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Motivated by recent advances in the creation of few-body atomic Fermi gases with attractive interactions,
we study theoretically the few-to-many-particle crossover of pair excitations, which for large particle numbers
evolve into a mode that describes amplitude fluctuations of the superfluid order parameter (the “Higgs” mode).
Our analysis is based on the hypothesis that salient aspects of the excitation spectrum are captured by interactions
between time-reversed pair states in a harmonic oscillator potential. Microscopically, this assumption leads
to a Richardson-type pairing model, which is integrable and thus allows a systematic quantitative study of
the few-to-many-particle crossover with only minor numerical effort. We first establish a parity effect in the
ground-state energy, i.e., a spectral convexity in the energy of open-shell configurations compared to their
closed-shell neighbors, which is quantified by a so-called Matveev-Larkin parameter discussed for mesoscopic
superconductors, which generalizes the pairing gap to mesoscopic ensembles and which behaves quantitatively
differently in a few-body and a many-body regime. The crossover point for this quantity is widely tunable as a
function of interaction strength. We then compute the excitation spectrum and demonstrate that the pair excitation
energy shows a minimum that deepens with increasing particle number and shifts to smaller interaction strengths,
consistent with the finite-size precursor of a quantum phase transition to a superfluid state. We extract a critical
finite-size scaling exponent that characterizes the decrease of the gap with increasing particle number.

DOI: 10.1103/PhysRevA.110.L061302

A fundamental question in physics is how the constituents
of interacting systems behave collectively to yield the emer-
gent properties of matter [1]: How many particles are required
to transition from a few-body ensemble to a collective many-
body state? Experiments that explore this crossover are scarce:
Examples include the emergence of metallic behavior in
colloidal clusters [2], semiconductor quantum dots [3,4], or
superconductivity in nanograins [5–7]. Recent experiments on
few-body ensembles of ultracold fermions provide a new plat-
form in which the few-to-many-body crossover can be studied
[8,9]. These cold atom setups offer several advantages over
solid-state systems: For example, they are free of disorder or
impurities, and parameters such as the trap geometry and the
interaction strength are controlled very accurately. Moreover,
precise measurement techniques exist, such as modulation
spectroscopy [10] or even direct fluorescence imaging of the
few-body wave function [11,12]. On the theoretical side, it
is a significant challenge to describe the few-to-many-particle
crossover, with most theoretical methods tailored to describe
either few-particle ensembles or the many-particle limit.

In this Letter, we show how the excitation spectrum of
a paired superfluid emerges at large particle numbers, with
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a Higgs mode that describes amplitude fluctuations of the
superfluid order parameter. The key theoretical advance that
allows us to interpolate between the few- and many-particle
limit is the use of an integrable pairing model, which treats the
interaction between time-reversed states exactly. Correspond-
ing experiments in the few-body limit were recently carried
out in two-dimensional harmonically trapped atomic Fermi
gases [10], which create pair excitations on top of a few-body
ground state by modulating the interaction strength. For par-
ticular closed-shell configurations, these excitations transfer
an atom pair to a higher oscillator shell and are hence gapped.
With increasing attractive interaction, however, the excitation
energy decreases below the noninteracting value and assumes
a minimum before it increases again at strong interactions.
The expectation is that in the limit of large particle numbers,
the minimum shifts to weaker interactions and decreases to
zero energy, signaling a quantum phase transition to a super-
fluid state [13]. Hence, the observations [10] are interpreted as
the few-body precursor of a quantum phase transition. Here,
we corroborate this picture with exact results beyond the few-
body limit, allowing in particular the extraction of a finite-size
exponent for the gap closing at large particle number.

In order to highlight the crucial role of pair interactions,
we consider a model [stated in Eq. (1) below] with an effective
interaction between time-reversed fermion pairs and show that
it quantitatively describes current experiments. Similar pair-
ing models are able to account for pairing fluctuation effects
on ground-state properties of interacting one-dimensional
Fermi systems [14,15], and we show here that they are
also capture the excitation spectrum of two-dimensional
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interacting fermions. The model belongs to a class of so-called
Richardson models [16–19], which are solved by an alge-
braic Bethe ansatz (see Refs. [20–22] for reviews). This
allows for an efficient calculation of many-body states at
only minor numerical effort compared to other methods such
as a full-configuration-interaction approach [23–31], stochas-
tic variational methods [32], coupled-cluster methods [27],
or Monte Carlo calculations [33–35]. The advantage of the
pairing model is thus twofold: First, it links the observed ex-
citation spectrum to a microscopic BCS-type pairing principle
in mesoscopic systems. Second, being integrable, calculations
are very tractable and can be performed both for few-particle
and many-particle ensembles.

