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Abstract
This article constructs the moduli stack of torsion-free G-jet-structures in homotopy type theory with one
monadic modality. This yields a construction of this moduli stack for any ∞-topos equipped with any
stable factorization systems.

In the intended applications of this theory, the factorization systems are given by the deRham-Stack
construction. Homotopy type theory allows a formulation of this abstract theory with surprisingly low
complexity. This is witnessed by the accompanying formalization of large parts of this work.
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1. Introduction
The constructions and theorems in this article are formulated in homotopy type theory. In
(Shulman, 2019), Michael Shulman has shown that homotopy type theory can be interpreted
in any Grothendieck (∞, 1)-topos as defined in (Lurie, 2009) [Definition 6.1.0.4]. Throughout
the article, we assume a fixed monadic modality. By (monadic) modality we mean the same
as “modality” defined in (The Univalent Foundations Program, 2013) [Definition 7.7.5] or the
“higher modalities” (Rijke, Shulman and Spitters, 2020) [Definition 1.1] or the equivalent notion
of “uniquely eliminating modalities” (Rijke, Shulman and Spitters, 2020) [Definition 1.2].

A modality may be described as an operation � together with a map ιX : X → �X for any type
X, such that a dependent version of the following commonly known property of a reflector holds:

For all Y such that ιY : Y → �Y is an equivalence and all maps f : X → Y , there is a unique
ψ : �X → Y , such that the diagram commutes.

X �X

Y

ιX

f
∃!ψ

The dependent version of this universal property will be axiom 2.5 – which we assume throughout
this article for convenience. Externally, a monadic modality in homotopy type theory corre-
sponds to a stable factorization system on an (∞, 1)-topos (Rijke, Shulman and Spitters, 2020)
[Appendix A, in particular, p. 76].
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The examples of modalities (�, ι) we had in mind when writing this article should be thought
of as providing a notion of infinitesimally close. More specifically, two points x, y : X are infinites-
imally close if their images under ι coincide. This makes only sense in a context where there are
infinitesimals in the first place.

As far as the author knows, all relevant examples of such particular modalities are constructed
by passing from spaces to algebras of functions on spaces and by introducing infinitesimals via
nilpotent elements in those algebras. A good intuition is that the functions are coordinate func-
tions, and in an infinitesimal space, the coordinates can be so small that taking a power of them
actually turns them into zero. If these infinitesimal spaces are around, macroscopic spaces X can
be probed by them.

The information, that can be probed in this way, may be collapsed by passing to �X. It is
important to note that this collapse almost never preserves structured spaces like manifolds or
schemes – they are replaced by macroscopically similar spaces, which have trivial infinitesimal
structure and therefore trivial tangent spaces. Spaces that are only of infinitesimal extent, like the
formal or k-th order disks of algebraic geometry, are mapped to the one point space by �. We will
sketch an easy way of constructing � below, which works for a class of examples. It turns out to be
more natural to have amodality�which collapses infinitesimals of all orders at once – it is possible
to construct models which capture the notion of a similar modality collapsing only first-order
infinitesimals, but the models the author came up with lacked other desirable properties. The use
of G-jet-structures in this article instead of G-structures stems from this decision to use general
infinitesimals as a primary notion. In Subsection 4.3, we will briefly explain why we do expect that
we can also cover the case of G-structures with G-jet-structures in the case of G=GL(n,R).

Urs Schreiber and Igor Khavkine define basic notions of differential geometry as well as
generalized partial differential equations in (Khavkine and Schreiber, 2017), and most of their
constructions, as they note, do not depend on the particular topos and the particular modality “�”
they use. Crucially, they show that in the topos they use, the abstract definitions of formal disks
and formally étale maps, analogous to Definition 3.3 and Definition 3.14 in this article, coincide
with formal disks in manifolds and local diffeomorphisms of manifolds.

In the appendix of (Cherubini and Rijke, 2021), it is shown that in the Zariski topos, the defini-
tions of formal disks and formally étale maps Definition 3.14, Definition 3.3 correspond to usual
formal neighborhoods and formally étale maps of algebraic geometry. It is certainly noteworthy
that the abstract theory in this article combines quite well with synthetic differential geometry,
which is used extensively in the preprint (Myers, 2022b).

In (Schreiber, 2015), Urs Schreiber presented a couple of problems together with proposals
for their solution to the homotopy type theory community. This article solves one of these prob-
lems, which is the construction of the moduli space of torsion-free G-jet-structures Definition
4.33, where Theorem 3.12 is an important step also mentioned by Schreiber. The proof of the
latter theorem in this article is a vast simplification of Schreiber’s proof, which relied on pasting
of homotopy pullbacks, whereas the proof in this article uses simpler reasoning with dependent
types. A solution to Schreiber’s problemwas already given in the PhD thesis of the author (Wellen,
2017), but not published under peer review.

A minor difference to the construction of the moduli space proposed in (Schreiber, 2015) is
that the G-jet-structures are checked for triviality on first-order infinitesimal disks, while for this
article, after discussing with Schreiber, full formal disks are used everywhere. It is left to check
in future work that the construction given here type-theoretically yields the same space as the
classical construction.

Important advantages of homotopy type theory for this work include the unusual conciseness
for a higher categorical framework. Furthermore, a proof-assistant software, in this case Agda,
can be used to check definitions and proofs written out in homotopy type theory. This was of
great help to the author during the development of the theory in this article and while learning
the subject. The formalization can be viewed at https://github.com/felixwellen/DCHoTT-Agda,
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where Theorem 3.12 is to be found in the file FormalDiskBundle.agda and the central construction
Definition 4.33 in G-structures.agda.

We will conclude this introduction by giving more intuition for the intended models. This part
is aimed, in particular, at readers not familiar with higher stacks or synthetic differential geometry.

An important thing to note is that manifolds and other simple spaces of interest in differential
geometry are, maybe to the surprise of some readers, not to be thought of as higher types. Note
that this is also the case for the topological spaces in (Shulman, 2018). Instead, in the applications
of interest, a manifold is usually a 0-truncated type. The higher types in this context are given by
passing from the ordinary, 1-categorical notion of Grothendieck toposes, to their higher categor-
ical version. The latter includes the former, as the subcategory of 0-truncated objects. Thus, the
spaces of interest, which already exist in the 1-categorical topos, are included in the 0-truncated
types.

The theory in this article may, however, also be applied to objects more general than manifolds,
which are not 0-truncated. One important example is quotient stacks. In addition, it is also pos-
sible to consider spaces, which are not locally modeled on 0-truncated types. Both cases are not
ruled out by Definition 4.14.

Furthermore, the ambient higher types admit the construction of classifying morphisms (see
Definition 4.9) of fiber bundles, which is crucial for the goals of the article. In addition to that,
there are exceptionally easy ways to describe homotopy theoretic quotients of spaces by simple
type theoretic constructions, which rely on higher identity types as well. This will be explained in
the discussion preceding Definition 4.33.

The kind of modality that can be used to access the differential geometric structure of the
objects of a topos from within type theory is in some fortunate cases generated by reducing alge-
bras. More precisely, in one of the most basic models, namely simplicial sheaves on the category
of k-Algopfp finitely presented algebras over a field k,1 there is an endofunctor � given by:

(�X)(A) :≡ X(A/
√
0)

for any sheafX. If reduction preserves covers, as it does for the Zariski topology, this is an idempo-
tent left and right adjoint functor, which is enough to generate a modality on the topos. The same
approach yields modalities on toposes suitable for differential geometry. Roughly, this is achieved
by passing to algebras of smooth functions and taking tensor products with nilpotent algebras, to
add infinitesimals to the theory (see (Khavkine and Schreiber, 2017)).

It is also possible to only add square-zero algebras instead of general nilpotent algebras, which
makes the definition of formal disks (Definition 3.3) collapse to first-order neighborhoods – some-
thing very close to a tangent space. This leads to a simpler theory, which is easier to compare with
differential geometry, but it also yields a category that doesn’t have the right limits, so we will not
consider it any further.

The functor � appears in the differential part of a Differential Cohesive Topos, a notion due to
Urs Schreiber (Schreiber) [Definition 4.2.1], extending Lawvere’s Axiomatic Cohesion (Lawvere,
2007). The differential structure is also used on toposes of set-valued sheaves (Khavkine and
Schreiber, 2017), where it is applied to a site suitable for differential geometry and therefore spaces
modeled on vector spaces over the reals.

Since this modality �, which we will use in our type theory, allows us to build at least some
abstract differential geometry relative to it, one might ask what role the external functor � from
above plays in conventional geometry. The answer is that concepts very close to it appear very
early in the Grothendieck school of algebraic geometry, which is no surprise, since algebras
with nilpotent elements were specifically used to admit reasoning with this kind of infinites-
imals. However, the functor itself leaves the impression of a rather exotic concept under the
names of deRham prestack (Gaitsgory and Rozenblyum, 2014), deRham stack, deRham space,
or infinitesimal shape, and is usually used to represent D-modules over a smooth scheme or alge-
braic stack X as quasi-coherent sheaves over �X. A functor � also exists in meaningful ways in
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non-commutative geometry (Kontsevich and Rosenberg). In the face of these rather advanced use
cases of �, it might be irritating that we use it as a basis for differential geometry. One reason �X
appears so infrequent in geometry might be that it is quite hard to build intuition for what it is
like as a space. If X is a structured space like a manifold or a scheme, �X will only be a manifold
or scheme in degenerate cases. On the other hand, the relation provided by the map ιX : X → �X
can be understood quite intuitively as “infinitesimally close.” This is how we will start to develop
differential geometry based on �.

