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Abstract
Background: Accurate pedestrian behavior prediction is essential for reducing
fatalities from pedestrian-vehicle collisions. Machine learning can support auto-
mated vehicles to better understand pedestrian behavior in complex scenarios.

Objectives: This thesis aims to predict pedestrian behavior using machine
learning, focusing on trajectory prediction, crossing intention prediction, and
model transferability.

Methods: We identified research gaps by reviewing the literature on pedes-
trian behavior prediction. To address these gaps, we proposed deep learning
models for pedestrian trajectory prediction using real-world data, considering
social and pedestrian-vehicle interactions. We integrated spectral features to
improve model transferability. Additionally, we developed machine learning
models to predict pedestrian crossing intentions using simulator data, analyzing
interactions in both single and multi-vehicle scenarios. We also investigated
cross-country behavioral differences and model transferability through a com-
parative study between Japan and Germany.

Results: For trajectory prediction, incorporating social and pedestrian-vehicle
interactions into deep learning models improved accuracy and inference speed.
Integrating spectral features using discrete Fourier transform improved motion
pattern capture and model transferability. For crossing intention prediction,
neural networks outperformed other machine learning methods. Key factors
that influence pedestrian crossing behavior included the presence of zebra
crossings, time to arrival, pedestrian waiting time, walking speed, and missed
gaps. The cross-country study revealed both similarities and differences in
pedestrian behavior between Japan and Germany, providing insights into model
transferability.

Conclusions: This thesis advances pedestrian behavior prediction and the
understanding of pedestrian-vehicle interactions. It contributes to the develop-
ment of smarter and safer automated driving systems.

Keywords: Pedestrian behavior, trajectory prediction, intention prediction,
pedestrian-vehicle interaction, deep learning, machine learning
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Chapter 1

Introduction

Pedestrian safety is a critical concern that attracts global attention. Intelligent
driving systems that can predict pedestrian behavior offer promising solutions
for reducing pedestrian-vehicle collisions, potentially reducing injuries and
fatalities. Machine learning models, in particular, provide powerful tools for
accurate prediction, enabling these intelligent systems to better predict and
avoid hazardous situations. This chapter introduces the background, benefits,
and challenges of using machine learning methods for pedestrian behavior
prediction.

1.1 Background

1.1.1 Global Road Safety Evolution

Global road safety trends indicate an urgent need to reduce road fatalities.
According to the 2023 global status report on road safety by the World Health
Organization (WHO) [1], there were an estimated 1.19 million fatalities caused
by road traffic crashes in 2021, representing a 5% decrease from the estimated
1.25 million fatalities reported in 2010. However, this number is still incredibly
high. Road traffic injuries remain the main cause of death for children and
young people aged between 5 and 29 years [1], [2], and rank as the 12th leading
cause of death across all age groups as of 2019 [1].

The economic impact of road traffic injuries is also significant. While there
is no global estimate, in general, traffic crashes are estimated to cost between 1
and 2% of gross domestic product (GDP) [3].

The rapid rise in the number of motor vehicles shows the necessity for
improving traffic safety. From 2000 to 2016, the number of motor vehicles
increased sharply from 0.85 billion to 2.1 billion [2]. This significant increase
requires greater efforts to reduce death rates associated with road traffic
accidents to mitigate the impact of the growing number of vehicles on road
safety.

In response to these challenges, the Sustainable Development Goals (SDG)
target 3.6 in the 2030 Agenda for Sustainable Development [4] aims to halve

1
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the number of global deaths and injuries from road traffic accidents. Therefore,
there is an increasing demand for developing safer vehicles to prevent hazardous
situations and reduce fatalities.

1.1.2 Pedestrian Safety Statistics

Pedestrians, as vulnerable road users, represent a significant proportion of road
traffic fatalities. Approximately 273,700 pedestrians were fatally injured in
road traffic crashes in 2021, making up about 23% of all road traffic fatalities,
as shown in Figure 1.1. This makes pedestrians the second largest group of
fatalities, second only to four-wheelers, which accounted for about 30%.
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Figure 1.1: Percentage of deaths among road user categories (data from WHO’s
road safety report 2023 [1]).

While the global fatalities caused by road traffic have decreased over recent
years, vulnerable road users, particularly pedestrians, remain dangerously
exposed [1], [3]. Globally, pedestrian deaths have increased at nearly twice
the rate of overall road crash deaths, with a 12.9% rise from 2013 to 2016
compared to a 6.6% increase for other road users [5]. The International
Transport Forum (ITF) report on urban road safety highlights that while road
crash death rates decreased from 2010 to 2018, reductions for pedestrians were
slower [6]. Pedestrians are nine times more at risk of death than car occupants
per kilometer traveled [7].

Pedestrian-vehicle collisions are predictable and preventable according to
Peden et al.’s study [8], suggesting that accurately predicting pedestrian beha-
vior could potentially reduce fatalities and injuries. The WHO emphasizes that
vehicles can be designed to better protect pedestrians [2]. Understanding and
predicting pedestrian behavior has the potential to prevent pedestrian-vehicle
collisions, thereby facilitating the development of safer vehicles. Accurate
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and robust predictions of pedestrian behavior can reduce misunderstandings,
provide more reaction time for pedestrians’ unexpected movements, and thus
prevent hazardous situations. This information is crucial for automated driving
(AD) systems and advanced driver assistance systems (ADAS), enabling them
to make better and safer decisions.

1.1.3 Locations of Pedestrian-Vehicle Collisions

In this section, we present the locations where pedestrian-vehicle collisions
commonly occur. In the European Union, most pedestrian fatalities occur
in urban areas. Most pedestrian-vehicle collisions happen when pedestrians
are crossing the road. Therefore, these scenarios particularly require the
development of intelligent safety measures to reduce accidents.

The distribution of pedestrian-vehicle collisions varies across different coun-
tries and regions. Within the European Union, approximately 70% of pedestrian
fatalities occur in urban areas. A similar situation is observed in the United
States, where 76% of all pedestrian deaths occur in urban areas [3]. Research in
Sweden by Värnild et al. [9] from 2003 to 2014 showed that the distribution of
seriously injured road users varied between rural and urban areas. Compared
to rural areas, where pedestrians constituted only 7% of serious injuries, in
urban areas, their proportion increased to 40%, representing a large portion of
all serious injuries [9], as shown in Figure 1.2.
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Figure 1.2: Percentage of serious injuries among road user categories in Sweden
(Region Västmanland) in rural and urban areas 2003-2014, N=633, with 262
in rural areas and 371 in urban areas (data from Värnild et al.’s report [9]).

The ITF collected traffic safety data from 48 cities across different continents
to monitor progress in urban road safety. Their report [6] shows that, in more
densely populated cities, the proportion of pedestrians in road fatalities is
higher, as illustrated in Figure 1.3. Therefore, our research focuses on urban
scenarios instead of rural areas to address the higher risk in these densely
populated environments.

Most pedestrian-vehicle collisions are likely to occur when pedestrians are
crossing the road [10]. Research by Lane et al. [11] indicates that most fatal
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Figure 1.3: Distributions of road fatalities of road user types in different
densities of the city, using the average values of figures available between 2014
and 2018. The low population density is less than 5,000 inhabitants per square
kilometer. The medium density is less than 10,000, and the high density is
10,000 and above (data from ITF’s report [6]).

collisions occurred when pedestrians were crossing, and most injury cases
occurred at intersections. This highlights the importance of understanding
pedestrian crossing intention and their interaction with the vehicles.

Unsignalized crossings have higher risks of pedestrian injury. Unsignalized
crossings are crossings without signal displays or traffic lights. They can be
either marked (zebra crossings) or unmarked (non-zebra crossings). Unlike
signalized crossings, where traffic signals regulate pedestrian and vehicle move-
ments, road user behavior at unsignalized crossings relies on the judgment
and interactions of pedestrians and drivers. This lack of formal control can
lead to increased uncertainty and potential conflicts. Olszewski et al. [12]
revealed that almost 30% of pedestrian injury accidents took place at unsignal-
ized zebra crossings. Rothman et al. [13] stated that crossing at unsignalized
locations resulted in more severe injury compared to crossing at signalized
intersections. Therefore, studying pedestrian behavior at unsignalized crossings
is essential for designing intelligent systems that can better deal with these
complex environments.

1.1.4 The Role of Machine Learning Methods in Improv-
ing Pedestrian Safety

The global road and pedestrian safety statistics suggest an urgent need to
reduce road traffic fatalities. Human error is one of the main factors in traffic
accidents [2], [14]. These errors include distracted driving, speeding, fatigue,
and impaired judgment due to alcohol or drugs. Studies by the National
Highway Traffic Safety Administration have shown that human errors were
involved in approximately 94% of serious road accidents [15]. Similarly, Santoso
and Maulina [16] reported that 70% to 90% of accidents can be attributed to
human error, and Morgan et al. [17] stated that human error is a contributing
factor in over 90% of collisions. Therefore, addressing human error is critical
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for improving road safety, indicating the need for systems designed to mitigate
or eliminate these risks.

AD systems, including automated vehicles (AVs) and ADAS, offer opportun-
ities for enhancing road safety. AVs are designed to perform driving tasks with
little human intervention, using advanced sensors and algorithms to navigate
and respond to the environment [18], while ADAS supports drivers in tasks
such as driving and parking. These systems have the potential to reduce traffic
accidents and fatalities [19], [20] by reducing the impact of human errors [19].
Statistical analysis indicates that crashes involving AVs in autopilot mode tend
to be less severe than those with human drivers [21]. While AVs show promise
in improving road safety, addressing the challenges through continued research
and development is essential for fully unleashing their potential.

Machine learning (ML), including deep learning (DL), provides powerful
tools for handling complex scenarios [22], [23], which equip AD systems with
enhanced capabilities. These methods are subsets of AI, as illustrated in
Figure 1.4, and are sometimes used interchangeably with AI [24]. These
data-driven technologies build models to identify and predict human behavior
patterns and benefit from large-scale datasets. By learning complex non-linear
behaviors, ML methods enable accurate and robust predictions.

Artificial
Intelligence

(AI)

Machine
Learning
(ML)

Deep
Learning
(DL)

To compute through multi-layer
neural networks and
processing

To learn from data or
experience, which build
analytical model automatically

To incorporate human behavior
and intelligence to machines or
systems

Figure 1.4: The relationship of deep learning, machine learning, and artificial
intelligence (cf. Sarker [24]).

Given the vulnerability of pedestrians compared to other road users [3], ML
models play a vital role in reducing pedestrian-vehicle collisions, especially at
locations where complex interactions occur. Accurate and robust prediction
allows AD systems to better understand pedestrian behavior in complex scen-
arios, ultimately leading to safer decision-making. For instance, ML models
can predict pedestrian trajectories [25]–[27] and crossing intentions [28]–[30],
supporting AVs and ADAS to make more informed decisions.
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1.2 Motivation
The demand for driving safety and automated driving has stimulated an
increasing number of research studies in pedestrian behavior prediction [31].
However, research gaps and challenges still exist, including the need for faster
and more accurate trajectory prediction methods, deeper analysis for pedestrian-
vehicle interactions, and improved model transferability.

Predicting pedestrian behavior is challenging due to the agility of pedestri-
ans, who can change speed and direction abruptly [32], [33]. Factors such as
destination, age, gender [34], and interactions with other pedestrians [35] and
vehicles [36]–[38] also increase the complexity.

Pedestrian trajectory prediction models should be both fast and accurate to
be viable for implementation in AD systems. While incorporating pedestrian
interactions has the potential to enhance prediction accuracy [31], previous
studies used either traditional rule-based models (e.g., [39]) that lack precision,
or overly complex structures that result in a slow prediction speed (e.g., [40],
[41]). Many existing models, such as [40], [42]–[44], assume symmetric social
interactions, using pooling methods to model them. Models such as [41]
addressed this issue by using graph-based algorithms to learn interaction
influences but relied on hand-crafted non-linear functions to represent these
relationships. There is significant potential to improve accuracy and inference
speed using deep learning networks. To address these limitations, we design
sub-network structures that effectively consider interactions among pedestrians
and between pedestrians and vehicles, improving both accuracy and prediction
speed.

