
Beyond Code Generation: An Observational Study of ChatGPT Usage in
Software Engineering Practice

Downloaded from: https://research.chalmers.se, 2025-03-31 17:39 UTC

Citation for the original published paper (version of record):
Khojah, R., Mohamad, M., Leitner, P. et al (2024). Beyond Code Generation: An Observational
Study of ChatGPT Usage in Software Engineering Practice. Proceedings of the ACM on Software
Engineering, 1(FSE): 1819-1840. http://dx.doi.org/10.1145/3660788

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



Beyond Code Generation: An Observational Study of

ChatGPT Usage in So�ware Engineering Practice

RANIM KHOJAH, Chalmers and University of Gothenburg, Sweden

MAZEN MOHAMAD, RISE Research Institutes of Sweden, Sweden and Chalmers, Sweden

PHILIPP LEITNER, Chalmers and University of Gothenburg, Sweden

FRANCISCO GOMES DE OLIVEIRA NETO, Chalmers and University of Gothenburg, Sweden

Large Language Models (LLMs) are frequently discussed in academia and the general public as support tools

for virtually any use case that relies on the production of text, including software engineering. Currently,

there is much debate, but little empirical evidence, regarding the practical usefulness of LLM-based tools

such as ChatGPT for engineers in industry. We conduct an observational study of 24 professional software

engineers who have been using ChatGPT over a period of one week in their jobs, and qualitatively analyse

their dialogues with the chatbot as well as their overall experience (as captured by an exit survey). We �nd

that rather than expecting ChatGPT to generate ready-to-use software artifacts (e.g., code), practitioners more

often use ChatGPT to receive guidance on how to solve their tasks or learn about a topic in more abstract

terms. We also propose a theoretical framework for how the (i) purpose of the interaction, (ii) internal factors

(e.g., the user’s personality), and (iii) external factors (e.g., company policy) together shape the experience

(in terms of perceived usefulness and trust). We envision that our framework can be used by future research

to further the academic discussion on LLM usage by software engineering practitioners, and to serve as a

reference point for the design of future empirical LLM research in this domain.

CCS Concepts: • Software and its engineering; • Human-centered computing → Natural language

interfaces;

Additional Key Words and Phrases: Software Development Bots, Chatbots, Large Language Models (LLMs)

ACM Reference Format:

Ranim Khojah, Mazen Mohamad, Philipp Leitner, and Francisco Gomes de Oliveira Neto. 2024. Beyond Code

Generation: An Observational Study of ChatGPT Usage in Software Engineering Practice. Proc. ACM Softw.

Eng. 1, FSE, Article 81 (July 2024), 22 pages. https://doi.org/10.1145/3660788

1 INTRODUCTION

With the advent of deep learning and Large Language Models (LLMs), arti�cial intelligence and
machine learning have �nally achieved widespread prominence, reaching far beyond academic or
IT circles. Particularly, LLMs such as ChatGPT, Bard, or Co-Pilot are enthralling public perception
with their power to generate human-competitive text. The potential for a tool that can generate
correct text in an arbitrary format (including, for instance, programming language code) in virtually
any context and based on very little input (the "prompt") seems almost unlimited.

Authors’ Contact Information: Ranim Khojah, Chalmers and University of Gothenburg, Gothenburg, Sweden, khojah@

chalmers.se; Mazen Mohamad, RISE Research Institutes of Sweden, Borås, Sweden and Chalmers, Gothenburg, Sweden,

mazen.mohamad@ri.se; Philipp Leitner, Chalmers and University of Gothenburg, Gothenburg, Sweden, philipp.leitner@

chalmers.se; Francisco Gomes de Oliveira Neto, Chalmers and University of Gothenburg, Gothenburg, Sweden, francisco.

gomes@cse.gu.se.

© 2024 Copyright held by the owner/author(s).

ACM 2994-970X/2024/7-ART81

https://doi.org/10.1145/3660788

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 81. Publication date: July 2024.

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

https://creativecommons.org/licenses/by-nd/4.0/
HTTPS://ORCID.ORG/0000-0002-1090-3153
HTTPS://ORCID.ORG/0000-0002-3446-1265
HTTPS://ORCID.ORG/0000-0003-2777-528X
HTTPS://ORCID.ORG/0000-0001-9226-5417
https://doi.org/10.1145/3660788
https://orcid.org/0000-0002-1090-3153
https://orcid.org/0000-0002-3446-1265
https://orcid.org/0000-0003-2777-528X
https://orcid.org/0000-0001-9226-5417
https://doi.org/10.1145/3660788


81:2 Ranim Khojah, Mazen Mohamad, Philipp Leitner, and Francisco Gomes de Oliveira Neto

However, this public prominence has also led to widespread criticism, in terms of both, ethical
and practical concerns. Ethical concerns include aspects such as whether companies (e.g., OpenAI,
Microsoft or Google) have the right to train a machine learning model based on data they have
access to, but do not own. Practical concerns are more centered around the question to what extent
an LLM, which fundamentally can only repeat and re-combine pre-existing text, can ever truly
be helpful for creative tasks such as essay writing or coding — particularly as current-generation
LLMs are prone to "hallucinating" (generating plausible-sounding but inaccurate or downright
non-sensical text) if their training data does not allow them to solve a speci�c task.
Our goal in this paper is to shed light on the latter questions in the context of software engi-

neering. We conduct an observational study of 24 professional software engineers working at 10
companies, who have used ChatGPT (GPT-3.5) for a period of one week in their daily tasks. We
qualitatively analyse their chat protocols as well as their re�ections after the study period, which
they provide in form of an exit survey. Our ultimate study goal is to establish a framework for how
software engineers use LLMs such as ChatGPT, and what factors in�uence their overall experience
in terms of usefulness and trust in the generated advice or artifact. Particularly, we investigate the
following research questions:

RQ1: For what kind of tasks do software engineers use an LLM-powered chatbot such as ChatGPT in

their work?

Our study presents categories of ChatGPT usage, and shows that software engineers used
ChatGPT with three di�erent high-level purposes in mind — besides using it to directly manipulate
artifacts (e.g., generate or �x code), they were also using it for learning as well as to get high-
level guidance (which they then implemented themselves). Interestingly, we found that receiving
guidance is the most common ChatGPT use case in our study. Most of the use cases that we
observed were within the implementation phase of the software development lifecycle. However,
our participants also used it for planning, design, and testing (and then often either as a tool for
learning, or to brainstorm suggestions).

RQ2: What factors in�uence the personal experience of software engineering practitioners when using

ChatGPT, particularly regarding perceived usefulness and trust?

We found that a combination of internal and external factors in�uence practitioner’s experience.
In particular, we saw that the phrasing of prompts (particularly in terms of how much context is
provided), and the participant’s potential biases shaped their satisfaction with the generated results,
and also how much they trusted the LLM. Additionally, some external factors, such as company
policies and legal aspects, also in�uenced the experience of practitioners.

Approximately 75% of participants found ChatGPT helpful to learn, and 50% to reduce repetitive
tasks. However, some participants reported a lack of trust in the results, and thoroughly double-
checked any suggestions by ChatGPT. Particularly the lack of sources or references was seen as a
challenge. Despite this, many practitioners still feel that ChatGPT was a useful tool that can make
them more productive in their work.

We envision that our framework can be used by future research to further the academic discussion
on LLM usage by practitioners, and to serve as a reference point for the design of future empirical
LLM research in this domain. Therefore, we summarise the following contributions from our paper:

• We present a model that categorizes user purpose into three distinct types of interactions
with ChatGPT.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 81. Publication date: July 2024.



Beyond Code Generation: An Observational Study of ChatGPT Usage in So�ware Engineering Practice 81:3

• We introduce a theoretical framework with factors for assessing users’ personal experiences
when engaging with ChatGPT.

• We provide a re-analysis package encompassing quantitative data extracted from dialogues,
including keywords used, dialogue classi�cations, as well as insights from exit surveys
completed by practitioners, such as their levels of trust in ChatGPT.

• We outline a range of implications that summarize how ChatGPT has been utilized in software
engineering tasks, shedding light on its practical applications and challenges in this context.

2 RELATED WORK

In existing work on bots in software engineering, the primary focus was on understanding the
applications of bots [Santhanam et al. 2022] and setting expectations for the types of tasks and
responsibilities that they should be able to do when assisting in development-related activities
[Erlenhov et al. 2019]. With the recent increased popularity of chatbots, the focus has shifted
to studying LLMs, such as GPT-3.5 [Brown et al. 2020] and Codex [Chen et al. 2021] (powering
ChatGPT and Co-Pilot respectively). To the best of our knowledge, no taxonomy of di�erent
applications of such chatbots in software engineering has been proposed yet. However, possible
abilities of ChatGPT have been suggested by Fraiwan and Khasawneh [Fraiwan and Khasawneh
2023]. LLM-powered chatbots have been studied in more speci�c contexts and software-related
activities, for example code generation [Mastropaolo et al. 2023; Nguyen and Nadi 2022; Qian et al.
2023], requirements analysis [Ezzini et al. 2023], test generation [Lemieux et al. 2023], and others
[Surameery and Shakor 2023; Tufano et al. 2023; Wood et al. 2018]. In our work, we do not limit
ourselves to a speci�c type of usage within software engineering, instead covering applications
from all stages of the software development lifecycle.

