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Abstract

We use a neural network model and Atacama Large Millimeter/submillimeter Array (ALMA) observations of
HCN and HNC to constrain the physical conditions, most notably the cosmic-ray ionization rate (CRIR, ζ), in the
Central Molecular Zone (CMZ) of the starburst galaxy NGC 253. Using output from the chemical code UCLCHEM,
we train a neural network model to emulate UCLCHEM and derive HCN and HNC molecular abundances from a
given set of physical conditions. We combine the neural network with radiative transfer modeling to generate
modeled integrated intensities, which we compare to measurements of HCN and HNC from the ALMA Large
Program ALCHEMI. Using a Bayesian nested sampling framework, we constrain the CRIR, molecular gas volume
and column densities, kinetic temperature, and beam-filling factor across NGC 253ʼs CMZ. The neural network
model successfully recovers UCLCHEM molecular abundances with ∼3% error and, when used with our Bayesian
inference algorithm, increases the parameter-inference speed tenfold. We create images of these physical
parameters across NGC 253ʼs CMZ at 50 pc resolution and find that the CRIR, in addition to the other gas
parameters, is spatially variable with ζ∼ a few ×10−14 s−1 at r 100 pc from the nucleus, increasing to
ζ> 10−13 s−1 at its center. These inferred CRIRs are consistent within 1 dex with theoretical predictions based on
nonthermal emission. Additionally, the high CRIRs estimated in NGC 253ʼs CMZ can be explained by the large
number of cosmic-ray-producing sources as well as a potential suppression of cosmic-ray diffusion near their
injection sites.

Unified Astronomy Thesaurus concepts: Cosmic ray astronomy (324); Interstellar medium (847); Molecular gas
(1073); Neural networks (1933); Starburst galaxies (1570); Star forming regions (1565); Astrochemistry (75);
Galaxy nuclei (609); Stellar feedback (1602)

Materials only available in the online version of record: machine-readable table

1. Introduction

Understanding the physical processes associated with star
formation is pivotal for identifying how star formation proceeds
in different environments. Star-forming regions vary in many ways,
including, but not limited to, their temperatures, densities,

turbulence, radiation strength, and molecular complexity
(e.g., D. Downes & P. M. Solomon 1998; P. Padoan &
Å. Nordlund 2002; M. H. Heyer & C. M. Brunt 2004; M. Gong
et al. 2020). All of these factors combine to determine the nature
and lifetime of star-forming regions and the galaxies that host them
(see, for example, E. Corbelli et al. 2017; M. Chevance et al. 2020;
J. Kim et al. 2021; V. A. Semenov et al. 2021). Starburst galaxies
feature some of the most extreme examples of star-forming
environments, demonstrated by the high surface brightness of
their emission as well as enhanced star formation rates (e.g.,

The Astrophysical Journal, 977:38 (26pp), 2024 December 10 https://doi.org/10.3847/1538-4357/ad85db
© 2024. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0000-0002-2333-5474
https://orcid.org/0000-0002-2333-5474
https://orcid.org/0000-0002-2333-5474
https://orcid.org/0000-0003-1183-9293
https://orcid.org/0000-0003-1183-9293
https://orcid.org/0000-0003-1183-9293
https://orcid.org/0000-0001-8504-8844
https://orcid.org/0000-0001-8504-8844
https://orcid.org/0000-0001-8504-8844
https://orcid.org/0000-0003-4025-1552
https://orcid.org/0000-0003-4025-1552
https://orcid.org/0000-0003-4025-1552
https://orcid.org/0000-0002-1227-8435
https://orcid.org/0000-0002-1227-8435
https://orcid.org/0000-0002-1227-8435
https://orcid.org/0000-0002-0370-8034
https://orcid.org/0000-0002-0370-8034
https://orcid.org/0000-0002-0370-8034
https://orcid.org/0000-0002-5353-1775
https://orcid.org/0000-0002-5353-1775
https://orcid.org/0000-0002-5353-1775
https://orcid.org/0000-0002-1185-2810
https://orcid.org/0000-0002-1185-2810
https://orcid.org/0000-0002-1185-2810
https://orcid.org/0000-0002-6824-6627
https://orcid.org/0000-0002-6824-6627
https://orcid.org/0000-0002-6824-6627
https://orcid.org/0000-0001-9281-2919
https://orcid.org/0000-0001-9281-2919
https://orcid.org/0000-0001-9281-2919
https://orcid.org/0000-0001-5187-2288
https://orcid.org/0000-0001-5187-2288
https://orcid.org/0000-0001-5187-2288
https://orcid.org/0000-0002-9931-1313
https://orcid.org/0000-0002-9931-1313
https://orcid.org/0000-0002-9931-1313
https://orcid.org/0000-0001-8153-1986
https://orcid.org/0000-0001-8153-1986
https://orcid.org/0000-0001-8153-1986
https://orcid.org/0000-0001-8064-6394
https://orcid.org/0000-0001-8064-6394
https://orcid.org/0000-0001-8064-6394
https://orcid.org/0000-0002-7495-4005
https://orcid.org/0000-0002-7495-4005
https://orcid.org/0000-0002-7495-4005
https://orcid.org/0000-0001-9436-9471
https://orcid.org/0000-0001-9436-9471
https://orcid.org/0000-0001-9436-9471
https://orcid.org/0000-0002-2887-5859
https://orcid.org/0000-0002-2887-5859
https://orcid.org/0000-0002-2887-5859
https://orcid.org/0000-0001-5434-5942
https://orcid.org/0000-0001-5434-5942
https://orcid.org/0000-0001-5434-5942
mailto:eb7he@virginia.edu
http://astrothesaurus.org/uat/324
http://astrothesaurus.org/uat/847
http://astrothesaurus.org/uat/1073
http://astrothesaurus.org/uat/1073
http://astrothesaurus.org/uat/1933
http://astrothesaurus.org/uat/1570
http://astrothesaurus.org/uat/1565
http://astrothesaurus.org/uat/75
http://astrothesaurus.org/uat/609
http://astrothesaurus.org/uat/1602
https://doi.org/10.3847/1538-4357/ad85db
https://doi.org/10.3847/1538-4357/ad85db
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ad85db&domain=pdf&date_stamp=2024-11-29
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ad85db&domain=pdf&date_stamp=2024-11-29
http://creativecommons.org/licenses/by/4.0/


E. Schinnerer et al. 2007; A. K. Leroy et al. 2013; E. J. Murphy
et al. 2015; N. Brunetti et al. 2021; D. Callanan et al. 2021;
C. Eibensteiner et al. 2022). Naturally, we expect that the physical
processes occurring in starburst galaxies must differ from those in
more quiescent regions, such as in the Milky Way, to account for
their increased star formation output.

One important avenue of study is the feedback processes that
occur as a result of star formation activity while also affecting
the gas and dust that will form future generations of stars.
Recently formed stars produce large quantities of energy in the
form of ultraviolet (UV) and X-ray radiation (S. Lepp &
A. Dalgarno 1996; D. J. Hollenbach & A. G. G. M.
Tielens 1999), turbulence from stellar winds and gravitational
collapse (e.g., A. F. Loenen et al. 2008), and ionizing cosmic rays
(F. Acero et al. 2009; P. P. Papadopoulos 2010; E. Bayet et al.
2011; M. Padovani et al. 2022). All of these mechanisms
contribute energy and pressure to the surrounding medium that
can have a marked effect on the molecular gas chemistry
(J. Holdship et al. 2021; E. Behrens et al. 2022; J. Holdship et al.
2022; K. Y. Huang et al. 2023). However, the relative dominance
of each of these feedback mechanisms can vary based on
environment (e.g., E. Cenci et al. 2024; E. Schinnerer &
A. K. Leroy 2024), so it is important to understand the role of
each process in different star-forming contexts.

NGC 253 is one of the nearest (d∼ 3.5± 0.2Mpc; R. Rekola
et al. 2005) starburst galaxies; thus, it has been the subject of
many studies investigating its intense and complex star
formation (e.g., K. Sakamoto et al. 2011; M. J. F. Rosenberg
et al. 2013; A. K. Leroy et al. 2015, 2018; J. G. Mangum et al.
2019; N. Krieger et al. 2020; R. C. Levy et al. 2022). Though
only featuring a modest total star formation rate (SFR) of
∼5Me yr−1, nearly half of the galaxy’s star formation is
occurring in its central kiloparsec, making NGC 253ʼs Central
Molecular Zone (CMZ) a very active star-forming environment
(A. K. Leroy et al. 2015). For comparison, the SFR in
NGC 253ʼs CMZ is larger than the total SFR across the entire
Milky Way galaxy (1.65–1.9Me yr−1; L. Chomiuk &
M. S. Povich 2011; T. C. Licquia & J. A. Newman 2015).
Recent observations and analyses from the Atacama Large
Millimeter/submillimeter Array (ALMA) Comprehensive High-
resolution Extragalactic Molecular Inventory (ALCHEMI) Large
Program (S. Martín et al. 2021) have revealed a wealth of
molecular complexity, making it possible to study shocks,
heating processes, masers, and molecular distributions at ∼28 pc
resolution (N. Harada et al. 2021; J. Holdship et al. 2021;
E. Behrens et al. 2022; D. Haasler et al. 2022; N. Harada et al.
2022; J. Holdship et al. 2022; P. K. Humire et al. 2022;
K. Y. Huang et al. 2023; M. Bao et al. 2024; M. Bouvier et al.
2024; J. Butterworth et al. 2024; N. Harada et al. 2024;
K. Tanaka et al. 2024).