We study the following Hamiltonian:

H =
∑

j

ε jn j − g
∑

i j

A†
i A j . (1)

Here, ε j is a single-particle energy labeled by a primary
quantum number j, and the energy level is d j-fold degenerate
with degenerate states distinguished by a second quantum
number m. For a two-dimensional (2D) harmonic oscillator,
for example, we have ε j = j + 1 ( j = 0, 1, . . .) (all energies
are expressed in units of the harmonic oscillator energy) with
dj = j + 1 per spin and m = − j,− j + 2, . . . , j is the angu-
lar momentum projection within a shell j. Furthermore, we
define the particle number operator in a given shell

n j =
∑

m

(c†
jmc jm + c†

jm̄c jm̄), (2)

where c†
jm creates a fermion in a state ( j, m) and c†

jm̄ creates
a fermion in a corresponding time-reversed state (i.e., with
opposite spin and angular momentum). The interaction term
couples pairs of fermions annihilated by

Aj =
∑

m

c jm̄c jm. (3)

We briefly comment on the link with a contact interaction:
In occupation number representation, the contact interaction
contains a matrix element [14]

w( j1,m1 ),( j2.m2 ),( j3,m3 ),( j4,m4 )

=
∫

dr φ∗
j1,m1

(r)φ∗
j2,m2

(r)φ j3,m3 (r)φ j4,m4 (r), (4)

where φ j,m(r) is the single-particle wave function of the
state with quantum number ( j, m). For an oscillator poten-
tial, where Eq. (4) conserves the total angular momentum,
the effective integrable interaction term in Eq. (1) neglects
some matrix elements with pair-breaking transitions com-
pared to a contact interaction [14] (and will thus not reproduce
certain features of the contact interaction such as a nonrel-
ativistic conformal symmetry at weak interactions [30,31]),
but as we will demonstrate it accurately describes the pair
excitation spectrum. Note that for a box potential, where
single-particle wave functions are plane-wave states labeled
by a two-dimensional wave vector k, the pairing interac-
tion (1) connects pairs with opposite momenta and spin,
(k,↑; −k,↓) → (k′,↑; − k′,↓), which are precisely the ma-
trix elements that give rise to superfluidity [36]. In the present

case, the interaction (1) connects pairs in time-reversed states
of the 2D harmonic oscillator, ( j, m; j, m̄) → ( j′, m′; j′, m′).

Fermionic systems with pairing interactions as in Eq. (1)
are integrable [16–19]. A key observation for the solution
is that the interaction only couples empty and pair-occupied
levels while singly occupied levels decouple from the Fock
space. Restricted to a set U of pair levels, Eq. (1) then
describes a quadratic Bose Hamiltonian with a hard-core con-
straint on Aj characterized by [Aj, A†

i ] = δi j (d j − n j ). This
constraint can be incorporated into the Bose gas solution [37]:
Interacting eigenstates evolve continuously from noninteract-
ing states and are thus described by a set of M occupied pair
levels {( j0, m0), . . . , ( jM−1, mM−1)} ⊂ U (the dependence on
the time-reversed index is implied here). The corresponding
state

|( j0, m0), . . . , ( jM−1, mM−1)〉 = B†
0 . . . B†

M−1|0〉 (5)

is created by acting on the empty state |0〉 with the same
creation operators as for the Bose problem,

B†
ν =

L∑
�=0

A†
�

2ε� − Eν

. (6)

Here, the Eν are generalized pair level energies (called roots),
which are the central objects in the Richardson solution, and
L is a cutoff on the single-particle spectrum. In particular, the
energy of the state (5) is

E =
M−1∑
ν=0

Eν (7)

with additional single-particle contributions of blocked levels.
The state (5) is an eigenstate of Eq. (1) provided that the roots
Eν solve the Richardson equations

1

g
−

∑
�∈U

d�

2ε� − Eν

+
M−1∑

μ=0,μ 
=ν

2

Eμ − Eν

= 0. (8)

Here, the first two terms are the same as for noninteracting
bosons and the last term, which couples different occupied
levels, comes from the hard-core constraint on Aj .