Pedestrian intention prediction models should integrate pedestrian-vehicle
interactions with in-depth analyses to support AD systems in making more
informed decisions. Pedestrian crossing behavior is complex as they are influ-
enced by various factors, especially when interacting with vehicles. Previous
studies using machine learning models to predict intentions did not explicitly
consider the pedestrian-vehicle interaction and overlooked detailed pedestrian-
vehicle analysis [45]–[50]. Those who investigated pedestrian-vehicle interactions
mainly focused on liner relationships [51]–[54], missing the non-linearity and
complexity of the interactions, and did not predict specific interaction out-
comes. To address these gaps, we develop machine learning models that predict
pedestrian-vehicle interaction outcomes at unsignalized crossings and analyze
the key factors influencing pedestrian crossing behavior and their impact.

Predictive models for pedestrian behavior need transferability to be applied
in various scenarios. Most existing models are based on data from specific
datasets or single countries [28], [40]–[42], [53], limiting their applicability in
new scenarios or different countries. To address these limitations, we focus on
investigating the transferability of pedestrian behavior models.

1.3 Research Goals and Questions
This thesis aims to use machine learning methods, including deep learning and
traditional machine learning algorithms, to understand and predict pedestrian
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behavior in complex traffic scenarios. To achieve this goal, the following
sub-goals are addressed:

G1: To predict pedestrian trajectory in urban traffic scenarios using deep
learning methods.

G2: To predict pedestrians’ crossing intentions and understand their inter-
actions with vehicles at unsignalized crossings using machine learning
methods.

G3: To investigate the transferability of pedestrian behavior prediction models.

We derive the following research questions from the goals:

RQ1: What are the state-of-the-art deep learning algorithms for predicting
pedestrian behavior and how do they perform in urban scenarios?

RQ2: How can deep learning methods improve the prediction of pedestrian
trajectories in urban traffic scenarios?

RQ2-1: What are the improvements in pedestrian trajectory prediction when
using deep learning methods to extract social interactions within
pedestrians compared to existing methods?

RQ2-2: What are the improvements in pedestrian trajectory prediction
when using deep learning methods to extract pedestrian-vehicle
interactions compared to existing methods?

RQ2-3: What are the improvements in pedestrian trajectory prediction when
considering spectral information compared to existing methods?

RQ3: How can machine learning methods improve the prediction of pedes-
trian intentions and enhance the understanding of pedestrian-vehicle
interactions at unsignalized crossings?

RQ3-1: How can machine learning methods improve the prediction of pedes-
trian crossing intention and interaction outcomes when interacting
with a single vehicle?

RQ3-2: How can machine learning methods improve the prediction of ped-
estrian crossing time gap selection and the use of zebra crossings
when interacting with multiple vehicles?

RQ4: What is the transferability of our proposed deep learning and machine
learning models?

RQ4-1: How does considering spectral information in deep learning models
improve the transferability of trajectory prediction compared to
existing methods?

RQ4-2: How transferable are machine learning models for predicting pedes-
trian crossing behavior between different countries?
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The appended papers contribute to improving pedestrian behavior pre-
diction using machine learning methods. We provide a literature review on
pedestrian behavior prediction (Paper I). We focus on trajectory prediction
(Papers II, III, and IV), intention prediction (Papers V, VI, and VII), and
model transferability (Papers IV and VII). Table 1.1 outlines how these papers
contribute to corresponding research goals and address the research questions.

Table 1.1: A summary of appended papers.

Paper Goal Research
Question Main countributions

I G1,
G2 RQ1

Reviewed current deep learning research studies
for pedestrian trajectory and intention predic-
tion, discussed their strengths and weaknesses,
outlined a comprehensive framework, and high-
lighted research gaps.

II G1 RQ2-1
Proposed a trajectory prediction method that
improves performance by considering social in-
teractions.

III G1 RQ2-2
Proposed a trajectory prediction method that
improves performance by considering pedestrian-
vehicle interactions.

IV G1,
G3

RQ2-3,
RQ4-1

Proposed a trajectory prediction method that
improves performance and transferability by con-
sidering spatial, temporal, and spectral inform-
ation.

V G2 RQ3-1

Proposed machine learning methods for pedes-
trian behavior prediction when interacting with
a single vehicle, and identified key factors and
their impacts on pedestrian behavior.

VI G2 RQ3-2

Proposed machine learning methods for pedes-
trian behavior prediction when interacting with
multiple vehicles, and identified key factors and
their impacts on pedestrian behavior.

VII G2,
G3

RQ3-2,
RQ4-2

Proposed machine learning methods for pedes-
trian behavior prediction when interacting with
multiple vehicles, identified key factors and their
impacts on pedestrian behavior, and investig-
ated the differences between countries.

1.4 Thesis Outline
The remaining chapters of this thesis are structured as follows:

Chapter 2: Methodology. This chapter introduces the problem formu-
lation, outlines the evaluation metrics, introduces the deep learning



1.4. THESIS OUTLINE 9

algorithms for pedestrian trajectory prediction and the machine learning
algorithms for crossing intention and interaction prediction, and presents
the dataset in use.

Chapter 3: Summary of Appended Papers. This chapter outlines the
objectives, methodologies, results, and contributions of the appended
papers.

Chapter 4: Discussion. This chapter discusses the findings from the seven
appended papers, highlighting their contributions. It also presents the
limitations of the study and proposes potential future research.

Chapter 5: Conclusions. This chapter summarizes the key contributions
and findings presented in this thesis.
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Chapter 2

Methodology

The methodology chapter is organized as follows: First, we introduce the
definition of the problems. Next, we present how the methods are evaluated.
Following this, we provide details for the methods used in this thesis, including
deep learning algorithms for trajectory prediction and machine learning methods
for intention and interaction prediction. Finally, we introduce the datasets that
we used in this thesis.

2.1 Problem Definition

This thesis focuses on the prediction of pedestrian behaviors, including traject-
ory prediction (Papers II, III, and VI), and crossing intention and interaction
outcomes (Papers V, VI, and VII). Paper I reviews existing literature and
provides the definition of trajectory and intention prediction problems.

2.1.1 Trajectory Prediction

We predict pedestrian future trajectories based on past trajectories in Papers
II, III, and VI. The trajectory of a pedestrian consists of a sequence of positions
in two-dimensional (2D) x-y coordinates X = (x, y) with their temporal order.
The positions in each frame are first pre-processed to x-y coordinates on a
2D map representation from the bird’s-eye-view. This allows us to accurately
capture pedestrians’ spatial movement patterns. In each frame at time-step t
with the number of pedestrians np, the ith person at time-step t is represented by
x-y-coordinate Xi

t = (xi
t, y

i
t), where i ∈ {1, . . . , np}. The observed trajectories

can be denoted as Xt = [X1
t , X

2
t , . . . , X

np

t ], with all observed time-steps 1 ≤ t ≤
Tobs. Given this input, our goal is to predict the most likely future trajectories
Ŷt = [Ŷ 1

t , Ŷ
2
t , . . . , Ŷ

np

t ], where future time steps Tobs + 1 ≤ t ≤ Tpred. The
ground truth of the future trajectories is denoted as Yt = [Y 1

t , Y
2
t , . . . , Y

np

t ],
where Tobs + 1 ≤ t ≤ Tpred.

11
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2.1.2 Intention and Interaction Prediction
Pedestrian interacting with a single vehicle: In Paper V, we focus on
scenarios where a pedestrian interacts with a single vehicle at unsignalized
crossings. Given observed variables, we predict the “cross or wait” decisions of
all pedestrians, which can be considered as a classification problem. For those
crossing cases, we are also concerned about the crossing initiation time and
crossing duration, which are regression problems.

Pedestrian interacting with multiple vehicles: In Papers VI and VII,
we focus on scenarios when pedestrians interact with multiple vehicles. Given
the observed variables, we predict the time gap selected and accepted by the
pedestrian for non-zebra crossing scenarios, which is a regression problem. For
zebra crossing scenarios, we predict whether pedestrians use the zebra crossing,
which is a classification problem.

2.2 Evaluation Metrics

2.2.1 Trajectory Prediction Problem
For the trajectory prediction problem, we use the average displacement error
(ADE) and the final displacement error (FDE) for evaluation. In Paper I, exist-
ing algorithms are reviewed and compared, and the state-of-the-art algorithms
are listed. In Papers II, III, and IV, in addition to ADE and FDE, which
evaluate the displacement error, the average inference speed of different models
is also evaluated to compare computational performance.

• ADE: the average distance between ground truth and prediction traject-
ories over all predicted time-steps, as defined in Eq. 2.1. It also refers
to the mean square error over all estimated positions of every trajectory
and the true positions.

ADE =

∑
i∈np

∑Tpred

t=Tobs+1 ∥Y i
t − Ŷ i

t ∥2
np × (Tpred − Tobs)

(2.1)

• FDE: the average distance between ground truth and prediction traject-
ories for the final predicted time-step, as defined in Eq. 2.2:

FDE =

∑
i∈np

∥Y i
t − Ŷ i

t ∥2
np

, t = Tpred (2.2)

2.2.2 Classification Problem
For the classification problems in Papers V, VI, and VII, we use prediction
accuracy and F1 score for evaluation. The evaluation functions are shown below,
where P and N denote the numbers of positives and negatives, respectively.
TP, TN, FP, and FN are the numbers of true positives, true negatives, false
positives, and false negatives, respectively.
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Accuracy =
TP + TN

P +N
(2.3)

F1 =
2TP

2TP + FP + FN
(2.4)

2.2.3 Regression Problem
For the regression problems in Papers V, VI, and VII, we use mean absolute error
(MAE) and root mean squared error (RMSE) for evaluation. The evaluation
functions are defined as follows, where yi denotes the ground truth for the ith

trial, and ŷi denotes the corresponding prediction, n denotes the number of
trials.

MAE =
Σ|ŷi − yi|

n
(2.5)

RMSE =

√
Σ(ŷi − yi)2

n
(2.6)

2.3 Deep Learning for Pedestrian Trajectory Pre-
diction

2.3.1 Deep Learning Models for Sequence Prediction
Deep learning models can benefit more from large-scale datasets compared to
traditional machine learning methods [24]. Many recent studies have explored
the application of deep learning and neural networks for pedestrian behavior
prediction [31]. In this section, we introduce deep learning algorithms that are
utilized in our research.

Long Short-Term Memory Networks

Recurrent Neural Networks (RNNs) maintain a memory of previous inputs
through internal states, making them effective for sequential prediction. While
RNNs can capture temporal dependencies, they struggle with long-term de-
pendencies due to gradient vanishing.

Long short-term memory (LSTM) networks are an improved version of
RNNs. They have both feedforward and feedback connections to capture long
and short-term information, making them especially effective for sequential
data predictions. LSTMs have been successfully applied for tasks such as
handwriting [55] and speech recognition [56].

Due to their capabilities in sequential prediction, LSTMs have been adopted
by researchers for predicting pedestrian trajectories (e.g., [42]–[44], [57]). For
instance, Alahi et al. [42] proposed Social-LSTM, which assumed the trajectories
of pedestrians follow the bi-variate Gaussian distribution, and many researchers
followed this uni-modal assumption. The drawback of the LSTM-based methods
is that they cannot be parallelized as predictions at each time step depend on
preceding time steps.
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Generative Adversarial Networks

Generative Adversarial Networks (GANs), proposed by Goodfellow et al. [58],
consist of two neural networks, a generator and a discriminator, that contest
with each other. The generator generates multiple possible candidates, while
the discriminator evaluates them. For pedestrian trajectory prediction, Gupta
et al. [40] stated that assuming a uni-modal distribution may lead to learning
the “average” trajectories rather than multiple “good behaviors”. Instead, they
introduced GANs to model pedestrian trajectories following a multi-modal
distribution. Although GANs are able to predict multiple feasible outcomes,
it is challenging to achieve convergence for training two deep networks within
one structure.

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are widely used for processing struc-
tured grid data such as images. They employ convolutional layers with filters
that slide over the input to capture local patterns. CNNs have been successfully
used in tasks like image classification and segmentation, due to their capability
of extracting spatial features. Many studies have used CNNs for pedestrian
intention prediction to extract appearance and behavioral features.