Previous studies by J. Holdship et al. (2021, 2022) and
E. Behrens et al. (2022) have investigated the heating processes
associated with the intense star formation occurring in
NGC 253ʼs nucleus. Their results point to high cosmic-ray
ionization rates (CRIRs; ∼10−14

–10−12 s−1) across the NGC 253
CMZ, as well as show a spatially varying CRIR distribution with
higher ionization rates in the center that decrease toward the edge
of the CMZ. For comparison, S. Ravikularaman et al. (2024)
found a CRIR of 2× 10−14 s−1 in the Milky Way CMZ, which is
2–3 orders of magnitude larger than the CRIR in other parts of
the Galaxy. J. Holdship et al. (2021, 2022) and E. Behrens et al.
(2022) also report that these high CRIRs are the main

contributors to the high kinetic temperatures (�300 K) measured
by J. G. Mangum et al. (2019), making them the dominant
heating mechanism in the CMZ. Additionally, E. Behrens et al.
(2022) found a positive correlation between the CRIR and the
location and number of radio continuum sources (primarily H II
regions and supernova remnants) from recent star formation.
However, due to computational limitations, these studies limited
their focus to 5 (J. Holdship et al. 2022) and 10 (E. Behrens et al.
2022) Giant Molecular Cloud (GMC) regions in the CMZ that
were identified by A. K. Leroy et al. (2015) based on peaks in the
dense gas emission. Thus, these investigations were unable to
fully spatially sample the CRIR and other physical conditions
across the entire CMZ.
Chemical modeling codes, such as UCLCHEM (J. Holdship

et al. 2017),18 which was used in J. Holdship et al. (2022) and
E. Behrens et al. (2022), are powerful tools for understanding
the chemistry of star-forming regions. By providing chemical
models with sets of physical conditions, such as kinetic
temperature, volume density, and CRIR, we can predict the
abundances with respect to total hydrogen of various species
within a region of interest. For instance, E. Behrens et al.
(2022) found that the abundances of HCN and HNC are greatly
influenced by cosmic-ray chemistry in the UV-shielded
environments of NGC 253. While previous studies suggested
that HCN and HNC were sensitive to changes in kinetic
temperature for TK 50 K (L. Colzi et al. 2018; A. Hacar et al.
2020), E. Behrens et al. (2022) found that, at high cosmic-ray
ionization rates, the formation of HCN and HNC is dominated
by reactions of HCNH+ with electrons. Since both HCN and
HNC are destroyed at relatively equal rates via reactions with
ions, their cosmic-ray-influenced formation is primarily
responsible for their relative abundances (for more details on
the HCN and HNC chemistry, see E. Behrens et al. 2022).
When we combine information derived from these chemical

pathways with radiative transfer calculations, we can directly
compare model output to measured molecular intensities,
thereby allowing us to constrain the gas conditions in specific
star-forming regions and make inferences about the physical
processes occurring there. However, chemical models are
computationally expensive and time-consuming. Previous
parameter-inference studies in the NGC 253 CMZ were able
to provide strong constraints on the conditions in only a
handful of regions. In order to perform a comprehensive study
of the gas conditions across NGC 253ʼs CMZ, we must
construct a method that allows us to thoroughly sample the
CMZ’s spatially varying chemistry in a reasonable time frame.
In this paper, we present a neural network that can emulate

and adopt the role of a chemical model in our physical
parameter-inference algorithm, allowing us to ascertain the gas
conditions in a given region 10 times faster than with the
chemical model alone. This new implementation to our
algorithm allows us to infer the physical properties across the
entire NGC 253 CMZ at 50 pc resolution and will pave the way
toward extending this analysis to other galaxies, as well as
images with higher resolution or larger fields of view.
Ultimately, the ability to constrain molecular gas conditions
and make inferences about the physical processes associated
with starburst activity will help us better understand the
relationship between star formation and galaxy evolution in
starburst galaxies.

18 https://uclchem.github.io/
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We present our data and identification of regions of interest
in Section 2. In Section 3, we describe our neural network
architecture and its implementation into our Bayesian nested
sampling algorithm. We summarize our results in Section 4 and
discuss the implications of our work on star formation and
galaxy evolution in Section 5.

2. Observational Data

2.1. ALCHEMI Observations

We use data from the ALMA Large Program ALCHEMI: the
ALMA Comprehensive High-resolution Extragalactic Molecular
Inventory (S. Martín et al. 2021), which imaged the NGC253
CMZ in ALMA Bands 3–7 (84–373GHz) at 1.″6 (∼28 pc)
resolution during ALMA Cycles 5 (2017.1.00161.L) and 6
(2018.1.00162.S). Details of the observations and data reduction
can be found in S. Martín et al. (2021) and E. Behrens et al. (2022).
As noted in E. Behrens et al. (2022), we extract the HCN and HNC
J= 1–0, 2–1, 3–2, and 4–3 transition integrated intensities using
the CubeLineMoment code.19 The frequencies and upper-state
energies for our transitions of interest are shown in Table 1.

2.2. Region Selection and Moment 0 Maps

In order to sample the entire nuclear region in NGC 253, we
divide the CMZ into adjoining hexagonal regions 50 pc in height
using the integrated emission averaging code HERA (E. Behr-
ens 2024), the HExagonal Region Averager code.20 This code
divides integrated intensity maps for each transition of interest
into either adjacent circular or adjoining hexagonal regions of a
user-specified size, averages the integrated emission over the
region, and calculates noise statistics associated with the
averaged emission. We choose a common region size of 50 pc,
which is the typical size of a GMC structure in the NGC 253
CMZ (A. K. Leroy et al. 2015). The code-generated regions are
pruned such that only regions that meet a specified signal-to-
noise ratio (S/N) threshold (in our case, S/N� 3) are retained.
This information is written to a file from which we can extract
and analyze it. Figure 1 shows the final 94 regions we selected
to study, where each of the hexagonal regions has S/N� 3 in
at least one transition of interest.

However, unlike the regions studied in J. Holdship et al.
(2022) and E. Behrens et al. (2022), not all hexagonal regions

contain significant emission for every studied transition (see the
bottom panel in Figure 1). In some cases, a portion of the image
pixels within a given hexagon are masked due to low S/N. In
other cases, entire hexagonal regions are masked. Rather than
removing regions that do not feature a full set of eight detected
transitions for HCN and HNC or, alternatively, constraining
models of those regions with fewer than eight transitions, we
fill in low S/N image pixels with 3σ upper-limit integrated
intensities. These limits allow us to constrain our models with
an equal number of transitions per region while also testing the
efficacy of this algorithm in regions with low levels of
emission. We derive these 3σ limits using our single-channel
rms σnoise, flux-calibration uncertainty σfluxcal, and an assumed
line width Δv. Based on an inspection of the range of line
widths seen in the CMZ for HCN and HNC near the edge of
our S/N threshold, we assume a random Δv between 20 and
100 km s−1 for each low S/N image pixel. We integrate over
a Gaussian with width v 8 ln 2D and a peak value equal to

3 times the noise value, or 3 noise
2

fluxcal
2s s´ + , where σfluxcal

is equal to 15% of the measured flux. Using these upper-limit
values in place of masked pixels, we then obtain a unique
average integrated intensity and rms for each hexagonal region,
which we use to constrain our physical and chemical models, as
discussed in Section 3. Average integrated intensity measure-
ments and rms values for example outer and inner CMZ
regions (regions 26 and 53, respectively) are shown in Table 1.
Average integrated intensities and the associated rms values for
each of the 94 regions is provided as a machine-readable table.

3. Bayesian Inference with Neural Networks

To constrain the gas properties in each of our designated
regions, we consider the chemical pathways and molecular
emission resulting from a given set of input gas conditions.
Previous studies (E. Behrens et al. 2022; J. Holdship et al.
2022; K. Y. Huang et al. 2023) used the chemical modeling
code UCLCHEM (J. Holdship et al. 2017)21 to calculate
molecular abundances given a set of input conditions. Using
the radiative transfer code SpectralRadex,

22

these studies
associated modeled abundances, in combination with the input
gas conditions, with modeled integrated intensities for each
transition of interest, which could be directly compared to
observations. The aforementioned studies successfully

Table 1
Example Average Integrated Intensity and rms Values for Regions in the Outer (Region 26) and Inner (Region 53) CMZ

Region 26 Region 53

Transition Rest Frequency Eu 〈∫Sνdν〉 rms 〈∫Sνdν〉 rms
(GHz) (K) (Jy km s−1 beam−1) (Jy km s−1 beam−1) (Jy km s−1 beam−1) (Jy km s−1 beam−1)

HCN 1–0 88.6316 4.25 4.7 0.7 8.8 1.3
2–1 177.2611 12.76 13.3 2.0 33.5 5.0
3–2 265.8864 25.52 13.9 2.1 56.1 8.4
4–3 354.5055 42.53 11.0 1.7 68.6 10.3

HNC 1–0 90.6636 4.35 2.2 0.3 7.9 1.2
2–1 181.3248 13.05 2.2 0.7 19.9 3.0
3–2 271.9811 26.11 4.3 0.7 37.9 5.7
4–3 362.6303 43.51 2.4 0.4 40.9 6.1

(This table is available in its entirety in machine-readable form in the online article.)