An obvious question with LLM-based chatbots is to what extent they actually improve developer
productivity. Productivity is notoriously hard to measure, as it depends on complex factors beyond
the number of commits and pull requests. The SPACE framework [Forsgren et al. 2021] presents
di�erent dimensions to consider when assessing a developer’s productivity with respect to the
developer’s satisfaction, well-being, and communicationwithin a team, in addition to the developer’s
activity, e�ciency, and performance. Meanwhile, Storey and Zagalsky [Storey and Zagalsky 2016]
provide a cognitive support framework to investigate the impact of di�erent chatbots on the
developer’s productivity in terms of the chatbot’s e�ectiveness and e�ciency. In our observational
study, we use this framework to design our study material (i.e., the exit survey) and understand the
impact of ChatGPT on our participants during their work. The advantage of Storey and Zagalsky’s
framework over SPACE is that it did not require us to measure productivity before and after the
intervention.
Previous work has studied the helpfulness of chatbots in work�ow-related tasks, such as work

prioritization, scheduling, break reminders, and similar [Kimani et al. 2019]. Recent studies have
been looking into the helpfulness of chatbots in terms of decision-making [Ahmad et al. 2023] and
e�ciency [Peng et al. 2023], which can vary depending on the context. Waseem et al. [Waseem
et al. 2023] explored how ChatGPT can support undergraduate students in learning and improving
software development skills. In general, previous research has found that the experience of using a
chatbot in software engineering can be e�ortful and frustrating [Weisz et al. 2022], but also helpful
in certain aspects like learning and simple software activities [Waseem et al. 2023]. However, there
has been limited research on how chatbots can support engineers in core software engineering
tasks, such as requirements engineering, testing, or coding.

Understanding the way software engineers interact with chatbots is important to have a better
picture of what can impact productivity, e�ectiveness, and e�ciency of chatbots. We are aware
of one study that explored the types of interactions between developers and a code-generating

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 81. Publication date: July 2024.



81:4 Ranim Khojah, Mazen Mohamad, Philipp Leitner, and Francisco Gomes de Oliveira Neto

chatbot (Co-Pilot) by Barke et al. [Barke et al. 2023]. They introduce two interaction models of
developers interacting with Co-Pilot, namely: acceleration mode, where developers use Co-Pilot
to write things they already know faster, and exploration mode, where the developer explores
solutions suggested by Co-Pilot. We do not follow the same interaction models but rather explore
our own, as our population is wider (not only developers working directly on code). Barke et al.
also conducted their study primarily using students, whereas we exclusively rely on industrial
practitioners using ChatGPT in their daily work.

3 METHODOLOGY

The goal of this study is to understand the personal experience of software engineers when
interacting with ChatGPT. It aims to identify the key factors that a�ect the interaction’s usefulness
and the level of trust users have in ChatGPT, consequently in�uencing the overall user experience.
We perform an observational study as illustrated in Figure 1. Initially, we conducted a pilot study to
assess the feasibility of the research and re�ne the artifacts used with participants, such as training
sessions, instructions about submitting their data, and an exit survey. Next, we detail those steps.

Selecting
participants

Collecting chats

Collecting survey
responses

Quantitative
analysis

Classifying
dialogues

Personal
Experience
Framework

Data Collection Data Analysis

Pilot study Chat logs

Survey
responses

Interpretative
Phenomenological

Analysis

High-level intents
(dialogue types)

Fig. 1. The main steps followed in our observational study.

3.1 Participants and Data Collection

The data collection process consists of the (i) selection of participants to join the study; and the (ii)
collection of their data. The participants interacted with ChatGPT (powered by GPT-3.5) over the
course of 5 business days between March and July 2023 as part of their normal work. Then, (iii)
they sent us the logs of all chats and �lled out an exit survey to capture their experience. Next, we
detail how we selected participants and collected their data.

Selecting participants: To initiate the study, we contacted 12 software organizations of varying
sizes in three counties in Europe, inviting employees with diverse software engineering backgrounds.
We conducted a brief training session introducing ChatGPT’s architecture and demonstrating its
capabilities and limitations in di�erent domains (including software engineering) to ensure unbiased,
domain-agnostic interactions. During this session, attendees received a consent form to sign up
for data collection, resulting in 42 registrations across 10 organizations that expressed interest in
participating in the study. We follow our organisation’s ethical guidelines ensuring participant
anonymity, and allowing them to opt-out anytime during the study. Ultimately, 25 participants
started the study out of which 24 participants completed the exit survey and shared their chat data.
We present an overview of the participants in Table 1 including their roles, work responsibilities,
and domains. We classify the size of their organisation using the categories recommended by the
European Commission [Commision 2021].
Chat protocols: From 24 participants, we collected 130 chats in a web archive form (.mhtml).

The web archive format preserves the content of the web page (i.e., ChatGPT’s web interface).
This allowed us to obtain unalterable records of the chats and mitigate potential bias from the
participants to remove parts of their chat logs. For each participant, the chats are ordered by the

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 81. Publication date: July 2024.



Beyond Code Generation: An Observational Study of ChatGPT Usage in So�ware Engineering Practice 81:5

Table 1. Demographic information about the participants. We use IDs to refer to di�erent participants and
their corresponding organisations. The sizes used are Startup, Small and Medium enterprises (SME), and
Large enterprises.

ID Role Responsibilities Org. ID Org. Size Domain

P1 Software Tester UX inspections, usability and testing A SME Testing

P2 Test Engineer Test case execution A SME Testing

P3 Test Engineer Test planning, design, and execution A SME Testing

P4 Software Engineer Development and maintenance B SME E-learning

P5 Software Engineer Architecture and platform development B SME E-learning

P6 Full-stack Developer Development of web app’s new features B SME E-learning

P7 Product Manager Managing Frontend Digital Dep. C Startup Medical

P8 Cloud Architect Architect applications and infrastructure C Startup Medical

P9 Software Engineer Development and maintenance C Startup Medical

P10 DevOps Engineer Manage and maintain the pipeline C Startup Medical

P11 Software Developer Front-end development D Startup Gaming

P12 Game Developer Programming game logic E Startup Gaming

P13 Software Developer Development, code review and testing F Large E-commerce

P14 Group Manager Managing software development teams G Large Automotive

P15 Software Engineer Mobile app feature development G Large Automotive

P16 Android Developer Development and maintenance G Large Automotive

P17 System Leader System Design G Large Automotive

P18 Sub-portfolio Manager Creation of roadmaps G Large Automotive

P19 Product Manager Creation of roadmaps G Large Automotive

P20 Android Developer Mobile app feature development G Large Automotive

P21 Software Engineer Development H Large Consultancy

P22 Head of Operations De�ne and establish processes I SME Consultancy

P23 Software Developer Development and requirement analysis I SME Consultancy

P24 Software Engineer Development and requirement analysis J Large Automotive

date to better understand how the dialogues evolved throughout the study period. We manually
separate each chat into dialogues, where a dialogue is a series of consecutive prompts exchanged
between the user and the chatbot on a similar topic or track. This resulted in 208 dialogues that were
then �ltered to 180 dialogues related to software engineering. The excluded dialogues consisted of
casual chit-chat or queries unrelated to software engineering.
Exit survey: Based on our research questions, we devised a survey to capture the overall

experience and thoughts of the participants after completing the study. The survey covers �ve
main elements: (i) The overall experience; (ii) speci�c scenarios where participants thought that
their interaction went well (or not well); (iii) feeling of trust in ChatGPT’s answers; (iv) perceived
e�ectiveness and e�ciency of ChatGPT; and (v) learned lessons from their interactions and future
usage of ChatGPT. The overall experience, the scenarios, and the takeaways were recorded in open-
ended questions. Trust-related questions varied between Likert scale answers, multiple-choice,
or open-ended questions. The questions about e�ectiveness focus on the feeling of achieving
meaningful goals, whereas e�ciency targets the feeling of “doing things faster”. Those questions
were guided by a cognitive support framework proposed to trigger re�ections about the impact of
bots in productivity [Storey and Zagalsky 2016].

3.2 Data Analysis

Quantitative analysis: We performed quantitative analyses on our data, consisting of descriptive
statistics and visual analysis of the survey closed questions (e.g., diverging plots). We also aggregate

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 81. Publication date: July 2024.



81:6 Ranim Khojah, Mazen Mohamad, Philipp Leitner, and Francisco Gomes de Oliveira Neto

Is there a practical problem?

Is the user's goal to get an advice or
guidance on how to do something?

Is there a development of
understanding?

NoYes

Is the user asking for an
executable solution? Training Expert

Consultation

Yes No Yes No

Yes No

Expert
Consultation

Artifact
Manipulation

Expert
Consultation

Fig. 2. Decision tree to guide dialogue classification.The tree starts with determining if there is a practical
problem. If yes, it checks if the user’s goal is to be guided. If yes, it leads to Expert Consultation; if not, it
checks if the user is looking for an executable solution leading to Artifact Manipulation or Expert Consultation.
If there is no practical problem initially, it checks for a development of understanding in the dialogue leading
either to Training or Expert Consultation.

the volume of dialogues based on the number of prompts per dialogue and how they evolve over
time. This analysis aimed to identify inconsistencies in our data, such as identifying outliers (e.g.,
participants who interact substantially more often than others). In turn, we use qualitative analysis
to investigate the content and nature of the dialogues. Our analysis focuses on the �ow of the
dialogues and the overall user experience rather than the accuracy or the correctness of ChatGPT’s
responses.