Content

• We define the formal disk at a point in a type in 3.3. These disks contain roughly similar
information as the tangent and jet spaces in differential geometry. The definition is relative to
a modality and for the n-truncation modality known as the connected cover of a homotopy
type.

• We introduce a notion of homogeneous type in 3.9, which is tailored to our application as a
basic building block for manifolds. It is proven that the formal disk bundle of a homogeneous
type is trivial.

• Formally étale maps are defined in 3.14. Between manifolds, formally étale maps are known
to correspond to local diffeomorphisms. We show stability properties of the class of formally
étale maps, for example, closure under arbitrary pullbacks. This definition is again relative to
a modality.

• Multiple definitions of fiber bundle are shown to be equivalent in 4.11. Notably, we show that
if all fibers of a map are merely equal to a fixed type, then there is a trivializing cover.

• For homogeneous types V , we define V-manifolds in 4.14. They are spaces infinitesimally
modeled on V .

• Finally, we define G-jet-structures in 4.22 and their moduli space for a given manifold. We
also define torsion-free G-jet-structures and show that the trivial 1-jet-structure of a 1-group
is torsion-free.

This project was suggested by Urs Schreiber in 2015 as a PhD thesis project for the author. The
(external) definitions of formally étale maps, V-manifolds, and G-jet-structures have been used
by Urs Schreiber and others. Our contribution is the formulation in homotopy type theory and
type-theoretic solution of the proposed problems,2 which allowed us to produce a theory of low
complexity and high clarity, which is hard to imagine to be possible in a more classical framework
like higher category theory in its simplicial incarnation.

Formalization
The formalization located here:

https://github.com/felixwellen/DCHoTT-Agda

covers everything up to and including the definition of G-jet-structures, but not definitions build-
ing on top of that. However, crucial ingredients for the construction of the moduli space of
G-jet-structures and torsion-free G-jet-structures, like the chain rule, are checked. It turned out
that the necessary engineering work to actually combine those ingredients is not justified by the
gain in understanding. Furthermore, before the code is used as a basis for future work, it should
be ported to a suitable library.

https://doi.org/10.1017/S0960129524000355 Published online by Cambridge University Press

https://github.com/felixwellen/DCHoTT-Agda
https://doi.org/10.1017/S0960129524000355


838 F. Cherubini

2. Modal Homotopy Type Theory
2.1 Terminology and notation
Mostly, we use the same terminology and notation as the HoTT-Book (The Univalent
Foundations Program, 2013). However, there are a few exceptions. To denote terms of type∏

x :A B(x), we use the notation for λ-expressions from pure mathematics, i.e. x �→ f (x). There
are no implicit propositional truncations. If the propositional truncation of a statement is used,
it is indicated by the word “merely.” Phrases like “for all” and “there is” are to be interpreted as∏
- and

∑
-types. For example, the sentence

For all x :A, we have t :B(x).
is to be read as the statement describing the term (x : A) �→ t of type

∏
x : A B(x). We sometimes

write fa for the application of a dependent function f : ∏x : A B(x) to a : A, instead of f (a).
Furthermore, similar to (Shulman, 2018), when dealing with identity types, we avoid topol-

ogy and geometry-related words. For example, we write “equality” instead of “path” and “2-cell”
instead of “homotopy,” to avoid confusion with the notions of paths and homotopies for the clas-
sical geometric objects we like to study by including them in our theory as 0-types. We use p • q
to denote the concatenation of equalities p and q. We say that x is unique with some properties if
the type of all x with these properties is contractible.

2.2 Preliminaries from homotopy type theory
We use a fragment of the Type Theory from (The Univalent Foundations Program, 2013).
Function extensionality is always assumed to hold. Furthermore, we assume a propositional
truncation modality “‖_‖” and univalent universes.

In the next section, we will give axioms for a modality “�,” which will be assumed throughout
the article. Some knowledge of the basic concepts in (The Univalent Foundations Program, 2013)
is assumed. In addition, we will use more facts about pullbacks than presented in (The Univalent
Foundations Program, 2013), which we will list in this section.

It is very useful to switch between pullback squares and equivalences over a morphism. We
start with the latter concept.

Definition 2.1. Let f :A→ B be a map and P :A→ U , Q : B→ U be dependent types.

(a) A morphism over f or fibered morphism is a:

ϕ :
∏
x:A

P(x)→Q(f (x)).

(b) An equivalence over f or fibered equivalence is a:

ϕ :
∏
x:A

P(x)
Q(f (x)).

For every morphism over f :A→ B as above, we can construct a square3

∑
x:A P (x)

∑
x:B Q(x)

A B

π1 π1

f

where the top map is given as (a, pa) �→ (f (a), ϕa(pa)). This square will turn out to be a pullback
in the sense we are going to describe now, if and only if ϕ is an equivalence over f .
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For a cospan given by the maps f :A→ C and g : B→ C, we can construct a pullback square:
∑

x:A,y:B f(x) = g(y) B

A C

π2

π1
g

f

Then, for any other completion of the cospan to a square

X B

A C

ϕA

ϕB

g
η

f

where η :∏x:X g(x)= f (x) is a 2-cell letting it commute, an induced map to the pullback is given
by x �→ (ϕA(x), ϕB(x), ηx).

Definition 2.2. A square is given by four maps as above and a 2-cell like η. A square is a pullback
square if the induced map described above is an equivalence.

To reverse the construction of a square for a morphism over “f ” above, we can start with a general
square:

X Y

A B

pA

g

pB
η

f

Let P :A→ U and Q : B→ U be the fiber types of the vertical maps, i.e.:

P(a :A) :≡
∑
x:X

pA(x)= a

Q(b : B) :≡
∑
y:Y

pB(y)= b

Then, for all a :A, a morphism ϕa : P(a)→Q(a) is given as:
ϕa((a, (x, p))) :≡ (f (a), (g(x), ηx • f (p))).

So ϕ is a morphism from P to Q over f . The following statement is quite useful and will be used
frequently in this article:

Lemma 2.3.
(a) A square is a pullback if and only if the induced fibered morphism is an equivalence.
(b) A fibered morphism is an equivalence if and only if the corresponding square is a pullback.

Now, the following corollary can be derived by using the fact that equivalences are stable under
pullback:

Corollary 2.4. Let f :A→ B be an equivalence, P :A→ U , Q : B→ U dependent types, and ϕ :∏
x:A P(x)→Q(f (x)) an equivalence over f . Then the induced map:

https://doi.org/10.1017/S0960129524000355 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000355


840 F. Cherubini

(∑
x:A

P(x)

)
→
(∑

x:B
Q(x)

)
is an equivalence.

2.3 Modalities
From this section on, we will always assume a modality �. We use the definition of a uniquely
eliminating modality from (Rijke, Shulman and Spitters, 2020), which is equivalent to the defini-
tion given in (The Univalent Foundations Program, 2013, Section 7.7). More on modalities and
their relation to concepts in category theory can be found in (Rijke, Shulman and Spitters, 2020).
We deviate from the usual symbol for modalities, which would be “©” to remind us that while we
will technically work with a general modality, we have some particular kind of modality in mind.
Furthermore, the work in this article could be reused in a type theory that provides more modal
operators from differential cohesion, for example, in the work in progress (Myers, 2022b), which
also uses homotopy type theory as a basis and where � is called crystalline modality.

The modality � is also used in category theory based differential cohesion4 and is called
infinitesimal shape.5

Axiom 2.5. From this point on, we assume existence of a map � : U → U and maps ιA :A→ �A
for all types A, subject to this condition: For any B : �A→ U , the map

_ ◦ ιA :
(∏
a : �A

�B(a)
)

→
(∏
a :A

�B(ιA(a))
)

is an equivalence.

We call the inverse of the equivalence �-elimination. Elimination in type theory is a principle
that lets us define maps starting in an inductive type like the natural numbers. For example, elim-
inating from the natural numbers N to a dependent proposition P :N→ U means essentially to
prove the proposition for each possible way to construct a natural number, which is either to take
it to be the constant 0 or the successor s(n) of another natural number n.

The analogy to �-elimination is that to eliminate from �A into the dependent modal type
�B(_), we only need to provide a value for the case that x : �A is of the form ιA(y). This is exactly
what the inverse of the map in axiom 2.5 allows us to do. A different way to put this is that �A
has the same elimination principle as an inductive type with constructor ιA :A→ �A would have,
except that it can only be used to construct functions with modal codomain.

Note that it is possible to conclude a variant of �-elimination from axiom 2.5, where � is not
applied to the type family B, but the type family is required to have values in �-modal types.6

Note that the equivalence in axiom 2.5 specializes to the universal property of a reflection if the
family B is constant:

A �A

�B

ιA

f
∃!ψ

i.e. for all types B and all f :A→ �B, we get a unique ψ letting the triangle commute up to a
2-cell. Unique means here that there is a contractible type of maps with 2-cells letting the triangle
commute. That type is also a fiber of the equivalence “_ ◦ ιA,” so we do know that it is contractible.

