∑
x1=1

p
n|−→αi\{αx1 ix1}

= 1
k(k − 1)

k−2∑
n=0

k∑
x1=1

k∑
x2=1,x2 �=x1

p
n|−→αi\{αx1 ix1}\{αx2 ix2}

= 1
k!

∑
x1

∑
x2 �=x1

· · ·
∑

xk �=x1,··· ,xk−1

p0|∅ = 1,

(B.33)

where we are removing, one by one, each particle in the initial state −→
αi. In the last

step we used that the probability p0|∅ of having 0 particles in the lead after the
scattering process of 0 initial particle is unity, i.e. p0|∅ = 1. Then, the summations
reduce to counting in how many ways we can remove the particles from the initial
state, leading to k!.

Average of n

To calculate the average number of transferred particles in the scattering process
we need to know the expectation value of the final number of particles n. There-
fore, let’s study the case f0(n) = n. Using the following property of the binomial
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coefficients

n

⎛⎝k

n

⎞⎠ = k

⎛⎝k − 1
n − 1

⎞⎠,

we see that f1(n) reads

f1(n) =
n∑

i=0

(−1)i(n − i)
k
(

k−1
n

)
⎛⎝ k

n − i

⎞⎠ =
n∑

i=0

(−1)i(
k−1

n

)
⎛⎝ k − 1

n − 1 − i

⎞⎠ =
(

k−2
k−1

)
(

k−1
n

) = n

k − 1 ,

(B.34)
where once again we identified the telescopic sum on the Pascal triangle, see
Fig. B.1. Crucially, f1(n) ∝ f0(n), as was also the case for f0(n) = 1. Further-
more, the p

k|−→αi
contribution in Eq. (B.27) vanishes for k �= 1 since

k∑
i=0

(−1)i(k − i)
⎛⎝k

i

⎞⎠ =
k∑

i=0
(−1)i(k − i)

⎛⎝ k

k − i

⎞⎠ =
k∑

i=0
(−1)ik

⎛⎝ k − 1
k − 1 − i

⎞⎠ = 0.

Therefore, when we unravel the expectation value with the recursive relation
Eq. (B.27), the only nonvanishing term is given by the initial states with only 1
particle,

k∑
n=0

np
n|−→αi

= 1
k − 1

k−1∑
n=0

n
k∑

x1=1
p

n|−→αi\{αx1 ix1}

= 1
(k − 1)(k − 2)

k−2∑
n=0

n
k∑

x1=1

k∑
x2=1,x2 �=x1

p
n|−→αi\{αx1 ix1}\{αx2 ix2}

= 1
(k − 1)!

∑
x1

∑
x2 �=x1

· · ·
∑

xk−1 �=x1,··· ,xk−2

p1|−→αi\{αx1 ix1}···\{αxk−1 ixk−1}

=
∑
x

p1|{αxix}.

(B.35)

Here, the (k − 1)! in the denominator cancels out with the double-counting of the
summations. Indeed, given the particle indexed with αxix of the initial state −→

αi,
we are simply counting the number of ways to remove the other k − 1 particles,
which is (k − 1)!.

Average of n(n − 1)

To calculate the variance of number of transferred particles we need to know the
expectation value of n2. In this case, it is convenient to look at f0(n) = n(n − 1)
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due to the binomial nature of the process. Indeed, f1(n) then reads

f1(n) =
n∑

i=0

(−1)i(n − i)(n − i − 1)
k
(

k−1
n

)
⎛⎝ k

n − i

⎞⎠
=

n∑
i=0

(−1)i(k − 1)(
k−1

n

)
⎛⎝ k − 2

n − 2 − i

⎞⎠
=

(k − 1)
(

k−3
k−2

)
(

k−1
n

) = n(n − 1)
k − 2 .

(B.36)

Again, f1(n) ∝ f0(n), making the recursive relation much more useful. Further-
more, the p

k|−→αi
contribution vanishes for k �= 2 since

k∑
i=0

(−1)i(k − i)(k − i − 1)
⎛⎝ k

k − i

⎞⎠ =
k∑

i=0
(−1)ik(k − i − 1)

⎛⎝ k − 1
k − 1 − i

⎞⎠
=

k∑
i=0

(−1)ik(k − 1)
⎛⎝ k − 2

k − 2 − i

⎞⎠ = 0.