Dialogue classi�cation: The process of classifying the dialogues followed a protocol consisting
of three main steps: The �rst step was done by three authors, and it involved (i) a pre-study that
aimed to de�ne the dialogue types that will be used for classi�cation. The authors started with a
literature review of existing dialogue types. Next, over three plenary meetings, the authors used
the dialogue types from the literature to separately annotate a subset of our chat logs, compare
the annotations, and discuss how the types can be adapted to software-related interactions. This
process was repeated in every meeting until inconsistencies were resolved.

After the three meetings, the authors agreed on the dialogue types byWalton and Krabbe [Walton
2010], selected “Deliberation”, “Expert Consultation”, and "Didactic" dialogue types, and adapted
their de�nitions to �t the nature of interaction with ChatGPT. One challenge was understanding
the distinction between certain dialogue types, for example, delimiting between Expert consultation
and Didactic when trying to characterize “learning” in a dialogue.
To address this challenge, we moved to the next step where the three authors (ii) compiled the

outcome of the three meetings and annotation sessions and created a decision tree as a guide for
classi�cation (Figure 2).

Using this schema, the �rst two authors had several sessions together and (iii)classi�ed all of the
dialogues at the same time. To better capture the semantics of the software engineering domain,
we refer to dialogues in the “Deliberation” category as “Artifact Manipulation”, and “Didactic” as
“Training”. We retained the term "Expert Consultation".

Interpretative phenomenological analysis: Interpretative phenomenological analysis is a
research method that examines personal lived experiences in-depth, emphasising understand-
ing of the individual’s own terms and seeking patterns across cases through interpretative pro-
cesses [da Silva Cintra and Bittencourt 2015; Eatough and Smith 2017]. We performed the analysis
of the chats and the survey in parallel in order to link the dialogues and their reported experience.
The purpose of this analysis was to gain a better understanding of the overall experiences of the
participants when interacting with ChatGPT. For each participant, we looked at the open-ended

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 81. Publication date: July 2024.



Beyond Code Generation: An Observational Study of ChatGPT Usage in So�ware Engineering Practice 81:7

questions in the survey regarding (i) the overall experience; (ii) a scenario where ChatGPT was
helpful; and (iii) a scenario where ChatGPT was di�cult to use. In parallel to that, we looked at the
chats for each participant ordered from oldest to most recent in order to see how the dialogues
evolved and to attempt to capture their thoughts and feelings during the interactions. For instance,
we captured the frustration that was deducted from negative feedback to ChatGPT along with the
description of the scenario in point (iii) above. This allowed us to better understand the journey
and mindset of di�erent participants when interacting with ChatGPT.

4 FINDINGS

In this section, we introduce a theoretical framework, shown in Figure 3, to assess the personal
experience of an interaction with ChatGPT. This framework is based on a qualitative analysis of
the dialogues that our participants had with ChatGPT, as well as on the analysis of the exit surveys
submitted by our participants. A dialogue (or interaction), in this context, is meant to include an
initial prompt (and answer) as well as potential follow-ups triggered by the user.

Artifact
manipulation

Expert
consultation

Training

Purpose Personal
Experience

Trust

Internal Factors

Usefulness

Organization

Company's policyLegal aspects Source of
knowledge

Chatbot

External Factors

Prompting Context

Personality and expectations

Fig. 3. A theoretical framework of the factors that influence the personal experience of interactions with
ChatGPT in industrial so�ware engineering.

At the core of the framework is the user’s high-level purpose with the interaction. Based on
our dialogue classi�cation scheme (Figure 2), we identify three distinct dialogue types (artifact
manipulation, expert consultation, and training), which fundamentally impact a user’s experience.
Additionally, we �nd three (user) internal factors, which include how the prompt is phrased
and the contextual information provided in the prompt, as well as the user’s personality and
expectations. Orthogonally, we identify three external factors (i.e., factors not directly related to
the user or purpose), which include legal aspects, such as OpenAI’s data policy on how the prompts
are stored and used, ChatGPT’s source of knowledge (the current model that powers ChatGPT
has limited knowledge until 2021), and the user’s company’s policies with regard to the usage of
ChatGPT or generative AI in general. Purpose, internal, and external factors together steer the
personal experience of the user, which we break down into two concrete elements: the perceived
usefulness of the interaction, and how much the user trusts the chatbot. Next, we detail the four
main elements in our framework.

4.1 Purpose

Our study participants primarily use ChatGPT in one of two fundamental ways: (i) for artifact
manipulation, i.e., in a goal-oriented manner with the expectation that ChatGPT will produce
or modify a concrete solution or artifact, such as program code; or (ii) for information seeking.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 81. Publication date: July 2024.



81:8 Ranim Khojah, Mazen Mohamad, Philipp Leitner, and Francisco Gomes de Oliveira Neto

We further distinguish two subtypes of information seeking, namely expert consultation, where
the user seeks problem-speci�c guidance, but not necessarily a tangible solution, or for training,
where the user’s goal is predominantly to learn rather than to solve a speci�c problem. Most of our
participants showed varied purposes when chatting with ChatGPT, but many had a predominant
usage pattern, allowing us to identify keyword patterns and user reactions to ChatGPT’s responses.
Therefore, those di�erent purposes directly in�uence many of the users’ internal factors, such as
how the prompt is phrased, as well as the perceived usefulness of the interaction and trust that
users have in ChatGPT.
Table 2 lists how frequent the three high-level purposes were among our study population.

The column "Participants" lists how many participants used ChatGPT with this purpose at least
once. The table also reports on average length of interactions in number of prompts, and the
standard deviation of this length. Expert consultations are the most common use of ChatGPT
(62% of dialogues and used at least once by all but two of our participants), followed by artifact
manipulation. The training purpose was less common. This is unsurprising given our study’s focus
on workplace usage, where many sought assistance with speci�c work tasks rather than engaging
in broader learning. However, it’s worth noting that 20% of participants (5 out of 24) engaged in
task-independent learning. Additionally, we observe that training-focused dialogues tend to be
longer than the ones directed at a speci�c work task. Finally, the signi�cant variation in dialogue
length arises from how each participant interacts with ChatGPT. For example, some participants
consistently ask follow-up questions, while others abruptly end their conversations. Training
dialogues exhibit less variation, indicating a more consistent discourse in these interactions.
Table 3 displays when in the software development lifecycle ChatGPT was used by our partici-

pants. Unsurprisingly, most interactions (104, or about 58%) were during implementation. However,
we have seen usage of the tool in all phases of the lifecycle. Additionally, approximately 20% of
dialogues were not clearly associated to any speci�c phase in the software development lifecycle
(e.g., side tasks, see Section 4.1.1 below).

Finding: Each participant showed varied intents throughout their week using ChatGPT.
Most of our participants are looking for more conceptual guidance rather than concrete
solutions (e.g., code or test cases) from ChatGPT. Most interactions with ChatGPT are in the
implementation phase, however, our participants have also used the tool in all other phases of
the software development lifecycle.

We now discuss the three high-level purposes in more detail. Figure 4 schematically depicts the
subtypes we identi�ed for each high-level purpose.

4.1.1 Artifact Manipulation. Artifact manipulation dialogues are characterized by the use of imper-
ative forms to ask ChatGPT to perform an action or a task e.g., generate, refactor, �x, etc. Artifact
manipulation represents about one third of all interactions in the study period.

Table 2. Descriptive statistics of the purpose of ChatGPT interactions, such as the mean length of dialogues
and its standard deviation (SD). The column “Participants” shows how many participants had at least one

interaction with this high-level purpose during the observation period.

Purpose Interactions Participants Avg. length SD

Artifact Manipulation 57 (31.7%) 17 (70.8%) 3.12 3.86

Expert Consultation 112 (62.2%) 22 (91.6%) 2.47 2.60

Training 11 (6.1%) 5 (20%) 4.00 1.84

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 81. Publication date: July 2024.



Beyond Code Generation: An Observational Study of ChatGPT Usage in So�ware Engineering Practice 81:9

Table 3. Number of dialogues per purpose and stage in the so�ware development lifecycle

Purpose Unspeci�c Planning and Analysis Design Implementation Testing

Artifact Manipulation 12 6 1 34 4

Expert Consultation 21 5 5 69 12

Training 2 3 2 1 3

Total 35 (19.4%) 14 (7.8%) 8 (4.4%) 104 (57.8%) 19 (10.6%)

Information
retrievalProblem solving

Decision making

Drill-down
learning

Learning by
example

TrainingArtifact
Manipulation

Expert
Consultation

Artifact
modification

Artifact
generation

Brainstorming Side tasks

Information
seeking

Fig. 4. Taxonomy of purposes for the usage of ChatGPT in so�ware engineering.

Artifact manipulation interactions are usually short — users seem to either receive the results
they are expecting quickly or give up. However, the dialogue was longer in a few cases where users
were persistently trying (and failing) to get ChatGPT to provide a source for their answer. If users
provide feedback to ChatGPT during an artifact manipulation interaction, it is usually negative,
indicating problems with the generated solution. Concrete tasks are usually, but not exclusively,
implementation-related, arguably because generating concrete code is a fairly obvious use case for
generative AI (see also Table 3), as well as due to the high ratio of software developers among our
study population (see also Table 1).

Participant 21: "Rewrite this in functional Java 8: [code]?"