We solve the Richardson equations (8) iteratively starting
from a noninteracting configuration with a set of blocked
and pair-occupied levels, the latter setting the initial condi-
tions for the roots Eν (for alternative solution methods, see
Refs. [22,38,39]). Throughout the Letter, to make contact
with the experiment [10], we consider a 2D harmonic oscil-
lator with a cutoff at twice the Fermi level of an N-particle
ground-state configuration. We subtract a linear divergence
in the second term of the Richardson equations by defining
a renormalized coupling

1

g
= 1

G
+

L∑
�=0

d�

2ε�

. (9)

Roots derived from degenerate levels are split in the complex
plane, and with increasing interaction strength there can be
singular points at which two or more roots merge or bifurcate.
These singularities are not reflected in the energy (7) or other
observables [40], but they need to be resolved by the solution
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FIG. 1. Evolution of the Richardson roots with increasing attrac-
tive pair interaction for (a) a closed-shell configuration with N = 12
particles and (b) an open-shell configuration with N = 10 particles
in a 2D harmonic trap.

algorithm (see Ref. [41] for a detailed discussion of the nu-
merical implementation).

We first examine the ground-state configurations: To illus-
trate the Richardson solution, Fig. 1(a) shows the roots Eν

as a function of the interaction strength for N = 12 particles,
which has a singular point near G = 0.5 (here involving the
merging of three roots). The inset depicts the corresponding
noninteracting parent state from which the state evolves. (Note
that the pairing Hamiltonian couples states within a shell
equally, hence the ordering of pair- or singly-occupied states
within a shell is not important.) The parent configuration here
is nondegenerate with completely filled orbitals (for the 2D
harmonic oscillator, this happens for so-called “magic” num-
bers N = 2, 6, 12, 20, . . .). For comparison, Fig. 1(b) shows
an N = 10 configuration with an open shell at the Fermi level,
where degenerate roots are split in the complex plane without
further merging.

Figure 2(a) shows the ground-state energy as a function
of particle number for three different interaction strengths
G = 0.1, 0.3, and 1. Here, we consider configurations with
nondegenerate ground states, corresponding to the closed-
shell configurations discussed above as well as open-shell

FIG. 2. (a) Ground state energy for several interaction strengths
G = 0.1, 0.3, and 1 (blue, orange, and green points). The thin green
lines added to the G = 1 results offer a geometric interpretation
of the Matveev-Larkin parameter �ML, Eq. (10), as the excess en-
ergy relative to the mean of neighboring closed-shell configurations.
(b) Matveev-Larkin parameter (10) for the same interaction strengths
as in (a) as a function of Fermi level nF . The dashed gray line
indicates the transition region between the perturbative and the bulk
result and is drawn to guide the eye.

configurations in which all states at the Fermi level are filled
with one spin species (see the inset for an illustration). As is
apparent from the figure, closed-shell states are more strongly
paired compared to their open-shell neighbors, which is a
general feature of attractive pairing interactions [42] that we
here generalize to degenerate systems. The excess energy of
open-shell configurations is [36]

�ML = Eopen
gs (nF ) − 1

2

[
E cl

gs(nF − 1) + E cl
gs(nF )

]
. (10)

Here, Eopen
gs (nF ) and E cl

gs(nF ) are open-shell and closed-shell
ground-state energies with Fermi level nF , respectively. In this
notation, for example, E cl

gs(nF = 3) and E cl
gs(nF = 4) are the

ground-state energies of closed-shell configurations with N =
12 and N = 20 particles, respectively [left and right insets in
Fig. 2(a)], and Eopen

gs (nF = 4) is the energy of an open-shell
configuration with N = 16 particles where the valence energy
levels are simply occupied [middle inset in Fig. 2(a)]. The thin
green lines, which connect the ground-state energies for full
shells, offer a geometric interpretation of the excess energy
defined in Eq. (10): The second term in that equation is the
average of the neighboring closed-shell energies, which lies
on the thin green line evaluated at the open-shell particle
number. The excess energy is then the difference between this
value and the open-shell energy, and it is indicated by the
vertical green line in Fig. 2(a). The quantity (10) is called the
Matveev-Larkin parameter [36] and it generalizes the bulk gap
� to mesoscopic ensembles: Indeed, for large particle number,
it is (up to finite-size corrections) [36,43]