19 https://github.com/keflavich/cube-line-extractor
20 https://github.com/ebehrens97/HERA

21 https://uclchem.github.io/
22 https://spectralradex.readthedocs.io/en/latest/
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demonstrated the validity of these methods by estimating
certain gas properties, such as volume density and CRIR, for a
small number of regions (5–12, from A. K. Leroy et al. 2015;
K. Y. Huang et al. 2023) in the NGC 253 CMZ. However, the
use of a chemical modeling code significantly prolongs this
process, making this strategy untenable for modeling a larger
number of regions. We address this issue by developing a
neural network model that can replace and fulfill the role of a
chemical model in our Bayesian inference algorithm (see
Figure 2). Further details regarding our Bayesian inference
analysis are described in J. Holdship et al. (2022) and E. Beh-
rens et al. (2022).

3.1. Neural Network Architecture

We use the Python package TensorFlow23 to build and
train our neural network model. We find that a neural network
with fully connected layers and 12,020,002 trainable

parameters produces a model that best reproduces the
UCLCHEM abundances (note that these trainable parameters—
neural network weights and biases; see Appendix A—are
separate from the physical parameters listed in Table 2). We
start with an input layer of four nodes, where each node
corresponds to one of our chemical model parameters (kinetic
temperature TK, H2 volume density n, CRIR ζ, and H2 column
density N).24 After values from the input layer are passed
through the hidden layers, the values calculated in the neural
network’s output layer represent the molecular abundance
predictions of that epoch for each physical parameter
combination in the training set. An epoch is defined as the
time it takes for the neural network to be trained on the entire
training set one time. See Appendix A for more details on the
neural network training process.

Figure 1. Top: map of NGC 253 HCN 1–0 integrated emission with S/N > 3 overlaid with the regions analyzed in this article. Purple circles indicate locations of
GMCs studied in J. Holdship et al. (2022) and E. Behrens et al. (2022; note J. Holdship et al. 2022 only investigated GMCs 3–7). The circle in the bottom-left corner
indicates the size of the 1.″6 (∼28 pc) ALCHEMI beam. Orange crosses in both panels indicate the location of the galaxy’s kinematic center (J. L. Turner &
P. T. P. Ho 1985). Bottom: map of the hexagonal regions used in this analysis with hatching to indicate how many total HCN and HNC transitions have been detected
with S/N > 3.

23 https://www.tensorflow.org/

24 Note that the beam-filling factor is not an input for the neural network, as it
is applied after the integrated intensities are calculated with SpectralRadex
(see Section 3.4).
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Periodically throughout each training epoch, our training
algorithm compares the node values for a given layer to the
actual values provided by the training data using a loss
function. We use a mean-squared-error loss function, and the
calculated loss is used to tweak the neural network in order to
improve its performance in future epochs. At the end of each
epoch, the loss for a separate data set, the validation data, is
calculated (see Section 3.2 for a breakdown of the training and
validation sets). The neural network does not “see” the
validation data until the end of an epoch, and thus the
validation set is used to assess the neural network’s efficacy so
the model can be improved for the next round of training. This
process continues over several epochs until the neural network
reaches its specified stopping criterion. In this case, we cease
neural network training once the calculated loss has not
improved over 20 consecutive epochs, and the neural network
then reverts back to using the weights from the epoch with the
lowest validation loss. We employ this criterion to avoid
overfitting, which occurs when the model simply memorizes
the abundances associated with each parameter combination
without learning how to predict abundances from new,
unseen data.

3.2. Training Data Set

We train one neural network model to predict the abundance
of both HCN and HNC since previous ALCHEMI studies have

shown that these molecules have similar spatial distributions
(see E. Behrens et al. 2022). We derive our training data set
from a grid of UCLCHEM models for HCN and HNC using
input parameters that span our parameter space (see Table 2).
We use a two-phase UCLCHEM model structure25 that takes
only the assumed volume density as input in phase 1 and
models the freefall collapse of a gas cloud with an initial
density of 100 cm−3 down to the specified density at a fixed
temperature of 10 K, transforming the gas from atomic/ionic to
molecular form. This stage is followed by phase 2, which uses
the calculated abundances inherited from phase 1 and four of
our five input parameters (TK, nH2, ζ, and NH2) to chemically
model the cloud itself over a timescale of 6 Myr. The output
from phase 2 makes up the training data for our neural network.
We note that the abundances used at the beginning of stage 2
may be sensitive to the initial conditions (e.g., UV field,
elemental abundances, mode of collapse)—varying these
parameters would require reconstructing the training data set,
which is not a case considered here. Here, we assume that we
are probing the inner, shielded part of the cloud (visual
extinction Av of 10 mag) such that UV radiation (set to
1 Habing in both UCLCHEM phases) is negligible. X-ray
ionization is not included in UCLCHEM, but other studies have

Figure 2. Flow chart describing our Bayesian nested sampling algorithm, where the highlighted purple rectangle indicates the neural network’s position in our
modeling process.

Table 2
Prior Distributions and Training Data

Parameter Range (Buffer Range) Distribution Type No. Points (No. with Buffer)

TK Temperature (K) 50–300 Linear 15
nH2 Volume Density (cm−3) 103–107 (102.6–107.4) Log 20 (24)
ζ Cosmic-ray Ionization Rate (ζ0)

a 10–107 Log 25
NH2 H2 Column Density (cm−2) 1022–1025 (1021.6–1025.4) Log 15 (19)
ηff Beam-filling factor 0–1 Linear N/Ab

Notes.
a
ζ0 = 1.36 × 10−17 s−1.

b Parameter ηff is not a neural network parameter, as it is applied after the intensities are calculated by the neural network and SpectralRadex.

25 Note that this two-phase approach differs from that used in E. Behrens et al.
(2022), which only included the second phase of this modeling process. Further
discussion on this subject can be found in Section 5.3.
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shown that the ionization contribution from X-rays in the
regions we study is likely several orders of magnitude lower
than the ζ values we infer (ζx-ray 10−17 s−1 for N(H2)
1023 cm−2; V. H. M. Phan et al. 2024), thus making X-ray
ionization a negligible contributor to the heating budget within
the NGC 253 CMZ. See J. Holdship et al. (2017) for more
details on UCLCHEM and its capabilities. Table 2 shows the
parameter space over which we run these models and also
indicates the types of prior distributions we assume for each
parameter, as well as the number of values we sample for the
training set for each parameter within our desired range.
Including buffer points, which will be discussed later, each
initial data set contains ∼170,000 parameter combinations.

Any parameter combinations that result in very low
abundances are likely to be dominated by numerical error
rather than chemistry (J. Heyl et al. 2023). Hence, we retain
only parameter combinations that result in abundances for both
HCN and HNC above 10−12 (a conservative value corresp-
onding to typically the lowest observed molecular abundances),
leaving ∼115,000 data points.

We divide the UCLCHEM output into a training set (60% of
data, ∼69,000 points), validation set (15% of data, ∼17,000
points), and a test set (25% of data, ∼28,000 points). We use
the parameter values in our training set as input for the neural
network’s first layer (using the log of the parameter value for
nH2, ζ, and NH2), and these values are then propagated through
the neural network (see Appendix A for more details),
ultimately resulting in molecular abundance predictions for
both HCN and HNC. We use the log of the UCLCHEM
fractional abundance values when training the neural network
in order to increase the magnitude of differences between
abundances. We calculate the mean-squared-error loss between
the neural network result and the training data continuously
throughout each epoch, but we calculate the validation loss, or
loss derived from the validation data, only once at the end of
each epoch (see Figure A2). Once we reach our stopping
criterion (see Section 3.1), we test the newly trained neural
network model on the test set, a subset of the UCLCHEM grid
that was not included in the training process. We then compare
the model’s predicted abundances to the actual abundances
produced by UCLCHEM in order to assess its accuracy.

3.3. Training Results

Figure 3 shows the results from our neural network training
process, including the results for the best model (panel (C)),
which we later use in our Bayesian inference algorithm. We
compare the neural network model-predicted values against
those calculated with UCLCHEM and find that, on average, the
neural network model is able to recover molecular abundances
within 3% of the chemical model’s values.