We have identi�ed four types of artifact manipulation: (i) generating artifacts, (ii) modifying
artifacts, (iii) brainstorming, and (iv) handling side tasks (see also Figure 4). While all four involve
creating software artifacts at di�erent stages of software development, they vary in the degree of
creativity and originality expected in ChatGPT’s responses.
Participants aiming for artifact generation used ChatGPT to create various types of artifacts

such as code, software architecture, test cases, and even development processes, from scratch.
Typically, participants provide descriptions or constraints as to what should be created. In con-
trast, participants wishing for artifact modi�cation often provide an existing artifact to be
improved, refactored, or even �xed. For instance, we saw that bug-�xing requests to ChatGPT are
usually accompanied by an error message, whereas refactoring requests come with a requirement
(e.g., call certain libraries). Below, the dialogues from Participant 7 (generation) and Participant 6
(modi�cation) contrast both types of purpose.

Participant 7: "Create a full agile process for a 2-member development team (a senior backend developer

and a junior full stack developer). What meetings are needed every week, 2 weeks and month?"

ChatGPT: "Here is an Agile process that could be followed ..."

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 81. Publication date: July 2024.



81:10 Ranim Khojah, Mazen Mohamad, Philipp Leitner, and Francisco Gomes de Oliveira Neto

Participant 6: "The following code snippet is giving me an error [code] [error] Can you �x it"

ChatGPT: "Yes, the error indicates that [...] To �x the error ... [code]"

Participant 6: "The [function name] function that you called does not exist"

ChatGPT: "I apologize for the confusion. You are correct ... [corrected code]"

Note that, while artifact generation requires speci�cations of what to generate, artifact modi�ca-
tion requires providing the actual artifact to modify (in addition to some requirements of what to
change). This can be problematic in a work context, as sharing production code with third parties
may be against company policy. On the other hand, we have observed that artifact manipulation
requests do not depend so much on providing extensive "additional context" (e.g., other parts of
the system, dependencies, etc.), which is often required to generate correct, working code artifacts
from scratch. This indicates that there may be room for more integrated generative AI tools, such
as Co-Pilot, to support artifact generation.

Brainstorming is important in software engineering, as it yields original ideas used for require-
ments elicitation, architectural solutions, or software innovation. Notably, the goal of brainstorming
in this sense is to generate multiple alternative working artifacts, not just ideas or a single ideal
solution. Some of our study participants (e.g., Participant 18) used ChatGPT as a brainstorming
engine in this sense, for example, to formulate concrete user stories in the planning and analysis
stages of their projects. Finally, participants also utilized ChatGPT to streamline potentially time-
consuming or labor-intensive side tasks (e.g., Participant 1). These tasks encompass activities like
�le organization, re�ning documentation wording, and more.

Participant 18: "Can you brainstorm user stories for a [type of user] wanting to connect two phones

to a [software system]"

ChatGPT: Certainly, here are a few user stories ...

Participant 1: "Could you make 20 codes containing 4 numbers and 2 letters?"

ChatGPT: "Sure, here are 20 codes consisting of 4 numbers and 2 letters: ..."

The use cases above illustrate the nuances in the participant’s experience when using ChatGPT to
manipulate artifacts, indicating that LLM usage is signi�cantly broader than pure code generation
even within the artifact generation purpose. We have seen examples ranging from �xing existing
code to inspiration-focused dialogues intended to originate ideas. The responses to our exit survey
also show the impact of those varying expectations on the participants’ perceived usefulness of
ChatGPT.

Findings: Participants employed ChatGPT for artifact manipulation, ranging from practical
solutions rooted in existing artifacts to idea generation through inspiration-focused dialogues.

4.1.2 Expert Consultation. Seeking expert consultation is, by far, the most common purpose of
interactions in our study (62%). Our participants often ask for resources to assist them in their
work tasks, such as instructions, advice, or detailed information. Unlike the artifact manipulation
purpose, the goal of these interactions is not to obtain a concrete solution, but rather a nudge in
the right direction. In that sense, our participants often utilize ChatGPT as a "virtual colleague"
they can turn to for high-level advice or as a more expedient alternative to searching the Internet.

Participant 12: "What is a good data structure to use for [use case]?"

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 81. Publication date: July 2024.



Beyond Code Generation: An Observational Study of ChatGPT Usage in So�ware Engineering Practice 81:11

Expert consultation dialogues are often short. Our participants prefer “how to” questions for this
purpose, hence indicating the desire for guidance towards a solution rather than a ready-to-use
artifact. This also aligns with existing work [dos Santos et al. 2020], which also observed that
developers are interested in being guided in their tasks rather than having a chatbot that can
execute tasks on their behalf.

Participant 21: How do I read the following [violation]?

The prompts in our study revealed an underlying concern to understand the steps required to
reach a solution. This is an important distinction to the training purpose, where follow-up prompts
reveal the participant’s desire for learning. We observed that expert consultation interactions have
three main purposes: (i) solve problems, (ii) retrieve information, and (iii) make decisions (see also
Figure 4).

Practitioners aiming to solve problems utilized ChatGPT to get instructions on implementing
solutions, rather than expecting a concrete solution artifact (as exempli�ed by Participant 6).
Alternatively, participants use ChatGPT to retrieve information usually found in discussion
forums, or long articles. Participants found querying ChatGPT to be a more time-e�cient alternative
to reading these primary sources, especially when seeking commands for tools such as git or
clarifying the syntax of programming APIs. Some participants (e.g., Participant 14) also used
ChatGPT to retrieve basic facts or de�nitions of software engineering concepts, techniques, and
technologies.

Participant 6: "How can I perform an action in a web application in only one tab [while] multiple tabs

[are] open"

ChatGPT: "Here’s how you can perform an action in a speci�c tab: [steps to follow]"

Participant 14: "what is kanban?"

ChatGPT: "Kanban is a visual project management tool and methodology that ..."

Many practitioners also sought ChatGPT’s recommendations for decision-making. In these
interactions, ChatGPT would either provide a single recommendation upon request or o�er mul-
tiple suggestions. While some preferred multiple recommendations, many participants would
subsequently ask ChatGPT to select the most suitable recommendation for their context.

Participant 3: "Give me example of a good test approach for API testing"

ChatGPT: "A good test approach for API testing typically involves a combination of manual and

automated testing [...] This can be done using tools such [...]"

Participant 3: "What programming languages are most suitable for those test tools that are listed?"

These use cases are interesting, in that ChatGPT mostly provides a, potentially faster, alternative
to reading or searching the Internet. That is, ChatGPT does not allow our participants to solve a
problem that they otherwise would not have been able to solve, but potentially provides a more
productive solution. This is similar to how existing research has shown bots in software engineering
to be used [Erlenhov et al. 2020].

Findings: The most common use case for ChatGPT is getting expert guidance on a speci�c
topic. In this sense the tool can serve as a, potentially more productive, alternative to asking a
colleague or searching the Internet.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 81. Publication date: July 2024.



81:12 Ranim Khojah, Mazen Mohamad, Philipp Leitner, and Francisco Gomes de Oliveira Neto

4.1.3 Training. Lastly, the training purpose di�ers from expert consultation as participants are
not seeking a direct solution to a practical issue. Instead, they aim to acquire broader theoretical or
practical knowledge related to a work task. Although these interactions are relatively infrequent
(approximately 6% of all interactions), they typically result in longer conversations featuring
multiple follow-up queries to clarify previous answers. Participants who seek to learn often con�rm
their comprehension of ChatGPT’s responses, request further explanations or examples, or pose
additional questions to expand the scope of their learning.

Participant 1: "describe API as simple as you can"

ChatGPT: "API stands for Application Programming Interface. It is a way ..."

Participant 1: "And how do I test API?"

ChatGPT: "There are many tools available, such as Postman, SoapUI, or Insomnia"

Participant 1: "Postman or SoapUI?"

ChatGPT: "Here is an overview ..."

Participant 1: "how to write tests in postman?"

Dialogues showing a training intent often show a progression from broader initial questions
to increasingly detailed ones. This re�ects how participants’ understanding of the subject matter
grows through the chatbot’s responses. Dialogues with a training purpose are diverse; we found
them in dialogues that belong to all di�erent stages in the software development life-cycle, with
fewer implementation-related questions than for other purposes (Table 3).
We observe that participants employ two distinct learning strategies when using ChatGPT

(Figure 4): (i) drill-down learning and (ii) learning by example. In drill-down learning, participants
typically initiated the conversation with a general prompt or a request for a relatively abstract
piece of information or de�nition. Subsequently, they would seek additional details or explanations
related to the information provided in the response.

Participant 9: "How to automate testing?"

ChatGPT: "Automating testing can help improving [...]. Here are some general steps you can follow 1.

[...]. 2. Select a testing framework [...]"

Participant 9: "What are testing frameworks?"

ChatGPT: "Testing frameworks are software tools or libraries that [...]. Some popular testing frameworks

include JUnit, Selenium ..."

Participant 9: "How can I con�gure JUnit?"

ChatGPT: "Con�guring JUnit involves ..."

On the other hand, participants adopting the learning by example approach generalize concepts
by examining concrete cases that illustrate those concepts. Unlike the previous method, which
began with abstract concepts and moved towards speci�c solutions, the example-based approach
allows participants to explore a wide range of related concepts rather than delving deeply into
de�nitions. The following example demonstrates how Participant 18 initially inquired about a
speci�c artifact but ended up showing curiosity about the components that make up the desired
artifact.

Participant 18: "What belongs to a software roadmap?"

ChatGPT: "Typically, a software roadmap includes the following elements: 1. [...] 2. Vision [...] 4. Release

Schedule [...] 7. Metrics: Key Performance Indicators (KPIs) that will be used to measure the success of

the software project. 8. [...]"