�ML = dnF �, (11)

where � solves the gap equation,

1

G
=

L∑
�=0

d�

2E�

, (12)

with E� =
√

(ε� − μ)2 + �2 and μ is a chemical potential
that constrains N = ∑

�[1 − (ε� − μ)/E�]. For the harmonic
oscillator, � ∼ √

N for large N such that the Matveev-Larkin
parameter is extensive. By contrast, for small particle numbers
and interaction strength, its value is set by the perturbative
result

�ML = dnF

G

2
, (13)

with dnF the degeneracy of the Fermi level, which scales as
O(

√
N ) with a much smaller magnitude. Indeed, a full solu-

tion of the pairing model agrees with this picture as shown
in Fig. 2(b), which shows the intensive quantity �ML/N for
the same interaction strengths as in Fig. 2(a). The crossover
between the perturbative and the bulk regime is most appar-
ent for G = 0.1, and the crossover region shifts to a smaller
particle number with increasing interaction (indicated by the
dotted line). Note that even a small increase in the interaction
strength has a strong effect on the crossover region com-
pared to 1D systems [15], which we attribute to the increased
density of states in 2D traps. While existing experiments on
one-dimensional quantum wires [44] or trapped atoms [9]
appear firmly in the perturbative limit [14,15], our calcula-
tions indicate that experiments on 2D Fermi gases may allow
to explore this crossover problem in full even for moderate
particle numbers.
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FIG. 3. Excitation spectrum relative to the ground-state energy
�Eex for (a) N = 12 and (b) N = 10 particles in a harmonic trap
as a function of interaction strength, where pair-breaking excitations
are shown up to the second level. We include the parent state con-
figuration for several excitations. The gray dashed line in (a) is the
mean-field prediction 2� for the Higgs excitation.

We proceed to discuss excited states, which are the main re-
sults of the Letter. Figure 3(a) shows the excitation spectrum,
where �Eex denotes the energy of excited states relative to the
ground-state energy, for N = 12 particles, which has a closed-
shell ground state, where we include as an inset with each
excitation branch the occupation of the noninteracting parent
state. Excitations are obtained either by creating pair exci-
tations or by breaking pairs and promoting single fermions
to higher levels, where we show pair-breaking excitations
only up to the second level for clarity. At weak interactions,
excitation energies have a linear perturbative interaction shift,
which is predominantly positive for pair-breaking excitations
and negative for pair excitations. With increasing interac-
tion strength, pair excitations show an avoided level crossing
with the ground state, where the excitation energy develops
a minimum and increases again at larger coupling. This is
clearly visible in the figure, which shows one pair excitation
starting at energy 2 (orange line) and additional single-pair
and two-pair excitations starting at 4 (orange and green lines).

FIG. 4. Lowest pair excitation energy relative to the ground state
�Eex for the first 15 closed-shell configurations. The blue line ex-
trapolates the excitation minimum to large particle number. Green
lines take into account a small harmonic trap anisotropy to match ex-
perimental results (green diamonds) of Ref. [10]. Orange and purple
crosses show full-configuration approach calculations by Ref. [28].

Importantly, at intermediate interactions, the lowest pair ex-
citation is the first excited state (bold orange highlight), a
result that holds for all closed-shell configurations studied.
For comparison, we show in Fig. 3(b) the excitation spectrum
of an open-shell N = 10 state. Here, the lowest excitation
evolves from the degenerate noninteracting state with two
single fermions in blocked states at the Fermi level. Note
that the structure (and counting) of excited states with pair
and single-particle excitations shown in the figures extends
straightforwardly to larger ensembles.

The minimum of the first pair excitation is interpreted as
the few-body precursor of a quantum phase transition between
a normal and a superfluid state [10,13,28]. Indeed, mean-field
theory predicts that the pair excitation becomes gapless at a
critical coupling Gcrit [13], with a gapped excitation at �Eex =
2� in the superfluid state that corresponds to an amplitude
fluctuation of the order parameter, a Higgs excitation. We
include this mean-field result in Fig. 3(a) as a gray dashed
line, where � follows from Eq. (12). While mean-field theory
should become reliable in the bulk limit of negligible level
spacing � 
 1 [36,45,46], it already agrees qualitatively with
our results at strong coupling, thus corroborating the interpre-
tation of the pair excitation as a few-body Higgs precursor.
Moreover, our results predict a higher pair excitation [green
line in Fig. 3(a)] at almost twice the single-pair excitation
energy, corresponding to a few-body precursor of a multiple
Higgs excitation. Beyond these qualitative observations for
small particle number, the pairing model (1) now allows to
investigate the full few-to-many-body crossover, which we
describe in the following.