Therefore, when we unravel the expectation value with the recursive relation
Eq. (B.27), the only nonvanishing term is given by the initial states with only 2
particles,

k∑
n=0

n(n − 1)p
n|−→αi

= 1
k − 2

k−1∑
n=0

n(n − 1)
k∑

x1=1
p

n|−→αi\{αx1 ix1}

= 1
(k − 2)(k − 3)

k−2∑
n=0

n(n − 1)
k∑

x1=1

k∑
x2=1,x2 �=x1

p
n|−→αi\{αx1 ix1}\{αx2 ix2}

= 2
(k − 2)!

∑
x1

∑
x2 �=x1

· · ·
∑

xk−2 �=x1,··· ,xk−3

p2|−→αi\{αx1 ix1}···\{αxk−2 ixk−2}

= 2
∑
x1

∑
x2 �=x1

p2|(αx1 ix1 ,αx2 ix2).

(B.37)

Here the factor 2 comes from evaluating n(n−1) for the number of particles n = 2
ending up in lead 1, and the factor (k − 2)! at the denominator cancels out with
the number of ways to remove k − 2 particles from the initial state −→

αi leaving
(αx1ix1, αx2ix2) as the remaining particles.

B.2 Relevant transport quantities
In this section we use the insights of the previous section combined with the choice
of initial thermal states to calculate the average and the variance of the number
of particles transferred in the scattering process.
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B.2.1 Average transferred particle number
To calculate the average number of transferred particles we need to know how
many particles accumulate in a given lead, say lead 1, during a scattering process.
This means that, calling n1(

−→
αi) the number of particles in lead 1 given the state−→

αi, we need to calculate the expectation value of n − n1(
−→
αi), namely

〈n − n1(
−→
αi)〉 =

∑
k

∑
−→
αi,|αi|=k

k∑
n=0

[n − n1(
−→
αi)]p

n|−→αi
p−→

αi
(B.38)

From now on we assume that the initial state is a tensor product over the leads and
the channels, and that on each lead the density matrix is diagonal with respect to
the number of particles in each channel. This allows us to write the probability
of finding the initial state −→

αi in terms of the number of particles that the state
has in each channel nβj, namely

p−→
αi

=
∏
βj

pnβj
. (B.39)

Then, the expectation value of n1(
−→
αi) = n11 + · · · + n1N1 is simply given by

〈n1(
−→
αi)〉 =

∑
x

〈n1x〉 (B.40)

because the conditional probabilities trivially sum up to 1. Instead, using Eq. (B.35),
the expectation value of n is given by the probabilities of transfering one particle
given the initial states with exactly one particle through

〈n〉 =
∑
n11

· · ·
∑

nrMr

[
n11p1|11 + · · · + nrMrp1|rMr

] ⎛⎝∏
βj

pnβj

⎞⎠ . (B.41)

For both bosons and fermions, we use Eq. (3.12) to write the single-particle con-
ditional probability as

p1|αi =
∑
x

|s1x,αi|2, (B.42)

which we then plug into 〈n〉 to find

〈n〉 =
∑
x,βj

|s1x,βj|2〈nβj〉. (B.43)

Combining Eqs. (B.40, B.43), and assuming that the channels in a given lead
have the same average number of particles, i.e. 〈nαi〉 = 〈nαj〉 = 〈nα〉, we find the
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average number of transferred particles

〈n − n1(
−→
αi)〉 =

⎛⎝∑
x,y

|s1x,1y|2 − M1

⎞⎠ 〈n1〉 +
∑
α �=1

∑
x,y

|s1x,αy|2〈nα〉

=
⎡⎣ M1∑

x=1

⎛⎝1 −
∑
α �=1

∑
y

|s1x,αy|2
⎞⎠ − M1

⎤⎦ 〈n1〉 +
∑
α �=1

∑
x,y

|s1x,αy|2〈nα〉

=
∑
α �=1

∑
xy

|s1x,αy|2(〈nα〉 − 〈n1〉)

=
∑
α �=1

Tr
{
t1αt†

1α

}
(〈nα〉 − 〈n1〉),

(B.44)

where we used the unitarity of the scattering matrix to sum only over the transi-
tion probabilities from a different lead. In the last step we introduced the scatter-
ing sub-matrices tαβ defined through [tαβ]xy ≡ sαx,βy which make the resemblance
of Eq. (B.44) to the Landauer-Büttiker formula for the current more explicit. Note
that Eq. (B.44) holds for both fermions and bosons: the difference between them
is encoded in the average occupation of the initial state 〈nβj〉.