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 81. Publication date: July 2024.



Beyond Code Generation: An Observational Study of ChatGPT Usage in So�ware Engineering Practice 81:13

Participant 18: "can you give me some good example of metrics to measure the success of the software

project?"

ChatGPT: "There are many metrics that depend on the goal of the software project [...]. Here are some

metrics that are commonly used [...]."

Participant 18: "Can you give some examples of goals for a software roadmap?"

ChatGPT: "Some examples of goals for a software roadmap might include: ..."

Participant 18: "Can you give some examples of vision for a software roadmap?"

ChatGPT: "Some examples of vision for a software roadmap might include: [...] The vision should help

guide the development of key features and priorities."

Participant 18: "Can you give examples of key features?"

ChatGPT: "Key features ..."

Participant 18: "Can you give some examples of release schedule?"

ChatGPT: "Some examples of release schedule for a software roadmap might include: ..."

One key challenge in analysing the participants’ dialogues was to distinguish between the intent
of training and expert consultation. However, participants who engaged in training interactions
reported a more consistent perception of “learning something useful” from ChatGPT compared to
those using it as an expert consultant in the exit survey.

Findings: Dialogues with a training purpose are infrequent, but often longer than other
interactions. Participants use ChatGPT predominantly to learn in phases other than the
implementation phase.

4.2 Internal Factors

Internal factors are aspects of the chatbot user, such as their personality or how they prompt
ChatGPT. These factors, along with the purpose, directly in�uence the perceived quality of the
outcome of the interaction.

4.2.1 Prompts. Participants engage with ChatGPT through prompts, and the way they structure
these prompts a�ects ChatGPT’s responses. We analyzed prompt structure in terms of linguistic
structure (e.g., grammar and morphology) and prompt content, such as including snippets of code to
be �xed. Although the majority of users constructed grammatically correct and coherent sentences,
some simply combined keywords without using conjunctions or verb in�ections when interacting
with ChatGPT, resembling a search engine query (e.g., Participant 11). In their exit survey, some
participants (e.g., Participant 2) even drew comparisons between their interactions with ChatGPT
and using Google search.

Participant 11: "align text left blender python"

ChatGPT: "To align text left in Blender using Python, you can use ..."

“I found that the answers were easier to follow than the ones I got from Google.” (Participant 2).

We found no disparity in perceived usefulness between participants who employed keywords and
those who formulated correct sentences, even though the latter approach yielded more accurate
answers from ChatGPT. Instead, we observed that the presence or absence of project-speci�c
information, referred to as contextual information or simply context, had a more signi�cant
in�uence on participants’ overall experiences. This contextual information includes project-related
details such as product requirements, code snippets, domain-speci�c constraints, and process
structure, shared by users during their interactions. It should be noted that some participants had

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 81. Publication date: July 2024.



81:14 Ranim Khojah, Mazen Mohamad, Philipp Leitner, and Francisco Gomes de Oliveira Neto

privacy concerns (or, relatedly, concerns whether sharing information with ChatGPT would be
allowed according to their company’s policy) and hence opted not to provide su�cient purpose
when asking domain-speci�c or technical questions.

In expert consultation, context is less commonly provided (and often not as necessary, as users
are not expecting a directly usable artifact). If context is provided in these interactions, it is often
in dialogues that aim to explain a piece of code or an error message (where the relevant artifact
is provided), or decision making. Participants sometimes specify a role or persona for ChatGPT.
We assert that such prompt structure (“As a X, do Y”) is employed by some participants because it
aligns with the common phrasing of ChatGPT examples found on the Internet. We illustrate both
types of context in the dialogues below, where Participant 7 provides project-speci�c conditions,
and a role, that ChatGPT should consider in its answer.

Participant 7: "what is the best SaaS solution for the [global area] from a logistics perspective?"

Participant 7: "As a software engineer, to what extent would Smoke testing help expose vulnerabilities?"

Our data indicates that the purpose behind a dialogue strongly in�uences the amount and type
of context participants provide. For example, in training interactions, participants naturally provide
less context as these dialogues with ChatGPT are exploratory in nature. When asking ChatGPT to
generate artifacts, participants rarely included su�cient context in their prompts (in the form of
requirements or applicable constraints on the solution). In contrast, modifying an artifact implies
providing it and often results in improvements in perceived usefulness. Additionally, we noticed
that participants often interrupted their dialogues shortly after telling ChatGPT that the answer did
not align with the provided contextual information (e.g., refactored code with compilation errors),
indicating that these users have given up on the interaction (or ChatGPT in general).

Findings: Many participants struggle with providing su�cient context, either because they
do not know what context to provide or because providing it may violate company policy.
These users sometimes end up frustrated at these perceived failings of ChatGPT, terminating
interactions mid-way.

4.2.2 Personality and Expectations. Other important factors in�uencing the participants’ personal
experience are their opinion of AI in software engineering, how much they know about generative
AI, and their tolerance to inaccuracies in responses. Some participants are optimistic and aware of
ChatGPT’s limitations, hence expecting occasional errors and inaccuracies. Those participants focus
more on ChatGPT’s strengths and adapt their usage accordingly. In their exit survey, participants
who use the tool with a training intent express positive sentiments more often (e.g., Participant 22).

“I am still discovering its powerful ability to generate information. The speed in which it does that and

the human-like attentiveness are astonishing.” (Participant 22).

When participants without prior experience with ChatGPT approached the tool, they usually
initially tested the waters by exploring questions unrelated to their work, or via questions that they
already know the answer to. Oftentimes, these users expect complete and fault-free responses, and
end up judging ChatGPT’s answers as unsatisfactory (e.g., Participant 16). We also observed that
many participants asked for sources, which ChatGPT cannot accurately provide by construction1,

1https://www.microsoft.com/en-us/microsoft-365-life-hacks/writing/using-chatgpt-for-source-citation

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 81. Publication date: July 2024.

https://www.microsoft.com/en-us/microsoft-365-life-hacks/writing/using-chatgpt-for-source-citation


Beyond Code Generation: An Observational Study of ChatGPT Usage in So�ware Engineering Practice 81:15

leading to scepticism regarding ChatGPT’s answers. Sceptical participants also often avoid adding
necessary context so as to not share potentially sensitive information.

“Anyone who lacks knowledge of the core basics and principles of the subject topic should be very

discouraged from using [ChatGPT].” (Participant 16).

Findings: Sceptical participants are often con�rmed in their believe that ChatGPT is not
useful for their work (e.g., because of inaccurate responses to test queries), and stop using
it quickly. Participants that use ChatGPT for training are often more happy with the results
they receive.

4.3 External Factors

We identi�ed three external factors in�uencing our participants’ experiences. Firstly, some partici-
pants raised legal and ethical concerns, particularly regarding the data used to train the AI and the
storage and utilization of prompts, which sometimes contain sensitive information. Secondly, a
minority expressed concerns about the timeliness of ChatGPT’s knowledge sources, suggesting a
more positive experience would result from access to information beyond September 2021. Thirdly,
the company policies for some of our participants (e.g., Participant 2) forbade using generative AI
to generate code or requirements, hence hindering the participant’s experience.

“I can’t really ask ChatGPT to help me analyze requirements since I am not allowed to share that

information outside my company.” (Participant 2).

In some cases, we also notice that participants seemed to be unsure of what exactly they are
allowed to use ChatGPT for, often opting for a cautious approach. However, some participants
seem surprisingly unconcerned with intellectual property rights issues, freely sharing production
code with ChatGPT. We were not able to determine whether this was covered by these participants’
company policy, or if the participants were unaware of or unwilling to follow the policy. Our
study was conducted before OpenAI’s announcement of ChatGPT Enterprise (August, 2023) which
is a service to provide privacy, security, and deployment for organisations sending their data to
ChatGPT.2 Consequently, we could not assess how the data privacy measures provided by this
service might in�uence users’ experiences when interacting with ChatGPT.

Findings: Legal questions and concerns regarding company policies in�uence the experience
of ChatGPT users, both in terms of uncertainty whether they are allowed to use the tool for a
speci�c use case as well as in terms of not being able to provide su�cient context or using it
for speci�c tasks. Additionally, some participants are concerned about a stale knowledge base
of the tool.

4.4 Personal Experience

Here, we analyse our exit survey results, namely, (i) how useful participants perceive ChatGPT, and
(ii) what level of trust they place in it. The usefulness of ChatGPT re�ects whether participants’
needs and expectations were met during their interactions with the tool. As participants were using
ChatGPT during their normal work, it was infeasible to ask them for an assessment of individual
dialogues. Instead, we ask for a general evaluation as part of the exit survey at the end of the study
period. Therein, our participants used a Likert scale from 1 (not helpful at all) to 6 (extremely

2https://openai.com/blog/introducing-chatgpt-enterprise

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 81. Publication date: July 2024.

https://openai.com/blog/introducing-chatgpt-enterprise


81:16 Ranim Khojah, Mazen Mohamad, Philipp Leitner, and Francisco Gomes de Oliveira Neto

25%

37%

50%

58%

67%

75%

62%

50%

42%

33%

Reducing repetitive tasks

Staying more focused

Initiating discussions 

with teammates

Making better decisions

Learning new concepts

100 50 0 50 100

Percentage

Not helpful at all

Slightly helpful

Moderately helpful

Helpful

Very helpful

Extremely helpful

How helpful was ChatGPT in the following:

8.3 %

20.8 %

4.2 %

41.7 %

25 %

No Trust

Low Trust

Little Trust

Moderate Trust

Some Trust

Complete Trust

How much did you trust ChatGPT's answers?

