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Abstract

This study addresses the challenge of accurately forecasting the energy con-
sumption of electric vehicles (EVs), which is crucial for reducing range anxiety
and advancing strategies for charging and energy optimization. Despite the
limitations of current forecasting methods, including empirical, physics-based,
and data-driven models, this paper presents a novel machine learning-based
prediction framework. It integrates physics-informed features and combines
offline global models with vehicle-specific online adaptation to enhance predic-
tion accuracy and assess uncertainties. Our framework is tested extensively on
data from a real-world fleet of EVs. The best global model, quantile regression
neural network (QRNN), demonstrates an average error of 6.30%, the online
adaptation further achieves a notable reduction to 5.04%, and both surpass the
performance of existing models significantly. Moreover, for a 95% prediction
interval, the online adapted QRNN improves coverage probability to 91.3% and
reduces the average width of prediction intervals to 0.51 kWh. These results
demonstrate the effectiveness and efficiency of utilizing physics-based features
and vehicle-based online adaptation for predicting EV energy consumption.

Keywords

Electric vehicles, energy consumption, modeling and prediction, machine learn-
ing, field data.

iii





This thesis is based on the following publication:

Qingbo Zhu, Yicun Huang, Chih Feng Lee, Peng Liu, Jin Zhang, Torsten
Wik, Predicting electric vehicle energy consumption from field data using
machine learning.
IEEE Transactions on Transportation Electrification (June 2024).
DOI: 10.1109/TTE.2024.3416532.

v





Acknowledgment

First and foremost, I would like to express my deepest gratitude to my super-
visors, Prof. Torsten Wik and Dr. Yicun Huang. Thank you for stepping in
during the middle of my PhD journey, taking on responsibilities that were not
initially yours, and doing so selflessly without expecting anything in return. I
would not have been able to continue my research without your unwavering
support and encouragement. Your knowledge, experience, and guidance have
been crucial to my research. Without you, this paper would not have been
published, and I would not have had the opportunity to begin my licentiate
seminar.

I would also like to thank my managers, Prof. Lars Rosén, Prof. Minna
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Chapter 1

Introduction

1.1 Motivation

Climate change is an urgent global crisis, largely driven by increased greenhouse
gas emissions. According to the Intergovernmental Panel on Climate Change
(IPCC), global surface temperatures have increased by approximately 1.1°C
since the late 19th century, primarily due to human activities such as the burning
of fossil fuels [1]. Carbon dioxide (CO2) remains the largest contributor to
global warming, accounting for about 76% of total greenhouse gas emissions,
followed by methane (16%) and nitrous oxide (6%) [2]. The continued rise in
these emissions has led to unprecedented changes in weather patterns, sea level
rise, and biodiversity loss. The United Nations Environment Programme’s
Emissions Gap Report estimates that current policies will result in a global
temperature rise of 2.7°C by the end of the century, far above the 1.5°C target
set in the Paris Agreement [3]. To mitigate these impacts, rapid reductions in
greenhouse gas emissions are crucial across all sectors of the economy.

Current road transport, heavily relying on fossil fuels, has caused severe
public concerns over the energy crisis, air pollution, and global warming. To
achieve a sustainable transport system, the mass deployment of electric vehicles
(EVs) is imperative and has become an unstoppable trend [4]. According to the
International Energy Agency, the global EV stock in the stated policies scenario
will expand rapidly from almost 18 million in 2021 to 200 million by 2030,
corresponding to an average annual growth of more than 30% [5]. Such electric
revolution in the transport sector entails various studies at different levels,
ranging from vehicle components (e.g., batteries), individual EVs, and a vehicle
fleet, up to traffic networks and their interactions with road infrastructure,
power grids, and the environment [6], [7]. Specifically, typical research topics
around EVs include but are not limited to battery sizing [8], charging planning
[9], driving range prediction [10], routing [11], speed control [12], [13], energy
optimization [14], and environmental analysis [15]. To tackle these problems, a
common and fundamental task is the development of a reliable and accurate
model for EV energy consumption. In addition, such an energy consumption
model is a basis for making EV regulations and policies, and for analyzing the
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4 CHAPTER 1. INTRODUCTION

supply risks of battery resources.
Accurately and quickly predicting the energy consumption of EVs in com-

pleting a given trip is a non-trivial task due to the presence of several technical
challenges. First, the energy of an EV is consumed by various resistances (e.g.,
caused by road friction, gravity, and aerodynamics), inevitable energy losses
(e.g., in motors, batteries, and braking systems), and auxiliary vehicle compon-
ents (e.g., heating, ventilation, and air conditioning system) while maintaining
desired vehicle dynamics and comfort. Furthermore, this process involves a
large set of parameters in vehicle design, operation, road topology, traffic states,
and the external environment [16], some of which, such as the road conditions,
wind speed, and driver behavior, are time-varying and stochastic. Compared
to commercial transit buses, private electric cars tend to have complicated and
highly volatile trips, and their prediction problem is even more challenging.
Last but not least, an instantaneous prediction value is often expected for
decision-making and system control, and, in contrast, a trip duration can range
from several minutes to hours in which the associated energy consumption is
related to vehicle dynamics varying in milliseconds. The multiple timescales
involved further complicate the prediction task.

1.2 Contributions

The main contributions of this work can be summarized as:

• Proposing a new procedure to process and clean real-world EV data

• Constructing a comprehensive, physics-informed feature pool and extract-
ing the best set of features

• Applying several powerful machine learning methods to develop prediction
models for the consumed energy of an EV fleet with highly diverse trip
information

• Providing the uncertainty range estimation associated with the point
prediction, making it useful for corrective actions, decision-making, and
safety control purposes

• Online adaptation of the selected global models for further improved
accuracy and tightened uncertainty range

The proposed machine-learning pipeline is illustrated in Fig. 1.1.
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Figure 1.1: Pipeline to develop data-driven algorithms for energy consumption
prediction.

1.3 Thesis outline

The thesis is organized as follows.

• Chapter 1 provides an introduction and motivation for the research work.

• Chapter 2 describes the dataset and the data-cleaning strategies.

• Chapter 3 briefly presents the physics-based modeling and the essential
elements included.

• Chapter 4 details the model development process, including feature
extraction, offline model training, and online model updating.

• Chapter 5 discusses the energy prediction results for the proposed model.

• Chapter 6 concludes the thesis and suggests potential future research
directions.

• Appendix provides a table of the notation used.
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Chapter 2

Data Description and
Processing

2.1 Dataset

The dataset was collected by the National Monitoring and Management Plat-
form for New Energy Vehicles in China from 55 battery electric taxis of the
same brand and model. Equipped with lithium nickel cobalt manganese oxide
(NCM) batteries having 30.4 kWh nominal capacity, these taxis were designed
to have a driving range of up to 200 km and a maximum speed of 125 km/h.
More specifications about them can be found in [17]. The states of vehicle
operation (e.g., mileage and speed), batteries, motors, motor controllers, the
braking system, fault alarms, and insulation resistance, as well as the location
information, were monitored in real-time. The corresponding data were sent to
the platform via wireless communication at a nominal frequency of 1 Hz. The
detailed data items, formats, and communication protocols follow the standard
given in [18]. The selected data reflect vehicles running in Beijing, with the
earliest data points from March 2017 and the latest from December 2018.

The obtained time-series data for each vehicle were segmented into different
driving trips, where the trips end whenever a stop or idling state is longer than
three minutes. In practice, these trips could be terminated due to parking or
charging. When there was no data uploading, embodied as data missing, or
a series of zeros for more than three minutes, we also considered it as a trip
completion. The data samples between every two consecutive trips were ignored
as the corresponding energy consumption was negligibly small. Without energy
consumption information from the vehicle cabin, e.g., for heating, ventilation,
and air conditioning (HVAC), the energy output from the motors has been
considered as the system output of interest, y, and was calculated by the time
integral of the product of the measured current and voltage over the motor.