However, Figure 3(a) shows there are outliers, making up
∼1% of the test set where the neural network was unable to
recover an abundance within 1 order of magnitude of the
UCLCHEM value (green and black Xs in Figure 3(a)). Initial
testing revealed that the neural network was unable to predict
abundances for parameter combinations that included the
minimum and maximum column and volume density values
that we probed (1022 cm−2, 1025 cm−2 and 103 cm−3,
107 cm−3, respectively). Excluding the edge points, all other
column and volume density values within our parameter ranges
are padded above and below by values of that parameter that
the neural network can use to predict an abundance. However,

values on the edge of our parameter space are not padded by
additional parameter values on each side, resulting in poorer
abundance predictions for parameter combinations that contain
these edge points. To ensure that the neural network is equally
trained and sensitive to all values that fall within our desired
parameter space, we include additional column and volume
density buffer points outside of our desired parameter ranges
(see Table 2) when training our neural network model, though
values outside of this original range will not be considered later
in our Bayesian analysis. We found no evidence that the neural
network was poorly predicting abundances for other parameter
combinations including temperature and CRIR values on the
edges of our parameter space, so we use the original parameter
ranges for TK and ζ that are listed in Table 2.
Figure 3(b) shows the predictions of our neural network

model when including the buffer points shown in Table 2 in
our training set. These buffer points become the new edge
points (green and black Xs in Figure 3(b)) in this expanded
parameter space and are thus subject to the same scatter as the
edge points in Figure 3(a). However, when plotting the results
of this same model but removing these buffer points
(Figure 3(c)), we see that the abundance predictions from
parameters with values in our original parameter space have
significantly less scatter. By including buffer points while
training our neural network model, we ensure that our model
can robustly predict abundances across our desired parameter
space.

3.4. Implementation with Bayesian Nested Sampling

We implement our fully trained neural network model for
HCN and HNC as a replacement for the chemical model’s role
in our inference procedure. The original implementations of
this algorithm (see E. Behrens et al. 2022; J. Holdship et al.
2022) used the nested sampling code UltraNest (J. Buchner
2016, 2019, 2021)26 to feed parameter combinations into our
chemical model, UCLCHEM, which would calculate and return
abundance estimates for our molecules of interest. In our
updated algorithm, our neural network model fills this role
instead (see Figure 2). The HCN and HNC model predicts
abundances that we then feed into our radiative transfer code,
SpectralRadex, in order to obtain integrated intensities for
these molecular species. Note that SpectralRadex does a
radiative transfer calculation that accounts for optical depth.
We use collisional excitation rates from M. Hernández Vera
et al. (2017), who calculated rates for HCN and HNC collisions
with ortho- and para-H2 (see Appendix C for a detailed analysis
of these new rates as compared to those used in E. Behrens
et al. 2022). We adopt a 3:1 ortho:para hydrogen ratio. After
the integrated intensities are calculated, we apply a beam-filling
factor, which is a free parameter in our algorithm ranging from
0 to 1. We then compare these modeled integrated intensities
Ft, which are calculated for some set of parameters θ, to our
observed intensities Fd and their associated uncertainties σF
using the following log-likelihood function:
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where we sum the values for each transition i.

26 https://johannesbuchner.github.io/UltraNest/
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UltraNest uses the results from each log-likelihood
comparison to choose additional parameter combinations to
sample within our designated parameter space (see Figure 2
and Table 2). This process concludes when UltraNest has
sampled the majority of the probability density.

4. Results

4.1. Neural Network versus Chemical Model

We compare the nested sampling results using our neural
network model to those obtained with UCLCHEM to confirm
that the neural network can reliably replace the role of a
chemical model in our nested sampling algorithm. Figure 4
compares the inference algorithm results using UCLCHEM and
the HCN/HNC neural network for regions 26 and 53 (see
Figure 1 for region numbers), which were chosen to represent
regions in the outer and inner CMZ, respectively. The neural
network clearly replicates the results we obtain using
UCLCHEM. The final inferred parameter values and their
uncertainties derived from UCLCHEM and our neural network
are nearly identical. Additionally, both the 1D and 2D posterior
distributions for the two methods feature very similar shapes
and characteristics, demonstrating that the neural network can
reliably reproduce UCLCHEM results in this context in a fraction
of the time. We note that the 2D posteriors generated when

including the neural network model are somewhat smoother
than those produced when our algorithm includes UCLCHEM.
This difference may result from the fact that the neural network
models are simply an approximation of the UCLCHEM
calculations. This approximation may smooth over the
functional relationships between model parameters and output
abundances and could be further related to the spacing between
parameter points in our training grid. Further testing is required
to determine whether a more finely spaced grid would more
closely resemble the structure seen in the 2D UCLCHEM
posterior distributions. Nevertheless, the parameter values
inferred by our neural network algorithm are well within the
uncertainties obtained from the same analysis with UCLCHEM.
The neural network+UltraNest algorithm completed its
explorations of the parameter space in ∼7% and ∼15% of the
time it took for UCLCHEM+UltraNest to do the same for
regions 26 and 53, respectively.

4.2. Parameter Maps

We show maps of the inferred parameter values derived from
our combined Bayesian nested sampling and neural network
algorithm in Figure 5 and their associated uncertainties in
Figure 6. In general, we see notable differences in the inferred
parameter values in the central 100 pc versus the rest of the

Figure 3. (a) Neural network predictions of test set parameter combinations where the model was trained using the original parameter ranges in Table 2 without buffer
points. Predictions for parameter combinations that used maximum or minimum values for column or volume density are indicated with X’s. (b) Same as (a), but
neural network training set included additional buffer points for volume and column density.(c) Neural network predictions using the same model as in (b), but buffer
points are not plotted.
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CMZ. H2 volume and column density are enhanced by 1–2
orders of magnitude in the nucleus of the CMZ with values
reaching as high as 8× 104 cm−3 and 5× 1024 cm−2, respec-
tively, compared to outer CMZ values of ∼5–6× 103 cm−3

and ∼3–4× 1022 cm−2. We will discuss comparisons of our
measurements with those from other NGC 253 studies in
Section 5.1.

The CRIR is also an order of magnitude larger in the central
∼10″ (∼4× 10−13 s−1) than in regions 15″ away from the
nucleus (∼2× 10−14 s−1). However, the inferred CRIR map
also indicates a ring of high-CRIR (5× 10−13 s−1) regions

exists around the edge of the CMZ. We do not believe these
parameter estimates to be physically motivated and will discuss
this issue in more detail in Section 5.2. Comparison to other
CRIR estimates, both observational and theoretical, will be
addressed in Sections 5.3 and 5.4.
Figure 5 also shows a decrease in the beam-filling factor in

NGC 253ʼs nucleus, which is consistent with the gas emission
originating from smaller, higher-density regions and is
supported by our estimation of higher volume and column
densities in these regions. Finally, we see very little spatial
correlation between the kinetic temperature and our other fitted

Figure 4. (a) Corner plot for region 26 using UCLCHEM. (b) Corner plot for region 26 using the HCN/HNC neural network. (c) Corner plot for region 53 using
UCLCHEM. (d) Corner plot for region 53 using the HCN/HNC neural network.
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parameters, with no consistent increase or decrease in
temperature in the central versus outer CMZ regions. In
general, we do not constrain the kinetic temperature well with
our HCN and HNC measurements (see, for example, the
kinetic temperature panels in Figures 4, 5, and 6), which is
consistent with the results from E. Behrens et al. (2022). This
finding is reinforced by the kinetic temperature uncertainty map
in Figure 6. While the rest of our parameter maps show
uncertainties are lowest in the center of the CMZ, where we
have the highest S/N, the kinetic temperature uncertainty map
demonstrates no such correlation.

5. Discussion

5.1. Column Density, Volume Density, Filling Factor, and
Kinetic Temperature

In Section 4.2 we found that there are significant gradients in
the inferred values of hydrogen column density NH2 and
volume density nH2 (Figures 5 and 6). Estimates for volume and
column density from this work and other ALCHEMI studies
are shown in Table 3 for the inner (r 100 pc) and outer

(r 100 pc) CMZ. Note that with the exception of this work,
all of the studies listed in Table 3 estimated the volume and
column densities on scales of ∼28 pc, equivalent to the
ALCHEMI beam, whereas we estimate these parameters on
scales of 50 pc. Therefore, our estimates of the volume and
column density are largely consistent with the lower end of the
ranges provided for these other studies. This slight discrepancy
likely results from averaging these parameters over larger areas
that may include more diffuse gas components, especially in
the outer CMZ.
We also see a clear distribution across the CMZ in the dense

gas beam-filling factor ηff, with the lowest values found in the
center. In the inner CMZ (r 100 pc), ηff 0.1, while in the
outer CMZ (r 100 pc), ηff 0.3. The gradients in nH2, NH2,
and ηff are consistent with gas originating from smaller, higher
volume and column density regions as one moves from the
outer portions of the CMZ toward the nucleus of NGC 253.
Kinetic temperature, by contrast, is poorly constrained by our
models, exposing no systematic changes as a function of
position in the CMZ.

Figure 5. Parameter-inference results from our Bayesian nested sampling plus neural network algorithm for kinetic temperature (upper left), H2 volume density (upper
right), CRIR (middle left), H2 column density (middle right), and beam-filling factor (bottom). Gray contours correspond the the integrated HCN 1–0 emission at
levels of 1, 3, and 5 Jy km s−1 beam−1. White and black crosses indicate the galaxy’s kinematic center (J. L. Turner & P. T. P. Ho 1985). Green circle in the bottom-
right corner of each map represents ALCHEMI’s 1 6 (∼28 pc) beam.
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The centrally condensed nature of the NGC 253 CMZ may
reflect the process that catalyzed the starburst in this galaxy.
Mergers are a common mechanism for generating starbursts in
galaxies (L. Armus et al. 1987; F. Renaud et al. 2022). As
NGC 253 shows no signs of having participated in a merger,
the trigger for the burst of star formation in the NGC 253 CMZ
must be associated with its high concentration of dense gas.
Starburst galaxy evolution models can reproduce such a
process. E. Cenci et al. (2024) have modeled starburst galaxy
evolution using the FIREbox simulation (R. Feldmann et al.
2023). They find that global gravitational instabilities that drive

central gas compaction are the main catalyst for starbursts in
galaxies, independent of a galaxy’s merger status.