Fig. 5. Plots showing how the 23 participants reported ChatGPT’s usefulness (le�) and trust in its answer
(right).

helpful) to assess how helpful they found ChatGPT in various aspects, along with open-ended
questions to allow them to provide more detailed descriptions.
Figure 5 (left-hand side) shows a relatively high level of usefulness for ChatGPT in terms of

learning new concepts and making better decisions. In contrast, participants did not �nd ChatGPT
helpful for initiating discussions with their teams or maintaining focus during work. Meanwhile,
there is an even split between participants who believe that ChatGPT is useful for reducing repetitive
tasks. A closer look at their dialogues’ intent and purpose revealed some di�erences.

We found that participants who use ChatGPT primarily with an expert consultation purpose to
explain and interpret an artifact (e.g., an error message, or source code) found ChatGPT helpful
in reducing repetitive tasks, but not in staying focused. These participants found the tool more
helpful than users who used it for other information-seeking purposes. There was no noticeable
trend among participants who use it for training regarding the reduction of repetitive tasks, but we
observed that all these participants found ChatGPT helpful in learning new concepts and staying
focused.

“It is a good tutor and can help with knowledge” (Participant 18).

“Helped me a lot, especially when I needed to learn how to use [a technology]” (Participant 1).

On the other hand, participants who use ChatGPT with an artifact manipulation intent found
ChatGPT helpful in reducing repetitive tasks that involved generating simple artifacts or blueprints
(i.e., a �rst structure, Participant 5), rather than generating complex artifacts that involve many
constraints and components (Participant 13). These results align with the �ndings by Waseem
et al. [Waseem et al. 2023], who suggest that ChatGPT becomes more challenging to use with
software-related tasks that require complex decision-making.

“For code purposes, it was great to get a �rst structure” (Participant 5).

“Topics that are hard to discuss with ChatGPT are the really complex programming issues, for example,

if you have a giant backend system where you need a lot of context to make an accurate determination

of what to do, that’s very challenging...” (Participant 13).

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 81. Publication date: July 2024.



Beyond Code Generation: An Observational Study of ChatGPT Usage in So�ware Engineering Practice 81:17

Regarding trust (results shown in Figure 5, right-hand side), we note that there is a surprisingly
high level of trust in ChatGPT responses — approximately two thirds of participants place high or
moderate trust in the generated artifacts and information that ChatGPT provides, but none of our
participants trusts it entirely. A detailed analysis of the dialogues and answers from participants
with low trust reveals that lack of sources is the main reason detrimental to trust in ChatGPT.
Similar �ndings were reported by Ross et al. [Ross et al. 2023], where people who used Codex
models wished for a source to be provided along with the solutions. ChatGPT by default does not
provide a source and, if asked to provide one, frequently hallucinates (makes up a non-existent
source). This is made even worse by the fact that ChatGPT often shows high con�dence even
when hallucinating. This led to some participants deciding not to use it further for work-related
activities. Others suggest that generative AI should indicate the con�dence level of an answer for
more transparency. Interestingly, none of the participants who use the tool for training seem to be
particularly concerned about the lack of sources. Generally, this population places a lot of trust in
the correctness of ChatGPT’s output.

We also noticed that practitioners who employed ChatGPT for generating artifacts tended to have
lower levels of trust compared to those using it for brainstorming or modifying artifacts. A potential
reason for this may be that queries with a artifact generation purpose often lacked su�cient context,
andmistakes are easily visible (e.g., if the artifact does not compile or work as intended). Additionally,
when tasks were more technical, complex, and company-speci�c, our participants were less inclined
to place trust in the results, as exempli�ed by Participant 2. Participants were cognizant that
ChatGPT might struggle to provide accurate responses in domains requiring specialized knowledge,
particularly when a software company utilized technologies with limited public documentation. In
such cases, the likelihood of ChatGPT o�ering erroneous solutions increased, thereby impacting
trust and con�dence in its answers [de Vries et al. 2003; Dzindolet et al. 2003].

“I would also not put too much trust in the answers to such complex questions” (Participant 2).

Despite the lack of trust, some participants still found value in using ChatGPT, even if it meant
spending extra time on fact-checking. Particularly, they saw value in a tool providing a starting
point, even if they are aware that manual checking and correcting will be required.

Findings: Participants found ChatGPT helpful for learning new concepts and making deci-
sions. It can also help reduce repetitive tasks, but only if those tasks are su�ciently simple or
context-independent. About two thirds of our study population puts high trust in ChatGPT.
The 33% who trusted it less were often concerned about the lack of sources. Some participants
found it helpful to use ChatGPT’s answer as a starting point for a solution, even if it meant
having to fact check and/or improve it.

5 DISCUSSION

We now discuss the main implications and lessons learned from our study, followed by a discussion
of threats to validity.

5.1 Implications

I1: ChatGPT is more frequently used for receiving guidance and training than for directly

generating code.

Despite signi�cant public attention on the fact that LLMs can generate working code, we observed
that only around a third of dialogues were actually related to artifact manipulation. In the majority
of conversations, the participant was interested in guidance or training how to solve a task, not get

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 81. Publication date: July 2024.



81:18 Ranim Khojah, Mazen Mohamad, Philipp Leitner, and Francisco Gomes de Oliveira Neto

it automated directly. Note that this �nding may be speci�c to ChatGPT — tools that are integrated
into development environments may well be used more frequently for artifact manipulation (this
also allows these tools to provide better context as a “hidden” part of the prompt, consequently
improving the quality of the generated code). Still, we argue that future studies on LLM usage
in software engineering need to take into account that developers use them for more than just
generating code.

I2: ChatGPT can be helpful in all phases of the software development lifecycle, not just

for implementation.

Much of the public debate around ChatGPT for engineers centers around their potential for helping
with coding. In our study, we have also seen that most usage was indeed in the implementation
phase. However, some of our participants also used the tool extensively and successfully in other
phases of the lifecycle, e.g., to improve their process or generate requirements or test cases. In
general, we conclude that it may be useful to think more creatively about the types of tasks that
an LLM can be used for successfully. Some participants who did not �nd ChatGPT useful were
struggling with identifying use cases for their work, and one reason for this may well be that they
had too limited perception in their mind about what kinds of tasks they could use it for.

I3: Engineers can, and often do, use ChatGPT despite being aware that results need to be

double-checked.

Much like seeking help from a colleague at work, our participants often turn to ChatGPT for
assistance, recognizing that, in both cases, absolute accuracy cannot always be guaranteed. Even
participants who had fairly low trust in ChatGPT’s answers in some cases kept using it. However,
these participants also made sure to carefully check any suggestions. Generally speaking, we saw
that awareness was an important factor — participants did not mind using ChatGPT as long as
they could tell how ChatGPT generated its answers, allowing them to judge how plausible they
were. We argue that future LLMs should provide more transparency with regard to con�dence and
remove some of the current guesswork of deciding whether any speci�c LLM output is potentially a
hallucination. One way to do that is displaying the con�dence score of ChatGPT’s response, which
has been shown previously to increase the trust in automated tools that a�ect decision making
[Antifakos et al. 2005; Zhang et al. 2020].

I4: ChatGPT can be useful even for creative tasks, not just to solve clearly-speci�ed prob-

lems.

While many engineers used ChatGPT to directly perform straightforward work tasks, we have also
seen many cases where participants were rather looking for inspiration or solution alternatives.
Participants who used ChatGPT for brainstorming expressed satisfaction with the output. This is
in line with the experiences made by others, indicating that listing plausible partial solutions to
a complex problem may, in fact, be an ideal use case for LLMs.3 We note that using an LLM for
creative tasks is possible even understanding that LLM solutions will never be truly “novel”, as any
answer will still be based on training data. However, as suggested by Koivisto et al. [Koivisto and
Grassini 2023], even this recombination of existing knowledge can still lead to useful, creative results.

I5: ChatGPT can, in some ways, hurt developer productivity.

Based on existing productivity frameworks for developers [Forsgren et al. 2021; Storey and Zagalsky
2016], we found that although ChatGPT can be helpful for learning or automating routine tasks, it

3https://cacm.acm.org/blogs/blog-cacm/276268-can-llms-really-reason-and-plan/fulltext

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 81. Publication date: July 2024.

https://cacm.acm.org/blogs/blog-cacm/276268-can-llms-really-reason-and-plan/fulltext


Beyond Code Generation: An Observational Study of ChatGPT Usage in So�ware Engineering Practice 81:19

can actually reduce productivity in some dimensions: (i) its usage reduces team communication,
as questions better asked to a colleague are sometimes directed to the chatbot, and (ii) reducing
participant focus. We have observed these problems in di�erent facets of our study. For example, in
some cases, an overcon�dent AI response may have given a participant the feeling that further
discussion with the rest of the team is not required. Additionally, we observed that in some cases
participants spent an extraordinary amount with tweaking prompts, trying to get ChatGPT to
generate perfectly working code (rather than simply taking a slightly defect one and �xing it). To
some extent, this may be an e�ect of our limited study window, with many participants clearly
still in an “experimenting with AI” phase. However, this result also aligns with previous work by
Vaithilingam et al. [Vaithilingam et al. 2022], who found that using Co-Pilot did not improve the
e�ectiveness or e�ciency of developers in many cases.

