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Avoiding decoherence with giant atoms in a two-dimensional structured environment
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Giant atoms are quantum emitters that can couple to light at multiple discrete points. Such atoms have been
shown to interact without decohering via a one-dimensional waveguide. Here, we study how giant atoms behave
when coupled to a two-dimensional square lattice of coupled cavities, an environment characterized by a finite-
energy band and band gaps. In particular, we describe the role that bound states in the continuum (BICs) play in
how giant atoms avoid decoherence. By developing numerical methods, we are able to investigate the dynamics
of the system and show the appearance of interfering BICs within a single giant atom, as well as oscillating
BICs between many giant atoms. In this way, we find the geometric arrangements of atomic coupling points that
yield protection from decoherence in the two-dimensional lattice. These results on engineering the interaction
between light and matter may find applications in quantum simulation and quantum information processing.

DOI: 10.1103/PhysRevResearch.6.043222

I. INTRODUCTION

In the past decade, a new paradigm of quantum emit-
ters has been increasingly attracting interest: so-called giant
atoms (GAs) [1]. These atoms, which may be artificial, earn
their name by breaking the dipole approximation: the as-
sumption that atoms are small compared to the wavelength
of the field they interact with. Giant atoms instead couple
to light (or other bosonic fields) at several discrete points,
which can be spaced wavelengths apart. The interference
between emission and absorption through these coupling
points then leads to a plethora of remarkable features, such
as frequency-dependent decay rates and Lamb shifts [2,3],
waveguide-mediated decoherence-free interaction [4-9], and
oscillating bound states [10-14].

Since 2014, several experimental demonstrations of GAs
have been achieved, both with superconducting qubits cou-
pled to surface acoustic waves [15-26] and to microwave
waveguides [3,5,27], and several other implementations have
been proposed [28,29]. Recently, giant-atom physics has also
been explored beyond the atomic paradigm in giant molecules
[30-34] or giant spin ensembles [35]. However, most studies
to date (both theoretical and experimental) have focused on
GAs coupled to one-dimensional reservoirs: most commonly
to continuous waveguides [2-5,7,9-11,13,27,36-50], but re-
cently also to structured ones [8,14,29,51-65].

Here, we instead study GAs coupled to a two-dimensional
(2D) structured environment, modeled as a square lattice of
coupled cavities with nearest-neighbor interaction (see Fig. 1).
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This environment has been studied in depth in relation to small
atoms [66—73], and there are additional works on small atoms
coupled to other 2D [71,72,74-77] or higher-dimensional
[70,78-80] structured environments. However, GAs in a 2D
square lattice have only received limited attention so far:
in Ref. [28], the focus was on engineering unconventional
emission patterns from a single GA in a particular experimen-
tal implementation; in Ref. [72], the study revolved around
harnessing topologically protected propagating modes; and in
Ref. [81], the focus was on the analytical framework used to
describe GAs coupled to photonic baths of any structure and
dimension.

In this work, we describe the dynamics of GAs when they
are tuned to the band of the 2D bath by developing numer-
ical methods (split-operator approach) and using complex-
analysis techniques (resolvent formalism). We specifically
focus on ways the GAs can avoid decoherence. In doing so,
we find that bound states in the continuum [82-85] (BICs)
arise in certain geometries and make it possible for GAs to
exhibit both subradiance and decoherence-free interaction.
We also show different interference patterns of the BICs en-
closed by eight coupling points of a single GA. Moreover, by
studying the bound-state dynamics, we identify decoherence-
free interaction [4,5] as a many-atom analog of previously
reported oscillating BICs [10-14]. Finally, we explore many-
GA configurations that exploit decoherence-free interactions
for potential applications in quantum simulation and com-
puting, such as chains with pairwise interactions, triads with
all-to-all interaction, and grids with effective long-range inter-
actions.

This article is structured as follows. In Sec. II, we present
and discuss a Hamiltonian model for GAs coupled to a 2D
square lattice of coupled cavities. In Sec. III, we develop an
efficient numerical method to simulate the dynamics of this
system. The results from the simulations are shown in Sec. IV,
where we focus on ways in which GAs become protected
from decoherence and delve into the characterization of BICs.

Published by the American Physical Society
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FIG. 1. Two giant atoms in a braided configuration coupled to
a 2D structured bath. The bath is modeled as a square lattice of
N x N cavities with resonance frequency wp and nearest-neighbor
coupling strength J. The atoms are two-level systems, with transition
frequencies w; detuned from the middle of the band by A; = w; — wp
(i =1,2). They are coupled to the cavities with coupling strength
gip at each coupling point, where i refers to the atom and p to the
connection point.

In particular, we investigate the subradiance of a single GA
in Sec. IV A, the decoherence-free interaction between two
GAs in Sec. IV B 1, and other configurations involving many
GAs in Sec. IV B 2. We provide the code to reproduce all the
results from Sec. IV in Ref. [86]. We conclude in Sec. V with a
summary and an outlook. Moreover, we include Appendix A,
where we show the resolvent-formalism techniques that sup-
port the results of this article, and Appendix B, where we
provide additional details for the numerical method described
in Sec. III. Finally, we also include Appendix C, where we
describe how to engineer a perfectly subradiant GA detuned
from the middle of the band, as well as setups exhibiting
perfect subradiance at multiple different detunings, which
has previously only been demonstrated in one-dimensional
waveguides [5].

II. THEORETICAL FRAMEWORK

We start by deriving a Hamiltonian model for the setup
shown in Fig. 1. Both the setup and the Hamiltonian are
inspired by those presented in Refs. [8,28,66].

The structured 2D reservoir we consider can be described
as a square lattice of N x N cavities with resonance fre-
quencies wp and nearest-neighbor couplings J. Taking the
separation of adjacent cavities as the unit of length, we char-
acterize the position of each cavity with a coordinate vector
ii = (ny, ny), where n,, n, € [0, N — 1], and label each cor-
responding cavity annihilation operator as a;. The resulting
bath Hamiltonian in real space, rotating at frequency wg, reads

(h = 1 throughout this article)

Hg=—J Z(a;a,ﬁ + H.c.), 1)

(i, )

where (7i, 7i1) denotes summation over all pairs of neighboring
cavities at 7i and 7, and H.c. denotes the Hermitian conjugate.

The Hamiltonian in Eq. (1) can be diagonalized by in-
troducing periodic boundary conditions and the operators in
momentum space

1 —ik-7i
ap = ]V Za; e’ , (2)
2
where k = (ky,ky) is the wave vector, with k. k, €
{—m,...,mT— ZV”}. In that basis,
Hg =) o(kdap, 3)
k
with
w(k) = —2J(cos k, + cosky). )

The dispersion relation in Eq. (4), although describing a
fairly simple 2D structured bath, gives rise to some very inter-
esting properties. First and foremost, it results in an energy
band in the range co(lz) € [—4J,4J]. Within this band, the
energy dispersion varies widely: it is isotropic close to the
band edges, but becomes highly anisotropic at the band center
[i.e., at w(ié) = 0] [66]. This is easy to see from the definition
of group velocity: at wk) =0,

. = . 1
U, = Vw(k)|w(,;):0 =2J 51nk|:i1i| (®)]

for any k € {—m,..., T — ZV”}. At the band center, excita-
tions can thus only propagate along two orthogonal diagonals,

which we hereafter refer to as the [ :I:ll] diagonals. Further-

more, note that ¥, vanishes for k = {0, £}, which yields a
divergent density of states, i.e., a type of Van Hove singularity
present in many 2D structured baths [66,67].