We will make use of this in showing that � is idempotent in the following sense:

Proposition 2.6. For all types A, the map ι�A : �A→ �(�A) is an equivalence.
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Proof. By the universal property we just discussed, we get a candidate for an inverse to ι�A, which
we call ϕ:

�A �(�A)

�A

ι�A

id
∃!ϕ

By construction, ϕ is already a left inverse of ι�A. We consider the diagram

�(�A)

�A �A

�(�A)

ϕ

id

ι�A

id

ι�A
ι�A

and conclude that ϕ is also a right inverse by uniqueness. �

Like reflections determine a subcategory, � determines a subuniverse of the universe U of all
types.7

Definition 2.7.
(a) A type A is �-modal if ιA is an equivalence.
(b) The universe of �-modal types is

U� :≡
∑
A:U

(A is �-modal)

From what we proved above, all types �A will be modal.
As we explained in the introduction, we will not be very interested in spaces of the form “�X,”

but more in the “quotient map” ιX : X → �X, which we will view as identifying infinitesimally
close points.

Like a functor, � extends to maps and we get a naturality square for ι:

Definition 2.8.
(i) For any function f :A→ B between arbitrary types A and B, we have a function:

�f : �A→ �B
given by �-elimination.

(ii) For any function f :A→ B between arbitrary types A and B, there is a 2-cell η witnessing that
the following commutes:

A �A

B �B

ιA

f �f
ηf

ιB

It is also straightforward to prove that the application of � to maps commutes with composition
of maps up to equality and preserves identities up to equality. In general, we expect that any
coherence between these equalities needed in practice can be constructed.
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Remark 2.9. For any 2-cell η : f ⇒ g, we have a 2-cell between the images:
�η : �f ⇒ �g.

�-Modal types have various closedness properties, which we review in the following lemma.

Proposition 2.10. Let A be any type and B :A→ U be such that for all a : A the type B(a) is
�-modal.

(a) Retracts of �-modal types are �-modal.
(b) The dependent product ∏

a :A
B(a)

is �-modal. Note that A is not required to be �-modal here and this implies all function spaces
with �-modal codomain are �-modal.

(c) If A is �-modal, the sum ∑
a :A

B(a)

is �-modal.
(d) �-modal types have �-modal identity types.

Proof.

(a) A type R is a retract of B if there are maps r : B→ R and ι : R→ B, such that r ◦ ι is
equal to the identity. For all �-modal B and retracts R of B, we have the following diagram:

R B R

�R �B �R

ιR

ι

id

ιB

r

ιR

�ι

id

�r

Since ιB is an equivalence, it has an inverse, and by the diagram, r ◦ ι−1
B ◦ �ι is a biinverse to

ιR.
(b) This is proved, up to equivalence, in (The Univalent Foundations Program, 2013, Theorem

7.7.7).
(c) This is (The Univalent Foundations Program, 2013, Theorem 7.7.4).
(d) This is (Rijke, Shulman and Spitters, 2020, Lemma 1.25). �

One immediate consequence is �1
 1 – this is the only provably �-modal type. We cannot
expect to prove more types to be �-modal, since there is always the modality that maps all types
to 1, so 1 could be the only �-modal type.

The following is a slight variation of (Rijke, Shulman, and Spitters, 2020) [Lemma 1.24], and
plays a central role in the abstract (Wellen, 2018), which was the beginning of (Cherubini and
Rijke, 2021):
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Proposition 2.11. Let A be a type and B : �A→ U a dependent type. Then the induced map is an
equivalence:

�
(∑

x :A
B(ιA(x))

)


(∑
x : �A

�(B(x))
)
.

A more category theoretic implication of this proposition is that for the map

π1 :
(∑

x :A
B(ιA(x))

)
→A

taking fibers commutes with application of �. Here, π1 is an example of a formally étale map,
which we will introduce in the next section. More abstractly, this relates to the principle in alge-
braic topology that homotopy fibers coincide with ordinary fibers of certain fibrations. This point
is highlighted and used in (Myers, 2022a).

3. A basis for differential geometry
3.1 Formal disks
We will start to build geometric notions on top of the modality � and its unit ι. In the intended
applications, the modality � provides us with a notion of infinitesimal proximity. To see if two
points x, y in some type A are infinitesimally close to each other, we map them to �A and ask if
the images are equal.

Definition 3.1. Let x, y : A. Then we have a type that could be read “x is infinitesimally close to y”
and is given as:

x∼ y :≡ (ιA(x)= ιA(y)).

Of course, this is in general not a proposition, but it is useful to think about ιA(x)= ιA(y) in
this way. The name “infinitesimally close” is a poor choice for a general modality,8 so the reader
should keep in mind from now on that the terminology is adapted to a modality in the intended
applications.9

It turns out that all morphisms of types already respect this notion of infinitesimal closedness,
i.e., if two points are infinitesimally close to each other, their images are close as well.

Remark 3.2. If x, y : A are infinitesimally close, then for any map f : A→ B, the images f (x) and
f (y) are infinitesimally close. More precisely, we have an induced function:

f̃ : (x∼ y)→ (f (x)∼ f (y))

Proof. We construct a map between the two types ιA(x)= ιA(y) and ιB(f (x))= ιB(f (y)). By 2.8, we
can apply � to maps and get a map �f : �A→ �B. So we can apply �f to an equality γ : ιA(x)=
ιA(y) to get an equality:

�f (γ ) : �f (ιA(x))= �f (ιA(y))
Again by 2.8, we know that we have a naturality square:

A �A

B �B

ιA

f �f
ηf

ιB

https://doi.org/10.1017/S0960129524000355 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000355


844 F. Cherubini

and hence equalities ηf (x) : �f (ιA(x))= ιB(f (x)) and ηf (y) : �f (ιA(y))= ιB(f (y)). This yields an
equality of the desired type:

ηf (x)−1 • �f (γ ) • ηf (y) �

A formal disk at a point is the “collection” of all other points infinitesimally close to it:

Definition 3.3. Let A be a type and a : A. The type Da defined below in three equivalent ways is
called the formal disk at a.
(i) Da is the sum of all points infinitesimally close to a, i.e.:

Da :≡
∑
x :A

ιA(x)= ιA(a)

(ii) Da is the fiber of ιA at ιA(a).
(iii) Da is defined by the following pullback square:

Da 1

A �A

→�∗ ιA(a)(pb)

ιA

The characterization (iii) is a verbatim translation of its topos-theoretic analog (Schreiber)
[Definition 5.3.50] to homotopy type theory. Therefore, in the model from (Schreiber), compos-
ing a function on a manifold M with ιM(x) would yield an ∞-order jet of that function. Jets are
higher order analogs of tangent vectors and the derivates of a function at a point x can still be
observed on a formal disk around x. To say that formal disks are just infinitesimal extensions of
the point is supported by the following observation.

Proposition 3.4. For any x : X, we have �(Dx)= 1.

Proof. Using Proposition 2.11 and Proposition 2.10 (d), we compute:

Dx ≡
∑
y:X

ιX(x)= ιX(y)

=
∑
y:X

�(ιX(x)= (ιX(y)))

= �
(∑
z:�X

ιX(x)= z

)
= 1. �

As morphisms of manifolds induce maps on tangent spaces, maps of types induce morphisms
on formal disks, containing information on the derivates of a morphism of all orders:

Remark 3.5. If f :A→ B is a map, there is a dependent function:

df :
∏
x :A

Dx →Df (x)

We denote the evaluation at a : A with
dfa :Da →Df (a)
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and call it the (generalized) differential of f at a.

Proof. To define df , we take the sum over the map from 3.2:

dfa :≡ (x, ε) �→ (f (x), η−1
f (x) • �f (ε) • ηf (x))

– where ηf (x) is the equality from the naturality of ι. �

Some of the familiar rules for differentiation can be derived from this generality. We will need
only the chain rule:

Lemma 3.6. Let f :A→ B and g : B→ C be maps. Then the following holds for all x :A
d(g ◦ f )x = (dg)f (x) ◦ dfx.

Proof. Note that, in general, the differential dfx is equal to the map induced by the uni-
versal property of Df (x) as a pullback. We can use this to get the desired “functoriality”:

Dx A �A

Df(x) B �B

Dg(f(x)) C �C

dfx

d(g◦f)x

ιA

f �f

(dg)f(x)

ιB

g �g

ιC

– the induced map d(g ◦ f )x and the composition (dg)f (x) ◦ dfx solve the same factorization
problem, so they are equal. �

In differential geometry, the tangent bundle is an important basic construction consisting of all
the tangent spaces in a manifold, capturing first-order infinitesimal information. In this abstract
all-order setting, we can mimic the construction by combining all the formal disks of a space in a
bundle, capturing infinitesimal information of all orders at once.

Definition 3.7. Let A be a type. The type T∞A defined in one of the equivalent ways below is called
the formal disk bundle of A.

(i) T∞A is the sum over all the formal disks in A:

T∞A :≡
∑
x :A

Dx

(ii) T∞A is defined by the following pullback square:

T∞A A

A �A

ιA(pb)

ιA

Note that despite the seemingly symmetric second definition, we want T∞A to be a bundle having
formal disks as its fibers, so it is important to distinguish between the two projections and their
meaning. If we look at T∞A as a bundle, meaning a morphism p : T∞A→A, we always take p to
be the first projection in both cases. This convention agrees with the first definition – taking the
sum yields a bundle with fibers of the first projection equivalent to the formal disks.
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For any f : A→ B, we defined the induced map df on formal disks. This extends to formal disk
bundles.

Definition 3.8. For a map f : A→ B, there is an induced map on the formal disk bundles, given as:

T∞f :≡ (a, ε) �→ (f (a), dfa(ε))

In differential geometry, the tangent bundle may or may not be trivial. This is some interesting
information about a space. If we have a smooth group structure on a manifold G, i.e. a Lie-group,
we may consistently translate the tangent space at the unit to any other point. This may be used to
construct an isomorphism of the tangent bundle with the projection from the product of G with
the tangent space at the unit.