The measured GPS data from vehicles were input into Google Earth to gener-
ate road elevation data allowing calculation of road grade profiles. According to
the recorded time and position, the external environment measurements, includ-
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8 CHAPTER 2. DATA DESCRIPTION AND PROCESSING

ing ambient temperature, wind speed and direction, dewpoint temperature, and
humidity, were taken from the weather website (https://www.xihe-energy.com)
at a sampling time of 30 minutes.

All the trips were labeled by dates, and when the daily driving ranges
became outside of [1, 600] km, the corresponding trips were dropped. When
the daily driving ranges are less than 1 km, the included trips are very short,
rendering the energy consumption prediction unnecessary. On the other hand,
it is unusual for these taxis to drive 600 km in a day as it means three full
charges. As a result, a total of 91,932 trips were extracted from the raw vehicle
data. Fig. 2.1 exemplifies the time-series velocity, acceleration, and elevation
within two trips and illustrates the distribution of their trip-level average values
over all the trips. It can be seen that the driving profiles vary largely within a
specific trip and among different trips.

2.2 Data Processing

The dataset described in Chapter 2.1 was transmitted wirelessly from the
running taxis to the data platform. However, wireless transmission is susceptible
to interference and can be affected by long distances, physical obstructions,
channel disturbance, and weather conditions. In addition, digital-to-analog
conversion, sensor noise, and differentiation of measurements may also cause
problems. Under such circumstances, our dataset should have inherently
suffered from issues, such as measurement noise, data latency, loss, or mismatch.
Given that data quality is critical for machine learning, the existing issues
will inevitably weaken and even undermine the accuracy and reliability of
data-driven models for predicting vehicle energy consumption. Hence, it is
necessary to process and clean the data. To do so, we use knowledge of vehicle
usage and kinetics as well as statistical properties to phase out potential issues.

1) Data Cleaning. The expected number of data samples serves as a
reference for the ideal quantity points expected within a given time segment.
For instance, assuming a sampling frequency of 1Hz and analysing a 10-second
segment, the expected number of data samples, denoted as Σi, would be 10
under conditions of no data loss.

For any given trip i ∈ {1, 2, · · · , N̄}, where N̄ is the number of all trips,
we identify and quantify the data loss by comparing the number of existing
time-series data samples, denoted by Mi, to its expected number of data Σi.
The data loss rate, ρloss,i, is defined as

ρloss,i = (Σi −Mi) /Σi. (2.1)

With the frequency of 1 Hz in collecting data, it is common that there exists
ρloss,i > 0. Analogously, the data mismatch rate, ρmismatch,i, is calculated by

ρmismatch,i = (Mi −Mmismatch,i) /Mi, (2.2)

where Mmismatch,i is the number of expected data samples and it can be
exemplified as the situation where the motor current is zero while the vehicle
speed is nonzero.
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2) Outlier Detection. Some outliers in the obtained dataset can be detected
from the labeled output while others can be isolated based on the trip-level
features x that impact the system output. As illustrated in Fig. 2.2(a), some
trips have consumed unusually more energy than others while a small number
of trips are on the other side of the spectrum. From Fig. 2.2(b), it can
be observed that the trip-level average energy consumption yi tends to be
linearly related to the driving distance di. In the bottom-left corner of the
sub-figure, some trips are featured with over 10 km driving distance whereas
the corresponding energy consumption is around zero. To systematically deal
with these outliers, we combine the concepts of studentized residuals and
leverage [19] to distinguish extreme output values in {y1, · · · , yN̄} and extreme
feature values in {d1, · · · , dN̄}.

Suppose yi = diβ + ϵ for the relationship between the energy consump-
tion yi and driving distance di, where β is a scalar coefficient and ϵ is the
intercept, representing the slope and bias of the linear regression model, re-
spectively. Then, according to the analytical solution to the linear least squares
problem, the optimal value can be obtained as [β, ϵ]T = (DTD)−1DTY and
Ŷ = D(DTD)−1DTY , where Y = [y1, · · · , yN̄ ]T and D = [d1, 1; · · · ; dN̄ , 1].
By defining D† as an intermediate matrix, specifically D† = D(DTD)−1DT ,
which is valid under the assumption that DTD is invertible, the estimated
value of Y is given by

Ŷ =


D†

11 D†
12 · · · D†

1N̄

D†
21 D†

22 · · · D†
2N̄

...
...

. . .
...

D†
N̄1

D†
N̄2

· · · D†
N̄N̄

Y, (2.3)

where D†
ii is the leverage value and it indicates the distance between a certain

driving distance di and the average value of di for all the N̄ trips. When D†
ii

exceeds a predefined threshold, the corresponding i-th data point is flagged
and identified as an outlier.

According to its definition, the studentized residual for trip i, denoted by
ri, is given by [19]

ri =
yi − ŷi√

σ(y1, · · · , yN̄ ) · (1−D†
ii)

, (2.4)

where ŷi is derived from (2.3), yi − ŷi represents the ordinary residual for trip
i, and the function σ(·) is the standard deviation of yi in all the N̄ trips. An
observation i with an internally studentized residual larger than 3 is generally
deemed an outlier.
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Figure 2.1: Data measured from electric taxis. (a)-(c) show the velocity, accel-
eration, and elevation profiles, respectively, of two continuous trips of a vehicle.
(d)-(f) illustrate the histogram trip-level average velocity, acceleration, and
elevation, respectively, over all the trips, where both the positive acceleration,
a+, and the negative acceleration, a−, are considered.
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Figure 2.2: Illustration of raw data samples. (a) Probability of energy con-
sumption over all the trips. (b) Total energy consumption of each trip versus
the corresponding driving distance.
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Chapter 3

Overview of Physics-based
Modeling

In general, the energy consumption of a vehicle is to overcome several types of
driving resistance and to support auxiliary systems, e.g., HVAC. At the same
time, it will be affected by regenerative braking and energy efficiencies in the
powertrain system and its components. By only considering energy flow from
the vehicle motors, the energy consumption of an electric vehicle, ŷ, can be
calculated by

ŷ = Frd/ηr + ηbEbrake, (3.1)

where Fr represents the propulsion force, Ebrake is the regenerative braking
energy (negative), and ηr and ηb denote the corresponding energy efficiencies.
According to Newton’s second law of motion, the propulsion force applied to
vehicles can be expressed as [20]

Fr =mgfr cos(θ) +
CDA(V − Vair)

2

21.15
+mg sin(θ) + δma, (3.2)

where the four terms on the right-hand side of (3.2) represent the rolling
resistance, air resistance, climb resistance, and acceleration resistance. g, δ,
and CD denote the gravitational acceleration, the transfer coefficient from the
revolving mass to a linear mass, and the drag coefficient, respectively, and
these three parameters are generally constant during vehicle movement. m, A,
and fr are the vehicle mass, equivalent cross-sectional area, and tire rolling
resistance coefficient. While m can vary among different trips for a taxi, fr
and A are heavily influenced by road conditions and the ambient environment.
θ, V , and Vair are the road grade, vehicle velocity, and wind velocity, which
are variables in a trip.

If all the model parameters in (3.2) are known a priori and all the variables
can be measured accurately, the instantaneous propulsion force can be calculated
directly at each time step. However, as noted in the introduction, these

13



14 CHAPTER 3. OVERVIEW OF PHYSICS-BASED MODELING

parameters and a set of energy efficiencies for a vehicle system can be affected
by many complicated factors, and it is very expensive and difficult to quantify
them accurately, particularly considering the wide range of uncertainties and
stochasticity during vehicle usage.



Chapter 4

Data-driven model
development

Fully recognizing the complexities involved in precise parameterization and long-
term simulation of physical models, this study adopts a data-driven approach
to efficiently forecast the trip-level energy consumption of EVs. This approach
incorporates a set of features carefully constructed from the physics-based
model described in Chapter 3.