B.2.2 Variance of transferred particle number
To calculate the variance of the transferred particle number we need to study the
expectation value of [n − n1(

−→
αi)]2, which is the second moment of the transferred

particle number. We decompose this square in the following way

[n − n1(
−→
αi)]2 = n2 − 2nn1(

−→
αi) + n2

1(
−→
αi) = n(n − 1) + n − 2nn1(

−→
αi) + n2

1(
−→
αi)

so we can calculate the second moment by studying it piece by piece.

• 〈n(n − 1)〉 :
First, let’s look at the n(n − 1) contribution. As seen in Eq. (B.37), the
sum over n reduces to the sum over the initial states with only two particles.
Then, given any initial state, we need to count in how many ways we can get
the same two-particles state (α1i1, α2i2). Here, an important difference arises
if the two particles are in the same state or not. If they are not, the number
of ways to obtain the same state is simply given by the product nα1i1nα2i2.
Instead, if they are in the same state α1i1 = α2i2 = αi it is given by the
binomial coefficient

(
nαi

2

)
. The average of n(n − 1) then reads

〈n(n − 1)〉 =
∑

α1i1<α2i2

2p2|(α1i1,α2i2)〈nα1i1〉〈nα2i2〉 +
∑
αi

2p2|(αi,αi)〈
nαi(nαi − 1)

2 〉,

(B.45)
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where we used 〈nα1i1nα2i2〉 = 〈nα1i1〉〈nα2i2〉 because the probability distribu-
tion of the initial state is taken to be uncorrelated. Notably, for fermions the
second term of Eq. (B.45) vanishes because two fermions cannot occupy the
same state.

• 〈n〉 :
We have previously discussed in Sec. B.2.1 how to deal with the average of
n, and we have seen that it reduces to

〈n〉 =
∑
αi

p1|αi〈nαi〉. (B.46)

• 〈−2nn1(
−→
αi)〉 :

We first sum over n conditioned on a given state, reducing the problem to
the conditional probabilities on single-particle states. Then, recalling that
n1(

−→
αi) is the number of particles in lead α = 1 in the initial state, the average

reads

〈−2nn1(
−→
αi)〉 = −2

∑
n11,··· ,nrMr

[
p1|11n11 + · · · + p1|rMr

nrMr

]
×

× [n11 + · · · + n1M1]
⎛⎝∏

βj

pnβj

⎞⎠
= −2

∑
αi,x

p1|αi〈nαin1x〉

= −2
⎡⎣∑

αi,x

p1|αi〈nαi〉〈n1x〉 +
∑
x

p1|1xVar[n1x]
⎤⎦

(B.47)

where we once again used that the initial probability distribution is not
correlated. Here, Var[•] denotes the variance.

• 〈[n1(
−→
αi)]2〉 :

For this last term the scattering process is irrelevant because we are only
looking at the initial particle number. Consequently, we sum up to 1 the
conditional probabilities p

n|−→αi
. We are left with

〈[n1(
−→
αi)]2〉 =

∑
xy

〈n1xn1y〉 =
∑
x,y

〈n1x〉〈n1y〉 +
∑
x

Var[n1x]. (B.48)

At this point we have all the tools to calculate the variance of the transferred
particle number. In the following, we explicitely carry out the calculation for
both fermions and bosons.
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Variance of transferred fermions

Let’s tackle first the contribution stemming from n(n − 1). For fermions, we
cannot have particles in the same state, so the second contribution in Eq. (B.45)
vanishes. The probability conditioned on the two-particle state reads

p2|(α1i1,α2i2) = 1
2

∑
xy

|s1x,α1i1s1y,α2i2 − s1x,α2i2s1y,α1i1|
2

=
∑
xy

[
|s1x,α1i1|2|s1y,α2i2|2 − s1x,α1i1s

∗
1y,α1i1s1y,α2i2s

∗
1x,α2i2

]
.

