
Construction and Sampling of Alloy Cluster Expansions—A Tutorial

Downloaded from: https://research.chalmers.se, 2025-03-31 22:04 UTC

Citation for the original published paper (version of record):
Ekborg-Tanner, P., Rosander, P., Fransson, E. et al (2024). Construction and Sampling of Alloy
Cluster Expansions—A Tutorial. PRX Energy, 3. http://dx.doi.org/10.1103/PRXEnergy.3.042001

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



PRX ENERGY 3, 042001 (2024)
Tutorial

Construction and Sampling of Alloy Cluster Expansions—A Tutorial

Pernilla Ekborg-Tanner , Petter Rosander, Erik Fransson , and Paul Erhart *

Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden

 (Received 23 May 2024; revised 12 September 2024; published 17 October 2024)

Crystalline alloys and related mixed systems make up a large family of materials with high tunability
that have been proposed as the solution to a large number of energy-related material design problems.
Because of the presence of chemical order and disorder in these systems, neither experimental efforts
nor ab initio computational methods alone are sufficient to span the inherently large configuration space.
Therefore, fast and accurate models are necessary. To this end, cluster expansions have been widely and
successfully used for the past few decades. Cluster expansions are generalized Ising models designed to
predict the energy of any atomic configuration of a system after training on a small subset of the available
configurations. Constructing and sampling a cluster expansion consists of multiple steps that have to be
performed with care. In this tutorial, we provide a comprehensive guide to this process, highlighting
important considerations and potential pitfalls. The tutorial consists of three parts, starting with cluster
expansion construction for a relatively simple system, continuing with strategies for more challenging
systems such as surfaces, and closing with examples of Monte Carlo sampling of cluster expansions to
study order-disorder transitions and phase diagrams.
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I. INTRODUCTION

Materials engineering proposes a solution to many of
the energy-related problems our society is faced with.
Tremendous research efforts are currently being made
towards optimizing green technologies such as solar cells,
batteries, catalysts, and fuel cells. The performance of
these technologies is dictated by the properties of the
materials involved, meaning that optimization is achieved
by improving the design of materials, which in turn
requires tunability of the materials. A common strategy
to expand the tunability is to consider multicomponent
systems, since the larger chemical space enables tailoring
via chemical composition and ordering. Recent examples
can be found in the fields of photovoltaics [1–5], batteries
[6–8], catalysis [9–11], fuel cells [12,13], nanophotonics
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and nanoplasmonics [14,15], construction and manufac-
turing [16–19], and two-dimensional materials such as
MXenes [20–23].

The increased tunability comes at the cost of added com-
plexity in the material design process, and computational
methods are often needed to efficiently span the composi-
tion space. While computational efforts are ideally based
on ab initio methods such as density-functional theory
(DFT) calculations, such methods are typically computa-
tionally too expensive for sampling the relevant composi-
tion space. To exemplify this consider that binary system
consisting of N atoms corresponds to approximately 2N

indistinguishable atomic configurations. This means that
already at system sizes of 100 atoms one would need to
examine roughly 1030 atomic configurations. For this rea-
son, more effective models are necessary. For crystalline
materials, cluster expansions (CEs) are ideal candidate
models as indicated by the large number of successful
applications, including phase-diagram prediction for met-
als [24–28] and semiconductors [29–33], ordering phe-
nomena [34–40], and the properties of surfaces [41–51]
and nanoparticles [52–59].

CEs are generalized Ising models that can, in prin-
ciple, predict the energy (or any other function of the
configuration) of any atomic configuration after training
on only a small subset of the available atomic configura-
tions (Fig. 1). They are typically sampled in Monte Carlo
(MC) simulations to extract thermodynamic information
about the system and study thermodynamic observables
such as chemical ordering, free energy, and heat capac-
ity. While we focus on energy prediction in this tutorial,
we note that CEs have also been used to model, for
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FIG. 1. Constructing and sampling a CE. Overview of the typi-
cal procedure for constructing and sampling a CE and connection
to the three main parts of this tutorial.

example, activation barriers [60], vibrational properties
[61,62], chemical expansion [38], and transport proper-
ties [37,63], which can serve as suitable starting points
for interested readers. There are various software packages
that implement the CE framework and thermodynamic
sampling via MC sampling, including, for example, ATAT
[64], UNCLE [65], CLEASE [66], CASM [67], ICET [68], and
SMOL [69].

In this tutorial, we present an overview of practical
aspects to be considered when one is constructing and sam-
pling CEs. It is accompanied by a set of Jupyter notebooks
available online [70,71] that use the ICET package [68]. The
tutorial is organized as follows. First, the CE formalism is
briefly outlined in Sec. II, followed by practical consider-
ations for constructing a CE in Sec. III. Then we review
the CE construction process for a relatively simple system
(Mo1−xVxC1−y�y) in Sec. IV, with emphasis on training
set generation and the training procedure. Next we discuss
CE construction for a low-symmetry system—namely, a
AuxPd1−x surface—in Sec. V, which allows us to discuss
the use of local symmetries, Bayesian priors, and con-
straints for improving CE performance. Lastly, in Sec. VI
we introduce sampling of CEs via MC simulations to
obtain various thermodynamic observables for Au3Pd as
well as the AgxPd1−x alloy system.

II. CLUSTER EXPANSION FORMALISM

The theory behind CEs has been discussed at length
elsewhere [30,72–77]. In the present context, we present
a short overview and focus on practical considerations.

A CE predicts the value of some observable E as a func-
tion of the atomic configuration, represented by the occu-
pation vector σ , for a crystalline material, on the basis of
all involved atomic clusters α. A cluster is a set of k atomic
sites on the crystalline lattice, where k = 0, 1, 2, . . . is the
order of the cluster. The observable can be expressed as

E(σ ) =
∑

α

Jα�α(σ ), (1)

where Jα is the contribution of cluster α, called the effec-
tive cluster interaction (ECI), and �α are orthogonal basis
functions spanning the space of atomic configurations
[72,76]. All symmetrically equivalent clusters have the
same ECI and can be grouped into what we refer to as
an “orbit” (originating from group theory and used in
Ref. [68]), which is also known as a “representative clus-
ter” in the CE literature. Use of this fact simplifies Eq. (1)
to

E(σ ) =
∑

β

mβJβ 〈�α(σ )〉β , (2)

where mβ is the multiplicity of orbit β and the 〈. . .〉β
bracket indicates that the basis function �α is averaged
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over all clusters α in the orbit β. The sum in Eq. (2) runs
over all orbits up to some cutoff criterion, typically defined
by a cutoff radius r for each cluster order k.

Training a CE involves finding the optimal ECIs on the
basis of a set of atomic structures for which the value
of the observable E is known, called the “training set.”
In most cases, the observable of interest E is the energy
or a variant thereof—say, the mixing energy or a migra-
tion barrier—with reference data obtained from from DFT
calculations. Equation (2) can be cast as a linear problem,

y = X w, (3)

where y is a vector comprising the target values of the
observable E for the training set, w is an unknown vector
containing the ECIs, and X is the so-called design matrix,
where each row corresponds to the values of the basis func-
tions �α for a structure in the training set. Note that in
this form the multiplicities are absorbed into either w or X .
The number of ECIs, i.e., the size of w and accordingly the
number of columns in X , are determined by the cutoff radii
used to select the allowed orbits of different order.

The optimal ECIs wopt can be found with the use of lin-
ear regression techniques (see Sec. III). Once the optimal
ECIs are found, the CE can be used to predict E for any
atomic configuration representable by a supercell of any
size and concentration.

The CE formalism applies to ideal lattices. In most
cases, however, relaxed structures are more thermody-
namically relevant than structures with atoms residing
precisely on the lattice sites. CEs are therefore often used
to model the energy of relaxed structures mapped to the
closest corresponding occupation on the ideal lattice. This
means that the ECIs effectively include variations in the
interactions due to volume changes and atomic relaxations.