4.1 Physics-informed Feature Construction and
Engineering

The first step in establishing a machine learning (ML) model is to extract
elements for feature construction. All these elements are taken directly or
are inspired by the physics-based model (3.2). As such, all essential physical
insights into energy consumption can be systematically incorporated into the
ML-based prediction model. As shown in the first three columns of Table 4.1,
these elements can be categorized into four classes, i.e., trip intrinsic attributes,
road characteristics, vehicle states, and ambient environments. Note that in
addition to the instantaneous acceleration, the positive and negative values of
acceleration are considered to better reflect the vehicle states on the trip level.
The relative wind velocity Vw, defined as V − Vair, is also considered as part of
the ambient environment.

With these physics-informed elements, a two-step procedure is used to
construct a comprehensive feature pool. First, the time-series data of each
of the considered elements over a given trip is transformed into a form of
histogram. Then, a variety of statistical properties of the histogram can
be extracted, including the mean, variance, 0.95 quantile, and 0.05 quantile,
which represent the characteristics of central tendency, dispersion, and extreme
situations of each driving trip, respectively. The obtained library of elements
and corresponding constructed features are listed in Table 4.1. Note that in the
absence of measured data, our feature pool does not explicitly incorporate locally

15



16 CHAPTER 4. DATA-DRIVEN MODEL DEVELOPMENT

distributed traffic information, such as traffic density and congestion levels.
However, we anticipate that the selected features related to vehicle velocity
and acceleration implicitly capture the effects of varying traffic conditions on
trip-based energy consumption.

This employed feature construction strategy compresses hundreds or thou-
sands of time-series data samples in a trip into a small number of features,
corresponding to each physical element. The strategy reduces the scale of the
input data by several orders of magnitude, resulting in significantly decreased
memory resources to store the data and computational cost to train ML models.
In addition, it enables efficient predictions during the online implementation.
Such a strategy is imperative when the raw data are stored originally and
locally as histograms within the vehicle. A similar strategy was used in [21] to
compress vehicle field data for predicting the aging trajectory of lithium-ion
batteries.

With the constructed feature pool, feature engineering is conducted to select
a set of most relevant and independent features for the development of ML
models. To select the most relevant features, Spearman correlation analysis is
first conducted to assess the correlation between any feature x and the system
output y.This method evaluates the strength and direction of their monotonic
relationship, providing a robust measure even for non-linear dependencies [22].
To quantify this relationship, the Spearman’s rank correlation coefficient ρs
can be calculated as

∆i = Rxi
−Ryi

, (4.1)

ρs = 1− 6ΣNtrain
i=1 ∆2

i

Ntrain(N2
train − 1)

, (4.2)

where i is the index of the trip-based data samples, Ntrain represents the
number of training samples, and Rxi

signifies the rank of xi after sorting all
training samples for the considered feature in ascending order. By setting a
lower threshold for the Spearman’s rank correlation coefficient, i.e., ρs,min, any
features with a score less than ρs,min will be discarded from the feature pool.
The remaining features in the feature pool are those that exhibit a strong
monotonic relationship with the system output, ensuring their relevance to the
target variable.

Following the analysis for the correlation between any feature and the system
output, Pearson correlation analysis [23] is applied to quantify the correlation
between any two features within the remaining pool. Pearson correlation
measures the strength and direction of the linear relationship between two
variables, with values ranging from -1 (perfect negative correlation) to 1 (perfect
positive correlation). It is particularly useful for identifying redundancy between
features. Unlike statistical significance testing, which often assumes normality
of the data, Pearson correlation itself quantifies the linear dependency between
features regardless of their individual distributions [24]. For each feature pair,
if the Pearson correlation coefficient ρp exceeds a specified upper threshold
ρp,max, the feature with a lower ρs value (indicating less relevance to the target
variable) is abandoned to avoid multicollinearity among features.
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Table 4.1: Elements for feature construction and the resulting feature pool

Element classification Elements Description Features

Trip intrinsic attributes
d Driving distance of a trip d
td Driving time of a trip td

Road characteristics
E Elevation of the road mean, variance, 0.95 quantile, 0.05

quantile
Gcos Cosine value of road grade mean, variance, 0.95 quantile, 0.05

quantile
Gtan Tangent value of road

grade
mean, variance, 0.95 quantile, 0.05
quantile

Vehicle states

V Vehicle velocity mean, variance, 0.95 quantile, 0.05
quantile

V 2 Square of vehicle velocity mean, variance, 0.95 quantile, 0.05
quantile

V 3 Cube of vehicle velocity mean, variance, 0.95 quantile, 0.05
quantile

a Acceleration of vehicle variance, 0.95 quantile, 0.05 quantile
a+ Positive vehicle accelera-

tion
mean

a− Negative vehicle accelera-
tion

mean

Ambient environments

Vw Relative wind velocity mean, variance, 0.95 quantile, 0.05
quantile

V 2
w Square of relative wind ve-

locity
mean, variance, 0.95 quantile, 0.05
quantile

Ta Ambient temperature mean
Td Dewpoint temperature mean
H Humidity mean
P Precipitation mean
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4.2 Prediction Intervals

A prediction interval (PI) is a statistical range within which a future observation
is expected to fall with a specified level of confidence, typically 95% or 99%
[25]. Its main function is to capture the uncertainty around a prediction by
incorporating both model error and data variability, offering a range that
reflects the natural variability and uncertainty inherent in the model and data
[26].

The physical interpretation of a prediction interval is straightforward: it
provides a range [L,U ] where a new observation Y , given X = x, is expected
to fall with a specified confidence level. Here, L represents the lower bound, U
the upper bound, and the interval [L,U ] satisfies the condition: P (L ≤ Y ≤
U) = Confidence Level.

Prediction intervals can be constructed using quantiles. For instance, A
95% prediction interval for the value Y is given by

I(x) = [Q.025(x), Q.975(x)]. (4.3)

In this context, Q.025(x) represents the 2.5th percentile of the conditional
distribution of Y given X = x, and Q.975(x) denotes the 97.5th percentile.
Together, these quantiles define a range that is expected to contain the true
value Y with 95% confidence, meaning Y has a 95% probability of falling within
the interval I(x).

The width of this prediction interval can vary greatly with x. For some
values of x, the prediction intervals may be significantly narrower, indicating
that predictions can be made with much greater accuracy for those specific
cases. This implies that the uncertainty around the prediction is lower, and
the model can confidently predict the outcome with a smaller margin of error.
Conversely, for other values of x, the prediction intervals may be much wider,
reflecting higher uncertainty and less reliable predictions.

This variability in the width of prediction intervals is particularly noticeable
in certain data sets, where the relationship between the predictor variables
and the outcome is not uniform. Factors such as heteroscedasticity (where the
variance of errors differs across levels of the predictor) or complex patterns in
the data can lead to significant differences in prediction accuracy across the
range of x.

Quantile regression addresses this issue effectively by directly estimating the
conditional quantiles of the response variable, rather than assuming a constant
variance or a specific error distribution. This allows for the construction of
prediction intervals that adapt to the changing uncertainty across different
values of x. As a result, quantile regression provides a principled and flexible
approach to assessing the reliability of predictions, particularly in cases where
traditional methods may fall short.
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4.3 ML-based Prediction Models

The effectiveness of machine learning across various domains largely depends
on the choice of algorithm, as each algorithm possesses distinct strengths and
is suited to particular types of problems. Machine learning techniques can
be broadly categorized into supervised, unsupervised, semi-supervised, and
reinforcement learning. These categories represent a wide spectrum of methods
developed to address various data-driven problems, including classification,
regression, clustering, dimensionality reduction, and anomaly detection.