(B.49)

Here it is convenient to write the averages in terms of the scattering submatrices
tαβ, and to assume that the average 〈nαi〉 = fα and the variance Var[nαi] =
fα(1 − fα) of the initial particle numbers do not depend on the channel. Then,
the average of n(n − 1) reads

〈n(n − 1)〉 = 1
2

∑
α1i1,α2i2

2p2|(α1i1,α2i2)〈nα1i1〉〈nα2i2〉

=
∑

α1α2

[
Tr

{
t1α1t

†
1α1

}
Tr

{
t1α2t

†
1α2

}
− Tr

{
t1α1t

†
1α1t1α2t

†
1α2

}]
fα1fα2

(B.50)

where we first symmetrized the summation over α1i1, α2i2 by noticing that, on
the diagonal, the conditional probability vanishes. Using that

fα1fα2 = (fα1 − f1)(fα2 − f1) + f1fα1 + f1fα2 − f2
1 (B.51)

and calling
X ≡

∑
α

t1αt†
1α(fα − f1), (B.52)

such that the average of the transferred particle number reads 〈n − n1(
−→
αi)〉 =

Tr {X}, the average of n(n − 1) becomes

〈n(n − 1)〉 = Tr {X}2 − Tr
{
X2

}
+

+ f1

[
2(M1 − 1)

∑
α

Tr
{
t1αt†

1α

}
fα

]
− f2

1
[
M2

1 − M1
]

= Tr {X}2 − Tr
{
X2

}
+

+ f1 [2(M1 − 1) (Tr {X} + M1f1)] − f2
1
[
M2

1 − M1
]

= Tr {X}2 − Tr
{
X2

}
+ f1 [2(M1 − 1)Tr {X}] + f2

1
[
M2

1 − M1
]
.

(B.53)

Here, we used the unitarity of the scattering matrix, which, for the sub-matrix
formulation reads ∑

γ
tαγt†

βγ = �αδαβ.
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Note that the first term of 〈n(n − 1)〉 in Eq. (B.53), i.e. Tr {X}2, would cancel
out with 〈n − n1(

−→
αi)〉2 when we calculate the variance. Additionally, the second

term in Eq. (B.53), i.e. −Tr
{
X2

}
, represents the “anti-bunching” contribution

to the variance. We will later see that the remaining terms combine neatly with
the remaining contributions of 〈[n − n1(

−→
αi)]2〉.

Now, let’s look at the remaining contributions to the variance. Here, for the
sake of conciseness, the argument of n1(

−→
αi) is dropped, and we write

〈n − 2nn1 + n2
1〉 =

∑
α

Tr
{
t1αt†

1α

}
fα − 2

[
f1M1

∑
α

Tr
{
t1αt†

1α

}
fα+

+Tr
{
t11t

†
11

}
f1(1 − f1)

]
+ M2

1 f2
1 + M1f1(1 − f1)

= Tr {X} + M1f1 − 2
[
M1f1Tr {X} + M2

1 f2
1 + M1f1(1 − f1)+

−
∑
α �=1

Tr
{
t1αt†

1α

}
f1(1 − f1)

⎤⎦ + M1f1 + f2
1 [M2

1 − M1]

= Tr {X} + f1

⎡⎣2
∑
α �=1

Tr
{
t1αt†

1α

}
− 2M1Tr {X}

⎤⎦ +

+ f2
1

⎡⎣M1 − M2
1 − 2

∑
α �=1

Tr
{
t1αt†

1α

}⎤⎦ ,

(B.54)

where once again we used the unitarity of the scattering matrix. We now take the
sum of Eq. (B.53) and (B.54) to find the second moment of n − n1

〈(n − n1)2〉 = Tr {X}2 − Tr
{
X2

}
+

∑
α �=1

Tr
{
t1αt†

1α

}
[fα + f1 − 2f1fα] . (B.55)

When taking the variance of the transferred particle number, the Tr {X}2 term
cancels out and we are left with

Var[n − n1] =
∑
α �=1

Tr
{
t1αt†

1α

}
[fα(1 − f1) + f1(1 − fα)] − Tr

{
X2

}
, (B.56)

which is exactly the integrand in the zero-frequency current noise for fermionic
scattering.

