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A B S T R A C T

Electrification of commercial vehicles for more sustainable logistic systems has been promoted
in the past decades. This study proposes a deep reinforcement learning method for veloc-
ity optimization and battery degradation minimization during operation for battery-powered
electric trucks (BETs), aiming to achieve a safe, efficient, and comfortable driving control
policy for BETs. To obtain an optimal solution considering both calendar and cyclic battery
degradation, Deep Deterministic Policy Gradient and Twin Delayed Deep Deterministic Policy
Gradient (TD3) approaches are integrated within a simulation environment. To optimize overall
BET velocity performance, a trade-off among safety, efficiency, comfort, and battery degradation
is incorporated into the reward function of reinforcement learning using Mixture of Experts
(MoE) model. The results indicate that the proposed TD3-MoE model achieves safe, efficient, and
comfortable car-following control while optimizing total battery degradation. Specifically, the
model achieves reductions in total battery capacity loss ranging from 2.4% to 8.3% at different
states of charge (SoC) of battery compared to human-driven scenarios. Moreover, despite
calendar battery degradation being inevitable, the cyclic battery degradation is effectively
mitigated by 27.7% to 29.6% compared to the same SoCs in human-driving data. Furthermore,
the TD3-MoE model achieves significant energy consumption reductions, ranging from 35.3%
to 39.8% compared to real car-following trajectories.

. Introduction

Road transportation logistic is essential for global economic activity but also acts as a significant environmental polluter,
resenting challenges for achieving a sustainable and low-carbon future (Shoman et al., 2023; Mulholland et al., 2018). Especially,
eavy-duty trucks, although constituting a small fraction of road vehicles, have a disproportionately high environmental and
conomic impact. For instance, in Europe, while heavy-duty trucks represent less than 5% of road vehicles, they accounted for
5%–22% of CO2 emissions from road transport in 2019, with an additional increase of 9% between 2014 and 2019 (Shoman et al.,
023). Similarly, in the United States, the truck industry transported 70% of all freight tonnage and generated approximately $700.1
illion in gross freight revenues in 2017 (Osieczko et al., 2021). Despite comprising only 4% of the vehicle population, heavy-duty
rucks consume 18% of the energy in the transportation sector (Shoman et al., 2023). With global freight activity expected to more
han double by 2050, minimizing energy consumption in truck operations becomes increasingly urgent (Xu et al., 2023).
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With the advancement of electrification, the deployment of battery-powered electric trucks (BETs) could significantly reduce
greenhouse gas emissions from road freight logistic systems (Osieczko et al., 2021). BETs vehicles are capable of achieving zero
tailpipe emissions and typically result in reduced maintenance costs (Shoman et al., 2023). However, the adoption of electric
ommercial vehicle such as trucks on a global scale is impeded by significant limitations including restricted operational range
nd high battery costs. Additionally, the inevitable capacity loss of batteries over time poses a significant drawback, particularly
ue to the costly nature of battery replacement (Zhang et al., 2022; Cui et al., 2023). Technically, the capacity of battery tends to

decrease over time due to factors such as the dissolution of positive electrode materials and the formation of solid electrolyte interface
layers (Zhang et al., 2022). On a broader scale, battery aging is exacerbated by extreme temperatures, inappropriate states of charge
SoC), and high/low temperatures, which are influenced by the driving dynamics of BETs and recognized as critical factors affecting

battery longevity (Chung et al., 2020; Schimpe et al., 2018b; Lin et al., 2014; Schimpe et al., 2018a). These elements underscore
hat optimizing the driving strategy for BETs is crucial for minimizing greenhouse gas emissions, energy consumption and battery
egradation, for sustainable implementation of BETs in logistic systems.

To address the operational challenges of BETs, with a dual aim of reducing battery degradation and increasing velocity control
efficiency (Han et al., 2018; Li et al., 2024), eco-driving approaches offer velocity control to minimize energy consumption
or emissions during velocity optimization. Eco-driving optimal control methods, which deliver direct control actions such as
acceleration and steering control, are extensively employed in vehicle motion control, notably through model predictive control
(MPC). MPC operates by continuously optimizing control actions over multiple future time horizons (prediction horizons), while only
executing the action planned for the immediate next time horizon (control horizon) (Qiu et al., 2017; Han et al., 2018). However, the
substantial computational demands of MPC limit its practicality for real-time implementation, particularly for BETs where constraints
nd complexity exponentially increase. Furthermore, effective implementation of MPC for eco-driving requires precise predictions
f leading vehicles (LV) behaviors, which may not always be feasible in BET studies. In instances where predictions are inaccurate,
lternative strategies such as car-following logic and desired speed ranges must be employed to ensure safety and efficiency (Yang

et al., 2024).
To address computational complexity, deep reinforcement learning (DRL)-based methods have been developed for devising

velocity control strategies using extensive experiential data from diverse environments, thereby circumventing the need for
predefined rules or modeling of intricate systems (Han et al., 2023; Qu et al., 2023). Specifically, DRL empowers an agent to make
decisions based on the state alone, with simulators managing the modeling and state transitions through the reward function (Du
et al., 2022). Studies indicate that DRL-based velocity control often surpasses MPC in driving performance (Lin et al., 2020; Zhu et al.,
2018). The integration of DRL has attracted considerable attention due to these advantages, with its efficacy and wide applicability
demonstrated across various settings (Zhu et al., 2018; Du et al., 2022). Nonetheless, integrating battery considerations into velocity
ontrol, particularly the precise estimation of the influence on battery degradation, remains a significant challenge.