We now consider M two-level GAs, with transition fre-
quencies w;, detuned from the middle of the band by A; =
w; — wp. The bare Hamiltonian of these GAs (rotating at wg)
is

M
Hy = Z Ai0i+ai_7 (6)
i=1

where aii denote the atomic ladder operators. If the ith GA
couples to the bath at P; points, then the interaction of the
atoms with the bath under the rotating-wave approximation
(RWA) can be described by

M P
Hyy = Z Z gjp(aﬁipo'i+ + H.C.)

i=1 p=1
M P’ g -
—ik-7i;
- Z Z W” Z(e i g ot + He.), (7
i=1 p=1 %
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where 7i;, denotes the position of the cavity which interacts
with the pth coupling point of the ith atom. The coupling
strength between the atom and the bath at this point is g;,,
which we assume to be real for convenience. Although we
leave complex coupling strengths out of the scope of this
manuscript, we note that they are experimentally achievable
[27,28,32,87] and can be used to engineer chiral emissions
and interactions [27,28,32,35,43,47,87,88].

With the definitions above, the total Hamiltonian of the
system is

H = Hp + Hy + Hiy. (8

We note that this model is valid under the assumption of
coupling to a single polarization of light and a single bosonic
band. We focus on the single-excitation subspace for conve-
nience, but the phenomena showcased throughout the paper
still exist beyond this subspace. We also work in the contin-
uum limit (i.e., N — oo in the analytics, and tJ < N/2 in the
simulations), which allows us to disregard effects arising from
the finite size of the bath. Additionally, we neglect couplings
to other reservoirs by assuming that the losses induced by such
couplings occur at a significantly lower rate than the relevant
dynamics we study. Last, we assume weak coupling strengths
gip <J and g;, K< w;, wp Vi, p, to comply with the RWA we
applied in Eq. (7).

This theoretical model may be used to describe cold
atoms coupled to photonic crystals [69,89] or optical lat-
tices [28,90,91], as well as superconducting qubits coupled
to microwave photonic crystals [92-96] or superconducting
metamaterials [97-103]. Due to the intricate nature of the
setup (2D resonator lattice and multiplicity of atoms and
multiplicity of coupling points per atom arranged in a non-
trivial manner), the experimental realization of cold atoms
in the GA regime requires excellent control of a dynamical
state-dependent optical lattice [28]. Such an implementation
remains elusive to date, and we thus consider our setup to be
most readily implementable with superconducting qubits. We
note that, in such a case, arranging for the multiple coupling
points may be aided by flip-chip technology [104—-106].

III. NUMERICAL METHODS

The aforementioned Van Hove singularities [see Sec. II,
after Eq. (5)] in the middle of the band and at the band
edges introduce branch cuts that make it hard to analytically
calculate how the exact atomic and bath populations evolve
over time. While we provide derivations for those quantities
in Appendix A, we rely heavily on numerical simulations to
study the dynamics of the system. In this section, we present
the numerical methods we develop and use in this work.

We base our numerical method on a so-called split-
operator approach [107], which has been used in previous
studies of small and giant atoms coupled to structured envi-
ronments [8,66]. Essentially, this method is based on splitting
the full Hamiltonian in Eq. (8) into the bath part Hg [diagonal
in Fourier space, Eq. (3)], the atomic part H4 [diagonal in
real space, Eq. (6)], and the interaction part Hy [Eq. (7)], and
evolving the system by repeatedly applying the approximate

time-evolution operator
U(At) = F'Us(ADFUL(AD), )
where

Us(At) = e Hatthadli = o (At) = e A (10)

and F denotes a Fourier transform, implemented in practice
as a fast Fourier transform (FFT). While this is not equiv-
alent to applying the exact time-evolution operator U(t) =
exp[—i(Hp + Hy + Hine)t], it is accurate to O(A), provided
that the copies of U (At) are sandwiched between an initial
Us(—At/2) and a final U4 (Az/2) [108].

Since Up is diagonal in Fourier space, it is trivial to com-
pute. The same does not hold for Uy in real space due to the
presence of Hi,,. However, for small atoms, it has been previ-
ously used [66] that, as long as no cavity couples to multiple
atoms, Uy can be calculated with a computational complexity
linear in M and N?, where d is the dimensionality of the bath
(in our case: d = 2). The reason for this complexity can most
easily be seen by examining the structure of Hy + Hjp.

Defining the state vector for our system such that the first
M elements correspond to the (bare) atomic excited states and
the following N elements correspond to the states where one
of the cavities is excited (and the atoms are in their ground
states), we can write the combined atomic and interaction
Hamiltonian as a block matrix:

D T
Hy + Hin = [FT ®]. (1)

Here, D is a diagonal M x M matrix containing the detunings
A, for the different atoms, " is an M x N? matrix containing
all terms related to atom-bath interaction, and 0 is the N2 x N2
zero matrix. For the case of small atoms, where atom i couples
to a single cavity with coupling strength g;,

if atom i couples to cavity n,

otherwise. (12)

gi

[Tlin = {0’
Assuming each cavity only couples to a single atom, no inter-
action occurs between atoms without taking Hg into account.
Thus, each atom i is isolated and can be modeled using an

effective Hamiltonian
I AVERY
H; = |:gi 0 ] (13)

In other words, to apply Uy to a state, one only needs to
evaluate M different 2 x 2 matrix exponentials:

U;(At) = exp(—iH;At). (14)

The matrix elements of U; can then be used to apply the
same time evolution as the one caused by U, to atom i and
its coupled cavity. This is significantly cheaper than com-
puting Uy directly, which would entail computing an (M +
N?) x (M + N?) matrix exponential. In turn, this would have
a computational cost scaling like (M + N?)3, since the cost of
exponentiating an n x n matrix in general scales like n° using
state-of-the-art algorithms [109,110].

As described in Sec. II, the most general GA case involves
each atom i coupling to P; resonators with coupling strengths
{8ip}1;=1- As long as there are still no cavities coupling to
multiple atoms, the small-atom method described above can
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be generalized to handle GAs by simply extending the size of
the effective Hamiltonian with an additional row and column
for each added coupling point, such that

A g
Hi=|_, , (15)
8i 0

where g; is a 1 x P; row matrix with elements [g;], = gip.
This Hamiltonian can then be used completely analogously
to how H; is used in the small-atom case.

However, as we show in Appendix B, we can generalize
the small-atom method to handle GAs without increasing the
size of the effective Hamiltonian. We can thus not only apply
U, to a state at a cost linear in M and N? for GAs, just as
has previously been possible for small atoms, but the cost can
be made linear in P,. In contrast, the cost of exponentiating a
(I 4+ P;) x (1 + P;) matrix directly would scale as (1 + P)3.
While this difference is not very significant for most of the
configurations examined in this study, the P;-linear version of
the method would be significantly faster at modeling more
complicated setups, e.g., ones based on reverse design like
those described in Ref. [28]. Note that our generalized method
works for baths of arbitrary dimensionality, but we focus
mainly on the 2D case in this paper.

The P;-linear method for computing the elements of Uy is
based on using an effective Hamiltonian

A G
Hi - |:Gl Oi|7 (16)
|

[1ar + Dolij = 8;;[Uil1,

[DiTlin = [T Di]u =

[Ays + 7D, = {

mn

Applying the map encoded by Uy can thus be done, to accu-
racy O(A?), with computational cost linear in M, N 2 and P,
for GAs. Doing so moves the bottleneck of the split-operator
algorithm to the computation of the time evolution associ-
ated with Hp. Specifically, the bottleneck becomes the two
FFTs performed in each time step, which have complexity
O(N? log N) [111], since the computation and application of
Ug in the bath eigenbasis only has complexity O(N?).

As discussed in Ref. [66], the computational cost of the
time-evolution algorithm can be reduced further by intro-
ducing an additional approximation based on going to the
continuum limit, discretizing frequency space and exploiting
the periodicity of w(k).