Additionally, convolutional networks in temporal space, also known as
temporal convolutional networks (TCNs), can extract temporal features and
be used for sequential prediction. Bai et al. [59] stated that RNNs’ inefficient
parameter usage can make training costly, and LSTMs’ dependency on preceding
time steps can lead to error accumulation. Nikhil and Morris [60] utilized CNNs
for trajectory prediction, achieving competitive results with a faster inference
speed. Mohamed et al. [41] proposed the Social-STGCNN method, combining
spatial and temporal features using TCNs and CNNs with graph structures,
achieving a 20% improvement in FDE and being 48 times faster compared to
sequential models.

Transformers

In recent years, Transformers [61] have become popular due to their superior
ability to memorize information in long sequences compared to RNNs. Their
attention mechanism allows for shortcuts between the context vector and the
entire input, instead of relying only on the last hidden state as in RNNs.
Transformers achieve better performance compared to RNNs, and allow for
parallelization, thus reducing training time. The original Transformers [61] are
implemented with a fixed length, limiting their ability to model dependencies
longer than that length. Enhanced versions, such as TransformerXL [62], ad-
dress these limitations and allows for learning dependencies beyond a fixed
length without disrupting temporal coherence. Later variations such as com-
pressive Transformer [63], Longformer [64], and Reformer [65] improved the
efficiency for processing long sequences.

Transformers have made groundbreaking progress in the Natural Language
Processing (NLP) field and are now being adopted for predicting pedestrian
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trajectories. Giuliari et al. [66] demonstrated that Transformers achieved
better performance than previous LSTM- and CNN-based models on individual
trajectory prediction. Other studies, such as spatio-temporal graph Transformer
networks proposed by Yu et al. [67], AgentFormer proposed by Yuan et al. [68],
and STGT proposed by Syed et al. [69] have also used Transformers, considering
interactions with other road users and context information, and achieved more
accurate results.

In this thesis, we apply all aforementioned prediction structures for traject-
ory prediction. The appended Paper I introduces these networks, highlighting
their advantages and drawbacks. Paper II utilizes CNNs for trajectory pre-
diction, considering social interactions, and compares their performance with
LSTMs and GANs. Paper III utilizes both CNNs and LSTMs separately for
trajectory prediction, considering social interactions and pedestrian-vehicle
interactions. Paper IV proposes an LSTM-based model considering spectral in-
formation, and compares the performance of LSTMs, CNNs, and Transformers.

2.3.2 Interactions between Pedestrians and Other Road
Users

As pedestrians frequently interact with other road users in urban traffic scen-
arios, considering interaction information can potentially improve the accuracy
when predicting pedestrian trajectory. In this thesis, we utilize deep learning
networks to capture these interactions and investigate their influence on predic-
tion. We investigate how different interactions influence trajectory prediction
and identify relevant features for extracting these interactions. In Paper II, we
consider social interactions with other pedestrians, while in Paper III, we also
consider interactions between pedestrians and vehicles.

Social Interactions with Other Pedestrians

Moussaid et al. [35] stated that pedestrian behavior is influenced not only by
individual factors but also by social interactions with nearby pedestrians. Many
researchers have focused on modeling social interactions in pedestrian trajectory
prediction. Alahi et al. [42] pioneered applying deep learning networks to
trajectory prediction. They utilized LSTMs and proposed “social pooling” to
capture social interactions, instead of using conventional handcrafted functions
like the Social Force model [39]. Pooling layers are typically used in CNNs for
dimensionality reduction. These layers commonly calculate either the average
or maximum value within a specified pooling operation area. In the context of
trajectory prediction, “social pooling”, as introduced by Alahi et al. [42], uses
pooling operations to allow information sharing among neighboring pedestrians.
Subsequent research further refined and improved the social pooling module
with more complicated structures [40], [70].

Some researchers have stated that social interactions are not symmetric, so
instead of using pooling methods, they introduced graph-based networks for
learning social interactions [41], [71]. Graph neural networks (GNNs) construct
a graph < V,E > where vertices represent the states of each road user, and edges
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represent interaction relationships between them. Approaches like STGAT [72]
and Social-BiGAT [71] used graph attention networks [73] to model interactions,
while Mohamed et al. [41] utilized graph convolutional networks [74] to assign
interaction weights of the target pedestrian’s surrounding neighbors for social
interaction modeling.

However, constructing GNNs and calculating non-linear edge values are
time-consuming [25]. Multi-layer perceptrons (MLPs) are capable of learning
interaction relationships with linear computation and activation functions,
offering faster inference speeds. In Paper II, we use MLPs to learn interaction
weights and propose a weighted sum aggregation function to aggregate the
influence of neighboring pedestrians, avoiding graph convolutional operations
and thereby accelerating the computation. Compared to the previous state-
of-the-art Social STGCNN model, our proposed approach reduces prediction
error by 1.8% and speeds up inference by a factor of 4.7.

Interactions between Pedestrians and Vehicles

In addition to social interactions with other pedestrians, pedestrian-vehicle
interactions also influence pedestrian trajectory. Many researchers have attemp-
ted to include vehicle information in pedestrian behavior prediction models.
Traditional approaches explicitly use hand-crafted features such as speed, ori-
entation, distance to pedestrians, and time to collision (TTC) as inputs to
neural networks to learn their impact on pedestrian trajectory [34], [48], [49],
[75]–[77]. However, pedestrian-vehicle interactions are complex in scenarios
involving multiple pedestrians and vehicles, making it challenging to generalize
designed features to new scenarios. Therefore, an increasing number of studies
use deep learning sub-networks to learn these interactions.

As pedestrians and vehicles exhibit different motion patterns, their inter-
actions are inherently asymmetric. For example, consider a situation where a
pedestrian waits to cross a street without zebra markings where the pedestrian
does not clearly have the right of way. The pedestrian’s motion is more agile
and can freely adjust their trajectory based on the vehicle’s behavior, changing
their direction and speed as needed. In contrast, the car’s trajectory is primarily
determined by its original speed and direction, with minimal adjustments made
for the waiting pedestrian. This scenario highlights how the car significantly
impacts the pedestrian’s trajectory, while the pedestrian has limited influence
on the vehicle’s trajectory.

GNNs are particularly suited for learning these asymmetric interaction
relationships between pedestrians and vehicles. This approach has been adopted
by several studies, such as [78]–[82]. Models proposed by Chandra et al. [83]–
[85] predicted the trajectories of different types of road users simultaneously,
but focused mainly on vehicles, with limited emphasis on pedestrians.

To address the drawbacks of GNNs as mentioned earlier, MLPs can be
used for capturing pedestrian-vehicle interactions. Relative positions and
velocities between pedestrians and vehicles are used as inputs of this sub-
network. In Paper III, we use a separate multilayer perceptron (MLP) network
to extract pedestrian-vehicle interactions in addition to social interactions.
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We also identify optimal inputs for learning, and evaluate the influence of
pedestrian-vehicle interactions on trajectory prediction accuracy.

2.4 Machine Learning for Crossing Intention and
Interaction Prediction

As reviewed and summarized in Paper I, recent studies have made significant
strides in predicting pedestrian crossing behavior using naturalistic data [45],
[46], [48], [49], [86]. These studies mainly used deep learning networks to capture
the features of pedestrian appearance, postures, and nearby environments
without explicitly considering pedestrian-vehicle interactions. Furthermore,
they failed to thoroughly analyze key influencing factors and their impact on
crossing behavior.

The research by Völz et al. [75], [87], Zhang et al. [34], and Jayaraman
et al. [88] investigated pedestrian crossing behavior at unsignalized crossings
and addressed pedestrian-vehicle interactions. However, these studies either
neglect to investigate pedestrian behavior at different crossing locations (with
or without zebra crossings), overlook the influence of personality traits, or
focus only on single-vehicle and single-pedestrian interactions, neglecting the
complex interactions with multiple vehicles that are prevalent in real-world
situations.

To address these limitations, in Paper V, we investigate pedestrian interac-
tions with a single vehicle and consider the influence of crossing locations and
personality traits. In Papers VI and VII, we address pedestrian interactions
with multiple vehicles, predicting the selected and accepted time gaps for
crossing, as well as the usage of zebra crossings.

Simulator data has become increasingly popular for studying pedestrian
crossing behavior due to its controlled and safe environment. Our research
(Papers V, VI, and VII) utilizes data collected from simulator studies. As these
datasets are relatively small, deep learning methods may cause overfitting [89].
In such cases, traditional machine learning models, such as linear regression
and logistic regression models, random forest (RF), support vector machine
(SVM), are a suitable alternative. When predicting a pedestrian’s intention and
interaction outcomes, various machine learning algorithms can be employed.
This section introduces the machine learning algorithms used in our research.

Linear Regression

Linear regression is a statistical method for modeling the relationship between
a dependent variable and one or more independent variables [90]. It assumes a
linear relationship and aims to determine the best-fit line that minimizes the
sum of squared differences between the observed and predicted values. It is
widely used for regression and predictive analysis.
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Logistic Regression

Logistic regression is used for binary classification problems. It predicts the
probability of an event by modeling the log-odds for the event as a linear
combination of independent input variables. The output is a probability value
between 0 and 1, which can be thresholded to classify the input into one of
two classes.

Support-Vector Machine

Support-Vector Machine (SVM) aims to find a hyperplane in the feature
space that best separates the data into different classes and can be used for
classification. The hyperplane is chosen to maximize the margin between the
classes, making SVM effective in high-dimensional spaces and cases where the
classes are clearly separable. SVM can also handle non-linear classification
using kernel functions. In this thesis, we use a linear kernel, so the SVM is also
considered a linear-based model.

Random Forest

Random Forest (RF) is an ensemble learning method for both classification
and regression tasks [91]. It combines multiple decision or regression trees
to improve classification or regression performance. Each tree is trained on
a random subset of the data and features. The final output is obtained by
aggregating the predictions from all separate trees, using the most selected label
for classification and the average prediction for regression. Random forests are
robust to overfitting and can handle large datasets with high dimensionality.

Neural Networks

Neural Networks (NNs) are based on a collection of artificial nodes and can be
used for both classification and regression. NNs usually contain several node
layers, consisting of an input layer, an output layer, and one or several hidden
layers. When the number of models’ input features is small, the multilayer
perceptron (MLP) can be used. MLP is a fully connected feedforward NN.
MLPs are trained by backpropagation, where the network adjusts the weights
of the connections to minimize the difference between the predicted and actual
outputs. This is typically done using gradient descent optimization.

In Papers V, VI, and VII, all aforementioned models are employed to
predict pedestrian intention and interaction outcomes. These papers evaluate
and compare machine learning algorithms to understand pedestrian crossing
behavior in unsignalized crossings. The key factors for modeling are identified,
and their impact on pedestrian crossing behavior is analyzed.

2.5 Datasets
This thesis utilizes both naturalistic and simulator data. In this section, we
introduce the datasets in use. Papers II, III, and IV employ naturalistic data



2.5. DATASETS 19

(a) ETH-univ (b) ETH-hotel (c) UCY-zara (d) UCY-univ

Figure 2.1: Screenshots of the ETH [92] and UCY [93] datasets. These data
are collected at different locations.

for trajectory prediction, while Papers V, VI, and VII utilize simulator data to
investigate pedestrian-vehicle interaction.

2.5.1 Naturalistic Data

Naturalistic data are widely used for pedestrian trajectory prediction. Paper I
provides a comprehensive list of publicly available datasets commonly used for
training and evaluating pedestrian trajectory prediction models.

ETH and UCY Datasets

The ETH [92] and UCY [93] datasets are commonly used for evaluating ped-
estrian trajectory prediction models. These datasets consist of five scenes
collected in crowded urban scenarios at fixed locations from the bird’s-eye-view.
The ETH dataset contains two scenes, namely university and hotel scenes, with
annotations for 750 unique pedestrians. The UCY dataset comprises three
scenes, including two street scenes and one university scene, with annotations
for 786 unique pedestrians. Figure 2.1 provides snapshots of the scenarios in
these datasets. The ETH and UCY datasets are used in Paper IV.