Within the realm of supervised machine learning, regression methods can
be broadly categorized based on their characteristics and applications. For
example, traditional linear regression methods are widely used for their simpli-
city and interoperability. More complex non-linear approaches, like decision
trees and their ensemble methods, can capture intricate patterns in data,
while neural networks are often utilized for their flexibility and capability to
model highly non-linear relationships. Additionally, probabilistic regression
models, such as Gaussian Process Regression, provide estimates of uncertainty
by assuming specific output distributions [27]. In our study, trip-based EV
energy consumption prediction is framed as a regression problem in terms of
the selected features and the consumed energy y. The target is to develop
reliable and accurate ML models that provide trip-wise point predictions and
the associated uncertainty range, where the latter aims to make the prediction
results interpretable. Given the diverse range of available regression methods,
four algorithms are selected for our prediction target, specifically, quantile
regression (QR), quantile regression neural network (QRNN), quantile extreme
gradient boosting regression (QEGBR), and quantile regression forests (QRF),
are utilized in the offline pathway of Fig. 1.1 to develop novel prediction models
for y. Note that none of these quantile-based algorithms relies on the assump-
tion of any specific distribution of the system output, unlike other probabilistic
models, such as Gaussian process regression.

4.3.1 QR

QR is a straightforward learning algorithm for estimating the conditional
quantiles of the target variable y based on observed data, extending beyond
the median. Unlike classical linear regression, which focuses on estimating the
conditional mean of the output given the input variables, QR provides a more
comprehensive analysis of the conditional distribution of y. Linear regression is
effective when standard assumptions-such as normality, and homoscedasticity
of residuals-are met. In contrast, QR offers greater flexibility by not relying on
these assumptions.

From a physical perspective, QR divides the training dataset into two
segments based on the value of quantile hyperparameters. While QR utilizes
the same regression equation as linear regression, its distinctive predictions
are revealed through its objective function, commonly referred to as the check
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function. The QR’s check function, ρτ (ei, τ), can be written as [28]

ρτ (ei, τ) =

{
−(1− τ)ei if ei < 0

τei if ei ≥ 0,
(4.4)

where the parameter τ ∈ (0, 1) represents the quantile of y, and the discrepancy
between yi and its predicted value ŷi is defined as ei = yi − ŷi for the i-th
trip. If τ = 0.5, the goal is to fit a straight line that divides the dataset
into two equal parts, which is equivalent to using the absolute loss (AL),

LAL(yi, ŷi) =
∑Ntrain

i=1 |yi − ŷi|, as the loss function in linear regression. The
determination of the upper and lower bounds for a specified prediction interval
can be achieved by setting the values of τ in (4.4).

The QR’s loss function is presented in Fig. 4.1. This figure illustrates
the loss incurred for different quantiles, τ , by asymmetrically weighting the
residuals. Each curve in the figure corresponds to a specific quantile value,
showing how the check function penalizes positive and negative discrepancies
differently, depending on the chosen quantile. This allows QR to capture
the conditional distribution of outputs more effectively by adjusting the loss
function to different data portions.

Figure 4.1: Comparison of QR and Log-Cosh Loss Functions

4.3.2 QEGBR

While QR offers simplicity and interpretability, it may struggle with captur-
ing complex, non-linear relationships in the data. This is where tree-based
algorithms come into play, offering a powerful alternative by modeling decision
paths and capturing intricate patterns within the data. Classification and
Regression Trees (CARTs) are the foundational tree-based algorithms that
utilize a single tree structure to address classification and regression tasks. They
recursively partition the dataset into subsets, selecting the most significant
feature at each node to guide the splits. This results in a tree where each
branch corresponds to a decision path and the leaves signify the final prediction
outcomes [29]. Due to the limited predictive power and the tendency of single
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decision trees to overfit, ensemble methods have been introduced to enhance
overall model performance. In the context of tree-based methods for regression,
two primary ensemble strategies have been developed to improve accuracy and
robustness: bagging and boosting.

Figure 4.2: Structure visualization of XGBoost

Extreme gradient boosting (XGBoost), whose structure is shown in Fig. 4.2,
is a scalable tree-boosting algorithm that builds a series of decision trees to
minimize prediction errors sequentially [30]. It begins with a baseline prediction,
typically the mean of the target values in the training data. Each subsequent
tree is trained to predict the residuals of the previous trees. By iteratively
adjusting the model in this way, XGBoost refines its predictions, reducing the
discrepancy between the predicted and actual values. During each iteration, a
new tree is added to focus on correcting the residuals left over by the ensemble
of previous trees. The final prediction is obtained by summing the predictions
from all the trees, resulting in a model that combines these weak learners into
a strong predictor.

While CARTs do not rely on a loss function to make predictions, XGBoost
is fundamentally based on a specified loss function for optimization. Unlike
QR, which allows for flexibility in selecting loss functions that only require
first-order differentiability, XGBoost mandates that its loss function be second-
order differentiable. This requirement is necessary to support Newton’s method
for efficient optimization, as it leverages both the first and second derivatives
in the process [31].

Newton’s method is advantageous in XGBoost because it provides a powerful
approach for optimizing the objective function by incorporating both the
gradient and curvature of the loss function. In each boosting iteration, XGBoost
updates its predictions by adding a new tree to the model, effectively minimizing
the objective function with respect to this tree. This objective function consists
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of two components: the prediction error and a regularization term that penalizes
model complexity, preventing overfitting.

Specifically, the regularized objective function LXG is composed of the sum
of the prediction errors overall training samples and a regularization term that
controls the complexity of the model, denoted as follows:

LXG =

Ntrain∑
i=1

ℓL(yi, ŷi) +

T∑
k=1

Ω(fk). (4.5)

In this function, ℓL(yi, ŷi) is a differentiable convex loss function measuring
the discrepancy between the true labels yi and the predictions ŷi, summed over
all Ntrain samples in the training dataset. Additionally,

∑T
k=1 Ω(fk) represents

the regularization term, where T is the total number of trees in the model,
and k indexes each individual tree. The regularization term Ω(fk) penalizes
the complexity of each tree fk, encouraging the model to remain simple by
limiting the depth and number of leaves. The tree ensemble model in (4.5)
comprises functions as parameters, making it incompatible with traditional
optimization techniques in Euclidean space. Instead, the model is trained
through an additive approach. Formally, with ŷi

(t) denoting the prediction for
the i-th instance at the t-th iteration, and ft is added to minimize the following
objective function.

L(t)
XG =

Ntrain∑
i=1

ℓL(yi, ŷi
(t−1) + ft(xi)) + Ω(ft). (4.6)

Its second-order approximation is given by

L(t)
XG ≈

Ntrain∑
i=1

[ℓL(yi, ŷ
(t−1)) + gift(xi) +

1

2
hif

2
t (xi)] + Ω(ft). (4.7)

This can be used to quickly optimize the objective in the general setting [32].
Here, gi and hi represent the gradient and Hessian (first and second derivatives)
of the loss function with respect to yi. These terms allow XGBoost to update
predictions more accurately and with fewer iterations, optimizing both the
speed and precision of the training process. By using the second-order derivative
information, XGBoost constructs each new tree in a way that minimizes the
objective more effectively, with the optimal weights for each tree’s leaf node
wj calculated as

wj = −
∑

i∈j gi∑
i∈j hi + λ

. (4.8)

In this equation,
∑

i∈j gi and
∑

i∈j hi represent the summed gradients and
Hessians for all samples within the leaf j, and λ is a regularization parameter.
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To satisfy the requirements for both first- and second-order gradient statist-
ics in the loss function, XGBoost typically employs the log-cosh loss function,
as illustrated in Fig. 4.1, which takes the following form

LLC(yi, ŷi) = log(cosh(ŷi − yi)). (4.9)

It helps XGBoost make point predictions but not capture uncertainty ranges.
To have both the point and uncertainty range predictions, one would naturally
expect some appropriate combinations of XGBoost and QR. Given that QR’s
loss function is not second-order differentiable at the origin, a second-order
differentiable function can be introduced to create a smooth approximation
of the QR loss function, allowing for a smooth transition at the origin [33].
With this in mind, we replace ŷi − yi in (4.9) by the quantile check function
ρτ (ŷi−yi, τ) defined in (4.4). The resulting algorithm, which combines XGBoost
with a new loss function, is referred to as QEGBR. The formulation of this
new loss function is presented in Fig. 4.3.