Variance of transferred bosons

As for the fermionic case, let’s start from the average of n(n − 1). If the initial
particles are in different channels, i.e. α1i1 �= α2i2, the conditional probability
reads

p2|(α1i1,α2i2) = 1
2

∑
xy

[
2|s1x,α1i1|2|s1y,α2i2|2 + 2s1x,α1i1s

∗
1y,α1i1s1y,α2i2s

∗
1x,α2i2

]
. (B.57)
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Instead, when the initial particles are in the same channel, we have

p2|(α1i1,α1i1) = 1
4

∑
xy

[
2|s1x,α1i1|2|s1y,α1i1|2 + 2s1x,α1i1s

∗
1y,α1i1s1y,α1i1s

∗
1x,α1i1

]
,

=
∑
xy

|s1x,α1i1|2|s1y,α1i1|2.
(B.58)

Assuming that the initial distribution does not depend on the specific channel,
and taking a thermal distributions of bosons, such that 〈nαi〉 = fα and Var[nαi] =
fα(1 + fα), we calculate the average of n(n − 1) as

〈n(n − 1)〉 = 1
2

∑
α1i1 �=α2i2

2p2|(α1i1,α2i2)〈nα1i1〉〈nα2i2〉 +
∑
αi

2p2|(αi,αi)〈
nαi(nαi − 1)

2 〉

=
∑

α1i1 �=α2i2

p2|(α1i1,α2i2)fα1fα2 +
∑
αi

p2|(αi,αi)[fα(1 + fα) + f2
α − fα]

=
∑

α1i1 �=α2i2,xy

[
|s1x,α1i1|2|s1y,α2i2|2 + s1x,α1i1s

∗
1y,α1i1s1y,α2i2s

∗
1x,α2i2

]
fα1fα2+

+
∑

αi,xy

|s1x,αi|2|s1y,αi|22f2
α

=
∑

α1i1,α2i2,xy

[
|s1x,α1i1|2|s1y,α2i2|2 + s1x,α1i1s

∗
1y,α1i1s1y,α2i2s

∗
1x,α2i2

]
fα1fα2

=
∑

α1,α2

[
Tr

{
t1α1t

†
1α1

}
Tr

{
t1α2t

†
1α2

}
+ Tr

{
t1α1t

†
1α1t1α2t

†
1α2

}]
fα1fα2.

(B.59)

In the same fashion as before, we decompose the product of the average occupation
numbers as done in Eq. (B.51) and use the matrix X defined in Eq. (B.52) to write
the average of n(n − 1) as

〈n(n − 1)〉 = Tr {X}2 + Tr
{
X2

}
+ f1

[
2(M1 + 1)

∑
α

Tr
{
t1αt†

1α

}
fα

]
+

− f2
1
[
M2

1 + M1
]

= Tr {X}2 + Tr
{
X2

}
+ f1 [2(M1 + 1)(Tr {X} + M1f1)] +

− f2
1
[
M2

1 + M1
]

= Tr {X}2 + Tr
{
X2

}
+ f1 [2(M1 + 1)Tr {X}] + f2

1
[
M2

1 + M1
]
.

(B.60)

Here, we see that the first term will cancel out when taking the variance, while the
second term represents the “bunching” contribution to the variance. The other
two terms combine with the remaining contributions of 〈[n − n1(

−→
αi)]2〉.

Now, let’s look at the remaining contributions. Again, for the sake of concise-
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ness, the argument of n1(
−→
αi) is dropped.