Waymo Open Dataset

The Waymo Open Dataset [94] contains 1,150 real-world road scenes collected
in the United States from the vehicle’s view, including 450 scenes from urban
street scenarios. To investigate pedestrian behavior in urban scenarios, we
focus on these 450 urban street scenes, consisting of 374 training records and 76
test records, each lasting 20 seconds. The training records are further divided
into a training set containing 337 records and a validation set containing 37
records. The 76 test records are reserved for model evaluation. A snapshot of
the urban traffic scenario in the Waymo Open Dataset is shown in Figure 2.2.
The Waymo Open Dataset is used in Papers II, III, and IV.

Data Pre-processing

The basic information of the datasets used for trajectory prediction in this
thesis is shown in Table 2.1. The statistics of these datasets is shown in
Table 2.2. These datasets are collected from different countries using various
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Figure 2.2: A snapshot of an urban traffic scenario in Waymo Open Dataset [94].

Table 2.1: Basic information about the datasets used in this thesis.

Dataset
name

Labeled
objects Collected view Collected

location Frequency

ETH Pedestrians Bird’s-eye-view Switzerland 2.5 Hz
UCY Pedestrians Bird’s-eye-view Cyprus 2.5 Hz

Waymo
Pedestrians,
vehicles, cyc-
lists, signs

Vehicle’s view United
States 10 Hz

Table 2.2: Statistics of the datasets used in this thesis.

Dataset
name

Number
of frames
(@2.5Hz)

Number of
pedestrian
sequences

Average
number of
targets per
frame

Average
speed
(m/s)

ETH-univ 1,448 603 6.27 0.92
ETH-hotel 1,168 301 5.60 1.04
UCY-zara1 872 602 5.91 1.07
UCY-zara2 1,052 921 9.24 0.79
UCY-univ 985 947 40.37 0.63
Waymo (train) 17,127 8,328 29.33 0.91
Waymo (test) 3,570 1,978 30.91 0.95

sensors and views. We use only trajectories as input to reduce the influence of
different sensors and calibration parameters of these datasets. We pre-process
the naturalistic data into a consistent coordinate system and frequency to
ensure uniform input information for the proposed models.

The ETH and UCY datasets are collected from the bird’s-eye-view using
cameras. Pedestrian labels are transformed from image coordinates (u, v) into
center positions (x, y) of pedestrians in the real world.

The Waymo Open Dataset is collected with high-resolution cameras and
LiDARs from the vehicle’s view. It uses a local coordinate system with the
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ego-vehicle’s center as the origin in each frame. Since using local coordinates
introduces the ego-vehicle’s movement into the pedestrians’ movement, affecting
prediction accuracy, we pre-process the data. We use the pedestrians and
vehicles labeled in the LiDAR data with their real-world center positions
(x, y, z). We include all labeled pedestrians and vehicles within the LiDAR scan
range of 75 m. Each sequence of objects has a unique track ID. In this thesis,
pedestrians and vehicles are considered as points without the size and shape
information. We first pre-process them into 2D positions (x, y) sequences from
a bird’s-eye view. Then, to avoid the influence of the ego-vehicle’s movement,
we transform the coordinates into global coordinates, using the ego-vehicle’s
position at the first time step of the recording as the origin.

The labeled sequences we used from the Waymo Open Dataset have a
frequency of 10 Hz, whereas many previous state-of-the-art models were eval-
uated on the ETH and UCY datasets with a frequency of 2.5 Hz. To ensure
consistency and avoid the influence of different frequencies, we down-sample
all sequences to 2.5 Hz.

2.5.2 Simulator Data

Simulator data is becoming popular for investigating pedestrian crossing beha-
vior, especially when exploring pedestrian-vehicle interaction [28]. Investigating
near-crash scenarios in real-world settings is unsafe and unethical, as it may
harm pedestrians. Ensuring pedestrian safety is important, and simulators
provide a safe environment for collecting crossing behavior and interaction
information.

Besides, when using naturalistic data, it is challenging to separate interaction
factors from other potential latent variables influencing pedestrian behavior.
Simulator studies, however, provide a controlled or semi-controlled environment,
making it easier to investigate these interaction factors. Therefore, conducting
simulator studies within safe and controlled environments is an effective way
to explore pedestrian crossing behavior and pedestrian-vehicle interactions.

2.5.2.1 Pedestrians Interacting with a Single Vehicle

In Paper V, we investigate scenarios where the target pedestrian interacts with a
single vehicle, using the distributed simulator study data collected by Kalantari
et al. [53]. The distributed simulator study was conducted by connecting two
high-fidelity simulators: the University of Leeds Driving Simulator (UoLDS) and
the Highly Immersive Kinematic Experimental Research (HIKER) pedestrian
lab. The UoLDS is a motion-based driving simulator with eight degrees of
freedom and a 300-degree field of view, housed in a 4 m spherical dome.
HIKER is a Cave Automatic Virtual Environment (CAVE)-based simulator
with dimensions of 9m× 4m. Utilizing eight Barco F90 4k projectors, virtual
scenes are projected at a frequency of 120 Hz onto the floor and walls. As shown
in Figure 2.3 (a), fourteen body markers were attached to the pedestrian’s
body, represented as pink spheres visible to the driver. The vehicle was also
observable as an entity to the pedestrian, as shown in Figure 2.3 (b).
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(a) (b)

Figure 2.3: Illustration for the distributed simulator study. (a) A pedestrian
from the driver’s view: the pink spheres represent body markers attached to
the pedestrian. (b) An interaction example from the third view: a pedestrian
is at the zebra crossing and interacting with the vehicle to their right.

Figure 2.4: Bird’s-eye-view of the zebra (left) and non-zebra crossings (right)
with the designated standpoints (shown by the blue cross markers). The gray
rectangles are visual obstructions (bus stops).

Sixty-four participants including 32 drivers and 32 pedestrians are paired
and interacted with each other in various scenarios. The drivers are at age:
mean (M) = 31.53, range (R) = 21 − 50, standard deviation (SD) = 1.72.
The pedestrians at age: M = 25.09, R = 19 − 34, SD = 0.87. Both drivers
and pedestrians are equally distributed by gender. The interaction scenarios
include five different time to arrival and four crossing locations (two at zebra
crossings and two at non-zebra crossings), as shown in Figure 2.4. This led
to 20 conditions repeated in two separate experimental blocks, resulting in 40
randomized trials per participant pair. An 890 m two-way urban road with
traffic on both lanes was created in Unity 3D to apply these settings. The
data was collected after obtaining approval from the University of Leeds Ethics
Committee.

Both pedestrian and driver participants were instructed to act assuming
they were in a hurry while prioritizing safety. Drivers were informed to main-
tain a speed limit of 30 mph and to yield to pedestrians only when necessary.
In addition to objective variables, personality traits including social value
orientation (SVO) slider measure [95] and Arnett inventory of sensation seek-
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ing (AISS) [96] were collected using questionnaires. The observed variables
considered as candidate inputs are listed in Table 2.3.

Table 2.3: Candidate input variables for predicting pedestrian intentions when
interacting with a single vehicle.

Variable [Unit] Description (type)
Ta [s] Time to arrival (continuous)
Tw [s] Waiting time (continuous)

L Crossing location type, including two categories: zebra
and non-zebra (categorical)

Ad, Ap Age for both pedestrians and drivers. (discrete)
Gd, Gp Gender for both pedestrians and drivers (categorical)
SV Od, SV Op

[degree]
SVO slider measure for both pedestrians and drivers,
calculated from the questionnaire [95] (continuous)

AISSd, AISSp
AISS for both pedestrians and drivers, calculated from
the questionnaire [96] (continuous)

2.5.2.2 Pedestrians Interacting with Multiple Vehicles

In Papers VI and VII, we investigate scenarios where the target pedestrian
interacts with multiple vehicles, using the simulator data collected by Sprenger
et al. [97]. The data was collected in a controlled experiment in a virtual
street environment with a bi-directional one-lane road. Pedestrian participants,
equipped with an untethered and head-mounted virtual reality headset, navig-
ated freely in a 9m×8m space, selecting routes and physically crossing (walking
or running) the virtual road to reach a goal on the opposite side. Figure 2.5
(a) shows the pedestrian wearing the headset. An example of the scenarios for
the pedestrian participants are shown in Figure 2.5 (b).

(a) (b)

Figure 2.5: Illustration for the simulator data collection. (a) A pedestrian
participant wearing the headset. (b) An example of the experimental setup.

This study included 120 pedestrian participants in Germany and Japan,
with 60 participants in each country and an equal distribution of gender. In
Paper VI, we used the data collected from Germany. In Paper VII, we used
the data collected from both Germany and Japan. The experimental setup is
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illustrated in Figure 2.6. A total of 60 trials were conducted for each participant,
including 15 trials without any crossing facility, 15 trials with a zebra crossing,
and 30 trials without zebra crossings involving the presence of risky and safe
virtual pedestrian avatars. Vehicles maintained a constant speed of 30 km/h
and only stopped at zebra crossings if participants were nearby. The gaps
between cars per lane were uniformly sampled between 2.5 and 8.5 seconds.
The data was collected after obtaining approval from the local ethical review
boards in each country.

~ 8 m

~ 9 m

Synchronized Gap

Near Lane Gap

Virtual Pedestrian Agents

Start

Goal

(a) Baseline and virtual pedestrians

4.50 m

6.25 m

~ 8 m

~ 9 m

Start

Goal

(b) Zebra environment

Figure 2.6: Overview of the experimental environment. Start (yellow) and
goal (green) are visualized, and are alternated in every other trial. Cars were
approaching from both directions with randomly sampled gaps per lane.

Table 2.4: Candidate input variables for predicting pedestrian intentions when
interacting with multiple vehicles.

Variable
(unit) Description (Data type)

Tw(s) Pedestrian waiting time before crossing (continuous)
vp(m/s) Pedestrian average walking speed (continuous)
Nen Number of unused effective gaps at near lane (discrete)
Nef Number of unused effective gaps at far lane (discrete)
Neb Number of unused effective gaps for both lanes (discrete)
Men(s) Largest missed effective gap at near lane (continuous)
Mef (s) Largest missed effective gap at far lane (continuous)
Meb(s) Largest missed effective gap for both lanes (continuous)
Ncn Number of unused car gaps at near lane (discrete)
Ncf Number of unused car gaps at far lane (discrete)
Ncb Number of unused car gaps for both lanes (discrete)
Mcn(s) Largest missed car gap at near lane (continuous)
Mcf (s) Largest missed car gap at far lane (continuous)
Mcb(s) Largest missed car gap for both lanes (continuous)

Variables describing pedestrian behavior are collected from the experiment
recordings, including the pedestrian’s average crossing velocity and the selec-
ted and accepted gap for crossing. Besides, we also focus on the gap-related
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measures. We calculate the car gap in traffic from the perspective of vehicles
by determining the temporal distance between them. We also consider the
participant’s ego-movement and observe the effective gaps using an automated
stopwatch calculating the time between a first car passing and a second one
arriving at the participant’s spatio-temporal position. For each way of compu-
tation, gaps are computed for the near and far lanes separately, as well as the
synchronized gap for both lanes. All calculations are in seconds, but conversion
to meters is straightforward due to the vehicles’ constant speed. The observed
variables are listed in Table 2.4.
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Chapter 3

Summary of Appended
Papers

3.1 Paper I
Chi Zhang and Christian Berger, “Pedestrian Behavior Prediction Using Deep
Learning Methods for Urban Scenarios: A Review”, IEEE Transactions on
Intelligent Transportation Systems, 2023

Objective
This research aims to comprehensively analyze and categorize existing methods
for pedestrian behavior prediction, focusing on both trajectory and intention
prediction using deep learning models in urban scenarios.

Methodology
This literature review systematically analyzes existing papers on pedestrian
behavior prediction using deep learning methods. Through direct searches on
IEEE Xplore and Google Scholar, combined with snowballing techniques, we
reviewed 92 papers from 2016 to 2021. The selection criteria focus on pedestrian
behavior prediction and deep learning, excluding works on drivers, robots,
detection, and tracking. We expanded existing taxonomies, and categorized
studies based on prediction tasks (trajectory, intention, joint prediction), input
data types, model features, and network structures. We compared methods
using common evaluation metrics and datasets, identifying research gaps and
suggesting future research directions.