The validity of a CE used over a concentration range
has been debated in the literature [73,78,79]. In practice,
for rare cases, it can become difficult to model the full
concentration range with a single CE, especially if the
system undergoes sharp transitions at some specific con-
centrations. This can (but need not) occur, for example,
in materials with electronic band gaps if the charge state
of a species changes with composition (e.g., Mn2+ →
Mn3+ → Mn4+ [80]) or if the species that are being mixed
are aliovalent (e.g., Si4+ and Al3+ [81]). In these situations,
one needs to consider the overall charge balance as the total
energy becomes, in principle, dependent on the Fermi level
(i.e., the electron chemical potential). This issue has been
circumvented, for example, in the case of zeolites by the
construction of CEs exclusively on charge-balanced con-
figurations and with the use of MC trial moves that main-
tain charge balance [81], while a more general approach
for ionic materials is described in Ref. [80]. There are also
cases where CEs may not be sufficient to capture all rele-
vant interactions in the system, such as long-ranged strain

interactions, which requires extension of the CE formalism
to reciprocal space [25,82,83].

III. CONSTRUCTING CLUSTER EXPANSIONS

A CE model should be both accurate and transferable.
In practice this means that we aim to find an optimal
set of ECIs, w in Eq. (2). This entails choosing a regres-
sion method along with related hyperparameters and cutoff
parameters (i.e., the size of the model) as well as compos-
ing a set of training structures. In the following, we first
briefly review regression methods (Sec. III A), followed
by a short discussion of how to assess model performance
(Sec. III B) as well as the role of cutoffs and hyperpa-
rameters (Sec. III C). The impact of the composition of
the training structure set is discussed through practical
examples in Sec. IV B.

A. Regression methods

There are many approaches to solving the linear regres-
sion problem in Eq. (3) [68,84–87]. Here we provide a
short introduction to several common methods.

The solution of the linear problem, Eq. (3), with some
typical regularization terms can be written as

wopt = argmin
w

{‖X w − y‖2
2 + wT�w + ‖Mw‖1

}
, (4)

where wopt is the solution vector, � is the �2 regulariza-
tion matrix, and M is the �1 regularization matrix. Setting
� = M = 0 yields the ordinary least squares (OLS) solu-
tion. OLS is, however, prone to overfitting, meaning that
the model captures noise in the training data and there-
fore performs poorly on new unseen data. For M = 0 and
� = α1, Eq. (4) reduces to ridge regression with regular-
ization parameter α, and with � = 0 and M = α1, one
obtains the expression used in the least absolute shrinkage
and selection operator (LASSO).

The regularized regression methods generally assume
that the design matrix, X , is standardized. Therefore, it is
common practice to rescale the columns of X to have unit
variance before solving the problem, and afterwards apply
the inverse procedure to obtain the unscaled parameters.
This rescaling needs to be taken into consideration if one
is manually choosing values for the regularization matrices
� and M (for instance, for Bayesian CEs, see Sec. V B).
Additionally, one commonly trains CEs for the mixing (or
formation) energy, rather than the total energy, to avoid
very large target values, y .

Feature selection techniques can be used to reduce the
number of nonzero ECIs in the solution vector. This can
lead to more transferable models and faster predictions
(e.g., in MC simulations). Recursive feature elimination
(RFE) is an iterative algorithm where in each iteration one
solves the linear problem (typically with OLS) and the
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least important (smallest) ECIs are pruned (set to zero).
This is done iteratively until a desired number of nonzero
ECIs is reached. Automatic relevance detection regres-
sion (ARDR) is based on the Bayesian ridge regression
technique where the regularization matrix is diagonal with
elements �ii = λi. The individual regularization strengths
λi for each parameter are updated throughout the optimiza-
tion, and parameters are pruned (set to zero) if λi increases
above a threshold (λ threshold) [88]. These linear regres-
sion methods can readily be used for CEs with the use of
ICET via SCIKIT-LEARN [89] or even more directly via the
TRAINSTATION interface to the former [86].

B. Model performance and learning curves

In general, one wants to construct models that require
as few training data and as few nonzero ECIs as possi-
ble. Fewer training data means fewer (usually computa-
tionally demanding) reference calculations, while fewer
nonzero ECIs translates to reduced model complexity, a
feature that is often associated with better transferability,
i.e., such models perform more reliably on unseen data.
These aspects need to be taken into account when one is
constructing CEs.

Techniques such as ridge regression, RFE, ARDR, or
LASSO involve hyperparameters, e.g., the regularization
parameter α in ridge regression, the number of features in
RFE, or the λ threshold in the case of ARDR. In addition,
one must make select the cutoffs that determine the range
of the summation in Eq. (2). These parameters directly
affect model performance in terms of accuracy, transfer-
ability, and data efficiency, i.e., the amount of reference
data needed to obtain a well-converged model.

In practice one usually determines optimal parameters
through so-called learning curves, which show a suitable
performance indicator (see below) as a function of, for
example, hyperparameters, cutoff values, or training set
size. We exemplify this approach throughout this tutorial
(see, e.g., Figs. 2, 8, and 10).

The most widely used measure for model performance is
the root-mean-square error (RMSE) score calculated over
a validation set, since the RMSE over the training set
[i.e., the first term on the right-hand side of Eq. (4)] is a
poor estimate of how a model will perform on unseen data
points. The validation RMSE is commonly calculated via
cross-validation.

As we already noted above, simpler models tend to
exhibit better transferability. This principle is approxi-
mately represented through information criteria such as the
Akaike information criterion and the Bayesian information
criterion [90–93], which weigh validation RMSE versus
model size. These measures can hence be useful when
one is selecting between models that have similar RMSE
values. We note, however, that in our experience these

(a)

(b)

FIG. 2. RMSE obtained with different regression methods in
the Mo1−xVxC1−y�y system. (a) Validation RMSE based on the
random training set obtained with different regression methods
as a function of the number of structures included in the training
set. (b) Validation RMSE when 80 training structures are used as
a function of the number of nonzero parameters obtained after
regression and feature selection. Here the number of nonzero
parameters obtained is controlled by variation of the hyperpa-
rameter controlling the sparsity of the solution continuously. For
ARDR, this is the λ-threshold parameter, for LASSO it is α [see
Eq. (4)], and for RFE it is the number of features.

information criteria are often not sufficiently conclusive as
a general measure when one is constructing CE models.

Lastly, we emphasize that none of these performance
measures are perfect when it comes to assessing the gen-
eral performance of a CE and that they will always reflect
the choice of training data to some degree. We therefore
recommend that one should always study the property or
properties of interest (e.g., phase diagram, heat capacity, or
order parameters) throughout the CE construction process
to ensure that convergence is achieved.

C. Cutoff selection versus regularization

When it comes to selecting cutoffs, the conventional
approach, especially when one is using OLS [and thus
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no regularization, i.e., � = M = 0 in Eq. (4)], is to start
with a set of small cutoffs and low orders and iteratively
increase the size (and complexity) of the model. Too-small
cutoffs (and thus a small number of ECIs) lead to under-
fitting, whereas too-large cutoffs (and thus a large number
of ECIs) lead to overfitting. A good starting point for the
length of the cutoff is on the order of the lattice parame-
ter, and cutoffs larger than three lattice parameters are very
rarely needed. The interaction strength decreases with the
order of the cluster, meaning that inclusion of terms up to
third or fourth order is sufficient in most cases.

When using regularization and feature selection
approaches, one can, in principle, choose a large initial
number of orbits using both larger cutoffs and higher-order
orbits, which is then reduced by the regression method of
choice. ARDR usually performs very well in such situa-
tions; see, e.g., Refs. [33,86] and examples below. This
means that with regularization, the importance of cutoff
selection decreases, as long as the cutoffs are large enough.
In practice, however, one can run into problems if cutoffs
are selected too large. In our experience, the best perfor-
mance is therefore often found when ARDR is combined
with cutoff selection.