It turns out that this generalizes to formal disk bundles, and the group structure may be
replaced by the weaker notion of a homogeneous type.

The notion of homogeneous type was developed by the author to satisfy two needs. The first is
to match the intuition of a pointed space, that is equipped with a continuous family of translations
thatmap the base point to any given point. The second need is to have just the right amount of data
in all the proofs and constructions concerning homogeneous types. It has not been investigated in
what circumstances this definition of homogeneous spaces coincides with the various notions of
homogeneous spaces in geometry – apart from the obvious examples given below.

Definition 3.9. A type A is homogeneous if there are terms of the following types:
(i) e : A
(ii) t : ∏x :A A
A
(iii) p : ∏x :A tx(e)= x

where t is called the family of translations and e is called the unit of A.

Examples 3.10.
(a) Let G be a group in the sense of (The Univalent Foundations Program, 2013)[6.11], then G is a

homogeneous type with x • _ or _ • x as its family of translations.
(b) Let G be an h-group, i.e. a type with a unit, operation, and inversion that satisfy the group

axioms up to a 2-cell. Then G is a homogeneous type in the same two ways as above.
(c) As a notable special case, for any type A and ∗: A, the loop space ∗ =A ∗ is homogeneous.
(d) Let X be a connected H-space, then X is homogeneous, again in two ways. See (The Univalent

Foundations Program, 2013)[8.5.2] and (Licata and Finster, 2014)[Section 4].
(e) Let Q be a type with a quasigroup-structure, i.e. a binary operation _ • _ such that all equations

a • x= b and x • a= b have a contractible space of solutions, then Q is homogeneous if it has a
left or right unit.

In the following, we will build a family of equivalences from one formal disk of a homogeneous
type to any other formal disk of the space. We start by observing how equivalences and equalities
act on formal disks.

Lemma 3.11.
(a) If f : A→ B is an equivalence, then

dfx : Dx →Df (x)

is an equivalence for all x : A.
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(b) Let A be a type and x, y : A two points. For any equality γ : x= y, we get an equivalence
Dx 
Dy.

Proof.
(a) Let us first observe that for any x, y : A, the map ιA(x)= ιA(y)→ ιB(f (x))= ιB(f (y)) is an

equivalence. This follows from the fact that it is equal to the composition of two equivalences.
One is the conjugation with the equalities from naturality of ι, the other is the equivalence of
equalities induced by the equivalence �f .
Now, for a fixed a : A, we have two dependent types, ιA(a)= ιA(x) and ιB(f (a))= ιB(f (x)), and
an equivalence over f between them. The sum of this equivalence over f is by definition df ,
and by 2.4, a sum of a fibered equivalence is an equivalence.

(b) The equivalence is just the transport in the dependent type x �→Dx. �

We are now ready to state and prove the triviality theorem.

Theorem 3.12. Let V be a homogeneous type and De the formal disk at its unit. Then the following
is true:
(a) For all x : V , there is an equivalence

ψx : Dx →De

(b) T∞V is a trivial bundle with fiber De, i.e., we have an equivalence T∞V →V ×De and a
homotopy commutative triangle

T∞V V × De

V

π1

	

π1

Proof.
(a) Let x : V be any point in V . The translation tx given by the homogeneous structure on V is an

equivalence. Therefore, we have an equivalence ψ ′
x : De →Dtx(e) by 3.11. Also, directly from

the homogeneous structure, we get an equality tx(e)= x, and transporting along it yields an
equivalence Dtx(e) →Dx. So we can compose and invert to get the desired ψx.

(b) By Definition 3.7 of the formal disk bundle, we have:

T∞V :≡
∑
x : V

Dx

We define a morphism ϕ : T∞V →V ×De by:
ϕ((x, εx)) :≡ (x,ψx(εx))

and it’s inverse by:

ϕ−1((x, εx)) :≡ (x,ψ−1
x (εx)).

Now, to see ϕ is an equivalence with inverse ϕ−1, one has to provide equalities of types

(x, εx)= ϕ−1(ϕ(x, εx))= (x,ψ−1(ψ(εx)))
and (x, εe)= ϕ(ϕ−1(x, εe))= (x,ψ(ψ−1(εe)))

– which exist since the ψx are equivalences by (a). �
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In geometry, it is usually possible to add tangent vectors. Our formal disks can at least inherit
the group-like properties of a homogeneous type:

Theorem 3.13. Let A be homogeneous with unit e :A. Then De is homogeneous.

Proof. We look at the sequence

De A �A
ue ιA

where ue is the inclusion of the formal disk, given as the first projection. We will proceed by
constructing a homogeneous structure on �A, note some properties of ιA, which could be part of
a definition of morphism of homogeneous types, and finally give some “kernel”-like construction
of the structure on De.

For x :A, there is a translation tx :A
A, since � preserves equivalences, this yields a �tx :
�A
 �A. By �-elimination, this extends to a family of translations

t′ :
∏
y:�A

�A
 �A, with t′
ιA(x) = �tx.

Let e′ :≡ ιA(e), then �A is homogeneous if we can produce a

p′ :
∏
y:�A

t′y(e′)= y.

By �-eliminating on y, we reduce the problem to∏
x:A

t′ιA(x)(ιA(e))= ιA(x)

By definition, the left hand side is �(tx)(ιA(e)) and by naturality of ι, we have an equality
�(tx)(ιA(e))= ιA(tx(e)). So by applying ιA to the equality px : tx(e)= x, we get a solution.

We start to construct the homogeneous structure onDe by letting e′′ :≡ (e, refl) be the unit. For
the translations, we look at the dependent type (x :A) �→ ιA(e)= ιA(x) and establish the following
chain of equivalences for y :A with ιA(e)= ιA(y):

ιA(e)= ιA(x)

 t′ιA(y)ιA(e)= t′ιA(y)ιA(x)

 t′ιA(y)ιA(e)= ιA(ty(x))

 ιA(y)= ιA(ty(x))

 ιA(e)= ιA(ty(x))

The resulting equivalence is an equivalence over ty. So by 2.4, this induces an equivalence on the
sum, which is De.

This construction yields a family of equivalences t′′ :∏y:De De 
De. To finish the prove of the
theorem, we need to construct a family of equalities

∏
x:De t

′′
x (e′′)= x. This is another computation

using the same methods we have seen so far and we refer to the formalization10 instead of giving
the details here. �

3.2 Formally étale maps
The approach to formally étale maps presented here has been developed further in the ongoing
synthetic algebraic geometry project.11
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In algebraic geometry, formally étale maps are supposed to be analogous to local diffeomor-
phisms in differential geometry. Below, we will give a not-so-well-known definition that matches
the notion of algebraic geometry for finitely presented morphisms of schemes12 and coincides
with the local diffeomorphisms between manifolds in the case of differential geometry.13

Definition 3.14. A map f : A→ B is formally étale if its naturality square is a pullback:

A �A

B �B

ιA

f �f

ιB

To see why this definition expresses that a map is an isomorphism on a infinitesimal scale, we
can look at the following situation:

1 A �A

Db B �B

ιA

f �f

ιB

– whenever we have a point b : B that we can lift toA, there will be a unique lift of the whole formal
disk around b to A by the universal property of the pullback A and the naturality of �.

This definition of formally étale maps was used extensively in (Schreiber) and (Khavkine and
Schreiber, 2017).14 The same definition under different names was also used in category theory to
study the relation between reflective subcategories and factorization systems (Cassidy, Hébert and
Kelly, 1985). Here, the maps with a cartesian naturality square for the reflector are the right maps
of a factorization system, whereas the left maps are those mapped to isomorphisms by the reflec-
tor. The factorization system can also be defined as a modality and studied internally (Cherubini
and Rijke, 2021).

We will continue with some basic observations:

Lemma 3.15.
(a) If f : A→ B and g : B→ C are formally étale, their composition g ◦ f is formally étale. If the

composition g ◦ f and g are formally étale, then f is formally étale.
(b) Equivalences are formally étale.
(c) Maps between �-modal types are formally étale.
(d) All fibers of a formally étale map are �-modal.

Proof.
(a) By pullback pasting.
(b) The naturality square for an equivalence is a commutative square with equivalences on

opposite sides. Those squares are always pullback squares.
(c) This is, again, a square with equivalences on opposite sides.
(d) The pullback square witnessing f : A→ B being formally étale yields an equivalence over ιB.

So, each fiber of f is equivalent to some fiber of �f . But fibers of maps between �-modal types
are always �-modal by 2.10 (c), hence each fiber of f is equivalent to a �-modal type, thus
itself �-modal. �
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Together with the following, we have all the properties of formally étale maps needed in this
article:

Lemma 3.16. Let f : A→ B be formally étale, then the following is true:
(a) For all x : A, the differential dfx is an equivalence.
(b) There is a pullback square of the following form:

T∞A T∞B

A B

(pb)

f

Proof.
(a) The pullback square witnessing that f is formally étale can be reformulated as:

For all x : �A, the induced map between the fibers of ιA and ιB is an equivalence. But these
fibers are just the formal disks, so this can be applied to any ιA(y) to see that dfy is an
equivalence.