IV. AVOIDING DECOHERENCE

In this section, we explore ways in which GAs can avoid re-
laxing into the bath. Therefore, we focus on the case A/J = 0,
where the atoms are tuned to the middle of the band and thus
can only emit along two orthogonal diagonals, as shown in
Sec. II [see the discussion around Eq. (5)]. This restriction in

otherwise,
Omn + ‘Sii”’é—‘;"”"([U,-]zz — 1) if cavities m, n couple to atom i at p,,, p,

where

a7

is the effective coupling strength of atom . If the atom couples
equally strongly to each coupling point, i.e., g;, = g; for every
p, then Eq. (17) reduces to

G; = /Pgi. (18)

Since the I' block in Eq. (11) is now more complicated
than in the small-atom case, the elements of Uy are more
complicated than simply being copies of the elements in U;
when using our 2 x 2 effective Hamiltonian [Eq. (16)]. In
fact, as shown in Appendix B, again assuming that no cavities
couple to multiple atoms, Uy can be written as a block matrix

DT ]
, 19)

1 + Dy
AT Ty +T7D,T

I'’D,

where Dy, are diagonal matrices that can be computed
from the elements of Uj;. Specifically, the matrix elements of
U4 (At) can be expressed as follows:

%[Ui]u if cavity n couples to atom i at point p,,,

(20)

otherwise.

(

emission directions makes it relatively easy to engineer inter-
ference such that emission to the bath from different atoms,
or from different coupling points belonging to the same atom,
cancels completely [28,66—68,73]. For setups with A/J # 0,
see Appendix C.

A. Single giant atom—Subradiance

We typically refer to an ensemble of atoms that radiate to
their environment at a slower rate than that given by Fermi’s
golden rule as subradiant [112,113]. In the case of GAs, it
makes sense to use that term not only about collective emis-
sion, but also for a single atom, as the interference between
its coupling points is analogous to the interference between
many small atoms. A perfectly subradiant GA is one which
does not decay into the bath. In this subsection, we first show
how a GA can be perfectly subradiant with four coupling
points, and how this subradiance is connected to a BIC. We
then derive an analytical expression for this BIC and expand
the discussion to various setups with more than four coupling
points.
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FIG. 2. A perfectly subradiant giant atom and its populated
bound state in the continuum. The grid denotes the lattice of coupled
cavities, with each square corresponding to one lattice site. The
orange dots linked by a solid line denote the four coupling points
of the giant atom. Note that the coupling points are separated by odd
distances along each diagonal: 2n™ + 1 = 3 in the [ % ] direction and
2n~ + 1 = linthe [_11 ] direction. The green shading of lattice sites

shows the evenly distributed photonic population of the bound state
in the continuum, enclosed by the coupling points of the giant atom.

1. Subradiance and bound state in the continuum for a giant atom
with four coupling points

In a 2D square lattice, a single GA can be perfectly sub-
radiant if it has at least four coupling points. This is because
it needs two points to interfere destructively and cancel the
emission along each of the diagonals. Assuming all points
couple with the same strength, achieving destructive interfer-
ence requires the coupling points to be separated by an odd
distance along each of the diagonals (see Fig. 2), since such
a separation makes the excitations acquire a phase shift equal
to an odd multiple of = when traveling between the coupling
points. Conversely, an even distance between coupling points
will lead to superradiance.

The interference between coupling points causing the sub-
radiance of a GA is built through a bound state in the
continuum (BIC). This is an eigenstate of the full Hamiltonian
whose energy lies in the continuum, but does not interact
with the propagating modes. The BIC is thus a dressed state
of the system, whose photonic part is as a standing wave
of localized excitations between the coupling points of the
giant atom (see Fig. 2). The existence of such BICs has been
previously reported for giant atoms in 1D [8,14,114] and 2D
[28] structured environments, although often under different
names, such as trapped emission or real pole.

The role of the BIC is clearly seen in the dynamics of the
system (see Fig. 3). Starting with the atom in its bare excited
state |e), we first observe a short decay that corresponds to the
atom populating the photonic part of the BIC |B). During this
time, which is the time it takes an excitation to travel through
the bath and reach the other coupling points, there is also a
small leakage into the environment, owing to the fact that the
interference necessary for the subradiance has not yet been
built. The excitation leaked away from the atom is approxi-

(a) Atomic population (b) Bath population at i = (50, 50)

1.00 ) 0.015
—————— ICe(e)]
. 0.99 =-0.010
+ -
= =
©0.98 S 0.005
0.97 0.000
0 20 40 0 20 40
t t
.. (c) Bath population at t/ =1 ..(d) Bath population at ¢/ = 40
< c
%52 %52
2 PN __ 2
5 50 [ | 5 50 [ |
T N T
S 48 S 48
v v
(V) (V)
o o
48 50 52 48 50 52

Resonator index, ny Resonator index, ny

5.0x107* 5.0x1073

Bath population

FIG. 3. Subradiant dynamics of a giant atom with four cou-
pling points (orange markers connected by lines), all with coupling
strength g/J = 0.125 (G/J = 0.25). The atom is tuned to the middle
of the band (A /J = 0) in a lattice of 100 x 100 coupled resonators.
(a) Population of the atom, starting in the excited state and saturating
at |C,(c0)|%. (b) Population of the photonic part of the bound state,
which corresponds to the only cavity enclosed by the coupling points
of the atom. (c,d) Population of the bath in real space, at different
times tJ = 1, 40.

mately equal to the excitation trapped in the photonic part of
the BIC. This occurs because each coupling point should give
off half of its emissions in the direction of another coupling
point, and half along the diagonals pointing outward. After
this decay, both the atom and the trapped excitation reach a
nonradiative steady state: the BIC or dressed state. Note that
in some experimental platforms, the leakage to the bath can be
avoided by driving the dressed state (BIC) instead of the bare
atomic excited state.

From resolvent formalism (see Appendix A), we know that
the atomic steady-state population is given by [8,66]

2
ICo(00)|* =

e—izt

lim Res| ——————
t—00 7— A — Ee(z)

: 2 2D
1 —0;%:(2)]:=a ’
where z is the energy of the BIC and X,.(z) is the self-energy
of the atom. In particular, for a GA tuned to the middle of the
band (A/J = 0) with P = 4 coupling points and area (2n™* +
I)x (2n~ +1),

—0:Ze(2)|z=0 = %(2n+ + D@2~ +1). (22)

In fact, it can be shown that in the single-excitation regime,
the self-energy (and thus the time evolution) of a GA with
coupling strength g = go/~/4 is exactly the same as that of
the state |+) = 1(leggg) + Igegs) + |ggeg) + |ggge)) of a set
of four small atoms with coupling strength gy coupled to the
same points. This fact is quite intuitive from the derivation
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of the effective coupling strength and Hamiltonian shown in
Sec. III [see discussion around Eqgs. (16)—(18)].

2. Analytical expression for the dressed excited state

Above we described the time evolution of the bare ex-
cited state of a perfectly subradiant GA, but here we derive
a concise analytic expression for the dressed excited state,
i.e., the eigenstate of the full Hamiltonian remaining station-
ary as t — 00. We consider the simplest perfectly subradiant
configuration, with four coupling points surrounding a single
photonic BIC peak, as seen in Fig. 3. Choosing the photonic
BIC peak as the origin of our coordinate system and using
notation where |7i) is the state with an excitation present at
the cavity with coordinate vector 7i, we define

0
[0}>, (23)
1 -1 0 0
i (1 A ) s
Inspired by what we observe in our numerical simulations in

Fig. 3, we make the following ansatz for the dressed excited
state:

|B) =

le') = ale) + BIB), (25)

where |e) is the bare excited state and «, 8 € C. Applying H
from Eq. (8) to this ansatz yields

H|¢') = aHle) + BH|B) = {A/J = 0}
=2(ag — BIC). (26)

Since |¢’) is not proportional to |C), the only way for |e’)
to be an eigenstate of the full Hamiltonian is if 8/a = g/J,
making |e’) have eigenenergy 0. Normalization then gives that
the dressed eigenstate for this perfectly subradiant GA is

le') =

(1o + 318))- @7)

1

V1+g2/J?

This same derivation can be shown to hold for any perfectly
subradiant configuration with only slight modifications. The
main thing to note is that, in the general A/J = 0 case, the
|B) state needs to be defined with an alternating phase, related
to how taking an odd number of steps along a diagonal in
the lattice makes an excitation acquire a phase shift of 7. For
example, for the configuration in Fig. 2, one needs to use

NN EE

so that H|B) only involves the cavities at the coupling points.
In this case, when we have three photonic BIC peaks, the
dressed excited state becomes

o ! 8
€)= ——==(l0+371B). @

V1+3g%/J?