Lastly, we note that one can also use a Bayesian method,
where physical intuition is encoded in a regularization
matrix � (see, e.g., Ref. [94] and Sec. V B), to, for
instance, enforce higher importance of low-order and/or
short-ranged orbits. This approach could be useful for cer-
tain complex systems, but requires significantly more work
to set up than, for instance, ARDR.

IV. PART 1: A FIRST EXAMPLE

Key takeaways

(1) Simple linear regression techniques such as OLS
often lead to overfitting and large validation
errors. Use regularization and/or feature selection to
improve model performance.

(2) Similarly, naive structure selection schemes such as
randomization can lead to poorly performing mod-
els, while more advanced schemes generally yield
better models and require fewer training structures.

(3) We recommend generating structures via either con-
dition number minimization or uncertainty maxi-
mization in conjunction with ARDR.

In the first part of this tutorial, we illustrate the construc-
tion of a CE with emphasis on the choice of regression
techniques (Sec. IV A) and approaches for structure selec-
tion (Sec. IV B). To this end, we consider a simple carbide
Mo1−xVxC1−y�y with two sublattices on a rocksalt lat-
tice. On the metal sublattice, we consider mixing between
Mo and V, and on the carbon sublattice, we consider C
atoms and vacancies (�), with a maximum of 30% car-
bon vacancies. We use cutoffs of 9 and 5 Å for two-body

and three-body clusters, respectively. This yields a total
of 52 ECIs, including two singlets, 25 pairs, 24 triplets,
and a constant, sometimes referred to as the “zerolet.” A
detailed analysis of the cutoff selection can be found in the
notebooks accompanying this tutorial [70,71]. We use ref-
erence data from DFT calculations available online [71].
The computational details concerning these calculations
can be found in Appendix A.

A. Comparison of regression methods

We now explore some of the above-mentioned regres-
sion methods for solving Eq. (3) so as to illuminate some
of their differences. For simplicity, we consider a set of 200
“random” training structures, where each structure has a
randomized supercell size (up to a maximum of 50 atoms),
random Mo/V and C/vacancy concentrations, and random
occupation of the lattice. This set of structures is referred to
as the “random set” of structures from here on. The result-
ing validation error as a function of the number of training
structures is shown in Fig. 2(a). First, we note that all four
regression methods yield similar validation errors when
a large training set is used. For OLS the validation error
increases rapidly when the number of training structures
decreases, which is also to lesser extent the case for RFE,
due to overfitting. Both ARDR and LASSO perform sig-
nificantly better than OLS and RFE when a small number
of training structures is used.

ARDR, RFE, and LASSO all have one hyperparameter
that controls the sparsity (number of nonzero parameters
in the solution), which needs to be chosen. This is typi-
cally done by scanning of the hyperparameter value and
selection of the value yielding the smallest validation error.
Here we use this procedure each time a model is trained.

Figure 2(b) shows an example for the variation of the
validation error with the resulting number of features dur-
ing a hyperparameter scan. LASSO has a minimum at
about 35 nonzero parameters, whereas ARDR achieves the
same validation error with only 20 parameters. The ten-
dency of LASSO to overselect is known [95], and we have
observed this behavior previously for both CEs [68] and
in other applications, such as force constant expansions
[86]. RFE has a minimum at about 15 nonzero parameters
but with slightly higher validation error compared with the
other two regression methods.

The trends described above are, in our experience, gen-
eral, and we have found ARDR to be the best performing
approach in most cases. Therefore, we recommend using
ARDR as a starting point for CE construction.

B. Training set generation methods

For simplicity in Sec. IV A we used randomized struc-
tures. We now discuss more informed approaches to gen-
erating or selecting training structures.
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Recall that we are trying to solve the linear problem
(3), with the design matrix X operating on the solution
vector w, i.e., the ECIs. Commonly we would like to
find solutions in large cluster spaces (large cutoffs and
more bodies), expecting though that only relatively few
ECIs are significant due to the near-sightedness of physical
interactions. This means w should be sparse. Under these
circumstances it can be shown that optimal design matrices
X should be nearly orthonormal, a feature that is character-
ized by the restricted isometry property [96]. Heuristically,
this can be thought of as setting up the training set with as
much variability in the cluster vectors as possible.

At first it might be tempting to use randomized struc-
tures, since two random configurations will very rarely be
identical and the cluster vector is a function of the configu-
ration. If one considers how the cluster vector is composed
[Fig. 3(a)], it becomes, however, quickly evident that this
is a poor choice. Let us imagine a simple binary system.
After the zerolet, the first cluster vector item is the singlet,
which reflects the overall composition. Then we have the
pairs that reflect the proportion of pairs between alike (A-A,
B-B) and unalike (A-B) pairs. For a large random structure,
there is no tendency for ordering, which means that the

-11 –1 –1
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x 12
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–1

FIG. 3. Cluster vectors for random structures. (a) Example of
how the first elements of a cluster vector are calculated for a
2D structure. (b) Cluster vectors for randomized atomic con-
figurations of a 2D square binary system. The concentration is
indicated by the color. The large and small circles represents
large (1×104 atoms) and small (25 atoms) random structures,
respectively. The crosses represents ten randomly selected struc-
tures from a pool of enumerated structures with up to eight atoms
(and concentration 50%) for comparison.

proportion of alike and unalike pairs will be determined
by the overall composition and take on the same value
for all orders [Fig. 3(b)]. Smaller random structures allow
some variation around the large-structure limit, but these
variations are small compared with what can be achieved
with other generation methods. A similar argument can be
made for higher-order clusters. This example demonstrates
that while random structures are rarely identical, they have
similar cluster vectors. For contrast, we can compare the
cluster vectors of large and small random structures as well
as enumerated structures [Fig. 3(b)], which shows that by
going beyond random structures, we can achieve a much
larger spread of cluster vectors.

There are many methods for generating a set of training
structures, each having their pros and cons. Strictly speak-
ing, one should discriminate between structure generation
and structure selection:

In this tutorial, we consider four ways of generating
structures: enumeration of all possible structures up to
some maximum structure size, randomized structures (in
terms of structure size, composition, and/or configuration),
MC sampling (see Sec. VI) of existing CEs, and select-
ing one or a set of target cluster vectors and finding the
closest-matching structure (structures).

We also consider four ways of selecting structures. The
most straightforward choice is to select all the generated
structures, which leaves little control of the quality of
the training set. More advanced selection methods can
be applied with the aim of optimizing some aspect of
the training set, such as minimizing the condition number
of the design matrix, selecting structures with the largest
uncertainty, or trying to achieve a set of structures with
orthogonal cluster vectors.

These generation and selection schemes can be com-
bined and modified to create a sheer endless number of
different training sets. Here we consider five approaches
that we refer to as “uncertainty maximization,” “condi-
tion number minimization,” “structure orthogonalization,”
“structure enumeration,” and the “random set” discussed in
Sec. IV A (Fig. 4). In the following, we present and discuss
these approaches.

Uncertainty maximization is a form of active learning,
which is a common training set generation approach for
model construction in general, including CE construction
[97–99]. Here the model is iteratively trained and new
structures are selected at each iteration on the basis of the
model uncertainty prediction for a pool of structures. The
uncertainty of structures can be estimated from, for exam-
ple, an ensemble of CEs from bootstrap sampling [68,99].
This means that a collection of CEs trained in identical
fashion but based on different training sets is generated.
The different training sets are generated by resampling of
the original training set with replacement (meaning one
structure can appear multiple times in a training set). Struc-
tures can, for example, be generated by MC simulations in
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FIG. 4. Structure generation and selection schemes. The pro-
cess of generating and selecting a set of structures for the training
set can be designed in multiple ways. In this tutorial, we focus on
the five approaches represented by the arrows in this schematic
overview.

the canonical ensemble (see Sec. VI), and the ones with the
largest uncertainties are selected to be included in the train-
ing set. The benefit of this structure generation approach
is that the training structures added during each iteration
are structures for which the current ensemble of models
predicts large uncertainty, and therefore will lead to large
accuracy increases in each iteration. Another benefit of
this approach is that structures are generated from MC
simulations with the desired conditions (concentrations,
temperatures, etc.), meaning the structures selected will be
thermodynamically relevant ones. On the other hand, this
also limits the pool of structures to select from in terms of
how they span the cluster vector space. Furthermore, this
approach requires a relatively large effort due to the itera-
tion process and the fact that one needs to define a set of
structures for which the uncertainty is predicted.