Results and Contributions
This research has provided a comprehensive review of pedestrian behavior
prediction models using deep learning algorithms, drawing from 92 papers.
The original contributions included a detailed analysis and categorization of

27
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existing literature, an introduction to publicly available datasets and evaluation
metrics, a comparison of state-of-the-art algorithms, and a discussion of the
advantages and drawbacks of existing algorithms. The study also identified
research gaps and suggested potential directions for future improvements in
prediction algorithms.

3.2 Paper II
Chi Zhang, Christian Berger, and Marco Dozza, “Social-IWSTCNN: A Social
Interaction-Weighted Spatio-Temporal Convolutional Neural Network for Ped-
estrian Trajectory Prediction in Urban Traffic Scenarios”, In proceedings of the
2021 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2021

Objective
This research aims to improve the accuracy of predicting pedestrian trajectories
and reducing computational costs, by considering social interactions between
pedestrians.

Methodology
We proposed the Social Interaction-Weighted Spatio-Temporal Convolutional
Neural Network (Social-IWSTCNN) to predict pedestrian trajectories in urban
traffic scenarios. We used a 3.2-second observed trajectory to predict a 4.8-
second future trajectory. The Social-IWSTCNN framework consists of three key
components: (1) the Social Interaction Extractor, which extracts spatial fea-
tures and interaction weights between pedestrians without constructing a graph
representation, directly using spatial features extracted from the observed loca-
tions relative to the last frame; (2) Temporal Convolutional Networks (TCNs),
which extract temporal features from the spatial and social features to generate
spatio-temporal features; and (3) Time-Extrapolator Convolutional Networks,
which predict future trajectory distributions by applying convolutional networks
to the spatio-temporal features, sampling the predicted Gaussian distributions
to obtain future trajectories.

Results and Contributions
In this research, we have proposed the Social-IWSTCNN model, which effect-
ively learns social interactions among pedestrians using a sub-network. The
key innovation was the Social Interaction Extractor, a novel structure that cap-
tures pedestrian interactions in a data-driven manner, instead of using a fixed
non-linear function approach used by the previous state-of-the-art model Social-
STGCNN. Compared with five baseline methods, including linear regression,
Naive LSTM, Social-LSTM [42], Social-GAN [40], and Social-STGCNN [41],
our model outperformed existing approaches on both ADE and FDE. Further-
more, our model achieved faster inference speed by avoiding graph construction
and non-linear interaction weight computation. This novel approach achieved
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accuracy improvements on ADE and FDE by 1.50% and 1.82%, respectively.
Furthermore, our proposed network demonstrated speed improvements, with a
4.7x increase in total inference speed and a 54.8x increase in data pre-processing
speed compared to Social-STGCNN.

3.3 Paper III
Chi Zhang and Christian Berger, “Learning the Pedestrian-Vehicle Interaction
for Pedestrian Trajectory Prediction”, In proceedings of 2022 the 8th Inter-
national Conference on Control, Automation and Robotics (ICCAR). IEEE,
2022

Objective
This research aims to propose a deep learning approach that can better under-
stand the interaction between pedestrians and vehicles and more accurately
predict pedestrian trajectories in urban traffic scenarios.

Methodology
This research improves pedestrian trajectory prediction by considering three
types of features: spatial features, social interaction features, and pedestrian-
vehicle interaction features. Spatial features are embedded from relative pedes-
trian positions between consecutive time steps to capture spatial information.
Social interaction features are extracted from the relative positions between
pedestrians using an MLP sub-network. The interactions between pedestrians
and vehicles are extracted using the proposed pedestrian-vehicle interaction
(PVI) extractor, considering pedestrian-vehicle relative positions and vehicle
movement states. These features are aggregated and fed into LSTM-based
models and CNN-based models. The models are trained on the Waymo Open
Dataset to predict pedestrian trajectories for a 4.8-second horizon, based on
3.2 seconds of observed data.

Results and Contributions
This study has proposed a novel Pedestrian-Vehicle Interaction (PVI) ex-
tractor for pedestrian trajectory prediction, to capture the complex interactions
between pedestrians and vehicles. Integrated into LSTM and CNN-based
models, the PVI extractor led to performance improvements, outperforming
previous leading models such as Social-LSTM [42], Social-GAN [40], Social-
STGCNN [41] and Social-IWSTCNN [25]. Results have shown that when
integrated with LSTM-based models, the proposed PVI extractor improved
ADE and FDE by 7.46% and 5.24%, respectively. Similarly, when integrated
with CNN-based models, it improved ADE and FDE by 2.10% and 1.27%, re-
spectively. The proposed algorithms were trained and evaluated on the Waymo
Open Dataset, which contains real-world urban traffic data, demonstrating
their effectiveness in predicting trajectories in urban traffic scenarios.



30 CHAPTER 3. SUMMARY OF APPENDED PAPERS

3.4 Paper IV

Chi Zhang, Zhongjun Ni, and Christian Berger, “Spatial-Temporal-Spectral
LSTM: A Transferable Model for Pedestrian Trajectory Prediction”, IEEE
Transactions on Intelligent Vehicles. 2023

Objective

This research aims to explore the transferability of deep learning models and
propose a transferable model that can be generalized to other new and unseen
datasets.

Methodology

Our proposed “Spatial-Temporal-Spectral (STS) LSTM” model integrates spa-
tial, temporal, and spectral information to improve trajectory prediction accur-
acy and model transferability. The framework comprises three key components:
a spatial-temporal-spectral feature representation module that captures motion
patterns, an LSTM encoder-decoder prediction structure, and a trajectory
sampling module that uses negative log-likelihood (NLL) loss for probabil-
istic prediction, capturing uncertainty in trajectory predictions. The study
investigates model transferability through non-transfer and transfer tasks, eval-
uating performance on both scenarios and using pre-processed 2D real-world
coordinates to mitigate data source differences.

Contributions

This study has proposed the Spatial-Temporal-Spectral (STS) LSTM model,
which captures general pedestrian motion patterns and shows strong perform-
ance on both non-transfer and transfer tasks. We have proposed a novel
representation of pedestrian trajectory input features in spatial, temporal, and
spectral domains to improve the model’s ability to capture motion patterns and
transferability. We have also investigated the transferability of LSTMs, CNNs,
and Transformers, comparing the L2 loss and negative log-likelihood (NLL) loss
for trajectory prediction, and conducted quantitative and qualitative analysis
on model transferability. This study takes trajectories as input, and identifies
effective components that can be integrated into more complex models. The
STS LSTM model has shown better performance on source and target datasets
with faster inference speeds compared to state-of-the-art methods. This re-
search has advanced the understanding of pedestrian trajectory prediction and
highlights the importance of model transferability in real-world applications.
The proposed STS LSTM model has offered a promising approach across diverse
datasets and scenarios.
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3.5 Paper V

Chi Zhang, Amir Hossein Kalantari, Yue Yang, Zhongjun Ni, Gustav Markkula,
Natasha Merat, and Christian Berger, “Cross or Wait? Predicting Pedestrian
Interaction Outcomes at Unsignalized Crossings”, In proceedings of 2023 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2023

Objective

This research aims to use machine learning algorithms to understand and predict
pedestrian crossing behavior when interacting with a vehicle at unsignalized
crossings. We focus on pedestrians’ “cross or wait” decisions, their crossing
initiation time, and crossing duration. We also analyze the influence of input
factors on pedestrian behavior.

Methodology

This research uses data from a distributed simulator study conducted by
Kalantari et al. [53] involving 64 participants (32 drivers paired with 32 ped-
estrians) interacting under different scenarios within a simulated urban road
environment, resulting in 1279 collected trials. Input features for predictive
models include time to arrival, pedestrian waiting time, the presence of zebra
crossings, and demographic information like age and gender. We also con-
sidered personality traits such as social value orientation and sensation seeking.
Machine learning models, including logistic regression, linear regression, sup-
port vector machine, random forest, and neural networks, are developed and
compared for prediction. We used five-fold cross-validation for training and
testing. We used accuracy and F1 score as evaluation metrics for classification
tasks and evaluated regression tasks using MAE and RMSE.

Results and Contributions

In this study, we used distributed simulator data to predict pedestrian-vehicle
interaction and established baseline models using logistic regression and linear
regression as predictability benchmarks. We have developed machine learning
models for prediction and investigate various input features. The neural network
model we developed improved accuracy and F1 score by 4.46% and 3.23% for
crossing decision prediction, and reduced MAE and RMSE by 30.84% and
21.56% for crossing initiation time prediction, and by 35.00% and 30.14% for
crossing duration prediction, respectively. We have also conducted an ablation
study to analyze pedestrian-vehicle interaction factors, providing insights into
model selection in scenarios with partial input information and evaluating the
performance when lacking information on drivers’ and pedestrians’ age, gender,
SVO, and AISS.
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3.6 Paper VI

Chi Zhang, Janis Sprenger, Zhongjun Ni, and Christian Berger, “Predicting
and Analyzing Pedestrian Crossing Behavior at Unsignalized Crossings”, In
2024 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2024

Objective

The research aims to use machine learning algorithms to predict and analyze
pedestrian crossing behavior at unsignalized crossings, considering complex
scenarios involving multiple vehicles and pedestrians. We focus on gap selection
and zebra crossing usage and analyze factors that influence pedestrian behavior.

Methodology

We used data from a virtual reality simulator experiment conducted by Sprenger
et al. [97]. We focused on data from the study conducted in Germany, involving
60 participants (30 females) navigating a virtual street environment for crossing,
consisting of 3585 trials. Input features include pedestrian waiting time, average
walking speed, number of unused effective and car gaps, and largest missed
effective and car gaps from near, far, and both lanes. Machine learning models
are used and compared for prediction. We identified the three most important
features of each model and analyzed their impact on pedestrian crossing
behavior. Five-fold cross-validation is used, with input variables normalized
into standard normal distributions for better convergence and stability during
model training. For evaluation, we used MAE and RMSE for gap selection
prediction, and prediction accuracy and F1 score for zebra crossing usage
prediction.

Results and Contributions

We have proposed and evaluated machine learning models for predicting pedes-
trian gap selection behavior and zebra crossing usage. Neural network models
achieved the best performance, with a mean absolute error of 1.07 seconds
for gap selection prediction and 94.27% prediction accuracy for zebra crossing
usage prediction. Additionally, the research identified the most important
features of each model, including the number of unused car gaps, the largest
missed car gap, pedestrian waiting time, and pedestrian average walking speed,
and investigated their impacts on pedestrian crossing behavior. We have also
investigated group behavior and found that pedestrians tend to follow the
behaviors of leading agents. This research has improved the understanding of
pedestrian crossing behavior predictability and identified key factors influencing
these decisions, thereby contributing to the advancement of intelligent vehicle
systems.
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3.7 Paper VII
Chi Zhang, Janis Sprenger, Zhongjun Ni, and Christian Berger, “Predicting
Pedestrian Crossing Behavior in Germany and Japan: Insights into Model
Transferability”, In submission to IEEE Transactions on Intelligent Vehicles.
2024

Objective

This research aims to explore the differences in pedestrian crossing behavior
at unsignalized crossings between Germany and Japan and to investigate the
transferability of machine learning models.

Methodology

We used simulator data collected by Sprenger et al. [97] from Germany and
Japan, involving 120 participants (60 from each country, equally distributed by
gender) navigating a virtual street environment for crossing. We developed and
evaluated machine learning models separately for each country to investigate the
similarities and differences in road crossing behavior. This comparative analysis
focuses on model predictability, identifying key features, and understanding
their influence on pedestrian behavior. To explore model transferability, we
evaluated the performance of models trained on data from one country when
applied to data from the other. To enhance transferability, we used unsupervised
learning, specifically clustering, to reduce intra-dataset variance. Evaluation
metrics include MAE and RMSE for gap selection prediction and prediction
accuracy and F1 score for zebra crossing usage prediction.