Finally, we note that these derivations can be extended to
yield configurations of coupling points that avoid decoherence
even when A/J # 0 (see Appendix C). The BICs in such
cases have a nature that is less atomic and more photonic
li.e., [{ele')|ass=0 > |{el€’)|ass0], in agreement with what
has been observed in 1D [8].

(a) Atomic population

(b) Bath populationat /=1
05

1.0 21
****** |Ce(0)|? x
[}
o 2
=08 £ 100
J g
c
0.6 2
& 95
0 25 50 75 95 100 105
v Resonator index, ny
.. (c) Bath population atty =5 .. _(d) Bath population at ¢ = 80
< <105
< 110 <
[} [} <
k] : | BB | : k] | |
< 100 <= < 100 -:3-
S = = S
§ e s s e
S 5] <l
g 90 8 95
o o
90 100 110 95 100 105

Resonator index, ny Resonator index, ny

5.0x107* 5.0x1073

Bath population

FIG. 4. Subradiant dynamics of a giant atom with eight cou-
pling points (orange markers connected by lines), all with coupling
strength g/J = 0.088 (G/J = 0.25). The atom is tuned to the middle
of the band (A/J = 0) in a lattice of 200 x 200 coupled resonators.
(a) Population of the atom, starting in the excited state and saturating
at |C,(00)|%. (b—d) Population of the bath in real space, at different
times ¢tJ = 1, 5, 80. Panel (d) shows a constructive interference be-
tween the photonic part of the bound states in the continuum of the
two subradiant sets of coupling points.

3. Perfect subradiance with multiple sets of four coupling points

Beyond the minimal configurations with four coupling
points discussed above, perfect subradiance can also be
achieved by a GA with P =4p (p € N), where each set of
four coupling points has the same coupling strength and is
subradiant in itself. In such a case, the photonic BIC peaks
generated by each set may interfere with the photonic BIC
peaks from the other sets, either constructively (Fig. 4), de-
structively (Fig. 5), or not at all (Fig. 6). The interference
pattern depends on the distribution of the coupling points, and
arises from the alternating phase shown in Eq. (28).

For an analytical derivation of the interference patterns in
the examples shown in Figs. 4-6, where P = 8, we consider
the self-energy of the atom. It can be calculated as that of the
two subradiant sets plus the interference between them:

Ye(2) = Z1(2) + Z2(2) + Zine(2). (30)
Then, 9, %;(z)|,=o is calculated as in Eq. (22), giving

2
—0; Xine(2)|z=0 = EJ_g; n N7, (3D
where N* is the overlap between the photonic BIC peaks

generated by the two subsets along the [:l:ll ] diagonals and

+1 constructive interference,
&= 0 no interference, (32)
—1 destructive interference.

In the particular case where both subsets of coupling points
are centered around the same point in the bath (e.g., Figs. 4
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FIG. 5. Subradiant dynamics of a giant atom with eight cou-
pling points (orange markers connected by lines), all with coupling
strength g/J = 0.088 (G/J = 0.25). The atom is tuned to the middle
of the band (A/J = 0) in a lattice of 200 x 200 coupled resonators.
(a) Population of the atom, starting in the excited state and saturating
at |C,(c0)|%. (b—d) Population of the bath in real space, at different
times tJ = 1, 5, 80. Panel (d) shows a destructive interference be-
tween the photonic part of the bound states in the continuum of the
two subradiant sets of coupling points.
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FIG. 6. Subradiant dynamics of a giant atom with eight cou-
pling points (orange markers connected by lines), all with coupling
strength g/J = 0.088 (G/J = 0.25). The atom is tuned to the middle
of the band (A/J = 0) in a lattice of 200 x 200 coupled resonators.
(a) Population of the atom, starting in the excited state and saturating
at |C,(00)|%. (b—d) Population of the bath in real space, at different
times tJ = 1, 5, 80. Panel (d) shows no interference between the
photonic part of the bound states in the continuum of the two sub-
radiant sets of coupling points.

FIG. 7. Two perfectly subradiant giant atoms with a number of
coupling points that is not a multiple of four. The orange and blue
marks linked by a solid line denote the coupling points of each atom,
respectively. The circles indicate points with coupling strength g, the
squares indicate points with strength g, > g1, and the stars couple
with strength g; + g,. The green lattice sites show the photonic
excitation of the bound state in the continuum, with the intensity
of the color referring to the population on each site (darker color
indicates higher population).

and 5),
N* = 2min(n|, n) + 1,
N~ =2min(n;,n, )+ 1,

é- — (_l)nf+n;+n1’+n2’ . (33)

We highlight that, to the best of our knowledge, this inter-
ference between the photonic components of different BICs
has not been reported before.

4. Other perfectly subradiant configurations of coupling points

One can also achieve perfectly subradiant configurations
with P # 4p by superimposing subradiant setups with four
coupling points in such a way that some coupling points
end up on top of one another. Each set of overlapping cou-
pling points can then be replaced with a single coupling
point, whose coupling strength equals the sum of the coupling
strengths of the overlapping points. For example, two super-
imposed coupling points with coupling strengths g; and g
would be replaced by a single coupling point with coupling
strength g = g; + g», as shown in Fig. 7. We note that this
additive property for coupling points also holds if we allow
negative (or complex) coupling strengths.

B. Multiple giant atoms—Decoherence-free interaction

Unlike small atoms, GAs can interact without decoher-
ing when tuned to the continuum. This is one of the most
intriguing, and potentially useful, properties of GAs; it has
been reported in 1D continuous waveguides [4—7,9,115] and
1D structured waveguides [8,54]. Here, we show how such
decoherence-free interaction (DFI) between GAs is also pos-
sible in 2D, and how it differs from the interaction outside
the continuum (i.e., in the band gap), which is also possible
for small atoms. We first consider two GAs and then also
explore how many GAs can have pairwise DFI in various
configurations.
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(a) Braided

J_@1_E|

b) Separate ’ |

I@L ] -

(c) Nested

4

()
Z/

FIG. 8. Analogy between the different configurations of giant
atoms coupled to a 1D waveguide (left) and to a 2D square lattice
(right). Left, 1D: the black line represents the waveguide. The two
atoms (blue and orange) are coupled to it at the points marked by
the blue and orange dots, respectively. Right, 2D: The grid denotes
the lattice of coupled cavities, with each square corresponding to one
lattice site. The blue (orange) dots united by a continuous line denote
the four coupling points of the first (second) giant atom. The blue
(orange) lattice sites show the photonic part of the bound states in
the continuum of the blue (orange) atom. These parts mediate the
decoherence-free interaction if the orange (blue) atom has a coupling
point on a blue (orange) lattice site and vice versa. (a) Braided
configuration—the only one that allows decoherence-free interac-
tion. (b) Separate configuration. (c) Nested configuration.

Outside the continuum, it is well known that atom-photon
bound states are formed, with photons becoming exponen-
tially localized in the vicinity of the atoms (small or giant),
thus inhibiting their decay [8,66,116]. Furthermore, multiple
atoms coupled to the same reservoir can interact through
the overlap of their bound-state photonic wave functions
[117-119], and since the atoms are decoupled from the propa-
gating modes, this interaction is inherently decoherence-free.

We find that the interaction mechanism in the continuum
is not quite the same: for DFI to take place, each of the GAs
need to be perfectly subradiant and have at least one of their
coupling points in a cavity populated by a BIC associated
with the other atom (see Fig. 8). Note that this mechanism
also applies to 1D structured waveguides, although that has
not been reported before with such clarity. In fact, for two
GA:s, this configuration is analogous to the so-called braided
one in 1D [4,8], which is typically the only one allowing DFI.