(b) This is just a reformulation. �

One might wonder if the converse of this statement holds. With a mild condition on A, which
is related to the concept of formal smoothness in algebraic geometry, this is the case:15

Remark 3.17. Let A be a type such that ιA :A→ �A is surjective and f :A→ B any map. Then f
is formally étale if dfx is an equivalence for all x : A
Proof. As in the lemma, we use the equivalence of pullback squares and fibered equivalences. So
to show that the ι-naturality square for f is a pullback, we have to show that for all x : �A, the
induced map on fibers

ψx : ι−1
A (x)→ ι−1

B ((�f )(x))
is an equivalence.

By surjectivity of ιA, there is merely a x̃ and p : ιA(x̃)= x. Since we show a proposition, we can
use x̃ and the equivalence e1 :Dx̃ 
 ι−1

A (x). By naturality, we also have e2 :Df (x̃) 
 ι−1
B ((�f )(x)).

It remains to show that ψx = e2 ◦ dfx̃ ◦ e−1
1 . Induction on p simplifies e1 and e2 to the identity

and we just have to note that dfx̃ was defined as a induced map on the fibers Dx̃ and Df (x̃). �

The following is also proven in a different way in (Cherubini and Rijke, 2021) as corollary
5.2 (b).

Theorem 3.18. Let f :A→ B be formally étale and

A′ A

B′ B

f ′ f(pb)

a pullback square. Then f ′ is formally étale.
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Proof. Let us denote the bottom map with ψ : B′ → B. We start by describing A′ as a pullback:

A′ 

(∑

f ′−1
)



(∑

f−1 ◦ψ
)



(∑

(�f )−1 ◦ ιB ◦ψ
)



(∑

(�f )−1 ◦ �ψ ◦ ιB′
)

Now we can apply 2.11 to compute �A′:

�A′ 
 �
(∑

(�f )−1 ◦ �ψ ◦ ιB′
)



(∑

(�f )−1 ◦ �ψ
)

Note that the right-hand side is the pullback of �A along �ψ . This means that applying � to the
pullback square given in the statement of the theorem is again a pullback, and by pullback pasting,
the naturality square of f ′ is a pullback. �

Corollary 3.19.
(a) Let X be a type and x : X. The inclusion ιx :Dx → X of the formal disk at x is a formally étale

map.
(b) Any pullback of a map between �-modal types is formally étale.

Proof. All maps between �-modal types are formally étale. Hence, the second statement follows
from the theorem and the first follows as the special case for the map ιX(x) : 1→ �X. �

There is muchmore to be said about formally étale maps that is very useful, but not used in this
article. One example that is interesting from a geometric perspective is that formally étale maps
are the right class of a factorization system, whose left class are the �-equivalences. A consequence
is that all maps can be factored into an �-equivalence followed by a formally étale map:

Remark 3.20. Let f :A→ B be a map. The map f factors over

Cf :≡
∑

x : �A,y :B
(�f )(x)= ιB(y)

by lf :≡ (u :A) �→ (ιA(u), f (u), ηf ) and rf :≡ ((x, y, p) �→ y) to B. Furthermore, �(lf ) is an equiva-
lence and rf is formally étale.

We sketch a proof – a full analysis of the factorization system can be found in (Cherubini and
Rijke, 2021, Section 7).

Proof. Applying Proposition 2.11 twice on Cf shows that �(lf ) is an equivalence. Additionally, rf
is formally étale since it is the pullback of the formally étale �f along ιB. �

We will put formally étale maps to use in Section 4.2. The next section makes no reference
to �.

4. Structures on V-manifolds
4.1 Fiber bundles
As mentioned in the introduction, the spaces we have in mind might have both a differential
geometric structure and higher identity types. This section is about maps that correspond to fiber
bundles, which are by definition locally trivial with respect to the higher identity or homotopical
structure, but are expected to be locally trivial also with respect to a geometric structure that might
be present in an application. By local triviality, we just mean that there is a surjection16 into the
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base of the fiber bundle p : E→ B such that pulling back along the surjection yields a projection
from a product with a fixed given type F. It will turn out to be logically equivalent to ask all fibers
of p to be merely equivalent to F.

In a basic intended applications, E and B might just be manifolds given by 0-types, and the
reader might wonder if this notion of fiber bundle is too unrestrictive. However, it turns out that
asking this internally turns into a surprisingly strong statement externally. In (Cherubini et al.,
2023), it was discovered for a model based on a Grothendieck topos relevant to algebraic geom-
etry that internal surjections have local sections with respect to the Grothendieck topology. It is
reasonable to assume that similar principles work in differential geometry, and applying this to
the surjective projection (∑

x:B
‖p−1(x)= F‖

)
→ B

would show that the fiber bundles defined in this section are actually locally trivial in the sense
of classical definitions of fiber bundles. A ∞-topos-theoretic version of this approach to fiber
bundles may be found in (Nikolaus, Schreiber and Stevenson, 2015).

In this section, we will give four definitions of these fiber bundles17 and prove that they are
equivalent. It will be useful in Section 4.3 to switch between the different definitions.

For the following statements about fiber bundles, we will make a lot of unavoidable use of a
univalent universe U and propositional truncation. We will frequently use that all maps of types
p : E→ B appear in a pullback square

E Ũ

B U ,

p (pb)

p−1

where Ũ is called the universal family and obtained by summing over the dependent type
(A :U) �→A. The bottom map p−1 determines p up to canonical equivalence over B and is called
the classifying map of p. If E is a sum over a dependent type q : B→ U , and p the projection to B,
then q is the classifying map.

This way of using a univalent universe corresponds to looking at it as amoduli space or classify-
ing space of types. We could replace the U with some other moduli space to get specialized notions
of fiber bundles with additional structure on the fibers.

Before we start, we will look at some preliminaries about surjective and injective maps. A sur-
jective map is a map with merely inhabited fibers, or in other words, a ‖_‖-connected map. An
injective map has ‖_‖-truncated fibers.18

Definition 4.1. Let f :A→ B be a map of types.
(a) The map f is surjective if ∏

b :B

(‖f−1(b)‖ 
 1
)
.

We write f :A�B in this case.
(b) The map f is injective if ∏

b :B

(
f−1(b) is a proposition

)
.

We write f :A↪→B in this case.
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Lemma 4.2. Surjective and injective maps are preserved by pullbacks.

Proof. This is immediate by passing from pullback squares to fibered equivalences. �

Examples 4.3.

(a) Let f :A→ B be an equivalence of types. Then f is surjective and injective since all fibers of f
are contractible.

(b) Let P :A→ U be a proposition. Then the projection

π1 :
∑
a : A

P(a)→A

is injective.
(c) For the higher inductive type S1, the inclusion of the base point is a surjection.

Lemma 4.4. For any map f :A→ B there is a unique triangle:

A B

image(f)

f

e m

where e is surjective, m injective and image(f ) is given by

image(f ) :≡
∑
b:B

∥∥∥∥∥∑
a : A

f (a)= b

∥∥∥∥∥ .
A proof of the general case for ‖_‖n may be found in (The Univalent Foundations Program, 2013,
chapter 7.6).

In Topology, an F-fiber bundle is a map p : E→ B that is locally trivial with all its fibers are
isomorphic to F. Local triviality means that B may be covered by open sets Ui, such that on each
Ui the restricted map p|p−1(Ui) is isomorphic to the projection F ×Ui →Ui. We may rephrase this
in a more economical way: From our cover, we construct a surjective map w : ∐i∈I Ui → B. Then
the local triviality translate to the pullback of p alongw being isomorphic to the product projection
F ×∐

i∈I Ui →∐
i∈I Ui.

For fiber bundles in geometry, we would require more from a general surjective map, or cover,
w : W → B than that pulling back along it turns p into a product projection. However, for the
notion we discuss in this section, this turns out to be already enough.

Definition 4.5. Let p : E→ B be a map of types. For another map w : W → B we say w is a
trivializing cover for p if w is a surjective map and there is a pullback square:

W × F E

W B

π1 p(pb)

w

The map p is called an F-fiber bundle if there merely is such a trivializing p.

We give an equivalent dependent version of this definition,19 which will be a lot easier to work
with:
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Definition 4.6. Let E : B→ U be a dependent type. We say that a surjection w :W → B is a
trivializing cover for E if ∏

x : W
E(w(x))
 F.

The dependent type E is called an F-fiber bundle if there merely is such a trivializing cover.

We can switch between the two definitions in the usual way: Given an F-fiber bundle p : E→ B
in the first sense, the dependent type of its fibers p−1 : B→ U will be an F-fiber bundle in the
second sense, by direct application of 2.3. To go back, we take the projection from the sum of an
F-fiber bundle E : B→ U .

Note that in both cases, the propositional truncation of the trivializing datum is necessary to
turn the definition into a proposition. In the following, we will see that we could have defined
F-fiber bundles more easily with their classifying maps to a type called BAut(F), providing us with
a notion of F-fiber bundles, which is directly a proposition. However, in those definitions, while
it is possible to construct a surjective trivializing map, it is unclear how we may require that this
map has additional properties. One example, where we are interested in special surjections, is the
definition of a V-manifold, where we will use formally étale surjections.

We review the type BAut(F) now, which will be used to give the alternative definition of fiber
bundles mentioned above:

Definition 4.7. Let F be a type and tF : 1→ U the map given by ∗ �→ F.

(a) Let BAut(F) :≡ image(tF).
(b) We also have the injection vBAut(F) : BAut(F)→ U .
(c) We use the notation F//Aut(F) :≡∑

(F′,|ϕ|) :BAut(F) F′, which is justified by the general fact that
dependent sums over a map ρ : BG→ U are the homotopy quotient of ρ(∗) by the action of
loops in BG via transport in ρ.