Results and Contributions

We have proposed and evaluated machine learning models to predict pedes-
trian gap selection behavior and zebra crossing usage using data from studies
conducted in Germany and Japan, comparing the similarities and differences in
their crossing behaviors. The results showed that pedestrians from the study in
Japan selected and accepted larger gaps, waited longer, and walked faster when
crossing compared to participants in Germany, indicating differences in crossing
behavior between the two countries. Participants from both countries shared
similar key factors influencing crossing behavior, suggesting the possibility of
developing transferable models. We evaluated the transferability of models
trained on data from one country to another and proposed methods using
unsupervised learning to incorporate cluster information, thereby improving
transferability and performance on test sets from both countries.

3.8 Connections Between Appended Papers
The appended papers collectively contribute to improving pedestrian beha-
vior prediction using machine learning methods. Figure 3.1 shows how they
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Figure 3.1: Connections between appended papers and their contributions to
research goals.

contribute to the different research goals, and the key differences between the
papers.

Paper I provides a comprehensive literature review, covering the state-of-
the-art models in pedestrian behavior prediction including both trajectory
prediction (G1) and crossing intention prediction (G2).

Papers II, III, and IV focus on improving trajectory prediction models,
contributing to G1. Paper II explores social interactions among pedestrians,
introducing a new interaction modeling structure that improves accuracy and
inference speed. Paper III builds upon this by incorporating pedestrian-vehicle
interactions. Paper IV expands the focus by investigating the transferability of
trajectory prediction models across different scenarios, contributing to both G1
and G3.

Papers V, VI, and VII focus on pedestrian crossing intention prediction, ad-
dressing G2. Paper V models pedestrian interaction with a single vehicle, while
Papers VI and VII explore pedestrian interactions with multiple vehicles, reflect-
ing more complex scenarios. Paper VII further explores model transferability
(G3) by comparing crossing behavior in different countries.



Chapter 4

Discussions

The discussion chapter is organized as follows: We begin by discussing models
for pedestrian trajectory prediction. Following this, we investigate methods
for pedestrian intention prediction and analyze the key factors influencing
pedestrian behavior. We then explore model transferability before outlining the
key contributions. Finally, we address the limitations and propose directions
for future research.

4.1 Trajectory Prediction in Urban Scenarios

Pedestrian trajectory prediction provides detailed spatial and temporal inform-
ation, which can be used for collision avoidance or to assist intelligent vehicles
in planning their future path. In Papers II, III, and IV, we have focused on
trajectory prediction in urban scenarios. We compared the prediction results
with previous state-of-the-art models using ADE and FDE metrics, as detailed
in Table 4.1, where our models showed continued improvements.

This section discusses the prediction methods, the interaction features
within the models, and the inference speeds to offer valuable insights for future
research and establish general guidelines for developing pedestrian trajectory
prediction models.

4.1.1 Prediction Methods for Trajectory Prediction

Paper I has categorized existing deep learning methods for pedestrian behavior
prediction into sequential and non-sequential methods. Sequential methods
include RNNs along with their improved version LSTMs, GANs, and Trans-
formers. Non-sequential methods include CNNs, GNNs, and other artificial
neural networks. In Papers II, III, and IV, we compared both sequential
and non-sequential deep learning methods to find the most suitable ones for
pedestrian prediction.

In both Papers II and III, CNN-based models, including our proposed model
Social-IWSTCNN and the previous state-of-the-art model Social-STGCNN,

35
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Table 4.1: Comparison of trajectory prediction models on the Waymo Open
Dataset using Average Displacement Error (ADE) and Final Displacement Error
(FDE) metrics. Upper section: models using L2 loss. Lower section: models
using NLL loss. Units: meters. Smaller errors indicate better performance.

Model Name ADE FDE Comments
Social-LSTM [42] (2016) 0.402 0.840 LSTM-based
Social-GAN [40] (2018) 0.386 0.826 LSTM-based

SI-PVI-LSTM [26] (Paper III) 0.372 0.796 LSTM-based
Transformer [66] (2021) 0.363 0.782 Transformer-based

Social-STGCNN [41](2020) 0.334 0.550 CNN-based
Social-IWSTCNN [25] (Paper II) 0.329 0.540 CNN-based

SI-PVI-Conv [26] (Paper III) 0.327 0.543 CNN-based
SLS-LSTM [27] (Paper IV) 0.284 0.532 LSTM-based

outperformed previous LSTM-based methods such as Social-LSTM and Social-
GAN in pedestrian trajectory prediction tasks. This is because LSTM-based
models tend to accumulate errors, whereas CNN-based models do not have this
drawback. Furthermore, CNN-based models may better represent pedestrian
motion states by directly embedding features from spatial and temporal inform-
ation, unlike LSTMs that rely on hidden states. Besides, different evaluation
methods contribute to differences in error. CNN-based models (e.g., [25], [26],
[41]) use NLL loss and select the best result from 20 trials, while LSTM-based
models (e.g., [40], [42]) use L2 loss and evaluate a single deterministic result,
which can result in larger errors in LSTM evaluations.

In Paper IV, we explored trajectory prediction accuracy and model transfer-
ability by comparing various prediction backbones (LSTMs, CNNs, and Trans-
formers) with two different loss functions (L2 and NLL). Our findings showed
that LSTMs combined with NLL loss produced the best results. Therefore,
we used LSTMs as the prediction backbone. We conducted six experimental
settings, testing the combination of three aforementioned network structures
with two loss functions. All models used the spatial positions of individual
pedestrian trajectories in temporal order as input features.

For models using L2 loss, the Transformer outperformed other models, show-
ing the least errors as shown in Table 4.1, and best transferability. This aligns
with the findings of Giuliari et al. [66], which indicated that Transformers out-
performed LSTM-based approaches due to their attention mechanism. CNNs
performed poorest with L2 loss, possibly because they are not designed to cap-
ture time series dependencies and may fail to learn pedestrian motion patterns
without considering randomness. LSTMs, while slightly behind Transformers,
achieved competitive results due to their effectiveness in shorter sequence
predictions (12 time steps for 4.8 seconds). In this thesis, we only predict
short sequences, as in automated driving scenarios, pedestrian interactions last
only a few seconds. Therefore, LSTMs are a good choice for prediction in this
scenario.
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Probabilistic models using NLL loss showed significantly lower errors com-
pared to deterministic models using L2 loss. This is because probabilistic models
evaluate the best of 20 samples, comparing the “upper-bound” of achievable
performance, while L2 loss-based predictions provide deterministic “average”
results that lose the randomness of pedestrian behavior. NLL loss, by allowing
sample-based predictions, better preserves this randomness and improves pre-
diction results. Among models using NLL loss, the LSTM model performed
best, and demonstrated better transferability, while the Transformer model
showed a comparatively lower performance. Therefore, we used the LSTM
model with NLL loss and achieved impressive performance.

Besides, in Paper IV, we have integrated the spectral feature to capture
the moving pattern of pedestrians and greatly improved the performance, as
shown in Table 4.1. The improvements demonstrate the effectiveness of spectral
features in capturing pedestrian motion patterns across both macro and micro
scales. The strong performance of our proposed models demonstrates their
potential for integration into automated driving systems.

Recent models, such as Trajectron++ [98], Y-Net [99], and NSP [100], have
made significant advancements by incorporating richer inputs and more soph-
isticated architectures. These models address the multi-modality of pedestrian
behavior, modeling interactions between pedestrians as well as interactions with
features from the environment. These state-of-the-art models are evaluated on
the ETH/UCY datasets.

Trajectron++ [98] focuses on forecasting dynamically-feasible trajectories
for various traffic agents (e.g., cars, buses, and pedestrians) using heterogeneous
input data such as camera images, LiDAR, and maps. The model employs
a sophisticated spatiotemporal graph structure to represent agents and their
interactions, and a Conditional Variational Autoencoder (CVAE) framework
to account for multi-modality in predictions.

Y-Net [99] further improves multi-modal trajectory prediction by addressing
both epistemic uncertainty, which related to long-term goals, and aleatoric
uncertainty, which related to intermediate waypoints. It uses past trajectories
and RGB images as inputs, resulting in enhanced prediction accuracy.

Yue et al. [100] proposed Neural Social Physics (NSP) models that combine
traditional physics-based modeling with deep learning networks. It explicitly
models goal attraction, inter-agent repulsion, and environmental repulsion. By
integrating these factors into its neural network, NSP achieves state-of-the-art
results on ETH/UCY datasets.

Although our models were not directly evaluated on the ETH/UCY datasets
as we used the Waymo Open Dataset instead, we evaluated transferability in
Paper IV by training on the Waymo Open Dataset and testing on ETH/UCY
datasets. While this might not be a completely fair comparison due to differences
in training datasets and scenarios, it provides a point of reference for comparing
our models with the state-of-the-art algorithms. The results of the NSP [100],
Y-net [99], and Trajectron++ [98] models from their original papers, along
with comparisons to other state-of-the-art models, are listed in Table 4.2.

While models such as Trajectron++, Y-Net, and NSP achieve impressive
accuracy, they come with a higher computational cost due to their complex
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structures and reliance on multiple data types. In contrast, our models focus
on simplifying model architectures while exploring the impact of individual
components, which could be potentially integrated into more complex models.

Table 4.2: The ADE/FDE metrics (in meters) of trajectory prediction models
for model transferability. Upper section: results from the original papers
without testing the transferability, where the models were trained directly on
ETH/UCY datasets. Lower section: models retrained on the Waymo Open
Dataset, and the transferability is evaluated on ETH/UCY datasets. Methods
marked with the star *: used the best of 20 samples. Smaller number indicates
better performance. Bold: best, underline: second best.

Model (Year) Waymo test
(Source data)

ETH/UCY
(Target data)

Inter-
actions Scene

SoPhie* [70] – / – 0.540 / 1.150 ✓ ✓
Social BiGAT* [71] – / – 0.480 / 1.000 ✓ ✓

HSTA* [101] – / – 0.400 / 0.790 ✓ –
Trajectron++ [98] – / – 0.370 / 0.910 ✓ –
Trajectron++* [98] – / – 0.190 / 0.410 ✓ –

Y-net* [99] – / – 0.180 / 0.270 ✓ ✓
NSP-SFM* [100] – / – 0.170 / 0.240 ✓ ✓
Social LSTM [42] 0.393 / 0.841 0.486 / 1.013 ✓ –
TF Individual [66] 0.363 / 0.782 0.448 / 0.945 – –

Social STGCNN* [41] 0.335 / 0.550 0.346 / 0.584 ✓ –
Social-IWSTCNN*

(Paper II) [25] 0.328 / 0.538 0.332 / 0.558 ✓ –

DMRGCN* [102] 0.275 / 0.468 0.300 / 0.520 ✓ –
STS LSTM*

(Paper IV) [27] 0.284 / 0.532 0.316 / 0.568 – –

4.1.2 Trajectory Prediction Considering Interactions
Paper I has demonstrated that pedestrian behavior is influenced by interactions
with other road users. Therefore, in Papers II and III, we consider pedestrians’
interactions when predicting their trajectories.

By extracting the interaction features using our designed sub-network,
our models outperformed existing models, as shown in Table 4.1. Paper II
has considered social interaction features between pedestrians and proposes
the Social-IWSTCNN [25] model. Unlike the previous state-of-the-art Social-
STGCNN [41] model, which used a hand-crafted non-linear function based on
distances to describe interaction relationships, our method uses pedestrians’
velocities and relative positions as inputs to learn interaction weights with a
deep learning sub-network. Our proposed Social-IWSTCNN model outperforms
state-of-the-art methods, including Social-LSTM [42], Social-GAN [40], and
Social-STGCNN [41], on ADE and FDE metrics. This demonstrates the
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effectiveness of using deep learning to learn interaction relationships, achieving
better accuracy than hand-crafted weights or pooling layers.

In Paper II, we have compared algorithms across different traffic densities
by dividing the Waymo Open Dataset into three groups based on the number of
pedestrians. Compared with the Social-STGCNN [41] model, our model showed
only marginal improvements in dense scenarios but significant improvements in
less crowded scenarios, with a 17.3% improvement in ADE and 16.8% in FDE.
One possible explanation is that the Social-STGCNN’s hand-crafted function is
tailored for densely populated scenarios in the ETH [92] and UCY [93] datasets,
making it only effective for crowded scenarios. This highlights the adaptability
of deep learning methods to various traffic scenarios compared to manually
designed interaction weight functions.