(a) Atomic population (b) Bath population at
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FIG. 9. Decoherence-free dynamics of two giant atoms with four
coupling points each (blue and orange dots linked by solid lines),
all with coupling strength g/J = 0.25 (G/J = 0.5). The atoms are
tuned to the middle of the band (A /J = 0), in a lattice of 200 x 200
coupled resonators. (a) Population of the atoms, starting in the bare
excited state of atom 1. The different regimes and contributions to the
dynamics are explained in Sec. IV B 1. (b) Population of the photonic
parts of bound states 1 (blue) and 2 (orange), i.e., of the cavities
enclosed by atoms 1 and 2, respectively. (c, d) Population of the bath
in real space, at different times tJ = 1, 75.

Similarly to 1D, 2D configurations analogous to the nested
and separate ones (see Fig. 8) do not allow for DFI either.

1. Two giant atoms

In Fig. 9, we depict the canonical signature of DFI, i.e., the
time evolution of two braided GAs exchanging an excitation
back and forth. We note that this evolution is nearly identical
to that in 1D [8]: starting with the first atom in its bare excited
state, there is an initial exponential decay corresponding to the
buildup of the interference, for a time

d 2max(nT,n)+1

= — = . s 34
’ Vg 2J (34

which is then followed by weakly damped population ex-
changes [cos®(zgt)e 24"]. As shown in the 1D case [8], the
interaction rate zg is given by the real part of the energy
of the two BICs (zz = |Re(z;1) — Re(z2)|/2), whereas the
damping rate is given by the imaginary part (z; = |Im(z;) +
Im(z2)|/2). Note that the damping, which occurs due to a
combination of the retardation effects and the exchange inter-
action being nonzero, makes these states quasibound. We refer
the interested reader to Ref. [8] for an in-depth discussion on
the factors that influence the interaction strength and quality
of the DFI population exchanges.

Finally, we identify the Rabi swaps between the photonic
parts of the bound states (Fig. 9, top right panel) as the two-
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(a) e

(b) (c)

FIG. 10. Decoherence-free braided chains of seven giant atoms.
The subchain formed by atoms 1-2-4-5-7 (i.e., without the green
atoms) is also a DFI braided chain. (a) Sketch of the connections
between the seven atoms. Gray squiggly lines denote atoms that
interact with each other without decohering. (b, ¢) Two possible im-
plementations of the chain shown in (a) with seven atoms having four
coupling points each, tuned to the middle of the band (A/J = 0).
The dots linked by a solid line denote the four coupling points of
each giant atom. (b) Loosely braided. (c) Tightly braided. Note that
even if atoms 2-5, 1-4-7, and 3-6 also seem to be braided, they do not
directly interact with each other, since none of their coupling points
connect to a cavity containing some photonic part of the bound state
in the continuum of the other atom(s).

atom analog of the so-called oscillating BICs [10-14,54]. The
latter have been shown to appear in GAs with three or more
coupling points to the waveguide (continuous or structured),
where multiple BIC solutions coexist and give rise to dynamic
oscillations. In the 2D setups we study here, the multiplicity of
BICs does not come from the multiplicity of coupling points,
but instead, from the multiplicity of atoms.

2. Many giant atoms

As one may suspect, DFI is also possible beyond two GAs
in decoherence-free chains with pairwise interaction (reported
before in 1D for continuous waveguides [4,7]). Many con-
figurations of such chains, both 1D and 2D, are feasible to
transport excitations, as shown in Fig. 10.

Moreover, these GAs allow all-to-all interaction, which is
possible in 1D continuous waveguides in the minimal configu-
ration (i.e., three GAs having two coupling points each) [4]. In
the 2D square lattice, however, the minimal configuration of
three GAs with four coupling points each does not suffice, and
achieving all-to-all interaction requires additional coupling
points. For example, in Fig. 11, we show a layout of three
GAs with eight coupling points each, in which all atoms are
perfectly subradiant, and each atom has at least one coupling
point fully surrounded by each of the other atoms.

Finally, without having all-to-all interaction, we can still
build high-connectivity grids with GAs that just have four
coupling points each, like the arrangement shown in Fig. 12.
In this example, we establish long-range DFI between distant
atoms that are mediated by a bath containing only nearest-
neighbor couplings. This kind of setup could prove useful

(a) Atomic population
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Atom 2
—8— Atom 3

0 50 100
Y

(b) Bath populationat /=1

(c) Bath population at t/ =75
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FIG. 11. All-to-all interaction between three giant atoms with
eight coupling points each, all with coupling strength g/J = 0.177
(G/J = 0.5). The atoms are tuned to the band (A/J = 0) in a lat-
tice of 250 x 250 coupled resonators. (a) Population of the atoms,
starting in the bare excited state of atom 1. The different regimes
and contributions to the dynamics are explained in Sec. IV B 1. (b, ¢)
Population of the bath in real space, at different times#J = 1, 75. The
blue (atom 1), orange (atom 2), and green (atom 3) markers linked
by solid lines of the same color indicate the sets of coupling points
that are in a perfectly subradiant configuration.

in quantum simulation of systems beyond nearest-neighbor
interaction [102,120-122], as well as in the implementation
of nonlocal quantum gates.

V. CONCLUSION

We conducted a detailed theoretical study of giant atoms
(GAs) in 2D structured environments. We focused on the case
when this environment is a square lattice of cavities, which

FIG. 12. High-connectivity grid of nine identical giant atoms
(the different colors are for readability). (a) Sketch of the connec-
tions between the nine atoms. Gray squiggly lines denote atoms that
interact with each other without decohering. (b) A possible imple-
mentation of the grid shown in (a) with nine giant atoms having four
coupling points each, tuned to the middle of the band (A/J = 0).
The dots linked by a solid line denote the four coupling points of
each atom.
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leads to band gaps and an energy band that comes with an
anisotropic energy dispersion at its center. In this setting, we
showed how GAs can avoid relaxing into the environment.

For a single GA with a transition frequency in the center of
the band, we found that it can display perfect subradiance, i.e.,
completely suppressed emission of energy into the environ-
ment, if the atom couples to the bath through at least four cav-
ities. This suppression is because the propagation of excita-
tions in the environment is restricted to be diagonal at the band
center; with four coupling points it becomes possible to can-
cel emission along these four propagation directions through
destructive interference between the emissions from pairs of
coupling points. We also showed that such perfect subradiance
can be achieved with more coupling points, if their number
is a multiple of four and the coupling strength is equal at
all coupling points. Allowing for coupling strengths to vary
between coupling points (including becoming negative), we
further showed how subradiance can be achieved in setups
with other numbers of coupling points, both even and odd.

For multiple GAs, we showed that the concept of
decoherence-free interaction (DFI; two GAs interacting
through an environment without losing energy into that
environment), previously demonstrated in a 1D setting, also
can be realized in 2D. More specifically, we showed that this
DFI can take place if the individual atoms have their coupling
points arranged to be subradiant and each atom has some (but
not all) of its coupling points enclosed by coupling points
from the other atom. This setup constitutes a generalization
of the so-called braided setup of coupling points required
for GAs in 1D [4,8]. We further showed how this DFI for
GAs in 2D can be extended to more atoms, forming effective
high-connectivity (even all-to-all coupling) lattices of atoms
connected through DFI.

The results we found for both single and multiple GAs
can be understood as manifestations of bound states in the
continuum (BICs). For a single GA in a subradiant configura-
tion, an initial excitation in the atom mostly remains there. A
small amount of energy leaks into the environment outside the
atom before the destructive interference between emissions
from the different coupling points kicks in, but about half
that energy remains in the photonic part of a BIC formed
in-between the coupling points of the atom. For multiple GAs,
DFI between pairs of them is only possible when some cou-
pling point(s) of each atom in the pair are placed in locations
that contain a part of the BIC associated with the other atom.