5.2 Threats to Validity

The external validity of our research has its limitations. Firstly, our sample of participants may
not be fully representative of software engineers population, due to its limited sample size and
geographical region (Europe). However, we ensured that the companies we selected are from three
non-neighboring countries. We also have diversity in size and domain of software organisations.
Secondly, the nature of our study involving participants sharing their logs can introduce bias

from participants removing complete or parts of their chat logs. To mitigate this, we instructed the
participants to send us their chat logs in the form of web archive �les. This format does not allow
any alteration or removal of parts of the chats. We also ensured full anonymity to encourage the
participants to share all their logs.

Thirdly, we conducted our study with a single LLM-based chatbot (ChatGPT). We acknowledge
that the theoretical framework described in Section 4will allow researchers to capture the experience
of users of some, but not all, other AI developer tools. For example, for a tool such as Co-Pilot,
which provides a more integrated experience with less focus on explicit prompts, the internal and
external factors driving the experience may be fairly di�erent. Therefore, we encourage researchers
to experiment with and expand the proposed framework to include other facets and dimensions
of chatbot usage. Similarly, the version of ChatGPT that we used was powered by GPT-3.5 since
it was accessible to all participants. Given that newer versions (e.g., GPT-4) may show increased
performance in some areas, we hypothesize that such models can strengthen our �ndings about the
use cases where ChatGPT was helpful and vice versa for not useful use cases. For example, GPT-4
can add more value to use cases that we found to be useful using GPT-3.5 (such as brainstorming),
and hence increase the usefulness. While in some cases where GPT-3.5 was not helpful, such as,
generating complex artifacts, using a better-performing model can overcome these challenges and
provide more helpful responses. To further investigate this, we suggest using our framework to
explore the impact of the model version on di�erent use cases and other factors that we illustrate
in Figure 3.
Regarding internal validity, the classi�cation of our dialogues includes a degree of subjectivity

inherent to an inductive qualitative study. We mitigate this limitation by creating the classi�cation
schema described in Section 3. The proposed schema expanded on existing classi�cations and was
re�ned over three rounds of discussion and classi�cation involving many of the authors.

In terms of construct validity, our proposed dialogue categories cover only a set of purposes that
can be expanded as we gather more usage-focused evidence on chatbots. We argue that the three
proposed levels are su�cient for our scope as they can be mapped to distinct types of dialogues with
corresponding high-level intents. Regarding the construction of our survey, the Likert scales can
limit the depth or accuracy in the participants’ responses. We complement those scales with open-
ended questions to obtain a better picture of the di�erent aspects of the participants’ experience

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 81. Publication date: July 2024.



81:20 Ranim Khojah, Mazen Mohamad, Philipp Leitner, and Francisco Gomes de Oliveira Neto

and interactions. Furthermore, the choice of questions was a byproduct of the feedback received
during our pilot study, i.e., before the survey and material were sent to participants.

6 CONCLUSION

We reported on the results of an observational, primarily qualitative, study on the usage of ChatGPT
in a software engineering context. We observed participants for one week, and analysed their
dialogues with ChatGPT as well as their overall impressions as expressed in an exit survey. We
propose a theoretical framework for how high-level purpose of the dialogue, internal factors such as
participant personality, and external factors such as company policy, together shape the experience
(in terms of perceived usefulness and trust) of software engineers using an LLM such as ChatGPT.

We envision that our framework can be used by future research to further the academic discussion
on LLM usage by practitioners. Future studies should take into account that a majority of ChatGPT
usage is not to generate directly-usable code, and that LLMs are also used for software engineering
tasks outside of coding. We believe that particularly using LLMs for learning and training is
currently under-researched, and future empirical work on this aspect will be required. Finally, more
research on detailed prompt engineering for software engineering tasks is required. In our study,
we saw engineers habitually repeat patterns they observed on the Internet, without much evidence
that these are indeed the most e�ective ways to utilize an LLM as a software engineer.

DATA AVAILABILITY

The �les used to generate plots and tables are available in our anonymised re-analysis package in
Zenodo [Khojah et al. 2023]. The package includes the exit survey questionnaire, along with the
CSV �les with the classi�cation of dialogues and Likert answers from our participants. We cannot
share the �les with the chats or the survey’s open-ended answers because they might break the
anonymity of our participants or include company-speci�c information which is protected under
Non-Disclosure Agreements (NDA) with our industry partners.

ACKNOWLEDGMENT

This work was partially supported by the Wallenberg AI, Autonomous Systems and Software
Program (WASP) funded by the Knut and Alice Wallenberg Foundation. It was also partially
supported by AGRARSENSE, a project funded by the Chips JU and its members, including the
top-up funding by Sweden, Czechia, Finland, Ireland, Italy, Latvia, Netherlands, Norway, Poland
and Spain (Grant Agreement No.101095835).

REFERENCES

Aakash Ahmad, Muhammad Waseem, Peng Liang, Mahdi Fahmideh, Mst Shamima Aktar, and Tommi Mikkonen. 2023.

TowardsHuman-Bot Collaborative SoftwareArchitectingwith ChatGPT. In Proceedings of the 27th International Conference

on Evaluation and Assessment in Software Engineering. Association for Computing Machinery, New York, NY, USA,

279–285. https://doi.org/10.1145/3593434.3593468

Stavros Antifakos, Nicky Kern, Bernt Schiele, and Adrian Schwaninger. 2005. Towards improving trust in context-aware

systems by displaying system con�dence. In Proceedings of the 7th international conference on Human computer interaction

with mobile devices & services. Association for Computing Machinery, New York, NY, USA, 9–14. https://doi.org/10.

1145/1085777.1085780

Shraddha Barke, Michael B James, and Nadia Polikarpova. 2023. Grounded Copilot: How Programmers Interact with

Code-Generating Models. Proceedings of the ACM on Programming Languages 7, OOPSLA1 (2023), 85–111. https:

//doi.org/10.1145/3586030

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav

Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon

Child, Aditya Ramesh, Daniel M. Ziegler, Je�reyWu, ClemensWinter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz

Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 81. Publication date: July 2024.

https://doi.org/10.1145/3593434.3593468
https://doi.org/10.1145/1085777.1085780
https://doi.org/10.1145/1085777.1085780
https://doi.org/10.1145/3586030
https://doi.org/10.1145/3586030


Beyond Code Generation: An Observational Study of ChatGPT Usage in So�ware Engineering Practice 81:21

Dario Amodei. 2020. Language models are few-shot learners. In Proceedings of the 34th International Conference on Neural

Information Processing Systems (NIPS ’20). Curran Associates Inc., Red Hook, NY, USA, Article 159, 25 pages.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Ed-

wards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. 2021. Evaluating large language models trained on code.

arXiv:arXiv:2107.03374

European Commision. 2021. Internal Market, Industry, Entrepreneurship and SMEs. https://single-market-economy.ec.

europa.eu/smes/sme-de�nition_en Accessed on May 10, 2024.

Cristiano da Silva Cintra and Roberto Almeida Bittencourt. 2015. Being a PBL teacher in Computer Engineering: An

interpretative phenomenological analysis. In 2015 IEEE Frontiers in Education Conference (FIE). IEEE, 1–8. https:

//doi.org/10.1109/FIE.2015.7344234

Peter de Vries, Cees Midden, and Don Bouwhuis. 2003. The E�ects of Errors on System Trust, Self-Con�dence, and the

Allocation of Control in Route Planning. Int. J. Hum.-Comput. Stud. 58, 6 (jun 2003), 719–735. https://doi.org/10.1016/

S1071-5819(03)00039-9

Glaucia Melo dos Santos, Edith Law, Paulo S. C. Alencar, and Don Cowan. 2020. Exploring Context-Aware Conversational

Agents in Software Development. CoRR abs/2006.02370 (2020). arXiv:2006.02370

Mary T. Dzindolet, Scott A. Peterson, Regina A. Pomranky, Linda G. Pierce, and Hall P. Beck. 2003. The Role of Trust in

Automation Reliance. Int. J. Hum.-Comput. Stud. 58, 6 (jun 2003), 697–718. https://doi.org/10.1016/S1071-5819(03)00038-7

Virginia Eatough and Jonathan A Smith. 2017. Interpretative phenomenological analysis. The Sage handbook of qualitative

research in psychology (2017), 193–209. https://doi.org/10.4135/9781446207536.d10

Linda Erlenhov, Francisco Gomes de Oliveira Neto, and Philipp Leitner. 2020. An empirical study of bots in software

development: characteristics and challenges from a practitioner’s perspective. In Proceedings of the 28th ACM Joint

Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering

(Virtual Event, USA) (ESEC/FSE 2020). Association for Computing Machinery, New York, NY, USA, 445–455. https:

//doi.org/10.1145/3368089.3409680

Linda Erlenhov, Francisco Gomes de Oliveira Neto, Riccardo Scandariato, and Philipp Leitner. 2019. Current and future bots

in software development. In 2019 IEEE/ACM 1st International Workshop on Bots in Software Engineering (BotSE). IEEE,

7–11. https://doi.org/10.1109/BotSE.2019.00009

Saad Ezzini, Sallam Abualhaija, Chetan Arora, and Mehrdad Sabetzadeh. 2023. AI-Based Question Answering Assistance for

Analyzing Natural-Language Requirements. In Proceedings of the 45th International Conference on Software Engineering

(Melbourne, Victoria, Australia) (ICSE ’23). IEEE Press, Piscataway, NJ, 1277–1289. https://doi.org/10.1109/ICSE48619.