Figure 4.3: Visualization of QR and QEGBR Loss Functions

4.3.3 QRF

Another tree-based ensemble algorithm is Random Forests (RFs). As shown in
Fig. 4.4, RFs is a scalable algorithm that uses bagging to build multiple decision
trees in parallel on random subsets of data. Different from QR and QEGBR
algorithms, which predict the target value by minimizing their respective
loss functions, random forest-based algorithms are non-parametric tree-based
approaches without the process of optimizing parameters. To extend RFs to
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Figure 4.4: Visualization of Random Forest Architecture

accommodate uncertainty quantification, QRF was developed. QRF modifies
the traditional RFs framework to predict conditional quantiles, providing a
way to capture uncertainty ranges along with point predictions.[34]. When
constructing the forest, both QRF and RF utilize decision trees, employ
bootstrapping to generate distinct subsets of data, and make random selections
for nodes and splitting points. In RF, the predicted value represents the
conditional mean, which is approximated by averaging the predictions from all
the trees in the forest. For Ntrain independent observations

(Yi, Xi), i = 1, 2, ..., Ntrain,

The prediction generated by a single tree , denoted by T (ϕ), for a new data point
X = x, is obtained by averaging the observed values within the corresponding
leaf ℓ(x, ϕ). Here, ϕ represents the random parameter vector that defines
the tree’s structure and its splitting rules. Let the weight vector wi(x, ϕ) be
assigned a positive constant if observation Xi is part of leaf ℓ(x, ϕ) and 0
otherwise. Since the weights sum to one, the prediction can be expressed as

wi(x, ϕ) =
1{Xi∈Rℓ(x,ϕ)}

# {j : Xj ∈ Rℓ(x, ϕ)}
, (4.10)

where 1{Xi∈Rℓ(x,ϕ)} = 1 if Xi ∈ Rℓ(x, ϕ) and 0 otherwise. The prediction
of a single tree, given covariate X = x, is then the weighted average of the
original observations Yi, i = 1, 2, ..., n, according to

single tree: µ̂(x) =

Ntrain∑
i=1

wi(x, ϕ)Yi.

In RFs model, the conditional mean E(Y |X = x) is approximated by
averaging the predictions from k individual trees, each constructed using
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an independent and identically distributed (i.i.d) parameter vector ϕt for
t = 1, ..., k. Let wi represent the average of the weight over this ensemble of
trees, defined as the mean weight assigned to observation i across the collection,
i.e.

wi(x, ϕ) = k(−1)
k∑

t=1

wi(xi, ϕt). (4.11)

The prediction of RFs is then

RFs: µ̂(x) =

Ntrain∑
i=1

wi(x)Yi.

The weighted observations provide not only a good approximation to the
conditional mean but also to the full conditional distribution, forming an
important foundation of QRF. The conditional distribution function of Y ,
given X = x, is given by

F (y|X = x) = P (Y ≤ y|X = x) = E(1{Y≤y}|X = x)

Given that E(Y |X = x) is approximated by a weighted mean over the
observations of Y , an approximation to E(1{Y≤y}|X = x) is defined as the
weighted mean over the observations of 1{Y≤y},

F̂ (y|X = x) =

Ntrain∑
i=1

wi(x)1{Y≤y} (4.12)

The algorithm for computing the estimate F̂ (y|X = x) can be summarized
as:

(a) Grow k trees T (ϕt) for t = 1, ..., k, following the procedure of random
forests. However, instead of recording only the average of observations
in each leaf, retain all individual observations within each leaf for every
tree.

(b) For a given X = x, pass x through all trees. Calculate the wight wi(x, ϕt)
of observation i ∈ 1, ..., Ntrain for each tree as specified in (4.10). Then,
determine the weight wi(x) for each observation i by taking the average
of wi(x, ϕt) across all trees, as described in (4.11).

(c) Using the weights from step(b), compute the estimate of the distribution
function for all y ∈ R as specified in (4.12).

For a given value of quantile α, the conditional α-quantile Qα(x), defined as
Qα(x) = inf{y : F (y|X = x) ≥ α}, is estimated by substituting F̂ (y|X = x)
for F (y|X = x) in the equation above, yielding the estimate Q̂α(x).



26 CHAPTER 4. DATA-DRIVEN MODEL DEVELOPMENT

Figure 4.5: Visualization of DNNs

4.3.4 QRNN

Neural networks (NNs), drawing inspiration from the human brain, are com-
putational models composed of interconnected nodes structured into layers.
These nodes, or ‘neurons,’ are linked through weighted connections and ap-
ply activation functions to process data in a forward direction for prediction
tasks [35]. The learning process, known as backpropagation, iteratively adjusts
these weights, allowing the network to improve its predictions over time by
minimizing error. NNs often include multiple hidden layers, enabling the
development of deep learning models that can represent complex data patterns.

Deep neural networks (DNNs) are a type of neural network with multiple
hidden layers, enabling them to learn intricate representations and handle
complex datasets [36]. A typical DNN architecture, illustrated in Fig. 4.5,
consists of an input layer, multiple hidden layers, and an output layer. Each
neural in a given layer llayer receives weighted inputs from the previous layer
(llayer − 1), applies an activation function, and outputs the result to the next
layer (llayer + 1). This can be represented as follows:

(a) Weighted Sum: Each neuron j in layer llayer calculates a weighted sum of
inputs from the preceding layer (llayer − 1):

z
(llayer)
j =

∑
i

w
(llayer)
ij a

(llayer−1)
act,i + b

(llayer)
j , (4.13)

where w
(llayer)
ij represents the weight connecting neuron i in layer (llayer−1)

to neuron j in layer llayer, a
(llayer−1)
act,i denotes the activation of neuron i in

the previous layer, and b
(llayer)
j is the bias term for neuron j in layer llayer.

(b) Each neuron’s output a
llayer
act,j is computed by applying an activation func-

tion σact to z
llayer
j :

a
(llayer)
act,j = σact(z

(llayer)
j ) (4.14)
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where common choices for σact include ReLU, defined as ReLU(z) =
max(0, z), and the sigmoid function, σsig(z) =

1
1+e−z . These non-linear

functions allow the network to capture complex, non-linear relationships
within the data.

(c) Output layer: For a regression problem, the output layer may produce a
single prediction ŷ by linearly combining the final hidden layer’s activa-
tions:

ŷ =
∑
j

w
(Llayer+1)
j a

(Llayer)
act,j + b(Llayer+1) (4.15)

where Llayer represents the index of the last hidden layer. This linear
combination allows the network to make continuous predictions suitable
for regression problems.

Once the DNNs produce outputs (i.e., predictions for each sample) in
the output layer, the loss function calculates the discrepancy between these
predictions and the actual target values (labels) in the training data, serving as
a measure of prediction accuracy. In this process, the network first generates
predictions in the output layer for each sample in the batch. Then, these
predictions are compared to the actual target values using a specified loss
function. The computed loss value drives the backpropagation process, which
iteratively adjusts the weights across all layers of the network based on the
calculated gradients, gradually improving the network’s predictive accuracy.

In DNNs for regression problems, the most commonly used loss functions
are the squared loss (SL), LSL(yi, ŷi) =

∑Ntrain

i=1 (yi− ŷi)
2, and AL, but they are

restricted to making point predictions. According to [37], by integrating the
QR algorithm into a DNN structure, one can obtain both the point prediction
ŷ and the uncertainty range estimation associated with ŷ. In this work, we
incorporate the QR check function into the loss function of QRNN, namely
L(yi, ŷi) =

∑Ntrain

i=1 ρτ (ei, τ).

4.4 Online Model Adaptation for Customized
Prediction

The global models in Chapter 4.3 are trained and validated on historical
vehicle data. When we apply the resulting models to predict vehicle energy
consumption, they are blind to the unique characteristics of new vehicles whose
driving situations may deviate largely from those in the training set. The
predictions are essentially generated from an open-loop simulation based on
the global models. The historical driving data of a targeted vehicle during
real-world usage shall contain valuable information for understanding and
learning the characteristics of its future energy consumption. Taking this
individualized information into consideration as feedback, online adaptive
models can be developed to potentially improve the prediction performance,
particularly for vehicles that have not been seen during the training process.
To test this concept for EV fleets, we for the first time develop online adaptive
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models for EV energy consumption based on QRNN and QEGBR, where model
adaptations are made in real-time based on the latest trip the targeted vehicle
has completed.