We note that these results were enabled by nontrivial
extensions of analytical and numerical methods previously
employed to study small atoms in 2D structured environ-
ments. Through these extensions, we were able to obtain
analytical expressions for the steady-state populations of GAs
and their BICs, and perform numerical simulations of how
the atomic and photonic populations evolve in time for both
single and multiple GAs. For DFI between a pair of GAs, we
observed that both the atomic populations and the photonic
parts of the BIC populations undergo Rabi oscillations when
one of the atoms is initialized in its excited state and the rest
of the system is initialized in its ground state.

As we discuss at the end of Sec. II, the effects revealed
in this study should be possible to observe with existing
technology in several experimental platforms. We believe that

a setup with superconducting qubits coupled to a lattice of
microwave resonators seems most promising for such ex-
perimental demonstrations. We note that arranging for the
multiple coupling points in such a setup may be aided by
flip-chip technology [104—106].

The properties of GAs in 2D structured environments that
we have discussed in this paper may find applications in
quantum computing and quantum simulation. In these fields,
the ability to protect qubits from decoherence while at the
same time enabling them to interact, preferably with a high
connectivity, is crucial, and we have shown that the DFI be-
tween GAs in 2D provides such capability. In particular, the
DFI between GAs may be especially interesting for simulation
of open quantum systems, since the interaction of the atoms
with the environment can be turned on and off by tuning the
atomic frequency, which is possible, e.g., with superconduct-
ing qubits [5,123].

There are several possible directions for future work.
Beyond more detailed studies of the possible applications
discussed in the preceding paragraph, one could study other
2D lattices than the square grid or introduce varying hopping
rates between the cavities in such a lattice. Such changes could
lead to other band structures, including ones with topological
properties. Given the importance of BICs and subradiance, it
would also be interesting to extend the model to more than
one excitation to study superradiance and multiphoton BICs.
It may furthermore be valuable to consider more than two
energy levels in each GA, since additional atomic levels are
crucial in several quantum-optics effects.
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APPENDIX A: RESOLVENT FORMALISM

The formalism used here is based on Chap. 3 of Ref. [124]
and adapted to the particular case of giant atoms (GAs) cou-
pled to a 2D square lattice through P coupling points. For the
1D structured waveguide case, see the derivation in Ref. [8].

1. A single giant atom—Derivation of the self-energy and
probability amplitude

We consider the total Hamiltonian of a single GA coupled
to a structured lattice from Eq. (8), H = Hy + Hjy, where

HO =HA +HB = Aa"'a_—l—Za)(k)aZak, (Al)
k
P g B
Hiy = ; N" Z(e*"""va,;ﬁ + H.c.), (A2)
= k

In the single-excitation subspace, the eigenstates of the bare
Hamiltonian H, are |e) :=|e,0) and |k) :=|g, k), for k =
(ky, ky) and ky, ky € {—m, ..., T — 27”}. The interaction term
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Hine couples these atomic and photonic subspaces {|e)} and
{|k)} to one another.
The resolvent of the Hamiltonian is defined by

- H
In general, for a projection P onto a subset spanned by a set

of eigenvectors of Hy and its complement Q = 1 — P, the
resolvent obeys

G(z) = (A3)

P
G = , A4
PCRIP = P = Pr)P (A4
where
¥(z) =Hyy + H; Q H,
mnt ll’ltZ _ QHOQ _ QHth nt
~ Hint + HintiHint (AS)
Z— H()

is the level-shift operator. Note that the approximation sym-
bol above denotes the second-order perturbative expansion in
powers of Hjy, a truncation that is justified since Hj, is small
compared to Hy. In particular, when P is the projector onto a
single state |«) with energy E,,

Gu(2) = (A6)

Z— EO( - Ea(z) '
with G4 (2) = (0|G(z)|ar) and Ty () = (| Z(2)|at).
In our case, we define P = |e)(e| and its complement

Q=> |k) (k|. Then we can write the self-energy of the atom
Y.(z) = (e]X(2)|e) as follows:

0 1K) (k|
Te(2) = elHgfe] + 3 (elHin—pH
P — 11y

int|e>

Z gpeftkn )(Zpg* tknq)
7 — (k) '

(A7)

1
T
k

Henceforth, we wuse the dispersion relation w(l;) =
—2J[cos(k,) + cos(k,)] and that the distance vector between
two different coupling points is A7. For simplicity, let us also
assume that g, = gq = g € R. Then,

P+23 . cos(k - Afi)
)= N2 Z z+ 2J[cos(ky) + cos(ky)]’

(A8)

In the continuum limit, i.e., when N — oo, the sum over k
becomes a double integral: Z/}(zﬁﬂ)z — [z d*k. Therefore,
we can write the self-energy as

// 20 P+ZZA-cos(k A#R)
(2 )2 — z + 2J[cos(k,) + cos(k,)]
=P =— / / d’k !
Qr)? JJ) Z + 2J[cos(k,) + cos(ky)]
Zsa(z)

g T o
+2Z(2n)2//_ d’k
Aii 7

2.(z) =

(A9)

cos(lz - AR)
z + 2J[cos(ky) + cos(ky)]’

Zai(2)

(A10)

where the self-energy of a small atom Xga(z) is calculated
from the particular case of a GA [Eq. (A9)] with P =1 (and
therefore A7i = 0, since there is only one coupling point); and
Y a7i(z) denotes the contribution to the self-energy from the
interference between coupling points that are spaced by A7i.
For example, consider the diamond configuration shown in
Fig. 3. The self-energy of the atom in such a case, according
to Eq. (A10), is

Yo (z) =435a(2) + 2|:42|:1:| () + 22[2] (Z):| . (A11)
1 0

As shown in Ref. [125], it is convenient to rewrite Xga and
Y A7 in a different basis, such that instead of integrating in the
ky,y horizontal and vertical directions, we integrate in the g+
diagonal directions. For that, we apply the following change
of variables:

L= 2k £ ky), (A12)

Ang = An, & An,. (A13)
Note that this implies d?§ = %dzl_é and that the integra-
tion area in the k., direction is twice the area of that
in the gy direction. Using the trigonometric expressions
cos(a = B) = cos(a) cos(B) F sin(a) sin(B) and cos(Rax) =
2cos?(a) — 1 = 1 — 2 sin*(«), we can show that

Sa() = =5 / / 4k !
Qr) ), z + 2J[cos(ky) + cos(ky)]

_ & / / d*q ! (A14)
Qr)? ) Tz+4Jcos(gy)cos(g-)’
cos(kAii)

g / / e
(27‘[ 2 JJ) . z + 2J[cos(ky) + cos(ky)]

// _ cos(g+Any)cos(q—An_ )

z+4J cos(gy)cos(g-)
(A15)

Ypi(z) =

T Qny

In this basis, the expressions above can be integrated by parts
and rewritten in a compact way in terms of elliptic integrals
[125]. For instance, from Ref. [66]:

Ysa(z) = —K[m(2)], (A16)

2
2[1](1) i{[— - 1}K[M(Z)] - —E[M(z)]}
1

(2) (2)
(A17)
g &
H(Z) T K[m(2)], (A18)
where
47 \?
m(z) = <?> ) (A19)
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and K and E are the complete elliptical integrals of the first
and second kind, respectively:

/2
K(m) = / d—¢, (A20)
0 1 — msin’(¢)
/2
E(m):/ dpy/1 — msin®(¢). (A21)
0

Finally, using the recursive formulas in Ref. [125], we can
obtain the self-energy at any arbitrary site. For example, using

g 10 - =2 B0+ 20 T

Y zm @) (A22)

together with Egs. (A16)-(A17), we can show that

-_Zz _ _
Z[g}(Z)_ JE[(IJ(Z) 2[8}@) 22[}}(2)

Zsa(2)

2 4
_2% (K[m(z)]Jr—{E[m(z)]—%]). (A23)

T onz m(z)

Going back to the diamond configuration [Eq. (A11)], we
have now derived an expression for the self-energy that is
integrable in the first Riemann sheet, i.e., |z| > 4J. Then,
according to Eq. (A6), the resolvent-operator element corre-
sponding to the excited state of the atom is

Ge(z) = (A24)

= A - Ee(z) '
with A the atom-cavity detuning. Last, we can express the
probability amplitude of an initially excited GA, for ¢ > 0, as
follows:

1 o .
C.(t) = ——_/ G,(E +i0)e E' 4E, (A25)
270 J_so

i.e., as the Fourier transform of the retarded Green’s function
G..