〈n − 2nn1 + n2
1〉 =

∑
α

Tr
{
t1αt†

1α

}
fα − 2

[
f1M1

∑
α

Tr
{
t1αt†

1α

}
fα+

+ Tr
{
t11t

†
11

}
f1(1 + f1)

]
+ M2

1 f2
1 + M1f1(1 + f1)

= Tr {X} + M1f1 − 2M1f1 [Tr {X} + M1f1] − 2M1f1 − 2M1f
2
1 +

+ 2
∑
α �=1

Tr
{
t1αt†

1α

}
f1(1 + f1) + M1f1 + M1f

2
1 + M2

1 f2
1

= Tr {X} + f1

⎡⎣−2M1Tr {X} + 2
∑
α �=1

Tr
{
t1αt†

1α

}⎤⎦ +

+ f2
1

⎡⎣−M1 − M2
1 + 2

∑
α �=1

Tr
{
t1αt†

1α

}⎤⎦ .

(B.61)

Taking the sum of Eqs. (B.59) and (B.61), we find the second moment of the
transferred particle number

〈(n − n1)2〉 = Tr {X}2 + Tr
{
X2

}
+

∑
α �=1

Tr
{
t1αt†

1α

}
[fα + f1 + 2f1fα] . (B.62)

When taking the variance of the transferred particle number, the Tr {X}2 term
cancels out and we are left with

Var[n − n1] = Tr
{
X2

}
+

∑
α �=1

Tr
{
t1αt†

1α

}
[fα(1 + f1) + f1(1 + fα)] , (B.63)

which is exactly the integrand in the zero-frequency noise for bosonic scattering.





Appendix C

From variance of transferred
particles to current noise
Consider an observable O(t) and its associated stochastic current I(O)(t). For
simplicity we consider here the case O(0) = 0. The observable and its current are
related by the differential equation

dO(t) = I(O)(t)dt ⇒ O(t) =
∫ t

0
I(O)(s)ds. (C.1)

The average value of the observable is then given by

〈O(t)〉 =
∫ t

0
〈I(O)(s)〉ds, (C.2)

while the variance reads

Var[O(t)] =
∫ t

0

∫ t

0
〈δI(O)(s1)δI(O)(s2)〉ds1ds2, (C.3)

where δI(O)(s) ≡ I(O)(s) − 〈I(O)(s)〉 denotes the deviation from the average. Tak-
ing the derivative with respect to time and assuming time-translation invariance
we find

∂tVar[O(t)] = 2
∫ t

0
ds〈δI(O)(t)δI(O)(s)〉 = 2

∫ 0

−t
ds〈δI(O)(t)δI(O)(t + s)〉

=
∫ t

−t
ds〈δI(O)(t)δI(O)(t + s)〉

=
∫ t

−t
ds〈δI(O)(0)δI(O)(s)〉 t→∞→ S(O).

(C.4)

Therefore, in the long-time limit, the zero-frequency noise of the current I(O)

corresponds to the time-derivative of the variance of the associated observable
O(t).

In the scattering process described in Sec. 3.1 the observable O(t) considered is
the number of particles Nγ(t) accumulated in reservoir γ through the scattering
events. Let δt be the time interval between two consecutive scattering events and
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dNγ(s) be the number of particles transferred in the scattering event taking place
at time s. Then, the number of particles accumulated in lead γ is given by

Nγ(t) =
t/δt∑
n=0

dNγ

(
nδt

t

)
. (C.5)

Crucially, the scattering events are statistically independent and do not depend
on time, such that the average and variance of Nγ(t) read

〈Nγ(t)〉 = t

δt
〈dNγ〉, (C.6a)

Var[Nγ(t)] = t

δt
Var[dNγ]. (C.6b)

This means that all we need is the statistics of a single scattering event. In par-
ticular, we need the statistics of the transferred number of particles Qγ defined in
Sec. 3.1.1. Again, since the scattering events at different energies are independent,
the average and variance of the accumulated particle number dNγ in reservoir γ
at all energies are given by

〈dNγ(t)〉 = δt

h

∫
dE〈Qγ〉, (C.7a)

Var[dNγ(t)] = δt

h

∫
dEVar[Qγ], (C.7b)

respectively. Combining Eqs. (C.6, C.7) with the Eqs. (C.2, C.4) for the average
current and its noise we find

I(N)
γ = 〈Ṅγ(t)〉 = ∂t〈Nγ(t)〉 = 1

h

∫
〈Qγ〉dE, (C.8a)