Remark 4.8. The first projection π : F//Aut(F)→ BAut(F) is a pullback of Ũ → U along vBAut(F).
The map π : F//Aut(F)→ BAut(F) is the universal F-fiber bundle, meaning all F-fiber bundles with
any base will turn out to be pullbacks of this map.

We are now ready to give yet another definition of fiber bundles:

Definition 4.9. Amap p : E→ B is an F-fiber bundle if and only if there is a map χ : B→ BAut(F),
such that there is a pullback square

E F Aut(F )

B BAut(F ).

p π(pb)

χ

In this case, χ is called the classifying map of p.

This definition also has a surprisingly easy dependent variant, which is obviously a mere
proposition:
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Definition 4.10. Let E : B→ U be a dependent type. We say E is an F-fiber bundle if∏
b :B

‖E(b)
 F‖.

Again, we will switch between the dependent and non-dependent versions by taking fibers of p
and the sum, respectively. To arrive at the dependent version, we can directly use the classifying
morphism χ of an F-fiber bundle p : E→ B to construct a term of∏

b :B
‖p−1(b)
 F‖,

since all points χ(b) : BAut(F) are of the form (F′, γ ), with F′ 
 p−1(b) by the pullback square and
γ a proof that F′ is merely equivalent to F.

Now, for the converse, let
E : B→ U

be an F-fiber bundle by t : ∏b : B ‖E(b)
 F‖. Then the classifying map is given by (x : B) �→
(E(b), tx) and the pullback square is given by pasting:20

∑
E F Aut(F ) Ũ

B BAut(F ) U .

π1 π (pb)

χ

We will conclude this section by showing that all our definitions of fiber bundles are equiva-
lent and discuss some examples. The equivalence is most efficiently proven by establishing the
equivalence of the two dependent definitions first:

Theorem 4.11. Let F be a type and E : B→ U be a dependent type, then∏
b :B

‖E(b)
 F‖

if and only if there is a type W and a surjective w : W → B such that∏
x :W

E(w(x))
 F.

For the proof, we need to construct a trivializing cover at some point.21 The construction we use
is similar to the universal cover and interesting on its own:

Definition 4.12. Let E : B→ U be an F-fiber bundle by t : ∏b : B ‖E(b)
 F‖, then
W : ≡

∑
b :B

E(b)
 F

together with its projection to B is the canonical trivializing cover of p.
The given t directly proves that this projection is surjective. Let us denote this projection by

w : W → B, then for all x : W, with x= (b, e), we have
E(w(x))
 E(π1(b, e))
 F

by transport and e : E(b)
 F itself.
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Proof (of 4.11). With the definition and remark above, it remains to show the converse. Let
E : B→ U andw : W → B such that t : ∏x : W E(w(x))
 F. Now, for any b : B and xb : w−1(b), we
get an equivalence tπ1(xb) : E(w(π1(xb)))
 F. By general properties of fibers, we have w(π1(xb))=
b yielding E(b)
 F. By surjectivity of w, we merely have a xb : w−1(b) for any b : B, therefore, we
merely have an equivalence E(b)
 F. �

Examples 4.13.
(a) Let A be a pointed connected type, then any E : A→ U is an E(∗)-fiber bundle.22
(b) The map 1→ S1 is a Z-fiber bundle.
(c) More generally, for a pointed connected type A, projection from the homotopical universal cover∑

x : A x= ∗ to A is an A-fiber bundle and the projection from
∑

x : A ‖x= ∗‖1 to A is a
π1(A, ∗)-fiber bundle.

(d) As w : W → B is a first projection, its fiber over any b : B is equivalent to E(b)
 F. The latter
type is merely equivalent to Aut(F), since E(b) is merely equivalent to F. This means w is an
Aut(F)-fiber bundle.

4.2 V-Manifolds
A smooth n-manifold is a space that is locally diffeomorphic toRn, Hausdorff, and second count-
able. A detailed comparison between the notion of V-manifold, which will be introduced below,
and other notions of manifold may be found in (Khavkine and Schreiber, 2017)[3.3, 3.4] and
(Myers, 2022b)[Section 5, p. 40 ff].

The definition ofV-manifolds justmimics the property of being locally diffeomorphic to a fixed
space, which we will only require to be homogenous (as defined in Definition 3.9). A covering
(Ui)i∈I with Ui 
R

n of an n-manifoldM yields a surjective local diffeomorphism∐
i∈I

Ui →M.

By projecting, there is also a local diffeomorphism from U :≡∐
i∈I Ui to R

n. So in total, we have
a span of local diffeomorphisms where the right one is surjective.

U

R
n M

In applications, more general vector spaces might take the role of Rn – so we will follow the
literature and use the letter V in the more abstract definition of a V-manifold below. Instead of
local diffeomorphisms, we will use formally étale maps. This is justified by the external calculation
(Khavkine and Schreiber, 2017) [Proposition 3.2], which shows that formally étale maps between
two smooth manifolds are exactly the local diffeomorphisms.

Definition 4.14. Let V be a homogeneous type. A type M is a V-manifold if there is a span

U

V M

étét

where the left map is formally étale and the right map is formally étale and surjective.

There is one trivial example:
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Examples 4.15. Let V be a homogeneous type, then V is a V-manifold witnessed by the span:

V

V V

idid

Less obvious are the following two ways of producing new V-manifolds. However, without
adding anything to our type theory to make the modality � more specific, we cannot hope for
examples that are not given as homogeneous types. What could be added will be discussed at the
beginning of the next section.

The statement in (a) is a variant of the classical fact that the tangent bundle of a manifold is a
manifold, but in our case, the infinitesimal information is kept separate.

Lemma 4.16. Let V be homogeneous and M be a V-manifold.

(a) The formal disk bundle T∞M of M is a (V ×De)-manifold.
(b) For any formally étale map ϕ :N →M, N is a V-manifold.
(c) If V ′ is a homogeneous V-manifold and N a V ′-manifold, then N is also a V-manifold.23

Proof.
(a) We can pull back the span witnessing that M is a V-manifold along the projection

T∞M →M:

V × De T∞U T∞M

V U M

(pb)

étét

(pb)

étét

By 3.16 (b), we know that the pullback of themapT∞U →U is the projection from the formal
disk bundle ofU. Formally étale maps are preserved by pullbacks by 3.18 and surjective maps
by 4.2, so the induced map T∞U → T∞M is formally étale surjective again.
By 3.12, we know that T∞V =V ×De. So, again by 3.16 (b), we have the left pullback square.
In 3.13, we showed that De is homogeneous, so V ×De is homogeneous by giving it a
componentwise structure.

(b) Pullback along ϕ and composition gives us the following:

ϕ∗U N

V U M

ét

ét

ét
ϕ(pb)

étét

(c) That N is a V-manifold is witnessed by the following diagram using preservation of
surjections and formally étale maps under pullbacks:

UV ×V ′ UN

UV UN

V V ′ N

étét

(pb)

étét étét

�
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One important special case of part (b) of the lemma is that any formal disk Dx of M is a
V-manifold.

In the following, let V be homogeneous and M be a fixed V-manifold. The definition of
V-manifolds entails a stronger local triviality condition on the formal disk bundle ofM than was
discussed in the last section about F-fiber bundles since there has to be a formally étale trivializing
cover.24 This property of the trivializing cover will not be used in the following lemma.

Lemma 4.17.
(a) The formal disk bundle of the covering U is trivial and there is a pullback square:

U × De T∞M

U M

(pb)

(b) The formal disk bundle of M has a classifying morphism τ : M → BAut(De), i.e., there is a
pullback square: -

T∞M De Aut(De)

M BAut(De)

π(pb)

τM

Proof.
1. By 3.16, there is a pullback square for the formally étale map to V :

T∞U T∞V

U V

(pb)

SinceV is homogeneous, by 3.12, its formal disk bundle is trivial. This is preserved by pullback
so T∞U is trivial. The pullback square in the proposition is again given by 3.16.

2. The statement (a) tells us that T∞M is a De-fiber bundle by Definition 4.5. And (b) is just
another way to state that fact, namely Definition 4.9. �

The classifying morphism τM is compatible with formally étale maps in the sense of the
following remark.

Remark 4.18. Let ϕ :N →M be formally étale, then N is also a V-manifold by 4.16. There is a
2-cell given by the differential of ϕ:

M BAut(De)

N

τM

ϕ

τN

dϕ

Proof. We proved in Lemma 3.16 (a) that the differential of a formally étale map is an equivalence
at all points. Applied to ϕ, this fact may be expressed in the following way:

dϕ :
∏
x:N

Dx 
Dϕ(x)
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G→ GL(n) G-structure
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

O(n)→ GL(n) Riemannian metric
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GL+(n)→ GL(n) orientation
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

O(n− 1, 1)→ GL(n) pseudo-Riemannian metric
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SO(n, 2)→ GL(n) conformal structure
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GL(d,C)→ GL(2d,R) almost complex structure
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

U(d)→ GL(2d,R) almost Hermitian structure
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sp(d)→ GL(2d,R) almost symplectic structure
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Spin(n)→ GL(n) spin structure

This yields a 2-cell of the desired type since the formal disks Dx and Dϕ(x) are merely equivalent
to De for all x. �

This will be useful when we work with G-jet-structures in the next section.

4.3 G-Jet-structures
Intuitively, the classifying morphism τM :M → BAut(De) of a V-manifold M describes how the
formal disk bundle is glued together using automorphisms of De. Lifts of τM along the delooping
BG→ BAut(De) of a morphism from a group G will be called G-jet-structures.