5.2. Apparent High-ζ Regions

As noted above in Section 4.2 and in Figure 5, the CRIR
maps feature regions primarily along the edge of the CMZ with
CRIRs seemingly higher than those found in the nucleus
(ζ 5× 10−13 s−1). E. Behrens et al. (2022) noted a positive
correlation between the number of cosmic-ray sources (e.g.,
supernova remnants, which are primarily located in the center
of the CMZ) and the CRIR in NGC 253. As such, the lack of
cosmic-ray sources around the edge of the CMZ begs questions
about the legitimacy of these high inferred ζ values. We will
explore two possible explanations for this behavior.

5.2.1. High X XHCN HNC

First, we will consider the HCN/HNC abundance ratio,
X XHCN HNC. E. Behrens et al. (2022) found a negative correlation
between X XHCN HNC and the CRIR, with X X 4HCN HNC < for
ζ> 10−13 s−1 and decreasing toward unity for even higher
CRIRs. They explained that at high CRIRs both HCN and HNC
are expected to be formed and destroyed at similar rates, resulting

Figure 6. Uncertainties on our five inferred parameters. For the parameters over which we consider a log-uniform distribution (nH2, ζ, and NH2), we show their
uncertainties as orders of magnitude from the inferred value, as shown above the corner plot 1D distributions in Figure 4.

Table 3
Comparison of NGC 253 Volume and Column Density with the Literature

r  100 pc r  100 pc

ALCHEMI Study nlog H2 Nlog H2 nlog H2 Nlog H2
(cm−3) (cm−2) (cm−3) (cm−2)

J. Holdship et al. (2022) 5.3 24.3 4.5 22.6
E. Behrens et al. (2022) 5.0 24.0 3.8–4.7 23.0
K. Tanaka et al. (2024) 5.0–5.4 23.7 3.8–4.5 23.0
This work 4.7–5.0 23.8–24.7 3.7–4.3 22.5–23.5

10

The Astrophysical Journal, 977:38 (26pp), 2024 December 10 Behrens et al.



in X XHCN HNC tending toward 1. However, as shown in Figure 7,
we find X X 4HCN HNC > in many regions with high ζ.
Figure 7(a) shows a clear bimodal behavior in X XHCN HNC,
where all 24 regions with X X 4HCN HNC > also feature
ζ> 5× 10−13 s−1. These regions are not located within the
nucleus’s innermost 5″ and generally do not contain cosmic-ray-
producing sources (see Figure 8).27

Additionally, we find that most of the regions identified in
Figure 7 pair high CRIRs with very low kinetic temperatures
such that TK is often pinned against the lower end of our prior

distribution (see Figure B1 for examples). Though we do not
constrain TK well with our models, the high CRIRs that we
estimate in these edge regions are not compatible with such low
kinetic temperatures. Cosmic-ray ionization is expected to
contribute significant energy to interstellar gas, raising the
kinetic temperature to several hundreds of Kelvin (E. Bayet et al.
2011; E. Behrens et al. 2022), assuming the gas column density
is not so high as to shield the inner layers from ionization
(M. Padovani et al. 2022). The unphysical combination of high ζ
and very low TK, in addition to anomalously high X XHCN HNC
values, indicate that the chemistry included in our model is not
well suited to the conditions in these regions.
As mentioned in Section 3.2, we assume in our model that

the gas we are probing is dense enough such that it is shielded

Figure 7. Probability density for HCN/HNC abundance ratio (a) and cosmic-ray ionization rate map (b) with dotted hatching in both plots corresponding
to X X 4HCN HNC > .

Figure 8. CRIR map estimated from our parameter-inference algorithm. All grayed-out, hatched regions are estimated by our algorithm to have ζ > 5 × 10−13 s−1 and
one or more of the following issues. The “X” hatching indicates regions where the estimated HCN or HNC abundance was below 10−12 with respect to hydrogen, and
the dotted regions indicate locations where X X 4HCN HNC > , with the two appearing together when both conditions are true. White and black numbers indicate the
number of transitions that are detected with S/N > 3 for a given region, and purple outlines indicate when there are no transitions above the J = 2–1 that meet this
threshold. Gray contours signify HCN 1–0 emission at 1, 3, and 5 Jy km s−1 beam−1. Colored dots indicate the locations of recent star formation via radio continuum
sources (supernova remnants and H II regions; J. S. Ulvestad & R. R. J. Antonucci 1997) and super hot cores (F. Rico-Villas et al. 2020). Note half of the unclassified
sources are expected to be H II regions, and half are thought to be supernova remnants. The green circle in the bottom-right corner represents the ALCHEMI 1 6
(∼28 pc) beam.

27 Note that, of the “Unclassified Radio” sources labeled in Figure 8 (identified
in J. S. Ulvestad & R. R. J. Antonucci 1997), half are expected to be supernova
remnants, and half are likely H II regions.
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from UV radiation and therefore dominated by cosmic-ray
ionization. While this was true for the dense gas in the GMCs
studied in E. Behrens et al. (2022), it is likely not the case for
the regions in more diffuse areas of the NGC 253 CMZ. As a
result, UV radiation is likely impacting the HCN and HNC
chemistry. M. G. Santa-Maria et al. (2023) found that HCN
was enhanced by far-UV radiation, increasing the HCN/HNC
ratio as the incident radiation field increased. Thus, one
explanation for the high-CRIR values outside of the inner 5″ is
that they are not shielded against UV radiation and are
therefore not well described by the chemistry in our model.

Another possibility is that some of these regions are affected
by shocks. R. Meijerink et al. (2011) discussed the influence of
mechanical heating from shocks on the HCN/HNC ratio,
showing that it is enhanced by shock activity. K. Tanaka et al.
(2024) constrained the kinetic temperature in NGC 253 and
noted four high-temperature regions around the outskirts of the
CMZ (approximately regions 34, 49, 51, and 71 from this
work). They hypothesized that the gas in these regions is
emitting from above the plane of the CMZ and could therefore
be interacting with the large-scale outflow (A. D. Bolatto et al.
2013). In the southwest, region 86 (GMC 1) is another location
potentially featuring shocks. M. Gorski et al. (2017) showed
that this region is close to an expanding shell of dense gas, and
K. Y. Huang et al. (2023) also found evidence indicative of
shocks here. Since the chemistry in shocked regions is likely
not dominated by cosmic-ray ionization, the model presented
here may struggle to constrain the parameters in those areas.

5.2.2. Low XHCN and XHNC

After considering the regions marked by high X XHCN HNC
that may involve chemistry not included in our model, we see
in Figure 7 that there are still several regions, primarily in the
northeast and northwest, that feature uncharacteristically high
CRIRs. To address these regions, we then look beyond
abundance ratios and consider the individual values of XHCN
and XHNC. As mentioned in Section 3.2, UCLCHEM abundance
estimates, upon which our neural network is based, are
dominated by numerical errors when considering abundances
below 10−12. As a result, we remove all parameter combina-
tions from our training set that yield HCN or HNC abundances
below this threshold. However, the neural network is able to
characterize the functional relationships that exist between the
parameters and molecular abundances during training. Since
these functions are smooth around the abundance threshold we
have imposed, it can still extrapolate and produce abundances
below the 10−12 threshold if provided with the relevant
parameter values by our nested sampling algorithm.

We find that in many of the high-ζ regions along the
outskirts of the CMZ, the most likely range of parameters
yields XHCN and XHNC values below 10−12 (see the “X”-
hatched regions in Figure 8). Interestingly, despite not being
trained on parameter combinations that result in such low
abundances, the neural network does an excellent job at
replicating the results that would be produced with UCLCHEM.
Figure B2 in Appendix B shows the posterior distributions
achieved for region 1 using UCLCHEM and the neural network
model, demonstrating nearly identical results in this low-
abundance region. It is thus clear that our high-ζ result is not a
product of the neural network, but of the chemical model’s
inefficacy at such low abundances. We see in Figure 8 that all
low-abundance regions feature four or fewer combined HCN

and HNC transitions that meet our S/N criteria (as compared to
the full set of eight that are available) and no higher-energy
transitions detected above J= 2–1. The lack of HCN and HNC
emission that spans the excitation ladder in these regions
corroborates the low abundances estimated by UCLCHEM and
the neural network. Since chemistry is largely irrelevant in this
low-abundance regime, we determine that parameter results for
any regions that correspond to such low abundances are
unreliable.