S(N)
γγ = ∂tVar[Nγ(t)] = 1

h

∫
Var[Qγ]dE, (C.8b)

which are proportional to the charge currents of Eqs. (3.24, 3.25). Indeed, since
each particle carries the same amount of charge q, the charge current and its noise
fulfil Iγ = qI(N)

γ , SI
γγ = q2S(N)

γγ .
Note that, the current I(X)

γ and its noise S(X) of an energy-dependent quantity
x(E) carried by the particles at energy E, like energy or heat current, is generally
not proportional to the particle current and noise. Still, the procedure described
here is still valid up to Eq. (C.7), where now the energy-dependent quantity enters
in the integrals as

〈dXγ(t)〉 = δt

h

∫
dEx(E)〈Qγ〉, (C.9a)

Var[dXγ(t)] = δt

h

∫
dE[x(E)]2Var[Qγ]. (C.9b)
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Then, the average current and its noise take the intuitive form

I(X)
γ = 1

h

∫
x(E)〈Qγ〉dE, (C.10a)

S(X)
γγ = 1

h

∫
[x(E)]2Var[Qγ]dE. (C.10b)





Appendix D

Clausius’ relation

In this appendix we explicitely show that in a thermal and large bath the entropy
production obeys Clausius’ relation

ΔSB = ΔQB

TB
(D.1)

where TB is the temperature of the bath, while ΔSB is the variation of the entropy
and ΔQB is the heat absorbed by the bath.

We start by decomposing the entropy production as

1
kB

ΔSB = SvN[ρ(τ)] − SvN[ρ(0)]

= Tr {ρ(0) log ρ(0) − ρ(τ) log ρ(τ)}
= Tr {[ρ(0) − ρ(τ)] log ρ(0)} + Tr {ρ(τ)[log ρ(0) − log ρ(τ)]} .

(D.2)

where ρ(0) and ρ(τ) are the density matrices of the bath at times t = 0 and t = τ .
Here, the assumption of a large bath comes into play. Writing the final state as
ρ(τ) = ρ(0) + δρ, in a large bath δρ is a small correction. This means that the
second term in Eq. (D.2) is O(δρ2) and can therefore be neglected because the
first term is a first order correction in δρ. This is seen by taking the definition of
the logarithm of a matrix B in terms of a series, namely

log(B) =
∞∑

k=1

(−1)k+1

k
(B − �)k, (D.3)

and using it to expand the second term of Eq. (D.2) in δρ. From now on, we drop
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the time-argument of the density matrix, calling ρ ≡ ρ(0). The logarithm reads

log(ρ + δρ) =
∞∑

k=1

(−1)k+1

k
(ρ − � + δρ)k

=
∞∑

k=1

(−1)k+1

k

[
(ρ − �)k + δρ(ρ − �)k−1+

+(ρ − �)δρ(ρ − �)k−2 + · · · + (ρ − �)k−1δρ
]

+ O(δρ2)

= log ρ +
∞∑

k=1

(−1)k+1

k

[
δρ(ρ − �)k−1+

+(ρ − �)δρ(ρ − �)k−2 + · · · + (ρ − �)k−1δρ
]

+ O(δρ2).

Then, the second term of Eq. (D.2) reads

Tr {(ρ + δρ)[log ρ − log(ρ + δρ)]} =

= −Tr
⎧⎨⎩ρ

∞∑
k=1

(−1)k+1

k

[
δρ(ρ − �)k−1 + · · · + (ρ − �)k−1δρ

]⎫⎬⎭ + O(δρ2)

= −Tr
⎧⎨⎩ρ

∞∑
k=1

(−1)k+1

k

[
kδρ(ρ − �)k−1

]⎫⎬⎭ + O(δρ2)

= −Tr
⎧⎨⎩δρ

∞∑
k=1

[
(−1)k+1(ρ − �)k−1

]
ρ

⎫⎬⎭ + O(δρ2)

= −Tr {δρ} + O(δρ2) = O(δρ2),
(D.4)

where we used the cyclic property of the trace and recognized the series of

1
ρ

= 1
� + (ρ − �) =

∞∑
k=0

(−1)k(ρ − �)k. (D.5)

In the last step of Eq. (D.4) we used that Tr {δρ} = 0.
Therefore, if the bath is large, the first term of Eq. (D.2) approximates the

entropy production well. Additionally, if the initial state is thermal, namely ρ(0) =
e−βĤB/Z we have

1
kB

ΔSB = Tr
{
[ρ(0) − ρ(τ)][−βĤB]

}
= ΔQB

kBTB
, (D.6)

which corresponds to Eq. (3.33).