Figure 4 shows the evolution of the pair excitation for 15
closed-shell configurations with N = 6, 12, 20, 30, 42, 56,
72, 90, 110, 132, 156, 182, 210, 240, and 272 (gray lines).
For larger particle numbers, the gap decreases, and the po-
sition of the minimum shifts to smaller coupling. Indeed, it
extrapolates to infinite particle number in a power-law form

L061302-4
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Emin ∼ Gα
min with α = 0.29(1) (bold blue line). This behavior

is consistent with the expectation that in the thermody-
namic limit, the pairing instability occurs at arbitrarily weak
interaction strength [47]. An important benchmark of our
results are configuration-interaction calculations in the few-
body limit [28] shown as orange and purple crosses, where
the latter calculations restrict the Hilbert space to three shells
near the Fermi level. In both cases, we identify an effective
interaction strength G by relating the coupling in the respec-
tive calculations to the Fermi energy as G = Aεb/nF or G =
Ag/nF with a joint fit parameter A for different N , where εb is
the bound-state energy (in units of the trap frequency) and g
a bare contact interaction parameter. In all cases, the location
of the minimum is quite well reproduced, indicating that the
pairing model accurately captures pairing interactions at the
Fermi level. Moreover, while there is a deviation of 10% for
the minimum excitation energy between our calculations and
the results of Ref. [28] for N = 6 (indicating the relevance of
pair-breaking matrix elements neglected in the pairing model),
the agreement improves to 2% with the three-shell calcula-
tion at N = 30. This improved agreement with increasing N
suggests that the pairing model complements exact few-body
calculations and provides a reliable extrapolation to large
particle numbers. In addition, data points in the figure (green
diamonds) show experimental measurements for N = 6 and
N = 12 by Bayha et al. [10]. We are able to fit the experi-
mental data by including a small trap anisotropy of 1% for
N = 6 [i.e., with trap frequencies that obey (ωx − ωy)/(ωx +
ωy) = 1.01] and of 0.4% for N = 12 in our calculations (thin
green lines), in line with the experimental anisotropy [10].
In addition to this good agreement of our solution with the
experimental result for the first excited state, we note that
the Richardson model also captures several experimentally
observed higher excitation branches. In particular, a higher
non-monotonic branch observed in [10], which is interpreted
as a pair excitation with finite angular momentum, corre-
sponds to the second-lowest branch in Fig. 3(a) starting at
excitation energy 2h̄ω, which is derived from a parent state
with a single pair in a higher level and two singly occupied va-
lence states (the third from the left of the bottom inset states).
In addition, Ref. [10] also observes a higher branch with an
excitation energy larger than twice the trap frequency, which
is interpreted as a pair breaking excitation. Again, this excita-
tion branch is present in our excitation spectrum in Fig. 3(a).

To describe the few-to-many crossover quantitatively, we
show in Fig. 5(a) the position of the minimum of the pair

FIG. 5. (a) Position and (b) size of the minimum of the pair
excitation energy as a function of particle number.

excitation in Fig. 4 as a function of particle number, and
Fig. 5(b) shows the corresponding minimum in the excitation
energy. Both quantities vanish as a power law with increas-
ing particle number: First, for the position of the minimum,
we obtain Gmin ∼ N−1/ν with ν = 1.50(5) (blue line). The
location of the minimum compares well with the mean-field
prediction for the critical coupling (gray points), which further
corroborates the interpretation of the pairing excitation as the
few-body precursor of a quantum phase transition. Second,
the excitation minimum decreases as Emin ∼ N−β with an
exponent β = 0.20(1) (blue line) that is characteristic of the
finite-size scaling of the superfluid transition.

In summary, we provide a description of trapped Fermi
gases with attractive pairing interactions that captures the full
crossover between the few-body and the many-body regime.
Our results indicate that the finite-size scaling of the quantum
phase transition sets in early and is observable in experiments
with few-body Fermi gases. Moreover, the pairing model
used here is very versatile, in particular, it can be used to
compute correlation functions [48,49] as recently measured
in Ref. [12].

We thank Johannes Bjerlin for discussions and Stephanie
Reimann for discussions and comments on the manuscript.
This work is supported by Vetenskapsrådet (Grant
No. 2020-04239).
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