2023.00113

Nicole Forsgren, Margaret-Anne Storey, Chandra Maddila, Thomas Zimmermann, Brian Houck, and Jenna Butler. 2021. The

SPACE of Developer Productivity: There’s more to it than you think. Queue 19, 1 (2021), 20–48. https://doi.org/10.1145/

3454122.3454124

Mohammad Fraiwan and Natheer Khasawneh. 2023. A Review of ChatGPT Applications in Education, Marketing, Software

Engineering, and Healthcare: Bene�ts, Drawbacks, and Research Directions. arXiv:arXiv:2305.00237

Ranim Khojah, Mazen Mohamad, Philipp Leitner, and Francisco Gomes de Oliveira Neto. 2023. Package for An Observational

Study of ChatGPT Usage in Software Engineering Practice. https://doi.org/10.5281/zenodo.8383359

Everlyne Kimani, Kael Rowan, Daniel McDu�, Mary Czerwinski, and Gloria Mark. 2019. A conversational agent in support

of productivity and wellbeing at work. In 2019 8th international conference on a�ective computing and intelligent interaction

(ACII). IEEE, 1–7. https://doi.org/10.1109/ACII.2019.8925488

Mika Koivisto and Simone Grassini. 2023. Best humans still outperform arti�cial intelligence in a creative divergent thinking

task. Scienti�c Reports 13, 1 (Sep 2023), 13601. https://doi.org/10.1038/s41598-023-40858-3

Caroline Lemieux, Jeevana Priya Inala, Shuvendu K. Lahiri, and Siddhartha Sen. 2023. CodaMosa: Escaping Coverage

Plateaus in Test Generation with Pre-Trained Large Language Models. In Proceedings of the 45th International Conference

on Software Engineering (Melbourne, Victoria, Australia) (ICSE ’23). IEEE Press, Piscataway, NJ, 919–931. https://doi.org/

10.1109/ICSE48619.2023.00085

Antonio Mastropaolo, Luca Pascarella, Emanuela Guglielmi, Matteo Ciniselli, Simone Scalabrino, Rocco Oliveto, and Gabriele

Bavota. 2023. On the Robustness of Code Generation Techniques: An Empirical Study on GitHub Copilot. In Proceedings

of the 45th International Conference on Software Engineering (Melbourne, Victoria, Australia) (ICSE ’23). IEEE Press,

Piscataway, NJ, 2149–2160. https://doi.org/10.1109/ICSE48619.2023.00181

Nhan Nguyen and Sarah Nadi. 2022. An empirical evaluation of GitHub copilot’s code suggestions. In Proceedings of the

19th International Conference on Mining Software Repositories. Association for Computing Machinery, New York, NY,

USA, 1–5. https://doi.org/10.1145/3524842.3528470

Sida Peng, Eirini Kalliamvakou, Peter Cihon, and Mert Demirer. 2023. The impact of ai on developer productivity: Evidence

from github copilot. arXiv:arXiv:2302.06590

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 81. Publication date: July 2024.

https://arxiv.org/abs/arXiv:2107.03374
https://single-market-economy.ec.europa.eu/smes/sme-definition_en
https://single-market-economy.ec.europa.eu/smes/sme-definition_en
https://doi.org/10.1109/FIE.2015.7344234
https://doi.org/10.1109/FIE.2015.7344234
https://doi.org/10.1016/S1071-5819(03)00039-9
https://doi.org/10.1016/S1071-5819(03)00039-9
https://arxiv.org/abs/2006.02370
https://doi.org/10.1016/S1071-5819(03)00038-7
https://doi.org/10.4135/9781446207536.d10
https://doi.org/10.1145/3368089.3409680
https://doi.org/10.1145/3368089.3409680
https://doi.org/10.1109/BotSE.2019.00009
https://doi.org/10.1109/ICSE48619.2023.00113
https://doi.org/10.1109/ICSE48619.2023.00113
https://doi.org/10.1145/3454122.3454124
https://doi.org/10.1145/3454122.3454124
https://arxiv.org/abs/arXiv:2305.00237
https://doi.org/10.5281/zenodo.8383359
https://doi.org/10.1109/ACII.2019.8925488
https://doi.org/10.1038/s41598-023-40858-3
https://doi.org/10.1109/ICSE48619.2023.00085
https://doi.org/10.1109/ICSE48619.2023.00085
https://doi.org/10.1109/ICSE48619.2023.00181
https://doi.org/10.1145/3524842.3528470
https://arxiv.org/abs/arXiv:2302.06590


81:22 Ranim Khojah, Mazen Mohamad, Philipp Leitner, and Francisco Gomes de Oliveira Neto

Chen Qian, Xin Cong, Cheng Yang, Weize Chen, Yusheng Su, Juyuan Xu, Zhiyuan Liu, and Maosong Sun. 2023. Commu-

nicative Agents for Software Development. arXiv:arXiv:2307.07924

Steven I Ross, Fernando Martinez, Stephanie Houde, Michael Muller, and Justin D Weisz. 2023. The programmer’s

assistant: Conversational interaction with a large language model for software development. In Proceedings of the

28th International Conference on Intelligent User Interfaces. Association for Computing Machinery, New York, NY, USA,

491–514. https://doi.org/10.1145/3581641.3584037

Sivasurya Santhanam, Tobias Hecking, Andreas Schreiber, and Stefan Wagner. 2022. Bots in software engineering: a

systematic mapping study. PeerJ Computer Science 8 (2022), 866. https://doi.org/10.7717/peerj-cs.866

Margaret-Anne Storey and Alexey Zagalsky. 2016. Disrupting developer productivity one bot at a time. In Proceedings of the

2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering (Seattle, WA, USA) (FSE 2016).

Association for Computing Machinery, New York, NY, USA, 928–931. https://doi.org/10.1145/2950290.2983989

Nigar M Sha�q Surameery and Mohammed Y Shakor. 2023. Use Chat GPT to Solve Programming Bugs. International

Journal of Information Technology & Computer Engineering (IJITC) ISSN: 2455-5290 3, 01 (2023), 17–22. https://doi.org/10.

55529/ijitc.31.17.22

Rosalia Tufano, Luca Pascarella, and Gabriele Bavota. 2023. Automating Code-Related Tasks Through Transformers: The

Impact of Pre-training. arXiv:arXiv:2302.04048

Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation vs. Experience: Evaluating the Usability of

Code Generation Tools Powered by Large Language Models. In Extended Abstracts of the 2022 CHI Conference on Human

Factors in Computing Systems (New Orleans, LA, USA) (CHI EA ’22). Association for Computing Machinery, New York,

NY, USA, Article 332, 7 pages. https://doi.org/10.1145/3491101.3519665

Douglas Walton. 2010. Burden of Proof in Deliberation Dialogs. In Argumentation in Multi-Agent Systems. Springer, Springer

Berlin Heidelberg, Berlin, Heidelberg, 1–22. https://doi.org/10.1007/978-3-642-12805-9_1

Muhammad Waseem, Teerath Das, Aakash Ahmad, Mahdi Fehmideh, Peng Liang, and Tommi Mikkonen. 2023. Using

ChatGPT throughout the Software Development Life Cycle by Novice Developers. arXiv:arXiv:2310.13648

Justin DWeisz, Michael Muller, Steven I Ross, Fernando Martinez, Stephanie Houde, Mayank Agarwal, Kartik Talamadupula,

and John T Richards. 2022. Better together? an evaluation of ai-supported code translation. In 27th International

Conference on Intelligent User Interfaces. Association for Computing Machinery, New York, NY, USA, 369–391. https:

//doi.org/10.1145/3490099.3511157

Andrew Wood, Paige Rodeghero, Ameer Armaly, and Collin McMillan. 2018. Detecting speech act types in developer

question/answer conversations during bug repair. In Proceedings of the 2018 26th ACM joint meeting on european software

engineering conference and symposium on the foundations of software engineering. Association for Computing Machinery,

New York, NY, USA, 491–502. https://doi.org/10.1145/3236024.3236031

Yunfeng Zhang, Q. Vera Liao, and Rachel K. E. Bellamy. 2020. E�ect of Con�dence and Explanation on Accuracy and

Trust Calibration in AI-Assisted Decision Making. In Proceedings of the 2020 Conference on Fairness, Accountability,

and Transparency (Barcelona, Spain) (FAT* ’20). Association for Computing Machinery, New York, NY, USA, 295–305.

https://doi.org/10.1145/3351095.3372852

Received 2023-09-28; accepted 2024-04-16

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 81. Publication date: July 2024.

https://arxiv.org/abs/arXiv:2307.07924
https://doi.org/10.1145/3581641.3584037
https://doi.org/10.7717/peerj-cs.866
https://doi.org/10.1145/2950290.2983989
https://doi.org/10.55529/ijitc.31.17.22
https://doi.org/10.55529/ijitc.31.17.22
https://arxiv.org/abs/arXiv:2302.04048
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1007/978-3-642-12805-9_1
https://arxiv.org/abs/arXiv:2310.13648
https://doi.org/10.1145/3490099.3511157
https://doi.org/10.1145/3490099.3511157
https://doi.org/10.1145/3236024.3236031
https://doi.org/10.1145/3351095.3372852

	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Participants and Data Collection
	3.2 Data Analysis

	4 Findings
	4.1 Purpose
	4.2 Internal Factors
	4.3 External Factors
	4.4 Personal Experience

	5 Discussion
	5.1 Implications
	5.2 Threats to Validity

	6 Conclusion
	References