5.3. Comparison of Cosmic-Ray Ionization Rate to Other
Measurements

We compare our CRIR results to those predicted using
similar methods in J. Holdship et al. (2022) and E. Behrens
et al. (2022). While J. Holdship et al. (2022) studied H3O

+ and
SO and E. Behrens et al. (2022) used HCN and HNC, both
studies employed Bayesian nested sampling with a combina-
tion of chemical and radiative transfer models in order to infer
the dense gas physical parameters in NGC 253ʼs CMZ. As
mentioned in Section 1, both studies investigated a smaller
number of GMC-sized regions (5 and 10, respectively) than in
the study presented here. We compare our parameter estima-
tions to those inferred in J. Holdship et al. (2022) and E. Beh-
rens et al. (2022), which are plotted as colored-shaded regions
in Figure 9. Since GMCs 1–10 were not explicitly studied in
this work, we associate each GMC with the hexagonal region
with which it shares the most overlap (see Figure 1). Note that
both of the aforementioned studies used smaller regions
(∼28 pc circles, equal to the size of the ALCHEMI beam)
than the 50 pc hexagonal regions we study here. We are unable
to plot a value for GMC 1, as region 86 (its closest proxy) was
removed due to possible UV or shock contamination. Though
E. Behrens et al. (2022) was able to obtain a reasonable CRIR
estimate for GMC 1, which corresponded to a smaller region
associated with denser gas, the larger area of our hexagonal
regions results in the inclusion of more diffuse gas that is more
likely to be influenced by UV radiation. Thus we are unable to
obtain a reliable CRIR estimate for this region using our current
chemical framework.
As shown in Figure 9, this work predicts slightly lower

CRIR values than those estimated previously with HCN and

Figure 9. Comparison of our CRIR estimates with those from E. Behrens et al.
(2022), J. Holdship et al. (2022), and V. H. M. Phan et al. (2024). As proxies
for GMCs 2–10, which were not studied in this work, we provide values for
regions 75, 58, 53, 47, 36, 26, 20, and 16, which are the regions that overlap
most significantly with the plotted GMCs. The widths of the shaded regions at
each data point indicate the most likely 66% of each ζ posterior distribution.

12

The Astrophysical Journal, 977:38 (26pp), 2024 December 10 Behrens et al.



HNC in E. Behrens et al. (2022), suggesting a CRIR range of
5× 10−15

–10−12s −1, whereas E. Behrens et al. (2022)
predicted a range of 6× 10−13

–5× 10−12 s−1. This lower
range agrees better with the values reported in J. Holdship et al.
( 2022), who estimated a CRIR range of 10−14

–10−12 s−1. The
difference we see between our study’s CRIR estimates and
those estimated in E. Behrens et al. (2022) is likely a result of
updates we implemented in our modeling procedure and not the
effect of our neural network use. The model differences are as
follows:

1. Multi-phase modeling. In this work, we use UCLCHEMʼs
two-phase model that includes the freefall collapse of a
cloud in order for the gas to start the second phase of the
model in molecular form, rather than atomic or ionic.
This first phase was not used in E. Behrens et al. (2022)
but was indeed implemented in J. Holdship et al. (2022).
In cases where the CRIR was well constrained using only
phase 2, the addition of phase 1 had little effect on our
posterior distributions. In regions where our posterior
distributions were less well constrained, introducing
phase 1 into our modeling had a more significant effect
on the shape of the posterior distributions but did not
greatly alter the median values derived from each
distribution. Figure B3 demonstrates the differences in
the posterior distributions with and without phase 1
modeling for sample regions 26 and 53.

2. New collisional excitation rates. We implement more
recent collisional excitation rates in our radiative transfer
modeling with SpectralRadex. These rates are
derived from calculations done by M. Hernández Vera
et al. (2017) that included collisions with ortho- and
para-H2, whereas E. Behrens et al. (2022) used older rates
that were based on scaled calculations from collisions
with helium (F. Dumouchel et al. 2010). These new rates
did not result in significant changes in our posterior
distributions for the majority of tested regions. A detailed
analysis of the new collisional rates and their impact on
each of our SpectralRadex parameters can be found
in Appendix C.

3. Beam-filling factor. Recent work by J. Butterworth et al.
(2024) suggests that HCN emission in NGC 253
originates from sources significantly smaller than the
∼28 pc ALCHEMI beam, indicating that a beam-filling
factor is a necessary addition to an algorithm that models
HCN, and likely also HNC. Thus, we also implement a
beam-filling factor as one of our free parameters. The
addition of this parameter did not greatly change the
median CRIR values inferred for any of our test regions
—small variations were noted, but any differences were
within parameter uncertainties. However, including a
beam-filling factor did slightly widen the posterior
distributions derived for each parameter. This difference
is demonstrated in Figure B4.

For the most part, none of these changes individually have a
large impact on the CRIR estimates in NGC 253ʼs CMZ.
However, when applied together, we see a slight decrease
(about half an order of magnitude) in the predicted CRIR
estimates as compared to E. Behrens et al. (2022). With the
exceptions of GMCs 1 (discussed above) and 5, all CRIR
uncertainties overlap with those from both J. Holdship et al.
(2022) and E. Behrens et al. (2022). It is important to

remember, however, that the regions we study here are nearly
twice as large in diameter and contain ∼3.5 times the area as
those investigated in the aforementioned studies. Therefore, a
decrease in the estimated CRIR could also be attributed to the
gas parameters being averaged over a larger area, thus likely
including both diffuse and dense components, whereas the
smaller GMC structures, as defined in A. K. Leroy et al.
(2015), are centered on denser gas components.

5.4. Comparison of Cosmic-Ray Ionization Rate to Theoretical
Predictions

To confirm the validity of the high CRIRs derived from
molecular emission in E. Behrens et al. (2022), J. Holdship
et al. (2022), and this work, we consider CRIRs derived
from theoretical calculations and fits to nonthermal radio,
X-ray, and gamma-ray emission data from V. H. M. Phan et al.
(2024). This study considers a theoretical transport model for
cosmic rays from which they derive cosmic-ray spectra
(informed by observations of nonthermal emission) that are
used to derive CRIRs as a function of molecular cloud H2

column density in NGC 253, M82, and Arp 220. In develop-
ing the transport model, they consider cosmic-ray protons
and electrons injected by supernova remnants, as well as
secondary and tertiary electrons injected from proton–proton
interactions and low-energy photon interactions with cosmic-
ray-induced gamma-rays, respectively. V. H. M. Phan et al.
(2024) include four processes in their model to produce
cosmic-ray-induced nonthermal emission: π0 decay from
proton–proton interactions, bremsstrahlung radiation, inverse
Compton scattering, and synchrotron radiation. Using this
model and parameters derived from fits to nonthermal emission
from Fermi-LAT (A. A. Abdo et al. 2010) and H.E.S.S. (H. E.
S. S. Collaboration et al. 2018), they model cosmic-ray spectra
and derive ζ as a function of H2 column density, obtaining a
value of 1.5× 10−14 s−1 for an H2 column density of
1023 cm−2. However, the dependence of the CRIR on column
density is weak, with the CRIR varying by less than 0.5 dex for
1022< N(H2)< 1025 cm−2.
This value is included as a reference in Figure 9 and is

consistent with the lowest end of our modeled CRIR range.
V. H. M. Phan et al. (2024) consider possible sources of
discrepancy between their calculated values of ζ and those
derived through molecular emission modeling from J. Holdship
et al. (2022) and E. Behrens et al. (2022). They note that the
gamma-ray data, from which key parameters such as the
supernova rate and interstellar medium (ISM) density are
derived, have uncertainties that could alter the gamma-ray flux
by a factor of 2, resulting in proportional variations of the
CRIR. Additionally, V. H. M. Phan et al. (2024) note they are
limited by the point-spread functions of the nonthermal
emission data, which are on the order of a few arcminutes
(1 arcminute ; 1020 pc in NGC 253). Thus, any CRIR values
derived from Fermi-LAT and H. E. S. S. measurements must be
treated as an average over the entire CMZ. As shown in
Figures 5 and 8, the distributions of the gas parameters and
locations of supernova remnants in NGC 253 vary spatially,
with a higher density of both molecular gas and supernova
remnants in the center of the CMZ, where the CRIR is also
enhanced. Thus, we would expect any calculation of an average
CRIR to be more consistent with values derived from
molecular emission for the outer CMZ.
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Finally, V. H. M. Phan et al. (2024) also consider the
possibility of ionization contributions from sources that
accelerate cosmic rays with an energy E 280MeV. At GeV
and TeV energies, the cosmic-ray spectrum is dominated by π0
decay, which drops off sharply for E 280MeV, as π0 cannot
be produced at energies below this threshold. However,
V. H. M. Phan et al. (2024) suggest there may be a population
of sources that accelerate cosmic rays with MeV energies.
These sources, which may include protostellar jets (M. Padov-
ani et al. 2015, 2016; B. A. L. Gaches & S. S. R. Offner 2018),
H II regions (F. Meng et al. 2019; M. Padovani et al. 2019), and
stellar wind termination shocks (K. Scherer et al. 2008), are
likely deeply embedded within the cloud and unable to
penetrate into the more diffuse ISM due to the high gas
density. If so, these MeV sources could contribute to the CRIR
but might not be observable to gamma-ray facilities.