“Condition number minimization” refers to the process
of selecting structures such that the condition number of
the linear problem in Eq. (3) is minimized. The condition
number c is defined as [100]

c = max(�)
min(�)

, (5)

where � denotes the singular values of the design matrix.
The condition number describes how well conditioned the
linear problem is, with smaller values indicating better
conditioning. It can be thought of as a measure of how sen-
sitive the fitting result is with respect to changes or errors
in the input data.

This approach starts by generating a large pool con-
taining on the order of millions of randomly generated
structures. An initial training set of N structures is ran-
domly drawn from the pool, where N is on the order
of hundreds. Next, a simulated annealing MC simulation
(see Sec. VI) is conducted where structures from the large

random pool are randomly swapped in and out of the
training set with probability P = e−�c/	, where 	 is an
artificial temperature and �c is the change in condition
number when two structures are swapped. The resulting
training set will be an approximate solution to the problem
of selecting a subset of N structures from the large pool
with the lowest condition number.

Structure orthogonalization aims at providing a set of
structures with cluster vectors orthogonal to each other
[84,101]. It is related to the condition number approach
described above in the sense that both methods aim to
span the cluster vector space. The procedure starts from
a structure with a random cluster vector. New structures
are then added iteratively by finding a cluster vector that is
orthogonal to the rest and identifying the closest-matching
structure.

A benefit with this approach is that, in principle, one can
quickly produce a training set without the need for any iter-
ative models (as in the uncertainty maximization) or a large
pool of structures (as in the condition number minimiza-
tion). The latter depends, however, on the ability to find a
matching structure for a target cluster vector without, for
example, a pool of structures. In ICET, this is possible due
to an implemented method based on simulated annealing.

There are, however, two major drawbacks to this
approach. First, the entire cluster vector space is not avail-
able due to correlations between the cluster vector ele-
ments (Fig. 5). For instance, the number of possible A-B
nearest-neighbor pairs is limited by the value of the sin-
glet. We show this in Fig. 5 for the entire available space
(represented by the large random pool used for condi-
tion number minimization) and the dataset produced with
this approach. Clearly, both the fact that the concentra-
tion range for the carbon sublattice is restricted and the
fact that the singlet and pairs are correlated significantly
limit the available space. The orthogonalization proce-
dure will more often than not ask for a structure outside
this space, and the resulting structure (with the closest-
matching cluster vector) will not be orthogonal to the other
structures.

Second, the number of orthogonal cluster vectors is lim-
ited by the number of elements in the cluster vector (which
in turn is determined by the cutoffs). This means that the
training set size is limited by the cluster cutoffs when this
approach is used.

Structure enumeration is a method that generates all
symmetrically inequivalent structures that are permissible
given a certain lattice, under the constraint that the num-
ber of atoms in each structure must be smaller than some
given number [102]. The benefit of structure enumeration
is that it requires no input other than the maximum num-
ber of atoms in a supercell and will systematically generate
high-symmetry and ground-state structures. One drawback
is that the maximum number of atoms needs to be quite
small (typically fewer than 15 atoms) for the number of
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(a)

(b)

FIG. 5. Correlations between orbits. Correlations between (a)
the singlets of the carbon (A) and metal (B) sublattices and (b)
the metal singlet and nearest neighbor. The light-gray area indi-
cates the available space represented by all the structures from
the large random pool used for condition number minimization.
The orthogonal dataset is shown in orange. The orthogonaliza-
tion procedure is visualized by the initial (circle) and final (star)
positions of three example structures.

structures to be computationally feasible, and this can lead
to the training set not spanning long-ranged interactions.
For our model system, Mo1−xVxC1−y�y (with the chosen
cutoffs), enumeration up to 12 atoms leads to about 650
structures, but produces an ill-conditioned design matrix
and should thus not be used for training. For this rea-
son, the enumerated training set is used here only for
testing purposes. Additionally, for systems with larger
and/or complex primitive cells, it may be unfeasible to use
altogether as the number of enumerated structures grows
exponentially with the size of the primitive cell.

Before we compare these approaches, we note that
the validation error is not a suitable measure to evaluate
the quality of a training set generation scheme, because
a procedure generating very similar (or identical) struc-
tures would lead to models with low validation errors

(a)

(b)

FIG. 6. Comparison of structure generation schemes for the
Mo1−xVxC1−y�y system. Here CEs were constructed with the
use of four different training sets (as indicated on the x axis)
consisting of 110 structures and trained with either (a) OLS or
(b) ARDR. The RMSEs were evaluated with use of the different
training sets as test sets (as indicated by the bar color), includ-
ing a set of enumerated structures. The dashed line indicates the
average over the five test sets.

but poor predictions on structures outside the training set.
Therefore, we evaluate each CE on all the structure sets
generated (Fig. 6).

In Fig. 6(a) the validation error is shown over all sets
of structures for CEs trained with each training set using
OLS. Here we see that the random training set leads to
larger errors across all structure sets, whereas training with
the three other structure sets yields lower validation errors
across the board. In Fig. 6(b) the same analysis is done for
training with ARDR. Here we see that the validation errors
obtained with a random training set are on the same level as
those obtained with the other training sets, demonstrating
the efficacy of ARDR even with a poor choice of train-
ing structures. We also note that training with the structure
orthogonalization structures leads to a large error over
the condition number structures, yet very small validation
error, indicating poor transferability.

C. Conclusions

In the first part of this tutorial, we have demonstrated
the CE construction process for a relatively simple system,
focusing on linear regression and structure generation and
selection. We have found that OLS with a training set con-
sisting of randomized structures leads to large validation
errors, and that this can be prevented by the use of better
structure selection schemes as well as regularization and
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feature selection. We note that the material considered here
represents a rather simple system with high symmetry, and
for more complex cases, optimization of the training set
and regression method typically yields a larger benefit.

On the basis of these findings, our general recommen-
dation is to generate structures by either uncertainty min-
imization (if it seems worthwhile to put in the effort) or
condition number minimization (if one wants to avoid an
iterative process) in conjunction with ARDR when one is
solving the linear problem (3). Lastly, we again empha-
size that the training set generation and selection methods
can be combined in multiple ways, and the procedures out-
lined here do not need to be followed strictly. It might,
for instance, be beneficial to start with a fast method (enu-
meration or orthogonalization) and extend the training set
with an iterative method. In practice, it is also often bene-
ficial to include thermodynamically relevant structures, in
particular ground-state structures, in the training set.

V. PART 2: LOW-SYMMETRY SYSTEMS

Key takeaways

(1) Low-symmetry system generally have a large num-
ber of ECIs, which makes CE construction challeng-
ing.

(2) Local symmetries and Bayesian inference can be
used to couple similar orbits.

(3) Weighted constraints can be applied to ensure cer-
tain properties are represented more accurately by
the CE.

In the second part of this tutorial, we consider CE
construction for a low-symmetry system, specifically a sur-
face, which comes with new challenges. The number of
orbits for a given set of cutoffs grows with the number of
symmetrically inequivalent sites that make up the material.
For simple bulk systems, such as the one in Sec. IV, the
unit cell typically only comprises few atoms which implies
a small number of inequivalent sites. For low-symmetry
systems such as surfaces and nanoparticles, on the other
hand, the unit cell is generally larger. For instance, the
number of inequivalent sites for a surface slab is at least the
number of layers divided by 2 (Fig. 7). Consequentially,
the number of orbits increases rapidly with the number
of layers, and the CE construction procedure outlined in
Sec. IV can be insufficient.