Appendix E

Fluctuation-dissipation bound and
thermodynamic uncertainty relation
In this Appendix we show a connection between the out-of-equilibrium fluctuation-
dissipation bound discussed in Sec. 4.1, and the thermodynamic uncertainty re-
lation introduced in Sec. 2.4.1.

The starting point is the inequality between the average power output P and
its noise SP given in Eq. (4.7), which we write as

SP ≥ PkBΔTg

( Δμ

kBΔT

)
(E.1)

where we defined
g (x) ≡ x tanh

(x

2

)
. (E.2)

Since we are focusing on the case in which power is produced, P > 0, we can mul-
tiply both sides of Eq. (E.1) by P without altering the direction of the inequality.
Rearrenging the terms we find the constraint on the precision of the output power

P 2

SP
≤ P

kBΔTg
(

Δμ
kBΔT

) . (E.3)

At this point, Eq. (E.3) starts resembling the thermodynamic uncertainty relation
of Eq. (2.49). Indeed, in the steady-state regime, the TUR limits the precision of
the steady-state power P as

P 2

SP
≤ σ̇

2 , (E.4)

where σ̇ is the global entropy production rate [12]. The main difference between
Eq. (E.3) and Eq. (E.4) is that the upper limit on the precision is given by the
average power P in place of the entropy current σ̇. Then, we can use the first and
the second law of thermodynamics to write the power P in terms of the entropy
production. Specifically, the first and second law in this steady-state system read

P = −Jhot − Jcold ≥ 0, (E.5a)

σ̇ = σ̇hot + σ̇cold = Jhot

Thot
+ Jcold

Tcold
≥ 0, (E.5b)
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respectively. Here, Jhot/cold is the heat flow into the hot/cold contact, and σ̇hot/cold
is the local entropy production in the hot/cold contact. Then, calling ηC ≡ 1− Tcold

Thot
the Carnot efficiency, we write Eq. (E.3) as

P 2

SP
≤ − Jhot + Jcold

kBΔTg
(

Δμ
kBΔT

) = Thot

kBΔTg
(

Δμ
kBΔT

) [
−σ̇ + Jcold

Tcold
ηC

]
,

≤ 1
kBηCg

(
Δμ

kBΔT

) [σ̇cold(ηC − 1) − σ̇hot] ≤ σ̇cold

kBg
(

Δμ
kBΔT

) ,

(E.6)

where in the last step we used the second law −σ̇hot ≤ σ̇cold. Crucially, the limit
on the power precision is not given by the global dissipation σ̇ as in Eq. (E.4),
but by the local dissipation in the cold contact. Furthermore, since we require
the output power to be positive, this local dissipation is actually larger than the
global one, namely

P 2

SP
≤ σ̇cold

kBg
(

Δμ
kBΔT

) ≥ σ̇

kBg
(

Δμ
kBΔT

) . (E.7)

Note that one can write the limit on the power precision of Eq. (E.7) in terms of
the efficiency η ≡ P/(−Jhot) by combining the first law Eq. (E.5a) with Clausius’
relation σ̇cold = Jcold/Tcold. The outcome reads

P

SP

η

1 − η
kBTcoldg

( Δμ

kBΔT

)
≤ 1, (E.8)

and sets a constraint on the combination of average power P , noise SP and effi-
ciency η. Note that, in contrast with the classical TUR, we have the factor 1 − η
instead of ηC −η at the denominator [12]. Even though this may suggest that it is
possiblt to achieve finite power at Carnot efficiency, this is not the case. Indeed,
Carnot efficiency is achieved when transport happens in a narrow energy window
δε close to the crossing energy ε̃ of Eq. (4.1). However, the output power is then
going to be propotional to δε2, guaranteeing a vanishing power output at Carnot
efficiency.
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