4.4.1 Online Adaptive QRNN

With continuous usage of the targeted vehicle, new data samples will be
available and can be used for individualized model development. The QRNN
often consists of many layers and neurons to learn complex input-output
relationships.

However, incorporating new data into the model presents a challenge.
On one hand, if the entire QRNN model is re-trained at each time step k
using only the latest data sample, it is likely to result in severe overfitting,
as the model may become excessively tuned to the most recent sample and
lose its generalizability. On the other hand, if new data samples are simply
appended to the existing training set for periodic re-training, the process can
be computationally expensive and time-consuming, making it impractical for
real-time or online adaptation. Additionally, under this approach, the model’s
performance will likely remain dominated by the initially available offline
dataset, limiting the influence of the newly acquired data.

To address these limitations and enable efficient online adaptation, we
adopt the learning-without-forgetting approach proposed by [38]. The essence
of this method is to preserve the knowledge encoded in the global model while
selectively updating only a subset of parameters to incorporate new information.
In this context, we maintain the overall structure and most parameters of the
QRNN model, while specifically updating the parameters of the hidden layer
closest to the output layer, denoted as Θ. This selective update ensures that
the model retains its learned relationships while adapting to new data.

To facilitate online parameter estimation efficiently, we employ stochastic
gradient descent (SGD) to iteratively update Θ with each new data sample.
This process allows for recursive adaptation without full model re-training. For
a new trip at time step κ+ 1, the parameter Θ are updated according to the
following rule:

Θκ+1 = Θκ − γ∇L(Θκ), (4.16)

where κ+ 1 denotes the trip next after trip κ, α represents the learning rate,
which controls the step size of each update, and ∇L(Θκ) is the gradient (vector)
of the QRNN loss function with respect to the parameter Θκ. By focusing
on updating only the parameters closest to the output layer, this approach
enhances the influence of new data on the model’s predictions, thus enabling a
balanced blend of historical knowledge and recent observations.

4.4.2 Online Adaptive QEGBR

XGBoost is widely recognized for its mature and well-encapsulated implement-
ation, which generally limits modifications to its globally trained offline model.
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The core of the QEGBR algorithm, adapted from XGBoost, involves adding
trees to refine residuals from previous predictions, building a model that learns
from its errors across multiple quantiles. To extend the benefits of QEGBR
into a dynamic, real-time context, an Online Adaptive QEGBR algorithm is
proposed, enabling continuous, individualized learning as new data becomes
available. Specifically, with each new data point arriving from a target vehicle,
an additional tree is appended to the QEGBR model, allowing it to refine
predictions in real-time by reducing residuals based on the latest observations.
This process ensures that the model remains current with each vehicle’s unique
characteristics without retraining the entire model from scratch, allowing it to
quickly adapt to changing conditions. The online adaptive QEGBR alters the
structure, rather than the parameters, of its corresponding global model.

Note that during the online phase, both the above two adaptation algorithms
will preserve the major model information from the previous learning step to
reduce the risk of over-fitting, robustness issues, and large modeling errors.
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Chapter 5

Results and Discussion

Four evaluation metrics are applied to evaluate the prediction accuracy and
uncertainty estimation performance. Two of them are used to analyze the
prediction accuracy, namely the root mean squared error (RMSE) and the
percentage mean absolute error (PMAE) defined as

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2, (5.1)

PMAE =
1
N

∑N
i=1 |yi − ŷi|

1
N

∑N
i=1 |yi|

× 100%, (5.2)

where N is the number of data samples in the testing set. The other two
evaluation standards for assessing prediction intervals at the same probability
level are the coverage probability (CP) and average width (AW) of the prediction
interval, defined as

PICP =
1

N

N∑
i=1

Ci,where Ci =

{
1 yi ∈ [y

i
, yi]

0 yi ̸∈ [y
i
, yi]

(5.3)

PIAW =
1

N

N∑
i=1

(yi − y
i
), (5.4)

where y
i
and yi represent the predicted lower and upper bounds, respectively,

for a certain prediction interval.

5.1 Implementation Specification

For data processing in Chapter 2.2, to balance the degree of removing the
detected issues and the number of data samples in model development, we set
the tolerable thresholds for ρloss,i and ρmismatch,i to 10% and 30%, respectively.
Any trips in the dataset that do not satisfy the conditions will be removed. We

31
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flag trip-level samples as outliers when D†
ii exceeds 6/N̄ or the absolute value

of ri is larger than 3.
We use Monte Carlo cross-validation to evaluate the accuracy, efficiency,

and robustness of the developed ML models. From the processed dataset, 45
vehicles are randomly selected and used for model training, while the data
from the remaining 10 vehicles serve as the test set. This process of random
data splitting is iterated 20 times to mitigate sample bias. Subsequently, the
average results of these iterations are computed to provide a robust assessment
of model performance.

For feature engineering in Chapter 4.1, we set ρs,min = 0.05, and ρp,max =
0.8.

For all the ML algorithms described in Chapter 4.3, the quantile values,
τ , in their corresponding loss functions are set as 0.5 for generating point
predictions. The quantile values are set to be 0.025 and 0.975 to obtain the
lower and upper bounds, of a 95% prediction interval, respectively.

5.2 Results of Data Processing

The results of data processing, including data cleaning and outlier detection
conducted in Chapter 2.1, are partially depicted. For brevity, only the data on
trip-based energy consumption and its correlation with driving distances are
presented in Fig. 5.1.

Compared with the raw data samples displayed in Fig. 2.2, the shapes
of these two histogram plots are highly similar, both exhibiting a distinct
right skewness. This means most trips had low energy consumption. However,
the distribution of the cleaned dataset has a shorter and lighter tail than
that of the raw dataset. Specifically, the trips with energy consumption of
more than 15 kWh, which is about 50% of the maximum energy stored in the
battery system at the beginning of its life, are largely reduced. The removed
data samples particularly include “skeptical trips” that consumed high energy
within short driving distances. After the data processing, the linearity between
driving distances and energy consumption becomes more pronounced, and
correspondingly, the variation of energy consumption generally becomes smaller
for a given driving distance.

In total, 91,932 driving trips are extracted from the original time-series data.
According to the tolerable thresholds of data loss and mismatch in each trip
specified in Chapter 5.1, 53.88% of the data samples are removed. After the
data cleaning, 816 data samples belong to the defined outliers, corresponding to
0.8876% of the raw data. Overall, 41,585 samples are retained for the training
and testing of ML models.

5.3 Results of Feature Engineering

This subsection presents results of feature engineering performed in Chapter 4.1
using ρs,min and ρp,max specified in Chapter 5.1. Table 5.1 lists the 17 selected
features and their coefficients of Spearman correlation with the output y, i.e.,
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Figure 5.1: Illustration of the trip-based energy consumption data resulting
from data cleaning and outlier detection.

the trip-based energy consumption. For Pearson correlation between each two
features, the coefficients are also derived, and Fig. 5.2. depicts the scores for
the features applied in the ML models.

The driving distance d is found as the most relevant feature to predict y,
having a Spearman correlation coefficient as high as 0.98. However, several
other features also correlate strongly with y, such as the driving time. However,
these features are heavily dependent on d according to the Pearson correlation
analysis and were therefore excluded to mitigate multicollinearity. In general,
features related to vehicle states are more relevant to y than those features
associated with the ambient environment. Specifically, the 95th quantile of the
vehicle velocity carries more weight than the average velocity, and the variance
of acceleration takes precedence over all other acceleration-related features. It
is noteworthy that the impact of both the variance of the relative wind velocity
and the elevation on y is substantial, which is an underexplored aspect in the
existing literature.