In the following, we discuss three approaches to
improve CE construction for low-symmetry systems. The
first two approaches are based on grouping similar orbits
and either explicitly merging them or coupling them in
a Bayesian framework. The third approach consists of
adding weighted constraints to ensure that specific prop-
erties are more accurately predicted. These approaches
can be combined and are not restricted to low-symmetry
systems.

Upper surface

Lower surface

Sites

1

2

3

4

5

6

6

5

4

3

2

1

FIG. 7. Merging of orbits. Side view of a 12-layer face-
centered cubic (fcc) (111) surface slab. The numbers on the
left row of atoms indicate the symmetrically inequivalent sites.
Examples of orbits that can be merged if only site 1 is consid-
ered a surface site are marked in pink for pairs and in green for
triplets and are marked with different symbols for inequivalent
orbits (note the difference in length between sets of pairs).

To showcase these approaches we construct CEs for
a 12-layer AuxPd1−x fcc (111) surface slab. The cutoffs
used for CE construction are 6 and 3 Å for two-body and
three-body clusters, respectively, resulting in 76 orbits.
The training set consists of the pure Au and Pd slabs and
201 structures generated with the orthogonal cluster space
approach described in Sec. IV B (with the use of slightly
larger cutoffs to avoid underdetermined systems during
training). Details of the DFT calculations can be found in
Ref. [50].

We begin by training CEs as in Sec. IV, using plain
OLS and ARDR to fit the ECIs. As expected, ARDR out-
performs OLS in terms of the validation error as well as
with respect to the number of structures necessary to reach
convergence (Fig. 8). The number of structures needed to
reach convergence is, however, relatively large for both
fitting methods.

The validation error is not always a sufficient measure
for CE accuracy. In the present example of a surface, we
find that although the validation energy has converged,
the segregation energy prediction is associated with large
errors, which will ultimately result in erroneous predictions
of the surface segregation. The segregation energy is the
energy difference caused by the moving of, for example, a
single Pd atom in an otherwise pure Au slab from the mid-
dle of the slab (i.e., the bulk) to a site in the surface region.
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FIG. 8. Learning curves for a surface CE. The validation error
as a function of the training set size for different linear regression
methods, with and without merging of orbits.

(Here we construct 2×2×12 slabs for this purpose.) This
calculation requires the prediction of two configurations,
which means it is the relative error between these two con-
figurations that matters. In Figs. 9(a) and 9(d), we find that
the segregation energies predicted by the plain OLS and
ARDR CEs have large errors and systematically overesti-
mate the energy gain of moving Pd (in Au) to the surface
and the energy cost of moving Au (in Pd) to the surface.
There are also unphysical oscillations of the segregation
energy in the inner layers, whereas the DFT results indi-
cate that the segregation energy varies only in the outer
two to three layers. This suggest that the models predict

too-large differences between the atoms in the inner layers,
as discussed further in the following section.

A. Merging of orbits

At a sufficient distance from the surface, the atomic
interactions should reach the bulk limit. For example, the
energetic contribution from a nearest-neighbor pair in layer
5 should be very similar to the one in layer 6. We can
use this idea to define so-called local symmetries. Orbits
that belong to the same local symmetry should have the
same ECI, which means that they can be merged into a
single orbit. This process is analogous to when the indi-
vidual clusters are grouped into orbits in Eq. (2). Note that
in this approach we no longer rely on the global symme-
tries, which can be rigorously derived from the underlying
lattice. Instead the specification of the local symmetries
is up to the person constructing the CE, and is based on
additional physical knowledge of the system, such as the
range of the interactions and the similarity of the local
environments.

Note that it is important to be aware of the treatment of
multiplicities when one is merging orbits. In many imple-
mentations of the CE method, including ICET, the default
behavior is to include the multiplicities in the ECI vector
w. This will lead to incorrect results if any of the merged
orbits have different multiplicities. Instead, the multiplic-
ities should be included in the design matrix X , which
will lead to correct averaging of the multiplicities when
merging is done.

(a) (b) (c)

(f)(e)(d)

FIG. 9. Segregation energy predictions for surface CEs. Segregation energies for a single Pd atom in Au [(a)–(c)] and a single Au
atom in Pd [(d)–(f)] positioned in each atomic layer calculated by DFT and predicted by different CEs. The layer index is counting
from the surface, as in Fig. 7. (a),(d) CEs trained with OLS and ARDR with and without merging of orbits. (b),(e) CEs trained using
Bayesian coupling of similar orbits. The CE with the optimal coupling parameter σαβ from Fig. 10 is highlighted with triangles. (c),(f)
CEs trained with (unmerged) ARDR and an added constraint enforcing correct segregation energy prediction with increasing weight γ .
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In the following, we choose to consider only the out-
ermost layer as the surface and to treat the remaining
layers as the bulk. We then merge all orbits with the
same order and radius that consist exclusively of bulk sites
(Fig. 7), reducing the number of orbits from 76 to 20. Other
options include extending the surface region to several
layers, introducing a subsurface region treated differently,
and treating the local symmetries differently depending on
cluster order.

The present, rather aggressive, merging strategy leads to
a significant reduction of the number of training structures
necessary to reach a certain accuracy, while reducing the
final validation error (Fig. 8). Except for the smallest train-
ing set considered, there is almost no difference between
OLS and ARDR. This is because the lack of regulariza-
tion in OLS often leads to overfitting, which is avoided
here due to the small number of features. We also find that
the segregation energy predictions are significantly better
for the merged CEs [Figs. 9(a) and 9(d)]. This is a result
of our restricting the differences between the ECIs in the
inner layers.

B. Bayesian coupling of orbits

The assumption that similar orbits should have similar
energetic contribution to the total energy is an example of
a physical insight about the system. If such insights can be
formulated in the form of Bayesian priors, they can be used
to construct improved CEs within a Bayesian framework
[84,94,103]. Here we follow the approach first presented
by Mueller and Ceder [94].

We assume Gaussian priors for the ECIs such that

P(w|X ) ∝
∏

α

e−w2
α/2σ

2
α

∏

α,β �=α
e−(wα−wβ)2/2σ 2

αβ , (6)

where P(w|X ) is the posterior. Here the first product con-
trols the magnitude of the ECIs via σα , which is the
standard deviation of the prior and should be chosen to
roughly correspond to the expected value of the respec-
tive ECI. If one, for instance, wanted to achieve smaller
ECIs for large clusters, one could define σα such that
it decreases with orbit size. The second product controls
the coupling between orbits via σαβ , which is the inverse
coupling strength between orbits α and β.

Going back to the linear problem formulated in Eq. (4),
the Bayesian priors are introduced via the �2 regularization
matrix �, which has diagonal elements �αα = (σ 2/σ 2

α )+∑
β �=α(σ

2/σ 2
αβ) and off-diagonal elements �αβ = �βα =

−(σ 2/σ 2
αβ), where σ reflects the typical error of the model.

The maximum posterior estimate for the ECIs is then
given by

wopt = (X TX + �)−1X Ty . (7)

As in the merging approach, one has to be careful with the
treatment of multiplicities when using Bayesian coupling
of similar orbits. Coupling orbits means that we expect the
values of their ECI to be similar. It is therefore crucial that
the multiplicities are included in the design matrix and not
the ECI vector when this approach is applied. In addition,
in linear regression one typically uses standardization, i.e.,
rescaling of the design matrix, to improve the linear regres-
sion. If this is the case, one has to use the same scaling of
the Bayesian regularization matrix.

In this tutorial, we apply a rather simple Bayesian
approach using the same definition of local symmetries
as in Sec. V and couple the orbits belonging to the same
local symmetry using a single coupling parameter σαβ for
all coupled orbits. The ECI magnitude is controlled by a
single value of σα for all orbits as well. We emphasize that
the Bayesian priors can have a much more intricate design
than this to allow greater tunability [94]. For example, one
can take into account the order and size of orbits and define
complex criteria for the similarity of orbits.