5.5. Cosmic-Ray Enhancement in Star-forming Regions

While the CRIR estimates presented by V. H. M. Phan et al.
(2024) are consistent with the lowest values we infer in the
outer CMZ, work by V. A. Semenov et al. (2021) could further
explain the enhancement in CRIR values that we see in
NGC 253ʼs nucleus. Many cosmic-ray transport models assume
isotropic diffusion and therefore estimate CRIRs far from the
sources that produce cosmic rays. However, as Figure 8 shows,
many of the central regions in NGC 253ʼs CMZ contain
sources that will produce and accelerate cosmic rays, such as
supernova remnants and H II regions. Therefore, it is important
to consider how the CRIR and its effects on star formation
would manifest in regions near these sources. V. A. Semenov
et al. (2021) use simulations to test the effect of varying the
cosmic-ray diffusion coefficient κCR in star-forming regions. In
environments with strong shocks from supernova explosions,
the cosmic-ray current is much higher, which results in plasma
instabilities and the excitation of nonresonant modes. The
background magnetic field is therefore amplified, which can
significantly suppress κCR. In the Milky Way, κCR is assumed
to be ∼1028 cm2 s−1. However, studies of nearby supernova
remnants and molecular clouds have shown that within ∼50 pc
of cosmic-ray injection sites, κCR can be 10–100 times smaller
(see, for example, H. Li & Y. Chen 2010; M. Ajello et al. 2012;
Y. Hanabata et al. 2014), and theory predicts it could be
suppressed by a factor of up to 106 (P. Blasi et al. 2007). This
suppression of cosmic-ray diffusion would result in a buildup
of cosmic rays and increased ionization rates at injection sites,
which has important implications for star formation and galaxy
evolution.

V. A. Semenov et al. (2021) test this theory by running
simulations (i) without cosmic-ray feedback, (ii) with cosmic-
ray feedback and a constant diffusivity of κCR= 1028 cm2 s−1,
and (iii) with cosmic-ray feedback where κCR is suppressed in
star-forming regions. Their simulations show that, in models
where κCR is suppressed, the cosmic-ray pressure is signifi-
cantly higher in the galaxy centers, and cosmic-ray pressure
makes up a much larger fraction (>75%) of the total pressure
budget. They also find that, in these same models, fewer dense,
star-forming clumps are allowed to form and the overall SFR is
reduced by a factor of ∼3–4. These effects are magnified in
galaxies that were simulated to have a higher gas-mass fraction
fg of 40% versus those with fg= 20%. Additionally,
V. A. Semenov et al. (2021) conclude that, after the last
supernova in the simulation explodes, cosmic rays are finally

able to escape their injection sites and permeate the ISM,
resulting in an extended vertical pressure gradient that can
stabilize the disk against fragmentation and drive galactic
winds. It is clear that cosmic rays play a crucial role in the
regulation of star formation and galaxy evolution.
Though V. A. Semenov et al. (2021) show that cosmic-ray

feedback has the power to disrupt, and even halt, star
formation, NGC 253 may be at too early a stage of its starburst
phase to show symptoms of star formation suppressed by
cosmic-ray feedback. Recent analyses have identified 14 super
star clusters (SSCs) in NGC 253 with a likely age range of
0.01–3Myr and an age gradient whereby the older SSCs are
located in the center of the NGC 253 CMZ (A. K. Leroy et al.
2018; E. A. C. Mills et al. 2021; R. C. Levy et al. 2022;
J. Butterworth et al. 2024). This gradient may account for the
greater number of supernova remnants and H II regions in the
center of the NGC 253 CMZ, as the younger SSCs farther from
the center may not have existed long enough for massive
stars to form and die. It is unclear, though, at exactly what
point from the beginning of a starburst phase cosmic-ray
feedback is expected to noticeably affect star formation. In the
V. A. Semenov et al. (2021) simulations, supernova explosions
occur between 3 and 43Myr after the start of the simulation,
and supernova remnants are thought to have lifetimes
∼105–106 yr (S. K. Sarbadhicary et al. 2017; A. Bamba &
B. J. Williams 2022). In noninteracting galaxies, such as
NGC 253, the starburst phase is thought to last ∼70Myr
(E. Cenci et al. 2024). However, V. A. Semenov et al. (2021)
show that the effects of cosmic-ray feedback (e.g., decrease in
SFR and number of dense gas clumps) are able to be seen
300–800Myr after the beginning of the simulation. Thus, the
possible quenching effects of cosmic-ray feedback may not yet
be visible in NGC 253. Further investigations of starburst
galaxies at later stages of evolution are necessary in order to
better understand the full scope of cosmic-ray feedback’s role
in star formation and galaxy evolution.

6. Conclusions

We present a neural network model that we have trained to
replace the function of a chemical modeling code in a gas
parameter-inference algorithm. We use ALMA measurements
of the first four rotational transitions of HCN and HNC to
constrain our neural network and radiative transfer models in a
Bayesian nested sampling framework in order to infer the gas
conditions across the NGC 253 CMZ at 50 pc resolution. We
find that the neural network model can very effectively
reproduce the same molecular abundances and gas parameter
values as would be found using a chemical modeling code but
in ∼10% of the time. Using this algorithm, we draw the
following conclusions regarding the molecular gas conditions
in NGC 253:

1. Our results show clear spatial gradients across the
CMZ in the gas volume and column density as well
as the beam-filling factor. Volume and column densi-
ties are higher by an order of magnitude in the center
(r 100 pc) of NGC 253ʼs CMZ (n 5 10H

5
2 ~ ´ cm−3,

N 10H
24

2 ~ cm−2) than they are farther away from the
nucleus. The beam-filling factor reaches its minimum
(ηff< 0.1) in NGC 253ʼs nucleus, which is consistent
with the emission in this area originating from small,
dense gas components.
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2. We estimate CRIR values of ζ∼ 4× 10−13 s−1 in the
nucleus of the NGC 253 CMZ and ζ∼ 2× 10−14 s−1 in its
outer regions. These derived CRIRs are consistent with
those derived for specific GMCs in the NGC 253 CMZ by
J. Holdship et al. (2022) and E. Behrens et al. (2022).

3. We are unable to derive CRIR estimates for regions
with low HCN and HNC abundance as well as
regions likely featuring UV-dominated or shock chem-
istry (XHCN/XHNC 4), which is not included in our
models. Chemical modeling of HCN and HNC in
photodissociation regions and shock environments will
be addressed in a future study of the sources of energy in
the NGC 253 CMZ.

4. The CRIR estimates in the outer CMZ are consistent
within ∼0.2 dex with theoretical predictions of the CRIR
V. H. M. Phan et al. (2024) derived from CMZ-averaged
nonthermal emission.

5. The high-CRIR estimates in the inner CMZ are likely a
result of their proximity to supernova remnants and other
cosmic-ray-producing sources, as well as potential
cosmic-ray diffusion suppression that prevents cosmic
rays from escaping into the outer CMZ.

This study demonstrates that neural networks can be an
effective and efficient tool for replacing chemical models in
larger parameter-inference algorithms. This method has the
potential to significantly decrease the time required for
inferring physical parameters across sources in large samples
or in individual images with large numbers of pixels. As
discussed in Section 5.2, this model is not appropriate for
regions where the chemistry is very sensitive to small changes
in temperature, i.e., photodissociation regions. Future possibi-
lities include incorporating additional molecular tracers that
trace the same gas component into a single neural network
model in order to constrain the gas parameters even further.
Additional future work will include utilizing the neural
network’s speed to investigate the limitations associated with
using molecular emission to infer gas parameters, particularly
focusing on how the number of constraining transitions affects
the parameter-inference outcomes.
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Appendix A
Neural Network Architecture

Neural networks consist of multiple layers of nodes, where
each node is connected to all nodes in the layers immediately
preceding and following it (see Figure A1). The number of
layers and nodes needed is typically unique to the problem at
hand and is found primarily through trial and error—in our
case, we found a neural network with four layers each
containing 2000 nodes produced results that aligned best with
chemical model calculations. Every node has a unique value
and bias, and each connection between nodes in different layers
is given a weight (see Equation (A1)). Altogether, these
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quantities are used to calculate the values of nodes in the
following layer. The values of the nodes in the first layer are the
values of our input parameters (kinetic temperature TK, H2

volume density n, CRIR ζ, and H2 column density N), and each
node is assigned an arbitrary starting bias and each node
connection an arbitrary starting weight. During the neural
network training process, the node values, biases, and weights
in each layer are successively manipulated to produce

molecular abundances, which are stored in the final layer of
the neural network. To calculate the value a1,j of a node in row
1 and layer j, we use the following prescription:

⎜ ⎟
⎛
⎝

⎞
⎠

( )a a w b , A1j
n

n i n ij j1,
1

2000

, , 1,å= F +
=

where an,i is the value of a node in the previous layer i and
some row n, wn,ij is the weight associated with the unique
connection between that node and our target node a1,j, b1,j is
the bias of our target node in layer j, and Φ is an activation
function through which the sum of the combinations for each
node in the previous layer are passed. Activation functions,
such as the rectified linear unit (ReLU) that we employ, allow
neural networks to consider nonlinear solutions.
As discussed in Section 3.1, we assess the difference

between the UCLCHEM and neural network abundances using a
mean-squared-error loss function, where the loss is calculated
on the training set throughout each epoch and calculated on a
subset of the validation set just once at the end of each epoch.
We calculate the validation loss using mini batches with a batch
size of 64. The exponential moving average of the loss
associated with our neural network training is shown in
Figure A2.