5.4 Results of the Global ML Models

5.4.1 Prediction Accuracy

By using the ML-based prediction models developed in Chapter 4.3, we can
continuously predict EV energy consumption in each trip. With the data split
defined in Chapter 5.1 and the obtained hyperparameters in Table 5.2, the
overall prediction results for all data samples in the test set are summarized in
Tables 5.4–5.3.

Although the task is challenging, it can be observed that the best model,
i.e., QRNN, can accurately predict EV energy consumption. Specifically, after
cleaning the data and removing the outliers, the QRNN model can deliver
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Table 5.1: The selected features and their Spearman correlation coefficients

Feature Description Coefficient

d Driving distance 0.9831
Vw,var Variance of relative wind velo-

city
0.4126

Evar Variance of elevation 0.3928
V95 95th quantile of vehicle velo-

city
0.2945

Vave Average of vehicle velocity 0.2422
avar Variance of acceleration 0.2126
E95 95th quantile of of elevation 0.1871
Gcos

var Variance of Gcos 0.1576
Gcos

95 95th quantile of Gcos 0.1399
Td Average of dewpoint temper-

ature
0.1313

P Mean precipitation -0.0944
H Mean humidity 0.0880
Vw,5 5th quantile of relative wind

velocity
-0.0879

Gtan
5 5th quantile of Gtan 0.0752

V5 5th quantile of vehicle velocity -0.0665
Gtan

95 95th quantile of Gtan -0.0618
Gtan

var Variance of Gtan 0.0586

predictions with a PMAE of 6.3%. In addition to QRNN, QEGBR can also
effectively learn the characteristics of energy consumption from the diverse field
data and make reliable predictions for any given input that has not been seen
during training. These results verify the effectiveness of the developed energy
consumption models as well as the constructed and selected physics-informed
features underlying each model.

To evaluate the efficacy of our newly developed global models for energy
prediction, as well as their underlying feature set (i.e., those in Table 5.1 and
labeled here as Set 4), we compare the obtained results with those achieved
in three benchmarks using different feature sets. The first benchmark has
a feature set (i.e., Set 1) only incorporating driving distance. The second
benchmark adopts a more complex feature set derived in the state-of-the-art
literature [17], which includes driving range, driving time, average velocity, 95%
quantile of acceleration, 5% quantile of acceleration, and average temperature,
and six categorical variables representing traffic conditions during rush and
non-rush hours across various time frames and days. The third benchmark
employs the proposed feature engineering but only takes the ten features with
the highest correlation coefficients from Table 5.1, forming Set 3. To ensure a
fair comparison, all four machine learning (ML) models were implemented and
fine-tuned across each benchmark. The results demonstrate a clear advantage of
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Figure 5.2: Pearson correlation heatmap of the selected features for the pro-
cessed dataset.

using our comprehensive feature set (Set 4). Notably, our QRNN model achieves
a reduction in prediction error of 11.9% compared to the best-performing
benchmark and 19.6% relative to the state-of-the-art benchmark.

To assess the impact of data processing on prediction accuracy, we conducted
a comparative analysis of results using the raw dataset and two processed
datasets. Our findings indicate significant improvements in prediction accuracy
after data cleaning and outlier removal, as evidenced by reductions in both the
RMSE and PMAE. By using QRNN as an example, without the proposed data
processing techniques, the PMAE can become 41% larger, and the RMSE will
increase by 29%. Analysis of the results presented in the last two columns of
Table 5.4 underscores that in addition to addressing data loss and mismatch
issues, it is crucial to remove outliers.

Upon detailed examination of the results, it is observed that for the two
less accurate models, i.e., QR and QRF, the RMSE values exhibit a marginal
increase after the data cleaning, a phenomenon that initially appears counter-
intuitive. It is found that the prediction errors from QR and QRF models tend
to escalate for longer trips. The data cleaning process primarily removes data
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Table 5.2: Hyperparameter values for the applied ML algorithms

QR —

QRNN
Hidden unit numbers: 256, 64, 32, 32, 8
L2 regularization: 0.0005
Learning rate: 0.00001

QEGBR
Learning rate: 0.01
Total number of iterations: 8000
Early stopping rounds: 10

QRF

Maximum features: 17
Maximum tree depth: 20
Minimum sample split: 10
Minimum sample leaf: 2

Table 5.3: Effects of different feature sets and online learning on prediction
accuracy

Model Error type
Global models with different features Online

adaptive
models

Set 1 Set 2 Set 3 Set 4 Set 4

QR
RMSE 0.2891 0.2365 0.2343 0.2263
PMAE 10.37% 8.29% 8.17% 7.90%

QRF
RMSE 0.2868 0.2232 0.2266 0.2132
PMAE 10.26% 7.88% 7.92% 7.31%

QRNN
RMSE 0.2870 0.2193 0.2129 0.1788 0.1456
PMAE 10.30% 7.84% 7.23% 6.30% 5.04%

QEGBR
RMSE 0.2875 0.2120 0.2012 0.1861 0.1604
PMAE 10.28% 7.50% 6.97% 6.47% 5.56%

samples pertaining to shorter trips, which results in an increase in the average
trip distance within the cleaned dataset. Consequently, this leads to slightly
increased RMSE values, specifically 0.274 for the QR model and 0.2506 for the
QRF model. This observation further corroborates the significance of outlier
removal from the dataset.

By using the processed dataset, the prediction results for individual vehicles
in the test set are illustrated in Fig. 5.3. QRNN and QEGBR generally outper-
form the other two models for individual vehicles and trips, which is consistent
with the results obtained above. It can also be seen that the prediction errors
do not appreciably increase with energy consumption (Fig. 5.3c), showing the
stability and robustness of the developed models. This implies that for trips
with higher energy consumption, the relative errors tend to be smaller. In
Fig. 5.3a–b, the trajectories of the four ML models have a similar variation
trend. This conveys that in addition to the ML algorithms, the prediction
results are also influenced by other factors, such as the data quality in terms of
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Table 5.4: Prediction errors of the developed models using different datasets

Model Error
type

Raw data Data with
outliers

Fully processed
data

QR
RMSE 0.2694 0.2740 0.2263
PMAE 10.23% 8.43% 7.90%

QRF
RMSE 0.2482 0.2506 0.2132
PMAE 9.54% 7.70% 7.31%

QRNN
RMSE 0.2311 0.2262 0.1788
PMAE 8.88% 7.00% 6.30%

QEGBR
RMSE 0.2247 0.2128 0.1861
PMAE 8.84% 6.74% 6.47%

resolution and level of detail. It may be noticed that for test vehicle No. 6, the
predictions have a low RMSE but a high PMAE. This is because we have used
the average energy consumption of all its trips, and shorter distances traveled
by this vehicle result in a larger PMAE value.
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Figure 5.3: Prediction results of the four global models for individual vehicles. (a) and (b) show the RMSE and PMAE values. (c)
exemplifies the predicted energy consumption in 30 trips from a randomly selected vehicle in the test set.
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5.4.2 Uncertainty Estimation

To make the predictions interpretable for decision-making of EV charging
and energy usage, four quantile-based ML algorithms have been used in the
prediction model development allowing the uncertainty associated with each
prediction to be estimated at the same time. To the best of our knowledge, this
has not previously been conducted in the literature of data-driven EV energy
prediction. The coverage probability and average width of prediction intervals,
i.e., PICP and PIAW, are used to quantify the performance of uncertainty
estimation, with the results presented in Table 5.5 and Fig. 5.4. Without doubt,
one would desire prediction intervals to always cover the ground truth (i.e.,
high PICP) and to be as narrow as possible (namely low PIAW). Within a 95%
confidence interval, the ideal PICP for models evaluated on the test dataset is
0.95, though the actual values of PICP may vary with the data distribution of
the test dataset and model structures.