In Fig. 10 we show how the validation error and the
training error vary with the coupling parameter σαβ while
keeping σα = 10. For large σαβ , the unmerged CE is
obtained with a high validation error but low training
error (indicating overfitting). For small σαβ , the merged
CE is recovered, and the training and validation errors
approach each other, with a significant reduction of the
validation error compared with the validation error in the
large-σαβ limit. The latter is particularly prominent for
smaller training sets. In between these to extremes, at
σαβ ≈ 0.2, the validation error has a minimum. This indi-
cates that the optimal compromise between the freedom
of unmerged orbits and reduced feature space of merged

FIG. 10. Performance of Bayesian surface CEs with differing
coupling strength. Validation error and training error with dif-
fering coupling parameter σαβ for similar orbits. The validation
error is shown for two different training set sizes (50% and 90%),
and the training error is obtained with the full training set (100%).
The optimal coupling parameter value, σαβ = 0.2, is highlighted
with triangles.
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orbits is found. Figures 9(b) and 9(e) show the segregation
energy prediction for various values of σαβ .

The identified optimal σαβ = 0.2 provides some
improvement in segregation energy prediction compared
with the unmerged CEs, but decrease of σαβ further
towards the merged limit results in significantly better seg-
regation energy prediction, in particular for the case of Pd
in Au. This again shows that the validation RMSE is not
always sufficient to find the most physically sound CE.

C. Adding constraints and weights

A CE can also be manipulated by introducing con-
straints and/or weights to ensure that certain properties
are reproduced more accurately. The property of interest
depends on the purpose of the model. If, for example, the
model is going to be used to study surface segregation phe-
nomena, a natural choice is the segregation energy. Calcu-
lation of the segregation energy requires DFT calculations
of surface slabs with a single Pd atom in a Au slab, respec-
tively positioned in each atomic layer, and vice versa,
resulting in a total of 12 structures. A straightforward
approach to improve the segregation energy prediction is
to include these structures in the training set. Additionally,
one could give these structures a higher weight by simply
multiplying the corresponding rows of the design matrix
X and elements in the solution vector y by a suitably
chosen factor. By one doing so, the prediction error will
shrink for these specific structures, effectively reducing the
segregation energy error.

Another option, which we demonstrate in this tutorial,
is to explicitly enforce better predictions of the segregation
energy as a constraint. This entails reformulating the linear
problem as

wopt = argmin
w

{‖X w − y‖2
2 + γ ‖(X S − X B)w − Eseg‖2

2

}
,

(8)

excluding any regularization terms [see Eq. (4)]. Here XS
contains the cluster vectors of the structures with a sin-
gle atom positioned in different atomic layers. Similarly,
XB contains the cluster vectors of the corresponding struc-
tures with a single atom in the bulk position (i.e., the
innermost atomic layer). Eseg represents the corresponding
segregation energies and γ is a weight factor that dic-
tates how strongly the constraint is enforced. In practice,
this is achieved by one adding rows to the design matrix
X corresponding to γ (X S − X B) and the target vector y
corresponding to Eseg.

In Figs. 9(c) and 9(f), we show the segregation energy
predictions for different weight factors γ . As expected, the
segregation energy predictions move closer to the DFT
line with increasing weight. The improvement in segre-
gation energy prediction comes at the cost of a slightly

increased validation error, from 2.8 meV/site for γ = 0 to
3.4 meV/site for γ = 5.

The strategy of introducing constraints and/or weights is
not restricted to low-symmetry systems and can be applied
to any property that can be expressed as a function of the
cluster vector. For example, one could constrain the mixing
energy of the pure Au and Pd structures to be 0, give higher
weight to structures close to some specific composition, or
use weights to compensate for an uneven sampling of the
configuration space.

D. Conclusions

In this section, we have presented three ways to adapt
the CE construction process so as to achieve accurate
models for complex systems, such as surfaces. These
approaches should be seen as tools that can be used on
their own (as shown here) or in conjunction, and can be
modified to provide a tailored solution for the problem at
hand.

VI. PART 3: MONTE CARLO SAMPLING

Key takeaways

(1) MC simulations can be used to sample a CE in
different thermodynamical ensembles.

(2) The variance-constrained semi-grand-canonical
(VCSGC) ensemble can be used for sampling across
miscibility gaps, but the semi-grand-canonical
(SGC) ensemble cannot be used since the chemical
potential maps to two different concentrations.

(3) Phase transitions can be identified from different
thermodynamic properties, such as heat capacity as
well as short-range and long-range order parame-
ters.

In the third and last part of this tutorial, we show
how the configuration space described by a CE can be
sampled via MC simulations. This allows calculation of
thermodynamic observables such as free energies, order
parameters, and heat capacities (see Appendix B for how
the latter two are obtained). We begin this section with a
short introduction to MC simulations and the most com-
mon thermodynamic ensembles, and then illustrate these
concepts using two examples.

A. Monte Carlo simulations

Thermodynamic sampling is usually done via Metropo-
lis MC simulations [104], which are generally executed as
follows. Starting from some arbitrary initial state, a so-
called trial step is suggested, which consists of a change
in the atomic configuration. This step is either accepted
(i.e., implemented) or rejected according to the Metropolis
criterion with probability given by

P = min {1, exp (−�ψ/kBT)},
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where �ψ is the change in the relevant thermodynamic
potential (which is introduced further in Sec. VI B). If the
trial step is rejected, the system remains in its current state.
The procedure is repeated until convergence is achieved.

B. Thermodynamic ensembles

MC simulations can be executed in different thermody-
namic ensembles. The choice of which depends on the goal
of the simulation and the properties to be extracted.

The canonical ensemble models a situation where the
total number of particles N and their concentrations ci are
kept constant along with the temperature T. It thus repre-
sents a system free to exchange heat with a reservoir at
temperature T.

Strictly speaking, in the canonical ensemble (and sim-
ilarly in the SGC and VCSGC ensembles; see below)
the volume V is constant. When constructing a CE, one,
however, commonly trains CEs against configurations that
have been relaxed with respect to both atomic positions
and volume/cell shape. CE models trained in this fashion
therefore incorporate the strain energy term that sepa-
rates the canonical ensemble (NciVT) from the isobaric-
isothermal ensemble (NciTp). It is therefore more sensible
to interpret the results of such CE MC simulations in terms
of the latter ensemble. In keeping with the literature, we,
however, use the terms for the constant-volume ensembles
in the following.

The trial steps used to sample the canonical ensem-
ble need to preserve the conserved quantities, specifically
the concentrations of the different species ci. This can be
accomplished by one (simultaneously) swapping the occu-
pancy of two sites. The change of the thermodynamic
potential ψ is then given by the energy difference between
the two states, i.e., �ψ = Enew − Eold = �E. In the con-
text of this tutorial, E refers to the energy predicted by the
CE.

It is also possible to gradually reduce the temperature in
an MC simulation in the canonical ensemble, an approach
that is referred to as “simulated annealing.” This procedure
can be used as a general optimization algorithm, for exam-
ple, to find the lowest-energy (ground-state) structures or
in structure selection as implemented in Sec. IV B.

The “SGC ensemble” refers to a case where the total
number of particles N is fixed while the concentration of
the different species is controlled via the relative chemi-
cal potentials �μi, again at constant temperature T. The
SGC ensemble thus represents a system in connection with
both a heat reservoir (T) and one or several particle reser-
voirs (�μi) under the constraint of a constant number of
particles N .

In the CE literature, it is not uncommon for the SGC
ensemble to be referred to as the “grand canonical ensem-
ble,” which is, however, a misnomer. The actual grand
canonical ensemble represents an open system that has no

constraint on the total number of particles, with the abso-
lute chemical potentials μi as variables [105]. By contrast,
the semi-grand-canonical ensemble represents a semiopen
system, where the relative proportion of particles of differ-
ent species but not their total number may change. In cases
involving at least one sublattice with vacancies (such as
the example discussed in Sec. IV), one can interpret CE-
based MC simulations in the SGC ensemble or the VCSGC
ensemble in terms of the grand canonical ensemble by
imposing suitable thermodynamic boundary conditions.
This approach is described and demonstrated in, for exam-
ple, Ref. [27], which also discusses paraequilibrium and
full equilibrium in this context.