In Paper III, we have introduced pedestrian-vehicle interaction (PVI) fea-
tures in addition to social interaction (SI) features, each captured by separate
sub-networks. The PVI features were extracted using vehicles’ velocities and
their relative positions to pedestrians as inputs. We applied the proposed
sub-network to both LSTM-based and CNN-based prediction structures.

For LSTM-based models, our proposed SI-PVI-LSTM outperformed naive
LSTM, Social-LSTM [42], and Social-GAN [40], demonstrating the importance
of pedestrian-vehicle interactions. Compared to Social-GAN, our SI-PVI-LSTM
achieved better results without the need for the complex and challenging-to-
train GAN structure, suggesting that considering influencing factors can achieve
improvements at a minimal computational cost. For CNN-based models, the SI-
PVI-Conv model achieved better ADE compared to LR, Social-STGCNN [41],
and Social-IWSTCNN [25] (as proposed in Paper II), though it did not improve
FDE compared to Social-IWSTCNN. This could be due to two factors: first,
using vehicle information only from the observation period potentially lacks
sufficient information for long-term prediction, and second, considering all
vehicles within sensor range without accounting for pedestrian orientation may
introduce noises. Addressing these issues, such as updating vehicle information
during the prediction horizon or incorporating pedestrian orientation and
direction, could potentially improve performance. Besides, we found that using
either social or pedestrian-vehicle interaction alone did not achieve optimal
accuracy. The best performance was achieved by incorporating both social
and pedestrian-vehicle information, highlighting the contributions of both
interactions to performance enhancement.

4.1.3 Inference Speed

The algorithms should have the potential to be applied to automated vehicles,
which demands considering real-time performance. While striving for higher
prediction accuracy by incorporating more information and using more complex
algorithms, it is also crucial to consider inference speed. In this section, we
compare the inference speed of different models, as shown in Table 4.3. Our
training and evaluation were conducted using an Nvidia GeForce RTX 2080 Ti
GPU.
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Table 4.3: Inference speed comparison. Bold: fastest.

Model (Year) Average inference time
per sequence (ms)

Social-STGCNN (2020) [41] 15.81
Social-IWSTCNN (2021) [25] (Paper II) 3.38
SI-PVI-Conv (2022) [26] (Paper III) 3.39
DMRGCN (2021) [102] 31.13
STS LSTM (2023) [27] (Paper IV) 3.08

Paper II has compared the inference speed between our proposed model
Social-IWSTCNN and Social-STGCNN [41]. Our model showed an inference
speed of 3.38 ms per sequence, 4.7 times faster compared to Social-STGCNN.
The speed improvement is because of two key changes: first, we avoided
non-linear calculations for attention weight computation, improving the infer-
ence speed by 2.7 times to 5.83 ms per sequence; second, we removed graph
construction, further accelerating the inference speed.

Paper III has compared the inference speeds of Social-IWSTCNN [25] and
SI-PVI-Conv. The inference speed of SI-PVI-Conv was measured at 3.39 ms
per sequence, which closely matches Social-IWSTCNN’s inference speed of
3.38 ms per sequence. This indicates that the computation of pedestrian-
vehicle interaction features does not significantly increase inference time while
contributing to accuracy improvement.

In Paper IV, we have compared the inference speeds of four competitive
models: Social-STGCNN [41], Social-IWSTCNN [25], DMRGCN [102], and our
proposed STS LSTM model. Our proposed model achieved the fastest inference
speed of 3.08 ms per sequence. Although DMRGCN has better prediction
accuracy, its complex structure resulted in a prediction time of 31.13 ms, which
is 10 times slower than our proposed model.

These findings demonstrate the possibility of deploying our proposed models
in real-world scenarios due to their efficient computational performance and
competitive accuracy.

4.2 Intention and Interaction Prediction at Un-
signalized Crossings

Accurate prediction of pedestrian crossing intention allows automated vehicles
to make better decisions, reducing the risk of potential conflicts and collisions.
As discussed in Section 1.1.3, pedestrians are most likely to collide or conflict
with vehicles during crossings. Therefore, in addition to trajectory prediction,
we also focus on predicting pedestrian crossing intention.

As proposed in Paper I, the terminology “intention” is often interchangeably
used with “actual actions in the future” in many studies, due to the difficulty
in distinguishing between them without the help of questionnaires [31]. In this
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thesis, we do not differentiate pedestrian intention and actual behavior and
investigate pedestrian behavior during crossings.

Predicting pedestrian crossing intention is particularly challenging at un-
signalized crossings where the right of way is ambiguous, leading to frequent
interactions between pedestrians and vehicles. We have investigated these
interactions and pedestrian crossing behavior in Papers V, VI, and VII. This
section discusses the prediction methods and the key factors that influence
pedestrian crossing behavior.

4.2.1 Prediction Methods for Intention and Interaction
Prediction

Machine learning algorithms have been used to predict pedestrian crossing
behavior in Papers V, VI, and VII. As described in Section 2.4, for classifica-
tion tasks, logistic regression, SVM, RF, and NN models were evaluated and
compared. For regression tasks, linear regression, RF, and NN models were
used. Our studies showed that NNs outperformed other algorithms, with RF
also being competitive.

In Paper V, we investigated pedestrian crossing behavior in interactions
with a single vehicle. For crossing decision prediction (cross or wait), the NN
model achieved the best results. Compared to the logistic regression baseline,
the NN model we proposed improved the accuracy and F1 score by 4.46% and
3.23% on the whole dataset, and by 9.38% and 11.52% on non-zebra crossing
data.

For regression tasks, we predicted crossing initiation time and crossing
duration, with NNs achieving the best results. For crossing initiation time
prediction, the NN reduced MAE and RMSE by 30.84% and 21.56%, respect-
ively. Comparisons of the distributions between predicted crossing initiation
time values and ground truth show that, although RF models showed smaller
errors, the NN model’s predictions aligned more closely with the ground truth
distribution, demonstrating NN model’s better generalizability. For crossing
duration prediction, the NN model achieved the best results, with MAE and
RMSE of 0.282s and 0.446s, respectively, improving by 35.00% and 30.14%
compared to the linear regression model.

However, when only limited input variables are available, the model choice
depends on the available input features. For crossing decisions, the linear
model performed stably with fewer features, indicating its dependency on key
basic features. RF and NN models showed significant performance decreases
with fewer features, suggesting a broader range of input dependency. The NN
outperformed with personality traits (SVO and AISS), indicating its abilities for
handling non-linearity, while RF performs best with age and gender included.
For crossing initiation time and duration predictions, the linear models’ errors
increased slightly with fewer features, relying primarily on time to arrival,
waiting time, and crossing location type. RF and NN models showed obvious
larger errors, indicating their dependence on additional features like personality
traits, age, and gender. These results indicate the importance of various
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factors and highlight the different capabilities of linear and non-linear models
in handling complex prediction tasks.

In Papers VI and VII, we have investigated scenarios where pedestrians
interact with multiple vehicles, focusing on time gap selection and zebra crossing
usage. For gap selection prediction, the NN outperformed others in predicting
the accepted gap for individual crossing scenarios at non-zebra crossings. The
NN achieved a mean absolute error of 1.07 seconds, and the distribution of its
predictions closely resembles the ground truth.

Our studies reveal that pedestrians’ gap acceptance is influenced by leading
agents, indicating their following behavior. Within the risky group, non-linear
models demonstrated smaller errors compared to the linear model, suggesting
increased non-linearity in pedestrian behavior. The NN performed the best
in this group. Conversely, in the safe group, errors were significantly smaller,
indicating more predictable pedestrian behavior. The RF model performed the
best in this group. This indicates NNs’ capability in handling scenarios with
complexity and non-linearity.

For zebra crossing usage prediction, the NN model achieved the best per-
formance with 94.27% predicting accuracy. Compared to logistic regression,
a commonly used analysis model, our proposed NN model showed a 4.02%
improvement in accuracy, demonstrating its effectiveness.

4.2.2 Factors that Influence Pedestrian Crossing Behavior
Prediction

In Papers V, VI, and VII, the key factors that influence pedestrian behavior
have been identified and analyzed for each model. For linear models, feature
importance was determined by the coefficients in the regression function. The
RF models compute feature importance by the mean and standard deviation of
impurity decrease across all trees. For the NN model, permutation importance
was used.

Pedestrians Interacting with a Single Vehicle

In Paper V, we have investigated scenarios where pedestrians interact with a
single vehicle, investigating key factors influencing crossing behavior, including
the presence of zebra crossings and time to arrival.

We investigated pedestrian crossing behavior at both zebra and non-zebra
crossings. The results showed that crossing decisions at zebra crossings were
more predictable, with models achieving about 91% accuracy and a 95% F1
score. At non-zebra crossings, non-linear models (RF and NN) significantly
outperformed linear models. The NN model improved accuracy and F1 score
by 8.75% and 10.82%, respectively, achieving 88.91% accuracy and an 86.63%
F1 score, compared to the linear baseline’s 80.16% accuracy and 75.81% F1
score. The NN model’s superior performance in non-zebra crossings indicates
its ability to handle non-linearity.

Non-zebra crossings presented shorter crossing initiation times and narrower
distributions compared to zebra crossings, indicating quicker decision-making for
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pedestrians at non-zebra crossings. NNs provided more distributed predictions
compared to the baseline linear regression models, demonstrating their capacity
to capture variability in pedestrian crossing behavior across different locations.

Regarding time to arrival, prediction accuracy decreased with a shorter time
to arrival, reflecting the increased difficulty due to shorter reaction times and
heightened interactions between pedestrians and drivers. Non-linear models
outperformed linear models in capturing the non-linearity in pedestrian-driver
interactions.

Additionally, an ablation study was conducted to identify important input
features. In addition to the presence of zebra crossings and time to arrival, the
AISS of pedestrians and pedestrian waiting time were also significant across all
models. In linear models, objective properties such as age and gender were more
influential, whereas in non-linear models (RF and NN), personality traits like
AISS and SVO were more critical for prediction. This indicates that personality
traits contribute to crossing decision prediction in a non-linear manner.

Pedestrians Interacting with Multiple Vehicles

In Paper VI, we have investigated scenarios where pedestrians interact with
multiple vehicles, focusing on key factors influencing pedestrian behavior.

For time gap selection behavior, we identified and analyzed the most import-
ant features affecting the size of the time gap pedestrians choose for crossing.
These factors include the number of unused gaps, the largest missed gap,
pedestrian waiting time, pedestrian walking speed, and the influence of other
pedestrians. As the number of unused car gaps increases, pedestrians tend
to accept smaller gaps, indicating a willingness to take riskier choices. Sim-
ilarly, when pedestrians miss larger gaps, they tend to accept smaller gaps,
compromising safety for convenience. On the contrary, longer waiting times
lead pedestrians to select larger, safer gaps. This finding is consistent with
Yannis et al.’s [54] results, suggesting that pedestrians who wait longer are more
cautious and risk-averse. Pedestrians with faster walking speeds tend to accept
smaller gaps. This finding aligns with the study by Wan and Rouphail [103],
which correlates increased walking speed with the need for shorter gaps for
safe crossing. This behavior can be interpreted in two ways: faster walkers
require smaller gaps to cross safely, or individuals in a hurry prefer shorter
gaps, leading to faster walking speeds.

We also investigated group behavior, simulating scenarios with leading
pedestrians using virtual avatars. Two types of group behavior were explored:
the risky group, where the leading pedestrian crosses at a 4-second gap, and
the safe group, where the leading pedestrian crosses at a 6.5-second gap.
The analysis reveals that pedestrians tend to follow the behavior of leading
pedestrians, with the distributions of accepted gaps shifting towards the gap
chosen by the leading pedestrian. In the risky group, while many pedestrians
maintain safer choices, a significant number follow the risky behavior of crossing
at a 4-second gap. In the safe group, most pedestrians follow the safer behavior
of crossing at a 6.5-second gap.
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For predicting zebra crossing usage, important features include the number
of unused gaps and pedestrian waiting time. As the number of unused gaps
increases, prediction accuracy decreases, indicating the increased difficulty in
predicting zebra usage. Similarly, as waiting time increases, the predictability
of zebra crossing usage decreases. Besides, time gap selection is also influenced
by the choice of zebra crossing usage. Pedestrians using zebra crossings tend
to accept smaller gaps than those not using them. This behavior could be due
to two factors: first, pedestrians may prefer not to use zebra crossings when
larger gaps are available; second, the presence of zebra crossings may decrease
pedestrians’ risk aversion as they expect vehicles to yield.