Appendix B
Additional Figures

This Appendix includes a number of figures provided in
support of the discussion of Section 5.2 (Figures B1, B2, B3,
and B4).

Figure A1. Schematic of our neural network architecture. Blue circles represent the nodes in the input layer of the neural network that contain our input parameters,
purple circles represent the nodes that make up the neural network’s inner hidden layers, and the green circles represent the output nodes in the final layer, which
contain the abundances for HCN and HNC, respectively.

Figure A2. Exponential moving average of the mean-squared-error loss as a
function of training epoch calculated for both the training and validation data
sets. Here, the neural network was trained for many epochs past our early
stopping criteria (described in Section 3.1) to demonstrate the divergence
between the training and validation set losses. The dashed gray line indicates
the epoch from which the final weights would have been obtained, as the
validation loss does not improve for more than 20 epochs after this point.
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Figure B1. Posterior distributions for regions 19 (a), 69 (b), 78 (c), and 88 (d), which all feature high CRIRs paired with low kinetic temperatures.
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Figure B2. Posterior distributions for region 1 using UCLCHEM (a) vs. the neural network (b).
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Figure B3. Posterior distributions for regions 26 (top) and 53 (bottom) using only one phase of chemical modeling (left column) vs. two phases (right column).
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Appendix C
New Collisional Rates Analysis

In this Appendix we compare published HCN and HNC
collisional excitation rates used in radiative transfer and
statistical equilibrium calculations to predict HCN and HNC
abundances. The intent of this comparison is to highlight
differences between excitation rates used for each isomer that
might impact derived physical and chemical properties. In the
following we highlight the salient features of the published HCN
and HNC excitation rates (Table C1). We also provide a direct
comparison to the two HCN and HNC excitation rate sets
predominant in the astrophysical literature.

The He excitation rates published by F. Dumouchel et al.
(2010) were considered the default HCN and HNC excitation
rates before subsequent excitation rates involving H2 as the
collision partner were available. The F. Dumouchel et al.
(2010) rates are available in the Leiden Atomic and Molecular
Database (LAMDA; F. L. Schöier et al. 2005) where a scaling
factor of 1.363 is used to correct these He-based collisional
excitation rates by the difference in mass between He and H2.

28

This approximation thus makes these rates appropriate to use
for modeling the interstellar medium where ground-state

Figure B4. Posterior distributions for regions 26 (top) and 53 (bottom) before (left) and after (right) including a beam-filling factor as a free parameter in our modeling algorithm.

28 https://home.strw.leidenuniv.nl/~moldata/
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( j= 0) para-H2 is a common collision partner. F. Dumouchel
et al. (2010) noted the following propensity rules for collisional
de-excitation:

1. HCN–He favor even ΔJ transitions.
2. HNC–He favor odd ΔJ transitions.
3. Propensity favoring even/odd transitions in HCN and

HNC decreases with increasing temperature.

M. H. Vera et al. (2014) and F. Dumouchel et al. (2011)
published some of the first excitation rates for HCN and HNC,
respectively, which used para- ( j= 0 and 2) and ortho- ( j= 1)
H2 as the collision partner. Both studies noted that the rate
coefficients for collisions with different H2 rotational states are
very different. Collisions with para-H2 ( j= 0) are significantly
smaller than those for collisions with ortho-H2 ( j= 1) and with
excited para-H2 ( j= 2). For the HNC excitation rates,
F. Dumouchel et al. (2011) noted that propensity rules in
favor of ΔJ= 1 rates are larger than those involving ΔJ= 2
for all H2 rotational states. For the HCN excitation rates,
M. H. Vera et al. (2014) noted that propensity rules in favor of:
(1) even ΔJ transitions for HCN in collisions with para-H2

( j= 0) and (2) odd ΔJ transitions for HCN in collisions with
excited para- and ortho-H2 ( j� 1).

The newest and most complete sets of collisional excitation
rates for HCN and HNC involving collisions with para- and
ortho-H2 have been published by M. Hernández Vera et al.
(2017). These studies extended the F. Dumouchel et al. (2011)
HCN and M. H. Vera et al. (2014) HNC excitation rates to the
first 26 rotational energy levels and to kinetic temperatures of
500 K for both molecules. M. Hernández Vera et al. (2017)
compared their HCN and HNC para- and ortho-H2 excitation
rates with the He-scaled rates published by F. Dumouchel et al.
(2010), noting differences of ∼2 for HCN–H2(J= 0)/HCN–He.
29 M. Hernández Vera et al. (2017) also noted that collisions for
HCN and HNC involving ortho-H2 ( j= 1) are ∼2–3 times
larger than those involving para-H2 ( j= 0). Propensity rules
derived by M. Hernández Vera et al. (2017) for HCN and HNC
collisions with para- and ortho-H2 are the same as those derived
for collisions with He.

All of these studies have noted that collisional excitation of
HCN is very different than that due to HNC, which should have
a strong influence on the calculated intensities of these two
isomers. We should also note the collisional excitation rates for
the C, N, and H isotopologues of HCN and HNC published by
D. Navarro-Almaida et al. (2023).

To provide comparison of the commonly used He excitation
rates (F. Dumouchel et al. 2010) to the H2-based excitation rates
(M. Hernández Vera et al. 2017) used in the present analysis, we
provide in the following a series of comparison diagrams meant to

illuminate the differences between these two sets of collisional
excitation rates. These modeled intensities were calculated using
both the “old” (He-based) and “new” (ortho+para-H2-based) rates
for the kinetic temperature TK, H2 volume density nH2, and H2

column density NH2 ranges provided in Table 2. Note that the
CRIR was not involved in these calculations, and no beam-filling
factor was applied. We combine NH2 with XHCN and XHNC values
in the range of 10−12� Xmol� 10−6 to obtain molecular column
densities NHCN and NHNC using N N X2mol H mol2= ´ ´ . This
molecular column density calculation yields values in the range of
2× 1012�Nmol� 2× 1019 cm−2. Figures C1, C2, and C3 show
a series of comparisons as a function of TK, nH2, and Nmol,
respectively, where the other two parameters in each figure are
held constant at “low” (panel (a) in each figure) and “high” (panel
(b) in each figure) values. A summary of these comparisons
concludes that:

1. Use of the new ortho+para-H2 excitation rates result in
higher (by up to a factor of 2) predicted HCN and HNC
integrated transition intensities.

2. Differences between predicted line intensities derived
from the old (He-scaled) versus new (ortho+para-H2)
excitation rates are highest (∼factor of 2) at low
temperatures, volume densities, and column densities.

3. Differences between line intensities for each J transition
diminish at higher volume and column densities for both
sets of collisional excitation rates (see Figure C1).

4. At very high HCN and HNC column densities
(1018 cm−2), the predicted HCN and HNC transition
intensities and opacities become so large that the
SpectralRadex models do a poor job of predicting
integrated intensities. Note that these HCN and HNC
column densities are unrealistically large; more than a
factor of 1000 larger than measured in the ISM.

We also test the differences between the F. Dumouchel et al.
(2010) and M. Hernández Vera et al. (2017) rates in the context of
our neural network+Bayesian nested sampling algorithm. The
UltraNest inference results using the old and new rates are
shown in Figure C4 for regions 26 and 53. Here, we include CRIR
as a free parameter using the prior distribution provided in Table 2.
Note that no beam-filling factor is applied in these tests. Overall,
only minor differences result from the use of the new versus old
excitation rates. Though panels (a) and (b) in Figure C4 for region
26 show a bimodality in the posterior distributions for H2 volume
density, CRIR, and H2 column density, the median predicted values
for these parameters are nearly identical using the new and old rates.
The minimal differences between parameter values derived from the
two sets of rates likely also result from higher predicted kinetic
temperatures in both regions and higher H2 volume and column
density estimates in region 53. As noted above, the differences in
intensities derived from the two sets of collisional excitation rates
diminish at larger values of TK, nH2, and NH2.

Table C1
Published HCN and HNC Excitation Rates

Reference Isomer(s) Col. Partner No. Energy Levels TK Range
(K)

F. Dumouchel et al. (2010) HCN/HNC He 26 5–500
F. Dumouchel et al. (2011) HNC para-/ortho-H2 16 5–100
M. H. Vera et al. (2014) HCN para-/ortho-H2 13 5–100
M. Hernández Vera et al. (2017) HCN/HNC para-/ortho-H2 26 10–500

29 In this comparison, we have applied the standard scaling factor of 1.363 to
convert He excitation rates to para-H2, which M. Hernández Vera et al. (2017)
did not appear to apply.
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Figure C1. HCN ((a) and (b)) and HNC ((c) and (d)) integrated intensities (top panel in each pair) and integrated intensity ratios (new rates divided by old rates;
bottom panels in each pair) as a function of kinetic temperature. Volume and column density are held constant at the listed values for each comparison.
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Figure C2. Same as in Figure C1 but plotted as a function of volume density, where kinetic temperature and column density are held constant.
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Figure C3. Same as in Figures C1 and C2 but plotted as a function of column density, where kinetic temperature and volume density are held constant.
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