2. Integration contour of the probability amplitude

Similarly to the 1D coupled-cavity array, the energy disper-
sion of the 2D square lattice introduces branch cuts at the band
edges, making the integral in Eq. (A25) contour around them
(see Fig. 13). Moreover, an additional branch point that is not
present in the 1D case arises in the middle of the band due to
the additional van Hove singularity. Therefore, the branch cuts
divide the surface enclosed by the contour into three Riemann
sheets: the first Riemann sheet corresponds to the energy
values outside the band (|z| > 4J) and contains real poles of
the Green’s function [Eq. (A24)], which are associated to the
atom-photon bound states; while the second (—4J < z < 0)
and third (0 < z < 4J) Riemann sheets extend over the band
and contain the complex poles of the Green’s function, which
are responsible for the spontaneous emission into the bath.

Band gap Band Band gap
Im(z)
4) 4J)
Re(z)
o—F .—-; ~—@ >
Atom- || BIC | ' Atom
photon | * I ! | photon
bound |°* ® y |Complex| s | %04
state : 1| poles : state
' ! @ |
' : '
Riemann| * |Riemann| i | Riemann| ® | Riemann
sheet 1 : sheet 2 | 1| sheet 3 : sheet 1
' : '
L} | (]
' X '
L} | (]
Branch cut s X '

Branch cut
. L]

FIG. 13. Contour of the integral in Eq. (A25), with contributions
from the poles of the Green’s function [Eq. (A24)], as well as the
branch cuts at the band edges and at the middle of the band.

The poles in the second and third Riemann sheets that are real
are responsible for the existence of the bound states in the
continuum (BICs).

Essentially, this means that the atomic population |C,(t)|?
is affected by two elements: detours around the branch cuts
and poles of the Green’s function. In fact, as explained in
Refs. [8,66], the probability amplitude C,(¢) can be calculated
as a sum of the different contributions:

Cty= > Cu)+ Y Rge™, (A26)

branch Bepoles

«e cuts

where C, has the form of Eq. (A25), and Ry is the residue
of the poles (real and complex) that we obtain through the
residue theorem, which is the overlap of the initial wave
function with the poles, i.e.,

1

R = 5] (A27)

=2

The singularities that give rise to the branch cuts not only
affect the contour of the probability-amplitude integral, but
also limit the domain of definition of the self-energy. In fact,
the expressions given in Eqs. (A16)-(A18) and Eq. (A23)
are only valid for the first Riemann sheet. The analytical
continuation into the second and third Riemann sheets can be
obtained by transforming the elliptic integrals in the following
way [66]:

K" G0y = K(m) £ 2iK(1 — m), (A28)

E"(Gn) = E(m) £ 2i[K(1 —m) — E(1 —m)].  (A29)
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APPENDIX B: EFFICIENT COMPUTATION OF THE
TIME-EVOLUTION OPERATOR U, FOR GIANT ATOMS

As outlined in Sec. I1I, the time evolution generated by the
atom-interaction Hamiltonian

Hy + Hing = [D F} (B1)

r’ o
can be modeled efficiently by using M different effective
Hamiltonians H;, each modeling the interaction between one
of the atoms and the bath. In the GA case, the D matrix
still looks the same as in the small-atom case: D;; = A;§;;.
However, I" looks slightly different:

(], = 8ip, if atom i couples to cavity n,
0 otherwise,

where p, is the point index corresponding to the coupling
point at cavity n.

In this Appendix, we show the details of how this effi-
cient modeling can be done by deriving Eq. (20) from how
H, + H;, behaves when exponentiated. For simplicity, we
henceforth refer to Hs 4+ Hiy as H in this Appendix, since we
will not need to refer to the full Hamiltonian Hg + Hy + Hiy
much. The reason that understanding the structure of H* is a
good place to start is that by definition

(B2)

A VK
Ur(Ar) = e 8 = 3 %H", (B3)
k=0
so knowing how H* looks should (and indeed does) enable
us to find explicit expressions for the matrix elements of
U4 (At)—namely, those of Eq. (20).
Computing H* explicitly for k =0 and k = 1 is trivial:
H° =1 and H! = H. For the first nontrivial case, k = 2, we
find that

D*+117 DU
H> = [ D FTF] (B4)
Since D is diagonal, so is D>—specifically,
[D*1ij = A7S;;. (B5)

Examining the definition of I" leads us to the conclusion that
I'T7 is also diagonal:
NZ
[CT7 ] =Y Tl
n=1

= no cavity couples to > 1 atom
P
2
- Z 8ipdij»
p=1

Introducing the notation Ay for the top-left ("atomic") block
of H¥, so that A, = D and Ay = 1, we see that A,, the top-
left block of HZ, is still diagonal, with elements

(B6)

[A2]ij = (A7 + G7)8ij. (B7)

if we define the effective coupling strength

(B)

If we instead take a look at the top-right block, then we see
that since D is diagonal,

A;g; if atom ¢ couples to cavity n,
[DF]in _ lglpn p y

. (B9)
0 otherwise.

Thus, the structure of this block also remains the same—
squaring H simply results in the nonzero matrix elements
contained therein changing from g;, to A;g;, . Since H is
symmetric (recalling the assumption we made for calcula-
tional convenience that all coupling strengths g;,, are real), the
bottom-left block is simply the transpose of the top-right.
Finally, the bottom-right block of H? has matrix elements

M
(O Tl = > TimTin
i=1
= {no cavity couples to > 1 atom}

_ ) gip.gip, if atom i couples cavities m and n,
10 otherwise.

(B10)

Note that all of the elements in the four blocks involve only a
single atom each, which means that the time evolution caused
by Uy to one atom can be treated independently from all the
others, just as we noted in Sec. III.

Examining the case k = 3, we find

. DA> +TTTA, A,T
B ITA, ITAT
D’4+2IT'D  (D*+1TTHr B11)
| T +117) r’pr

A pattern starts to emerge. The top-left block A; = DA, +
I'T'7 Ay is clearly still diagonal, since it is a linear combination
of products of the diagonal matrices D and I'T'7. Similarly,
A>T must have the same structure as I, since it is the product
of a diagonal matrix and I', and the bottom-left block is still
the transpose of the top-right one. Last, the structure of the
bottom-right block also remains unchanged, since DI" has the
same structure as I'. Specifically, it must be that I'7 DI" has
the same structure as I'' T, but with g;,, 8ip, = Ai8ip,&ip,-
In fact, as can be shown via induction, we can write H¥ for

any k > 1 as
. Ay Ay T
H = )
T AT

| AV
where {A;}72_, is the sequence of diagonal matrices defined
by the recursive formula

Agsr = DA +TTT Ayy

(B12)

(B13)
and the seed values
A =0,

Ag=1, (B14)
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where 0 and 1 are the M x M zero and identity matrices,
respectively.
Thus, defining the diagonal matrices Dy ; » via

(—iAt)r
D=3 — A, (B15)
k>1
we find that
N Dy DT
Ui(At) =1 +
4(A) r’'p, TTD,I
1y + Dy DT’ (B16)
| "D, 1y 4+TTD,r |

which is where Eq. (19) comes from.

To derive Eq. (20) from this, we need to examine the ele-
ments of the D; matrices. Since both D; and A are diagonal,
let us introduce the notation d; ; = [D;];; and Ax; = [Ag]ii (no

J

[La + Dolij = (1 4+ do ;)i

i ,,d Ni
(D1l = [T7 Dyl = {g" :

8mn + 8ip,8&ip, dz,i

[]lNd + 1-‘TDZI—‘]mn = {

we finally arrive at equation Eq. (20):
[Ty + Dolij = 6;;[UiT1,

S [17;]
[DiT], = (07 Dy, = { ; ?