4.3 Model Transferability and Generalizability

4.3.1 Trajectory Prediction

For trajectory prediction, Paper IV proposes the “Spatial-Temporal-Spectral
(STS) LSTM” model, which uses spatial, temporal, and spectral domain in-
formation. This model shows better transferability and prediction accuracy on
target datasets without prior knowledge, outperforming many state-of-the-art
models with a faster inference speed.

Experiments were designed to evaluate the models’ transferability. All
models were trained on the Waymo Open Dataset, which was collected in
the United States. They were evaluated on the ETH-univ, ETH-hotel, UCY-
zara1, UCY-zara2, and UCY-univ datasets, which were collected in Switzerland
and Cyprus, without prior information about these new datasets. While
DMRGCN [102] achieved the best average results on target datasets, it has a
more complex structure and slower inference speed. On four out of five datasets,
the ADE of the STS LSTM model was only marginally worse than DMRGCN,
but the STS LSTM model was ten times faster, demonstrating its efficiency. Its
simple LSTM encoding-decoding structure with spectral domain information
outperformed other baseline methods, showing better transferability to unseen
cases.

An ablation study confirms that combining temporal and spectral informa-
tion improves both prediction accuracy and transferability. Comparing different
input representations (temporal, spectral, and spatial-temporal-spectral), the
combination of temporal and spectral information yielded the best prediction
results and transferability. The study reveals that low-frequency components re-
flect macroscopic trends, while high-frequency components capture microscopic
adjustments, demonstrating the importance of both temporal and spectral
features in learning pedestrian motion patterns.

4.3.2 Crossing Intention and Interaction Prediction

In Paper VII, we have explored pedestrian crossing intention and their inter-
action with vehicles in Germany and Japan to provide insights into model
transferability. Our machine learning models predict gap selection behavior
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and zebra crossing usage. We evaluated and analyzed the transferability of
models trained on simulator data from both countries.

We predicted the accepted gap for pedestrians at non-zebra crossings and
compared the behavior in both countries. Pedestrians from the study conducted
in Japan tend to accept larger gaps and safety thresholds than those in Germany.
They also waited longer than those in Germany, indicating a higher level of
caution.

While differences exist, pedestrian behavior was influenced by similar key
factors in both countries. As the number of unused car gaps increases, pedestri-
ans from both countries tend to accept smaller gaps, indicating riskier choices.
When the missed gaps exceed five, the accepted gap size stabilizes, suggesting
a safety threshold. Pedestrians in both countries tend to accept smaller gaps
after missing larger ones.

Pedestrians with faster walking speeds in both countries tended to choose
shorter gaps for crossing. Interestingly, despite walking slightly faster, ped-
estrians from the study conducted in Japan still selected larger gaps. This
preference for larger gaps suggests a safety-conscious behavior, and may also
reflect a consideration for reducing disruptions to traffic flow.

In zebra crossing scenarios, participants from the study in Japan waited
longer than those in Germany, both when using and not using zebra crossings,
indicating greater caution. Pedestrians from the study conducted in Germany
showed more non-linearity in their behavior, with longer waiting times and
more unused gaps.

Neural network models demonstrated the best transferability when tested on
data from the other country, maintaining top performance and showing similar
important features for both countries. Although model accuracy decreases
when transferred, the increase in error is minimal, indicating its robustness.

Considering the behavior differences between countries, Paper VII proposes
a method using clustering information through unsupervised learning and
improves model transferability for gap selection models.

4.4 Contributions

4.4.1 Contribution to Vehicular Automation
This thesis contributes to enhancing AD systems by providing advanced pre-
dictive models and insights into pedestrian behavior. We have provided a
comprehensive review of existing deep learning methods on pedestrian behavior
prediction, evaluating their strengths and weaknesses, recommending suitable
approaches for various predictive tasks. This foundational analysis guides the
development of novel models and strategies for enhancing pedestrian behavior
prediction and vehicle safety.

Our algorithms, with enhanced prediction accuracy and faster inference
speeds, provide earlier warnings for AD systems, allowing more time for re-
action and control. We have proposed novel methods that consider social
and pedestrian-vehicle interactions, improving both prediction accuracy and
inference speed. We have also addressed model transferability, proposing a
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transferable model that can adapt to different datasets. These advancements
enable AVs and driver assistance systems to better avoid pedestrian-vehicle
collisions, ultimately contributing to pedestrian safety.

Our studies have provided insights into pedestrian crossing behavior and
their interaction with vehicles. We have developed machine learning models
for predicting pedestrian-vehicle interaction outcomes. These models enable
intelligent vehicles to predict pedestrian crossing behavior, allowing for smoother
and safer interactions. Vehicles can adjust their speed and trajectories based
on predictive information, leading to proactive measures that prevent conflicts
and collisions.

4.4.2 Contribution to Software Engineering
This thesis has contributed to the field of software engineering by driving
the development and refinement of machine learning algorithms for trajectory
prediction, especially designed for real-time, complex multi-agent interactions.
By integrating diverse data sources and addressing complex interaction patterns,
our research has improved the accuracy and inference speed of trajectory
prediction software systems.

Our research has improved the explainability of machine learning models
for pedestrian behavior prediction software by providing in-depth analyses
of key factors and their impact. By providing in-depth insights into how
various factors influence predictions, our work enhances the transparency and
interpretability of these models. This contributes to a better understanding
and trust in software systems designed for intelligent driving, which is essential
for their effective deployment and user acceptance.

Our research addresses the challenge of transferability in software systems,
demonstrating the capability of our predictive models to generalize across
different scenarios and regions. By applying and testing these models in
diverse contexts, including cross-country comparisons, we have established their
robustness and adaptability. This contribution paves the way for applying these
software solutions to various fields and situations, ensuring their relevance and
utility beyond the initial scope.

4.5 Limitations
The limitations of appended papers highlight several key areas for improvement
and further research.

In Paper I, we noted that existing datasets are mainly captured in high-
income and middle-income countries, neglecting low-income countries where
pedestrian fatalities are disproportionately high (36%). This limitation indic-
ates the need for future research to focus on developing datasets and studies
concerning low-income regions.

While Papers II, III, and IV used real-world data, our data-driven methods
rely heavily on the quality of data collection and annotation, which is often
costly. Low-resolution images impede the extraction of useful features, and
improperly labeled data compromises algorithm training.
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In Paper IV, we addressed model transferability challenges but focused
on individual trajectories, limiting our models’ ability to handle pedestrian
intentions and complex interactions. Failures occur with sudden movements or
interactions with other pedestrians or objects.

Besides, Papers II, III, and IV focused solely on using trajectory information
as input for a faster inference speed. This limits the models’ ability to capture
more complex environmental and contextual information. In contrast, research
studies such as Trajectron++ [98], Y-net [99], and NSP [100] incorporated
richer information and achieved higher accuracy.

Furthermore, for Papers V, VI, and VII, while simulation studies ensure
safety, they may not fully capture real-world risk perceptions and behaviors.
Our models reflect the behavior observed within the simulated environment.
The simulator studies used an untethered head-mounted virtual reality (VR)
headset to display realistic traffic scenarios, and motion capture equipment to
record participants’ crossing behaviors. To closely emulate real-world behavior,
we included training sessions for participants to familiarize themselves with
the environment. However, the intentional absence of facing real risk in a
simulated environment may lead to riskier crossing behaviors compared to
real-life scenarios. Real-world validation and consideration of risk perceptions
could enhance the applicability of our models in real-world contexts.

Addressing these limitations will lead to more robust and applicable pedes-
trian behavior prediction models, which will contribute to safer urban environ-
ments worldwide.

4.6 Future Work

Future work on trajectory prediction can focus on integrating intention-based
and interaction-based models. Although Paper IV addressed model trans-
ferability challenges, it focused on individual trajectories, which limited its
ability to handle pedestrian intentions and complex interactions. This approach
may fail in scenarios involving sudden movements or interactions with other
pedestrians or objects. Improving our models by considering intention-based
or interaction-based components could potentially improve performance in
these complex scenarios. Furthermore, generative models based on multi-model
distributions may also improve the prediction results.

Some recent models for trajectory prediction such as NSP proposed by
Yue et al. [100], combined the neural social physics (NSP) model into deep
learning network, which improves both prediction accuracy and model ex-
plainability. Future work may also consider combining the traditional physics
model-based algorithm into deep learning networks to make them more accurate
and explainable.

Additionally, given that most deep learning models require large datasets,
future work can explore recent advancements in large language models (LLM)
and few-shot learning to reduce dependency on extensive labeling. This ap-
proach could help to address challenges related to data quality and annotation.
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Leveraging pre-trained off-the-shelf models could also enhance performance
and efficiency while reducing labeling costs.

Papers VI and VII investigated pedestrian gap selection, but treated gap
duration as a continuous value, overlooking its inherent uncertainty. Future
research should explore stochastic models that represent gap duration as distri-
butions to account for its randomness. Besides, generative models based on
multi-modal distributions could also be developed for future work. When pre-
dicting pedestrian intention, the posture of pedestrians could also be considered
to provide additional information.

Our current studies on pedestrian crossing behavior rely on simulator data.
To ensure that models built on this data can generalize to real-world scenarios,
future work should focus on validating pedestrian behaviors and risk perceptions
in real-world environments.Besides, while our research has primarily focused
on pedestrian crossing intention and trajectory separately, future studies could
investigate the combination between the two, and to explore how a pedestrian’s
intention influences their trajectory.



Chapter 5

Conclusions

This research has contributed to enhancing pedestrian safety for AD systems by
improving pedestrian behavior prediction using machine learning models and
analyzing pedestrian-vehicle interactions. We first reviewed existing methods
in pedestrian behavior prediction and identified key research gaps. Then we ad-
vanced the field through the development of deep learning models that improve
trajectory prediction accuracy and speed. By creating machine learning models
that predict and analyze pedestrian crossing behavior, we have provided deeper
insights into the factors influencing pedestrian crossing decisions. We have also
addressed the critical challenge of model transferability and generalizability,
improving the ability of these models to perform accurately across diverse
datasets and different countries.

For pedestrian trajectory prediction, Paper I shows that integrating ped-
estrian interactions into prediction models has the potential to improve per-
formance. Papers II and III demonstrate that extracting interaction features
using our designed sub-networks improves pedestrian trajectory prediction in
both accuracy and speed. Paper IV further concludes that integrating spatial,
temporal, and spectral information into the model not only improves prediction
accuracy but also enhances transferability across different scenarios.

For pedestrian intention prediction and interactions with vehicles, neural
networks show better performance in handling nonlinear scenarios, achieving
improved results compared to other machine learning algorithms. Paper V
demonstrates that when pedestrians interact with a single vehicle, key factors,
including the presence of zebra crossings, time to arrival, and personality
traits, influence pedestrian crossing decisions. Papers VI and VII highlight
that when pedestrians interact with multiple vehicles, key factors, including
waiting time, time gaps, pedestrian walking speed, and the behavior of other
pedestrians, play a crucial role in gap selection decisions. These factors are
crucial in understanding and predicting how pedestrians make crossing decisions,
providing valuable insights for developing safer traffic systems.

Regarding model transferability, Paper IV reveals that combining temporal
and spectral information enhances model transferability. It effectively captures
both macroscopic trends and microscopic adjustments in pedestrian motion

49
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patterns. Paper VII shows that neural network models exhibit strong cross-
country transferability when predicting gap selection behavior. The comparative
study between Germany and Japan demonstrates that pedestrians from the
study conducted in Japan selected larger gaps and showed more cautious
behavior. While pedestrian behavior varies between countries, our study finds
that key factors and their impacts on pedestrian behavior are similar across
countries. This consistency suggests that the models developed in this research
have the potential to be adapted for use in diverse geographical contexts,
contributing to the broader applicability and generalization of the findings.
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