From the numerical and graphical results, it can be seen that the prediction
intervals generated by QR, QRF, and QRNN are able to cover the measured
trip-level energy consumption on most occasions. While QR gives the highest
PICP, QEGBR results in lowest PIAW thanks to the use of the synthetic
quantile loss function, i.e., ρLC(yi, ŷi) = log(cosh(ρτ (ŷi − yi, τ)) as described
in Chapter 4.3.2. QRNN is capable of best balancing PICP and PIAW, and can
consequently serve as the most suitable candidate for uncertainty estimation.
By leveraging QRNN’s prediction interval bounds, i.e., y

i
and yi generated for

each trip i, it is possible to establish suitable constraints and safety margins
for various decision actions.

5.4.3 Computational efficiency

In addition to performance for point prediction and uncertainty estimation, the
computational efficiency of ML models is crucial for real-time implementations.
With this consideration, we investigate the computational time required by all
the developed models. It is found that the most accurate global model, namely
the QRNN, requires only 15 microseconds on average to predict the energy
consumption for individual trips. This time is significantly less than the trip
duration, rendering it negligible.
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Table 5.5: Uncertainty estimation by the global models and online adaptive models

Evaluation matrices QR QRF QRNN QEGBR Online QRNN Online QEGBR
PICP 0.9354 0.9165 0.8931 0.6377 0.9127 0.5785
PIAW 0.7446 0.6624 0.5981 0.5294 0.5082 0.4348
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Figure 5.4: The estimated uncertainties and the ground truth of energy consumption for a vehicle randomly selected from the test
set, where the rose- and turquoise-colored areas denote the 95% prediction intervals.
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5.5 Results of Online Adaptive Models

The best global models, i.e., QRNN and QEGBR, have been adapted online,
with the results demonstrated in Table 5.4 and Fig. 5.5. It is evident that the
two online adaptive ML models significantly outperform their global models
across all vehicles in the test set (see Fig. 5.5a). The online QRNN can deliver
the highest accuracy, with a PMAE of 5.04%. Corresponding to a reduction of
more than 20% compared to the offline model performance. In comparison with
the method proposed in [17], the reduction is as high as 35%. QEGBR, with a
PMAE of 5.56%, is also superior to all the global models. Further, for individual
trips of a randomly selected vehicle (see Fig. 5.5b–c), the predicted values of
the online adapted QRNN and QEGBR closely follow the ground truth in the
entire range of energy consumption. This validates that our proposed online
adaptation method can judiciously learn the energy consumption behavior of
the target EV and effectively combine it with the corresponding global model.

The effect of online adaption on uncertainty estimation is also investigated.
From Table 5.5, it is clear that the online QRNN and QEGBR effectively reduce
the average width of prediction intervals, PIAW, showing a decrease of 15%
and 18%, respectively. Similar results are observed in Fig. 5.4 for individual
trips. Obviously, the turquoise-colored areas of the online adaptive models are
smaller than the rose-colored areas of the global models. Furthermore, the
online QRNN cannot only tighten the prediction intervals but also increase the
probability of containing the measured trajectory inside the intervals. This
makes its estimated bounds of each prediction interval, i.e., y and y, more
valuable for advanced EV energy management. By contrast, the online QEGBR
shrinks PIAW but also decreases PICP. Such a low value of PICP implies that
the uncertainty predictions are less reliable and useful.

While significantly enhancing prediction and estimation performance, the
online model adaptation will inevitably demand additional computational effort.
For instance, when using the online QRNN model, the average computational
time is 4.73 milliseconds for predicting the energy consumption of a single trip.
This minimal duration makes the developed ML models highly suitable for
online vehicular applications.
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Figure 5.5: Comparison of the point prediction results of the global models (QRNN and QEGBR) and their online adaptive models.
(a) PMAE values for all vehicles in the test set. (b) and (c) Trajectories of the ground truth and predictions for 30 trips from a
randomly selected vehicle in the test set.



Chapter 6

Conclusions and Future
Work

6.1 Conclusions

This research has introduced a field data-based ML pipeline for the prediction
of EV energy consumption. The first novelty arises from the proposed data
processing method tailored for a large amount of real-world EV data that was
inherently plagued by various issues and outliers. Then, a new feature set was
constructed from physical insights and picked meticulously through systematic
correlation analyses. Based on these data and features, four quantile-based
machine learning algorithms were pertinently formulated and innovatively
applied for the EV energy prediction, enabling accurate and reliable prediction
of both the energy consumption and associated uncertainties. Finally, the best-
performing global ML models were adapted online for individualized predictions,
leading to consistently improved accuracy and tightened confidence internals.

The developed ML models, as well as their underpinning data processing
and feature engineering, were validated extensively for EV energy prediction.
Comprehensive comparisons were conducted for different steps of data pro-
cessing, between global models and online adaptive models, and with models
in the literature. The online adaptive QRNN models outperformed all other
models with an average prediction error of 5.04%, corresponding to an over 35%
improvement over the state-of-the-art models. Substantial advantages have
also been observed from different steps of data processing and online model
adaptation.

6.2 Future Work

This thesis has established a solid foundation for predicting motor energy
consumption in EVs. Future research could build on this work in these areas,
including but not limited to:
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• Battery Energy Consumption: This study focuses solely on predicting
motor energy consumption due to the limited availability of auxiliary
data. Extending this work to predict total battery energy consumption,
accounting for auxiliary systems, would provide a more comprehensive
understanding of energy consumption of EVs.

• Data Expansion: By removing 1.9% of the data that deviated significantly
from the main data trend, this model achieved a 16% improvement in
RMSE and a 13% improvement in PMAE. Expanding the training dataset
with additional data could allow the model to learn from these types of
outliers more sufficiently, ultimately leading to a more comprehensive
and robust predictive model.



Appendix

Table 6.1: Lowercase Forms and Variants of Symbols

Symbol Meaning Unit
a Acceleration of vehicle m/s2

a+ Positive vehicle acceleration m/s2

a− Negative vehicle acceleration m/s2

aact Activation -
b Bias term -
d Driving distance of a trip km
e Prediction error -
f Independent tree structure -
fr Tire rolling resistance coefficient -
g Gravitational acceleration -
g Gradient of the loss function -
h Hessian of the loss function -
k Individual tree index -
ℓ A leaf in random forests -
ℓL Differentiable convex loss function -
m Vehicle mass -
r Studentized residual -
td Driving time of a trip h
w Weight for a leaf node -
y Observed energy consumption -
ŷ Predicted energy consumption -
z Weighted sum -

Table 6.2: Capital Forms and Variants of Symbols

Symbol Meaning Unit
A Equivalent cross-sectional area -
CD Drag coefficient -

45
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D† Leverage value -
E Elevation of the road m

Ebrake Regenerative braking -
Fr Propulsion force -
Gcos Cosine value of the road grade -
Gtan Tangent value of the road grade -
H Humidity g/m3

I Prediction interval -
L Lower bound -

Llayer Last hidden layer -
L Loss function -

LAL Absolute loss function -
LSL Squared loss function -
LXG XGBoost loss function -
M The existing number of data samples -
N The number of test samples -
N̄ The number of all samples -

Ntrain The number of training samples -
P Precipitation mm
Qα α-th quantile -
Rx The rank of x -
T Total number of trees -
Ta Ambient temperature ◦C
Td Dewpoint temperature ◦C
T Prediction of a single tree -
U Upper bound -
V Vehicle velocity km/h
Vair Wind velocity -
Vw Relative wind velocity km/h
X Predictor variable -
Y Real-valued response variable -

Table 6.3: Greek Letter Forms and Variants of Symbols

Symbol Meaning Unit
β Scalar coefficient -
γ Learning rate -
δ Transfer coefficient -
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ϵ Intercept -
ηb Energy efficiency of regenerative braking -
ηr Energy efficiency of propulsion force -
θ Road grade -
κ Time step -
λ Regularization parameter -
ρs Spearman’s rank correlation coefficient -
ρτ QR’s check function -
σ(·) Standard deviation -
σact Activation function -
σsig Sigmoid function -
τ Quantiles -
ϕ Random parameter vector -
Θ Parameters of the hidden layer -
Σ The expected number of time-series data samples -
Ω Regulation term -
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