As before, in the case of the canonical ensemble, trial
moves used for sampling the SGC ensemble need to
respect the respective constraints. A suitable trial move
is therefore to change the occupation of a single site.
The change in the thermodynamic potential is given by
�ψ = �E − N

∑
i>1�ci�μi, where N is the total num-

ber of sites, ci is the concentration of species i, and �μi =
μi − μ1 is the chemical potential difference of species i
relative to the first species.

A big advantage of the SGC ensemble compared with
the canonical ensemble is that it directly connects to the
derivative of the free energy per atom with respect to the
concentration(s)

1
N
∂F
∂ci

= −�μi,

which can be integrated along the concentration axis (or
axes) to yield the free energy. Inside multiphase regions,
the same chemical potentials map, however, to multiple
different concentrations, which renders it impossible to
perform integration over (and perform sampling inside)
miscibility gaps.

The VCSGC ensemble can, in contrast to the SGC
ensemble, be used for sampling inside and across mis-
cibility gaps [106]. Similarly to the SGC ensemble, it
imposes a flexible constraint on the mean concentrations,
but unlike the SGC ensemble it also constrains their fluc-
tuations. This is achieved via two variables, φ̄ and κ̄ ,
which control the mean and the variance of the concen-
tration(s), respectively. The corresponding thermodynamic
potential is given by �ψ = �E + NkBTκ̄(�c + φ̄/2)2,
and the ensemble can be sampled with the same kind of
moves as those used for the SGC ensemble.

The free energy derivative per atom with respect to the
concentration is given by

1
N
∂F
∂c

= −2kBTκ̄
(〈c〉 + φ̄/2

)
. (9)

As a result of the constraint on the variance of the con-
centration, one can also stabilize concentrations inside
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miscibility gaps. This allows one to obtain the free energy
as a continuous function of concentration, and thus enables
free energy integration.

The choice of κ̄ affects the strength of the variance
constraint, corresponding to the inverse variance of the
expected concentration. Larger values enforce smaller
fluctuations, which reduces the acceptance ratios, requir-
ing more sampling. Smaller values, on the other hand,
can cause the fluctuations to become too large to allow
sampling of two-phase regions as the VCSGC ensem-
ble then approaches the SGC ensemble [106]. Empiri-
cally, we have found that κ̄ = 200 strikes a good balance
between sampling efficiency and sampling quality for most
systems.

We can get an idea of how to select suitable values of φ̄
by considering Eq. (9). For typical temperatures and val-
ues of κ̄ , the terms in front of the left parenthesis on the
right-hand side of Eq. (9) are much larger than the varia-
tion of the free energy on the left-hand side. As a result, we
can assume that 2 〈c〉 + φ̄ ≈ 0. It then follows that the con-
centration limits 〈c〉 → 0 and 〈c〉 → 1 are reached by one
setting φ̄ ≈ −2 − δ and φ̄ ≈ δ, respectively. Here δ indi-
cates that sampling needs to be done somewhat beyond
those limits in order to cover the full composition range.
Empirically, a value of δ of about 0.3 is sufficient in most
cases.

C. Ordering in Au3Pd using the canonical ensemble

As the first illustration we consider the order-disorder
transition in AuPd3, which can be conveniently accessed
via simulations in the canonical ensemble. Here we use
a CE developed in Ref. 27 for Au1−xPdx on the fcc lat-
tice. In Fig. 11 we show the resulting long-range order
parameter and heat capacity as a function of temperature.
The long-range order is represented here by the partial
static structure factor calculated between Pd atoms at q =
(2π/a0)[1, 0, 0] [see Eq. (B2)], while the heat capacity is
calculated via Eq. (B1).

The sharp peak in the heat capacity at approximately
175 K indicates that the material undergoes a continuous
phase transition from a disordered phase to an ordered
phase [see the inset in Fig. 11(b)] with decreasing tem-
perature. The phase transition can also be seen in the
long-range order parameter, as this increases sharply at the
phase transition.

All simulations indicate a phase transition at around
175 K, but there the sharpness of the transition is sensi-
tive to supercell size, with larger systems yielding sharper
transitions. This behavior is typical for continuous phase
transitions, as the correlation length of the fluctuations
in the systems diverges at the critical temperature [107].
To achieve convergence one therefore needs to consider a
range of system sizes, and extrapolate to the infinite size
limit if possible.

(a)

(b)

k B

FIG. 11. Order-disorder transition in AuPd3 from MC simula-
tions. (a) Long-range order parameter and (b) heat capacity as
a function of temperature and system size, where the solid lines
are guides for the eye. The system size is given in multiples of
the primitive (four-atom) unit cell. The long-range order is rep-
resented by the partial static structure factor between Pd atoms.
The inset shows the ordered low-temperature phase.

D. Phase diagram of AgxPd1−x via the SGC and
VCSGC ensembles

We now illustrate the construction of a phase diagram
for a system with a miscibility gap, namely fcc AgxPd1−x,
using a CE from Ref. [68], a 10×10×10 supercell and MC
simulations in the SGC and VCSGC ensembles.

In the case of the SGC MC simulations, the chemi-
cal potential was sampled with 105 evenly spaced points
between −1.04 and 1.04 eV/atom. For the VCSGC MC
simulations, the variance constraint parameter κ̄ was set to
200, while the average constraint parameter φ̄ was varied
between −2.3 and 0.3 with 105 evenly spaced points.

1. Miscibility gap

Figure 12(a) shows the free energy derivative obtained
from sampling in both ensembles at a temperature below
(400 K) and above (800 K) the miscibility gap. Here the
miscibility gap separates a Pd-rich phase containing almost
no Ag from a mixed phase with up to approximately
60%–70% Pd depending on temperature.

042001-14



CLUSTER EXPANSIONS – A TUTORIAL PRX ENERGY 3, 042001 (2024)

(a)

(b)

(c)

FIG. 12. MC sampling of the AgxPd1−x system. (a) Derivative
of the free energy of mixing with respect to composition (i.e., the
chemical potential), (b) free energy of mixing, and (c) phase dia-
gram. The inset in (b) shows the enlarged and tilted free energy
of mixing in the vicinity of the miscibility gap (indicated by the
blue diamonds). Because of the concave free energy at 400 K,
the SGC ensemble cannot form a stable solution. The miscibility
gap is extracted from the free energy landscape of the VCSGC
ensemble.

Outside the miscibility gap, simulations in the SGC and
VCSGC ensembles yield numerically identical results. In
the SGC MC simulations at 400 K it is, however, appar-
ent that the miscibility gap, i.e., the two-phase region
between approximately 60% and 99%, is not accessible
as the mapping between ∂F/∂c and the concentration c
is one-to-many (i.e., noninjective), and the variance of
the concentration diverges. Here the identification of the
free energy derivative with the relative chemical potential
breaks down, as the latter is meaningfully defined only in
single-phase regions.

When SGC MC simulations are used, the free energy
in the single-phase regions can still be obtained through

thermodynamic integration starting from known limits
such as in the low-temperature or high-temperature expan-
sions [108]. Furthermore, one can obtain the phase dia-
gram by tracing the phase boundaries [108]. To mitigate
hysteresis effects, this requires iterative sampling across
two-phase regions as well as careful consideration of the
convergence with respect to the numerical resolution of the
chemical potential.

To counteract the divergence of the concentration in
miscibility gaps, in the VCSGC ensemble one includes
a term representing a constraint on the variance in the
thermodynamic potential. This allows one to access also
compositions inside the miscibility gap and sample the
free energy derivative as a continuous function of com-
position [Fig. 12(a)]. This, in turn, enables integration
of the free energy over the entire concentration range
[Fig. 12(b)]. Finally, via the convex hull construction [inset
in Fig. 12(b)], one can then readily extract the phase
boundaries [Fig. 12(c)].