Some simple, classical G-structures on R
n-manifolds (or n-manifolds) only consider automor-

phisms of the tangent space, so their delooped automorphism group BGLn(R)25 takes the role of
BAut(De) in our G-jet-structures. For an R

n-manifold, the type BAut(De) will be a delooping of
the infinite jet group J∞n (R). It is known (see e.g., (Kolař and Slovák, 1993, p. 131)), that the ker-
nel of the projection J∞n (R)→GLn(R) is contractible. The projection also has a section given by
extending linear automorphisms to the formal disk. This situation is nice enough, that we expect
no problems with lifting our general classifying map τM :M → BAut(De), to a classical classify-
ing map M → BGLn(R) in the case of Rn-manifolds – which would admit reusing the classical
examples.

There are lots of interesting classical examples of structures on manifolds that can be encoded
as G-structures. We give a list of examples of what group morphisms – which are almost always
inclusions of subgroups – encode structures on a smooth n-manifold as G-structures. Some of the
examples assume n= 2d.

For a definition of O(n)- and GL(d,C)-structures, see (Chern, 1966). Note that in all of the
above examples, G is a 1-group,26 yet our theory also supports higher groups. The string 2-group
and the fivebrane 6-group are examples of higher G-structures of interest in physics. See (Sati
et al., 2009) for details and references. In the classical theory, torsion-free G-structures are to
G-structures what symplectic structures are to almost symplectic structures. We will give a
candidate analog of torsion-freeness for G-jet-structures at the end of this section.

We will now turn to the formal treatment ofG-jet-structures onV-manifolds and the construc-
tion of the moduli spaces of these structures. From now on, let V be a homogeneous type. As we
learned in the last section in 4.17, the formal disk bundle of a V-manifold M is always classified
by a morphism τM :M → BAut(De), where De is the formal disk at the unit e :V . Since this is
the only feature of a V-manifold that we need for the constructions in this section, we will work
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with the following more general class of spaces, where D is an arbitrary type which takes the role
of De.

Definition 4.19. A type M is called formal D-space27 if its formal disk bundle is a D-fiber bundle.

Remark 4.20.
(a) Any V-manifold M is a formal De-space.
(b) Being a formal D-space is a proposition.

Proof.
(a) This is 4.17.
(b) One of the equivalent definitions of D-fiber bundle, 4.10, was directly a proposition:

(P :A→ U is a D-fiber bundle) :≡
∏
x:A

‖P(x)
D‖
�

We are interested in the case D≡De for e :V , meaning that M is a formal De-space if∏
x:M ‖Dx 
De‖. In 4.16, we saw that we can “pullback” the structure of a V-manifold along a

formally étale map. Formal De-spaces behave the same way by virtue of the 2-cell we already saw
in 4.18.

Lemma 4.21. Let M be a formal De-space. For any formally étale ϕ :N →M, N is also a formal
De-space and there is the triangle:

M BAut(De)

N

τM

ϕ

τN

dϕ

Proof. First, the triangle in the statement exists for a formally étale map between any types if
BAut(De) is replaced with the universe:

M U

N

x �→Dx

ϕ

x �→Dx

dϕ

By assumption, we know that (x :M) �→Dx lands in BAut(De). But ϕ is formally étale, so we have
dϕ :∏x:N Dx 
Df (x). The latter may be truncated and composed with τM :∏x:M ‖Dx 
De‖ to
get τN :∏x:N ‖Dx 
De‖. So both maps to U factor over BAut(De). �

From now on, we assume that BG is a connected, pointed type and (∗ =BG ∗)
G. We
will define G-jet-structures28 or reductions of the structure group, a synonym hinting that in a
lot of cases, G is a subgroup of Aut(De). We will not restrict ourselves to reductions to sub-
groups and look at general pointed maps BG→ BAut(De), which correspond to general group
homomorphisms G→Aut(De).

Definition 4.22. Let χ : BG→ BAut(De) be a pointed map and M be a formal De-space. A G-jet-
structure on M is a map ϕ :M → BG together with a 2-cell η : χ ◦ ϕ⇒ τM :
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BG

M BAut(De)

χ

ϕ

τM

η

We write
G-str(M) :≡

∑
ϕ:M→BG

(χ ◦ ϕ⇒ τM)

for the type of G-jet-structures on M.

The special case G= 1 turns out to be interesting – a 1-jet-structure on a formal De-space is
nothing else than a trivialization of the formal disk bundle, like we produced in 3.12 for any homo-
geneous type. This provides us with an example of a 1-jet-structure, whose construction is, in spite
of the name we will give below, not entirely trivial.

Definition 4.23. The trivial 1-jet-structure on V is the trivializationψ :∏x:V De 
Dx constructed
in 3.12:

B1 :≡ 1

V BAut(De)

→�∗ De

_ ∗→�

τV

ψ

Since we have pointed maps, there is a triangle for any χ : BG→ BAut(De):

B1 BG

BAut(De)

∗→�∗

→�∗ De

χ

So we can define a trivial structure in the same way as above for arbitrary G. Let us fix a pointed
map χ : BG→ BAut(De) from now on.

Definition 4.24. Let T :De 
 χ( ∗ ) be the transport along the equality witnessing that χ is pointed.
The trivial G-jet-structure on V is given by ψ ′

x :≡ψx ◦ T :

BG

V BAut(De)

χ

_ ∗→�

τV

ψ′

An important notion that we will introduce at the end of this section is a torsion-free G-structure.
In some sense to be precise, these G-jet-structures will be trivial on all formal disks. Before we can
do this, we need to be able to restrict G-jet-structures to formal disks, or more generally, to pull
them back along formally étale maps.

Definition 4.25.
(a) For M, a formal De-space, and f :N →M a formally étale map from some type N, there is a

map f ∗ :G-str(M)→G-str(N).
(b) For the special case of formal disk inclusions ux :Dx →M and � :G-str(M), we call u∗

x� the
restriction of � to the formal disk at x.
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Construction 1 (of f ∗). Let �≡ (ϕ, η) :G-str(M). Then we can paste the triangle constructed in
4.18 to the triangle given by (ϕ, η):

BG

M BAut(De)

N

χ

τM

ϕ
η

f

τN

df

We define the result of the pasting to be f ∗(ϕ, η) :G-str(N). Or, put differently:

f ∗(ϕ, η) :≡ (ϕ ◦ f , (y :N) �→ ηf (y) • df−1
y ). �

Pulling back G-jet-structures is 1-functorial in the following sense.

Remark 4.26. Let f :N →M, g : L→N be formally étale, and M a formal De-space. Then there is
a triangle

G-str(M) G-str(L)

G-str(N)

(f◦g)∗

f∗ g∗

Proof. By 3.6, we have
d(f ◦ g)x = (df )g(x) ◦ dgx.

In diagrams, this yields a 3-cell between the pasting of

M

N BAut(De)

L

τM

f

τN

g

τL

dg

df

and

M

BAut(De)

L

τM

f◦g

τL

d(f◦g)

This means the 2-cells we paste when applying (f ◦ g)∗ or g∗ ◦ f ∗ are equal, so the functions must
be equal, too. �

Let M be a fixed formal De-space from now on. The final definition of this article is that of
a torsion-free G-jet-structure. The aim is to ask if a G-jet-structure “looks like the trivial G-jet-
structure everywhere on an infinitesimal scale.” To do this, we restrict a G-jet-structure to the
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formal disk at a point and compare it to the trivial G-jet-structure on De. So let us fix a notation
for this structure:

Definition 4.27. Let ξ :G-str(V) be the trivial G-jet-structure from 4.24 and ue :De →V the
formal disk inclusion. Then

ξe :≡ u∗
e ξ

is the trivial G-jet-structure on De.

But a priori, we have no means of comparing G-jet-structures on formal disks with this trivial
structure, so we need formally étale maps from all formal disks to De. For formal De-spaces, we
merely have an equivalence from any formal disk to De. More precisely, by 4.10, we have

τM :
∏
x:M

‖Dx 
De‖.

And by pulling back to the canonical cover w :W →M from 4.12, we get

ωM :
∏
x:W

Dw(x) 
De

This is enough to make the indicated comparison.

Definition 4.28. A G-jet-structure� on M is torsion-free if∏
x:W

‖(ω−1
M,w(x))

∗u∗
w(x)�= ξe‖ ≡: torsion-free(�)

It turns out that even for the trivial 1-jet-structure on V , torsion-freeness is non-trivial. If
the trivial 1-jet-structure is left-invariant as defined below, it is an example of a torsion-free
1-jet-structure. To match classic notions, we assume that the equivalences of the homogeneous
structure are left translations.

Definition 4.29. The trivial G-jet-structure ξ on V is called left-invariant, if the following condition
holds: ∏

x:V
t∗xξ = ξ

If our homogeneous spaceV is a Lie-Group, the trivial 1-jet-structure is constructed the same way
as the Maurer–Cartan form, which satisfies the equation above. Turning this around, we get the
following example:29

Theorem 4.30. Let V be a 1-group and its homogeneous structure be given by left translations, then
the trivial G-jet-structure given by this homogeneous structure is left-invariant.