G

mn

[]lNd + 1-‘T[)Zl—‘]mn = {

It is possible to save a bit more computation time by pre-
computing U; analytically. Diagonalizing the H; matrix, we
find that its eigenvalues are

Kt = B 4 i

By examining the expression for [H[k 111 = A,; obtained from
diagonalization one can then show that

(B23)

it —
Ajj=———. (B24)
Kyi—K—i

0 otherwise,

sum) for the ith element along their main diagonal, so that

(—iAr)
d; = Z ——Xk—Li>

o B17)
k=1
where {A;;}72 _, satisfies the recursive formula
Mt = Aihii + Gig—1i, (B13)
with the seed values Ag; = 1 and A_;; = 0.
Defining the effective Hamiltonian
A G
Hf—[c;,. 0}, (B19)

we see that its associated evolution operator U;(At) =
exp(—iH;At) must be equal to

do;  Gidy
Ui(Ar) =1 +
Gid\; Gidy,

1 +do,; Gid,
N 1+ Gl~2d2,i .

Gid,;
This follows from the fact that H; can be seen as a special case
of HwithM,N =1,D =[A;]and I" = [G;].
Comparing this to the elements of Uy, i.e.,

(B20)

if cavity n couples to atom i at point p,,,

(B21)
if cavities m, n couple to atom i at p,,, pp,
otherwise,
if cavity n couples to atom i at point p,,
otherwise, (B22)

Smn + B28n (U], — 1) if cavities m, n couple to atom i at py,, py,

otherwise.

(

This in turn gives us an analytic expression for the elements
of D;, namely,

(o]

1 (—iAk .,
dyi = k=1t
b Ky —K_ ; k! +

— ikt

_elerte ol -

Ky — K-

where we have suppressed the i index on x4 ;. Inserting these
findings into our expressions for the elements of U; then
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FIG. 14. Perfectly subradiant giant atom with six coupling points
(orange marks linked by a solid line) detuned by A /J = =£1 from the
middle of the band. The circles indicate points with coupling strength
g1, while the squares indicate points with strength g,. The green
lattice sites show the photonic excitation of the bound state in the
continuum, with the intensity of the color referring to the amplitude
B (light green) and B, (dark green).

gives us

K+€_1A1K+ _ K,e_lAtK’

Wil = ,
Ky — K-

efiAllq_ _ efiAtK_
Uil = Uil = Gi————,
Ky — K-

—iAtk_

Kye _ K_e_iAtK+

(B26)
Ky —K—

It should be noted that while it is slightly faster to calcu-
late d;; and U; by inserting all the relevant quantities into
these expressions rather than by numerically computing the
2 x 2 matrix exponential exp(—iH;At) [at least with SciPy’s
linalg.expm()], the effect of doing so on the speed of the
overall time-evolution algorithm is negligible. This is because,
as discussed in Sec. III, the FFT and iFFT performed ev-
ery time step are where the overwhelming majority of the
computational cost of the algorithm comes from. However,
calculating the elements of U; using Eq. (B26) tends to give
slightly better unitarity than that achieved by naively expo-
nentiating —iH; At using SciPy’s 1linalg.expm().

APPENDIX C: PERFECTLY SUBRADIANT
CONFIGURATIONS WITH A/J # 0

In Sec. IV, we focused on configurations of GAs with
A/J = 0 because they are the simplest to conceive. However,
one can also engineer perfect subradiance where the atoms are
tuned away from the middle of the band, i.e., with A/J # 0.
In such configurations, the emission to the bath is no longer
restricted to the main diagonals and it is thus necessary to
completely surround the photonic BIC peaks with coupling
points to prevent leakage.

To see this, let us consider a simple example, namely a
configuration like the one shown in Fig. 14.

Placing the origin of our coordinate system at the leftmost
photonic BIC peak in Fig. 14 and defining

- i)
=)

= ([ [/
= (3B

we can find the dressed excited state |e)
Sec. IV A 2 by making an ansatz:

le') = ale) + Bi|B1) + B2|Ba). (C2)
Applying the Hamiltonian to the state yields
H|e') = aHle) + piH|B:) + p2H|By)
= aAle) — BJ|B1) — B1J|Bz)
= BIDV3ICH) + (g2 —

) like we did in

Bod)V3|Cy).
(C3)

+ (agi

Now, demanding |¢’) to be an eigenstate, i.e., H|e') o |¢/),
means that the prefactors of |C}) and |C;) need to cancel,
which leads to

B = gla
==

J :%:?. (C4)

— 2, 1 1
B2 7

Note that neither 8; nor B, can be zero if g; and g, are
both nonzero. The condition H|e') o |¢’) also implies that the
prefactors of |e), |B;), and |B;) are scaled by the same factor
when H is applied, meaning

B2
pr=——J
AT A B B (o
] J B B
B = —XJ

which is achieved for g,/g1 = F1.

An interesting consequence of the existence of these kinds
of configurations is the fact that it opens up for the possibility
of a configuration exhibiting perfect subradiance at several
different detunings A/J, but with different BIC-peak inter-
ference patterns at each detuning. This has only previously
been demonstrated in 1D waveguides [5], where it is easier
to accomplish thanks to the lack of additional dimensions for
the photonic excitation to leak away into. Such a GA can
have its interaction through certain BIC peaks turned on and
off at will solely by changing the atom’s detuning. It should
be noted, however, that toggling the interaction in this way
would entail a risk of decoherence, since part of the BIC
population would be able to escape as the interference pattern
reestablishes itself—at least if done naively.

The simplest example of such a configuration is shown
in Fig. 15. For this configuration, any choice of detuning
A/J € {0, £3} yields perfect subradiance for g, = 3g;. The
BIC peak amplitudes B; for the various different choices of
detuning can be expressed in terms of 8 = «g;/J as

B =8,

B =28,
A

B3 = —7/3, (Co)
AZ

pi= (55 —3)
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FIG. 15. Perfectly subradiant giant atom with twelve coupling
points (orange marks linked by a solid line) detuned by A/J =
{0, 3} from the middle of the band. The circles indicate points with
coupling strength gy, while the squares indicate points with strength
g>» = 3g1. The green and orange lattice sites show the photonic ex-
citation of the bound state in the continuum, with the color referring
to the amplitude B, (light green), 8, (dark green), B; (light orange),
and B, (dark orange). The green lattice sites are detuning-invariant,
the light orange sites are only populated for A/J = +£3, and the dark
orange site has different amplitudes at A/J = 0 and £3.

In other words, the peaks labeled 1 and 2 are detuning-
invariant, the peaks labeled 3 are only populated for A/J =
43 (in which case they have amplitude F3), and peak 4 has
amplitude —58 (4B) at A/J =0 (A/J = £3).

Since even this simplest configuration is quite large,
one needs to choose quite a small g; to limit the risk
of decoherence when toggling the detuning. More specif-
ically, the choices A/J =0 and A/J = %3 correspond to

dressed states
[, a/0 = 0)=le) + Z-(VAIB) +2VIB) - 51B4))]

1
N (C7)

J1+458 /7

e, AJ] =43) = [|e> + i—‘(ﬁwn +2v/4|By)

and

T 3V4|B3) + 4|B4>>]

1
X ——— (C8)

Nz e

respectively. Thus, the probability of decoherence when
switching the photonic BIC peaks labeled 3 on or off is ap-
proximately

p=1—{, AJJ=0l¢, AJJ = £3)
1 s/l
(1 +458/2)(1+7282/0%)
~ 117g /I (C9)

Similarly, the probability of decoherence when switching di-
rectly between A/J = 43 and A/J = —3 is approximately

p=1—|, AJJ =43, AJJ =F3)
1 g1/J<l1

(1+728/2)°

~ 1441 /7.

(C10)

These values are perhaps even larger than one might naively
guess, since the overlaps between the photonic BIC interfer-
ence patterns corresponding to different choices for |A/J| are
zero—all of the overlap between any pair of two different
permitted dressed states comes from the overlap between the
atomic parts.
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