Thanks to the possibility to compute the free energy
across two-phase regions, one can furthermore extract
excess free energies. Thereby, it is possible to compute, for
example, interface free energies as a function of interface
orientation. The interested reader can find more informa-
tion on this topic in, for example, Refs. [83,106].

Finally, the VCSGC ensemble naturally enables an even
sampling of the concentration axis as equidistant values
of φ̄ lead to approximately equidistant concentrations.
This avoids adaptive sampling in the vicinity of phase
transitions that are necessary when the SGC ensemble is
used.

2. Secondary phase transitions

By mapping out the free energy, we were able to locate
the miscibility gap in the Ag-Pd system. This phase bound-
ary corresponds to a first-order phase transition as evi-
dent from the sudden (and discontinuous) transition in the
derivative of the free energy with respect to composition. It
is, however, very difficult (if not practically impossible for
numerical reasons) to obtain information about continuous
phase transitions. To this end, as we saw ín Sec. VI C, the
heat capacity and order parameters are better suited.

Analysis of the heat capacity as a function of temper-
ature and composition reveals a transition at around 25%
Pd and 200 K [Fig. 13(a)]. This transition closely resem-
bles the one in Au3Pd that we analyzed before, but here
we also obtain the composition dependence of the transi-
tion. At 25% Pd the transition is very sharp, while both
the heat capacity and the transition temperature drop with
either decreasing or increasing composition. Note that the
heat capacity shows no discernible features around the
miscibility gap.

The order-disorder transition at around 25% Pd is also
apparent from the short-range order parameter computed
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(a)

(b)

FIG. 13. Order-disorder transitions in AgxPd1−x from VCSGC
MC simulations. (a) The heat capacity map reveals a continuous
phase transition between a disordered phase and an ordered phase
at around 25% Pd. (b) The short-range order parameter [Eq. (B3)]
indicates the existence of a miscibility gap; however, it is hard to
identify the exact boundaries. It also shows a sharp change at the
order-disorder phase transition.

according to Eq. (B3) [Fig. 13(b)]. The short-range order
map (unlike the heat capacity), however, also exhibits
structure across the miscibility gap, which is the result
of the variation in the proportions of the two different
phases (Pd rich and mixed). It is, however, clearly apparent
that the short-range order is not suited for identifying the
actual phase boundaries as the map is smooth, and distinct
features emerge only well inside the miscibility gap.

E. Conclusions

In the final part of this tutorial, we demonstrated the util-
ity of MC simulations in different thermodynamic ensem-
bles for extracting thermodynamic observables and iden-
tifying phase boundaries. Which ensemble is best suited
depends on the task at hand. Generally speaking, the
canonical ensemble is simple to use (and understand) but
limited insofar as it does not directly enable one to observe
a first derivative of the free energy. It can still be used for
thermodynamic integration (which was not covered here).
The SGC and VCSGC ensembles both provide access
to the first derivative of the free energy with respect to
concentration and thereby can be used more readily for
obtaining phase diagrams. The VCSGC ensemble addi-
tionally allows one to handily extract excess free energies.
Here we did not discuss acceptance ratios, but in clos-
ing, we point out that while the canonical ensemble tends
to yield higher acceptance ratios for small concentrations,

the other two ensembles achieve higher ratios at higher
concentrations [109].

VII. OUTLOOK

In this tutorial we have provided a short practical intro-
duction to the topic of constructing and sampling CEs
for the study of many-component systems. These tech-
niques can be used to investigate a huge range of materials,
including, in particular, materials with relevance to energy
applications. In the field of battery research, for example,
CEs have been applied to study chemical ordering [110],
voltage curves [111], and migration barriers [112,113],
whereas with respect to photovoltaic materials, successful
applications of CEs include studies of the phase stability of
perovskites [32,114], band-gap engineering [115,116], and
chemical order and the effect of vacancies [117]. Catalysis
is another field where CEs have proven to be useful—for
instance, when one is studying the effect of nanoparti-
cle size and shape [118] and composition [119], as well
as for comparing active sites [120] and performing high-
throughput compositional screening of candidate materials
[121]. In the field of thermoelectrics, CE have been used to
study the impact of chemical order [37] and composition
[39,122] on phase stability and even transport properties,
for materials such as Si-Ge nanowires [122], clathrates
[37,39,63], and skutterudites [123]. Lastly, CEs are of
importance for studying various high-performance alloys,
including superalloys [124], high-entropy alloys [125],
and intermetallic compounds [126,127]. These materials
often exhibit favorable thermal and mechanical proper-
ties and high tunability, and have applications in, for
instance, lightweight construction and high-temperature
environments.

Most applications of CEs consist of CE construction
and MC sampling, which means that the contents of parts
1 and 3 of this tutorial are relevant in most cases. The
structure selection and training strategies from part 1 are
of particular importance for more complex systems, such
as the multicomponent high-performance alloys mentioned
above, where these aspects are especially challenging due
to the large number of components and/or larger unit cells.
Similarly, the content of part 3 is of particular interest for
studies with an emphasis on phase diagrams, phase tran-
sitions, and chemical order, including in thermoelectrics
and high-performance alloys. In addition, understanding
the thermodynamic ensembles, in particular the SGC and
VCSGC ensembles, is crucial when the chemical poten-
tial is of interest—for instance, for battery voltage curves
and systems in contact with gases. Lastly, the strategies in
part 2 are useful for studies of surfaces and nanoparticles,
which is almost always the case in the field of catalysis, but
can also be applied for other challenging systems where the
strategies from part 1 are not sufficient.
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Finally, we emphasize that there are various more
advanced topics related to CEs that are beyond the scope
of this tutorial that we invite so-inclined readers to pur-
sue. With regard to the construction of CEs, this includes
managing sublattices [27] and strain [25,82,83], handling
thermodynamic constraints through nullspaces [27,128],
or quadratic programming [129] as well as alternative
regression approaches [130]. In terms of applications,
one can mention, for example, ground-state finding [131,
132], materials under pressure [126], precipitate forma-
tion [133], the description of migration barriers [60], and
CE-based kinetic MC simulations [136].

The data that support the findings of this article are
openly available [135,136].
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APPENDIX A: COMPUTATIONAL DETAILS

The DFT calculations for the simple carbide system,
Mo1−xVxC1−y�y , were performed with the projector-
augmented method [137,138] as implemented in VASP
[139–141]. We used the van der Waals density func-
tional method with consistent exchange [142,143] for the
exchange-correlation potential. The Brillouin zone was
sampled with a �-centered k-point grid, with the smallest
allowed spacing between two k-grid points being 0.25 Å−1

and the plane-wave cutoff energy being 520 eV. Both the
positions and the cell were allowed to relax; the largest
allowed residual forces were set to 0.02 eVÅ−1.

APPENDIX B: THERMODYNAMIC PROPERTIES

In addition to the properties mentioned in Appendix A,
one can obtain several other thermodynamic properties of
interest from MC simulations.

The heat capacity is readily obtained via

CV(T) = var[E(T)]
kBT2 , (B1)

where var[E(T)] is the variance of the energy.
Long-range order can be assessed from the partial static

structure factors, which are defined for atom types A and

B as

SAB(q) ∝
NA∑

j

NB∑

k

exp
[−iq · (Rj − Rk)

]
, (B2)

where q is a reciprocal lattice point and Rk is the position
of atom k.

Short-range order is often measured in terms of the
Warren-Cowley short-range order parameter, which deter-
mines to which degree a binary (A-B) system mixes or
segregates [144]. For an atom i of type A, it is defined as

αi = 1 − ZB

ZtotcB
, (B3)

where ZB is the number of B neighbors in the first-neighbor
shell, Ztot is the total number of neighbors in the first shell,
and cB is the concentration of B atoms. For a random mix-
ture, we obtain α = 0, for a phase-separated system, we
get α > 0, while α < 0 indicates ordering.
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