Proof. We will use the following equation given by the group structure:
ttx(y) = txy = tx ◦ ty

Evaluating at e and using the chain rule 3.6 yields:
d(ttx(y))e = (

dtx
)
ty(e) ◦

(
dty
)
e = (

dtx
)
y ◦ (dty)e = (dty)e • (dtx)y

The latter equality is just moving our equation to BAut(De).

https://doi.org/10.1017/S0960129524000355 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000355


864 F. Cherubini

Now for the trivial G-jet-structure ξ ≡ (
_ �→ ∗, y �→ (

dty
)
e
)
, we can calculate

t∗xξ =
(
_ �→ ∗, y �→ (

dttx(y)
)
e • (dtx)−1

y

)
=
(
_ �→ ∗, y �→

((
dty
)
e • (dtx)y) • (dtx)−1

y

)
= (

_ �→ ∗, y �→ (
dty
)
e
)

= ξ �

Theorem 4.31. Let V be a homogeneous space such that the trivial G-jet-structure is left-invariant,
then the trivial G-jet-structure on V is torsion-free.

Proof. Let tx be the translation to x :V given by the homogeneous structure on V and ξ ≡
(_ �→ ∗, x �→ (

dtx
)
e ) the trivial G-jet-structure on V . Then for all x :V , we have a square of

formally étale maps:

Dx V

De V

ux

ue

dtx tx

By 4.26, we get the following formula:
u∗
e t

∗
xξ = dt∗xu∗

xξ

By 4.30, we can simplify the left-hand side:
u∗
e ξ = dt∗xu∗

xξ

The left-hand side is the trivial structure onDe and we have to identify the right-hand side with the
term (ω−1

M,x)∗u∗
ω(x)ξ from 4.28, where ω= idV . This amounts to an identification dt∗xu∗

xξ = u∗
xξ ,

which is given by 3.12. �

Since torsion-freeness – as we defined it – is a proposition, the type of torsion-free G-jet-
structures is a subtype of the type of G-jet-structures. The latter should be distinguished from
themoduli space of G-jet-structures onM, which is the quotient of the type of G-jet-structures by
the action of the automorphism group ofM. IfM is a 0-type, we could just build this quotient as a
higher inductive type, but this is a bit unsatisfactory and not the most pleasant definition to work
with. A more promising approach is to use that the quotient of an action given as a dependent
type ρ : BG→ U is just

∑
x:BG ρ(x). To make this approach work, the author reformulated a lot of

the original theory in (Wellen, 2017). With the present version, we will see that this construction
works without considerable effort.

To realize the construction of the moduli space as a dependent sum, we need to note that the
definition of G-jet-structures is actually a dependent type over BAut(M).

Lemma 4.32. There is a dependent type G-str : BAut(M)→ U with G-str(M′) being the G-jet-
structures on M′.

Proof. Since anyM′ : BAut(M) is equivalent toM, it is merely a formal De-space. Being a formal
De-space is a proposition, so G-str(M′) is defined as desired. �

This means that we can now construct the moduli spaces of G-jet-structures and torsion-free
G-jet-structures in a nice way:
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Definition 4.33. Let M be a formal De-space and χ : BG→ BAut(De) a pointed map.

(a) The moduli space of G-jet-structures on M is given as:∑
M′:BAut(M)

G-str(M′).

(b) The moduli space of torsion-free G-jet-structures on M is given as:∑
M′:BAut(M)

∑
�:G-str(M′)

torsion-free(�).

Conclusion
While we did not further discuss this, we expect that the homotopy type theory developed here has
interpretation in suitable ∞-toposes equipped with a fibered idempotent∞-monad. Our abstract
construction of moduli spaces of torsion-free G-jet-structures should then have a translation to
a corresponding construction internal to any of these ∞-toposes. When written out in terms of
traditional higher category theory, say as simplicial sheaves, these objects will look rather compli-
cated and be cumbersome to work with. Our abstract language should hence serve to make the
development of higher Cartan Geometry in ∞-toposes tractable.

In addition to having little restrictions on models, the abtract way of working with just one
monadic modality is also very clear and very suitable for formalization, since no axioms have to
be postulated. Yet the author does not believe that this line of work should be continued on the
level of abstraction used in this article. In the recent, more concrete framework from (Cherubini
et al., 2023), admitting synthetic treatment of algebraic geometry, calculations were crucial in
the advances made. The appraoch to cohomology developed there is likely to have a differential
geometric analog. It should be fruitful to find extensions of the common axioms of synthetic dif-
ferential geometry inspired by that research. In such an extension, it might be possible to show
that the fiber bundles defined in Definition 4.5 are actually fiber bundles in the usual sense of local
triviality with respect to a topology.

The idea for the approach to cohomology in (Cherubini et al., 2023) was to use the “higher-
topos” approach30 of just mapping into a higher type, usually an Eilenberg–MacLane space, and
analyzing the 0-truncation of the resulting function type. This is quite easy to implement in homo-
topy type theory and was considered early in the history of the subject.31 One important insight
from (Cherubini et al., 2023) is that the notion of local triviality, which comes from the topology
of a (higher) sheaf topos, is internally accessible by a choice principle that is somewhat similar to
the weakly initial set of covers axiom from (Berg andMoerdijk, 2013). Thus, finding the proposed
extension of synthetic differential geometry amounts to checking if there are choice principles in
differential geometry that can be used to make cohomological calculations. In the synthetic dif-
ferential geometry, there already is an axiom called the “covering principle,” which would be a
consequence of any reasonable choice axiom for synthetic differential geometry.32

The connection to synthetic algebraic geometry does not stop at cohomology – there is also
synthetic algebro geometric work on formally étale maps (Cherubini et al., 2024) which suggests
an extension of the Kock–Lawvere axiom for synthetic differential geometry. If it can be shown
that such an extension is supported by models, the theory in the last of a series of articles by Myers
(Myers, 2022a), (Myers, 2021), and (Myers, 2022b) could be simplified.

The author believes that the best way to continue the work presented in this article is to find an
extension of the usual axioms of synthetic differential geometry and use all of the recent advances
to compute examples of V-manifolds, maps between them, cohomology groups, G-jet-structures,
and their moduli spaces. We expect that when working internally, computations are a lot more
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feasible and should be used to establish correspondences to the classical theory as well as to guide
an expansion of the work in this article into a synthetic higher Cartan geometry.
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Notes
1 This ensures that the nilradical is finitely generated – if this is not the case, the definition of � becomes more complicated.
2 These were the triviality of the formal disk bundle on a homogeneous type, local triviality of the formal disk bundle of a
V-manifolds, and definition of G-structures and torsion-free G-structures.
3 By stating that it is a “square,” we implicitly assume that there is a 2-cell letting it commute, which is considered to be part
of the square. In this particular case, the 2-cell is trivial.
4 For example in (Schreiber) and (Khavkine and Schreiber, 2017).
5 In the literature outside of differential cohesion, there is also the name “deRham stack.”
6 See Definition 2.7.
7 We implicitly assume a hierarchy of universes Ui, but only mention indices if there is something interesting to say about
them.
8 The concepts we will build up in this section are still of interest for other modalities, but this will be less and less true toward
the end of this article.
9 Which we describe in the introduction.
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10 https://github.com/felixwellen/DCHoTT-Agda/blob/master/ImHomogeneousType.agda
11 https://github.com/felixwellen/synthetic-zariski/blob/main/README.md
12 This is in the appendix of (Cherubini and Rijke, 2021)
13 See (Khavkine and Schreiber, 2017, Proposition 3.2) for a precise statement in an intended model.
14 One of the authors of these references, Schreiber, learned the definition from notes of Kontsevich and Rosenberg on
Q-categories and communicated it to the author of this article.
15 Formulation and proof of this remark are a result of a discussion with Hugo Moeneclaey.
16 Internal surjections correspond to effective epimorphisms in a topos, so in a topos of sheaves, the topology does play a
role in the internal surjections.
17 Some of the following definitions of fiber bundles were also used early in the short history of homotopy type theory at
least by Mike Shulman, Ulrik Buchholtz, and Egbert Rijke.
18 Note that in a sheaf topos, this notion corresponds to epimorphisms and not to a pointwise surjective map. In (The
Univalent Foundations Program, 2013, chapter 7), surjectivemaps are called (−1)-connected or also surjective if their domain
and codomain are 0-types. Topos-theoretic analogs are defined in (Lurie, 2009, 6.5.1.10, 5.5.6.8) and are called 0-connective
and (−1)-truncated. In the terminology of (Schreiber) or (The nLab, 2000) and in (Wellen, 2017) surjective maps would be
1-epimorphisms and injective maps 1-monomorphisms.
19 Following a suggestion fromMax S. New http://maxsnew.github.io/.
20 Note that the outer rectangle is a pullback for all dependent types.
21 The author has to thank Ulrik Buchholtz for asking if such a cover always exists.
22 Thanks to Egbert Rijke for pointing this out.
23 This was a question by Ulrik Buchholtz.
24 “Trivializing cover” was defined in Definition 4.5 and Definition 4.6.
25 Note that GLn(R) and other groups appearing in the table below are set-level structures in the intended applications, so
there is no problem with defining them.
26 We call a 0-type with a group structure a 1-group.
27 The name was invented by Urs Schreiber and the author for the present purpose.
28 See the introduction to this Section 4.3 for an explanation of the appearance of “jets” at this point.
29 This example and its presentation are a result of a discussion with Urs Schreiber.
30 The introduction (Lurie, 2009) explains how higher toposes offer a good perspective on cohomology.
31 Written down by Michael Shulman in a blog post that focuses on the connection with the axiom of choice.
32 Pointed out by David JazMyers in a discussion after an online talk. In his comment, Myers also implicitly suggests a choice
principle based on countable covers for the metric topology.
33 This remark was added because the submission process of MCSC requires it.
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