The literature reviewed reveals three critical gaps: (1) While the energy consumption of BETs is always considered in velocity
controls, the impacts of velocity optimization on battery degradation require further exploration and modeling; (2) Existing opti-
mization algorithms are too complex for real-time velocity control implementation, and addressing the multi-objective optimization
of energy consumption, battery degradation, efficiency, comfort, and safety presents an extremely complex problem; (3) In the
context of DRL approaches, efficiently considering battery degradation and balancing the weights of different optimization targets
is crucial and currently under-explored. This study aims to bridge these gaps by proposing a velocity control methodology based
on reinforcement learning (Twin Delayed Deep Deterministic Policy Gradient,TD3) that particularly considers battery degradation
for velocity optimization of BETs. The battery degradation model is derived from battery cell-level analysis to model how velocity
profiles during driving affect battery degradation, considering the charging and discharging properties. Besides battery degradation,
the velocity optimization approach conducts a multi-objective optimization considering efficiency, comfort, and safety. To address
the complexity and integration of multiple optimization objectives in an unified framework, a Mixture of Experts approach is
embedded into TD3 for optimizing the weights of different objectives in the reward of learning process. The objective is to introduce
a novel approach to velocity optimization for BETs that specifically addresses battery degradation during operational phases. This
enhancement aims to boost both efficiency and sustainability of BETs within logistic systems.

The remainder of this paper is organized as follows: Section 2 presents a comprehensive literature review. Section 3 introduces
the proposed RL-based velocity control model and describes in detail the experimental design. Section 5 discusses the experimental
results and relevant findings. Finally, Section 6 provides conclusions and future research directions.

2. Literature review

2.1. Velocity optimization with reinforcement learning

Velocity control is vital in enhancing the performance of vehicles, with numerous studies highlighting its significance (Qu et al.,
2020; Shi et al., 2023; Wang et al., 2024a). Velocity control approaches including rule-based and optimization-based techniques,
such as classical car following models, dynamic programming, and model predictive control, are traditionally employed to optimize
velocity planning and control based on driving trajectories or within a prediction horizon. However, these methods often face
limitations in complex systems or changing scenarios, requiring substantial computational resources or struggling to achieve optimal
solutions at short periods (Du et al., 2022).

In contrast, learning-based methods formulate velocity optimization strategies from extensive experiential data across diverse
nvironments, eliminating the need for predefined rules or modeling of complex systems. Imitation learning utilizes driving
2 
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datasets of expert demonstrations in velocity optimization to train a policy for a represented range of scenarios. Le Mero et al.
(2022). However, imitation learning-based policies rely on a great deal of high-quality expert demonstrations, meanwhile, the
eneralization performance of trained policies is quite limited. To deal with these issues, DRL is proposed and widely-used in
earning-based velocity planning and control. DRL enables an agent to make decisions based on modelings in high-fidelity simulation

and interactions with changing driving environments (Du et al., 2022). In this way, DRL can handle velocity optimization problems
ith complicated vehicle systems in dynamic driving environment. Evidence suggests that DRL-based velocity optimization can

outperform model predictive control in terms of various driving performances (Lin et al., 2020; Zhu et al., 2018). The adoption
f DRL in intelligent transport systems has garnered significant attention due to these advantages, and its efficacy and broad
pplicability have been demonstrated in various contexts, such as safety and ride comfort (Zhu et al., 2018; Du et al., 2022).

Recent studies have explored velocity optimization under varying scenarios and constraints. Qi et al. (2019) introduced a DRL-based
distributed velocity control strategy for connected vehicle under communication failures to stabilize traffic oscillations. Wegener
et al. (2021) proposed a reinforcement learning approach for energy-saving potential in a signalized urban roads and multiple
preceding vehicles environment. Furthermore, Yang et al. (2024) developed eco-driving strategies for mixed traffic scenarios with
imited information availability using reinforcement learning.

Although DRL offers significant advantages, it is known for its instability, time-intensive nature, and context-specific require-
ments. Unresolved challenges in reward function design and parameter optimization hinder its full potential (Ye et al., 2019).
Additionally, in the realm of multi-objective optimization, reinforcement learning typically combines optimization targets using a
reward function. Common practice in many DRL studies involves directly summing objectives such as safety, efficiency, energy
consumption, and ride comfort (Du et al., 2022; Yang et al., 2024). This approach often relies on prior knowledge and experience,
which lacks systematic and scientific rigor. Meanwhile, human knowledge and experiences are limited and hence cannot cover all
possible situations. Even different objectives are treated as equally important in some studies (Han et al., 2023), the weights of
different objectives in a reward function are adjusted to the same magnitude based on massive trials, not absolutely equal. Thus,
ow to learn weights of different objectives in reward functions reliably and automatically is an urgent problem of DRL-based
elocity optimization with multiple objectives.

2.2. Mixture of experts

Most reinforcement learning problems involving velocity optimization contend with multiple objectives, even though many
algorithms designed for sequential decision-making focus primarily on optimizing a single objective. A common approach in deep
learning is to aggregate all objectives into a unified additive reward function, usually through an iterative process of assigning
umerical rewards or penalties based on the objectives (Lin et al., 2023; Fei et al., 2024). However, this approach suffers from several

drawbacks: it is semi-manual and somewhat arbitrary; it limits the decision-maker ability to make informed trade-offs; it reduces
the explainability of the decision-making process; and it struggles to adapt when preferences between objectives change (Hayes
t al., 2022). To address these issues, the Mixture of Experts (MoE) model has been proposed, which produces biased experts
hose outputs are negatively correlated (Zhou et al., 2022). The model has recently played a crucial role in enhancing the training
fficiency of large-scale language models (Qu et al., 2023; Yu et al., 2024). MoE framework, originally proposed in the field of
achine learning, utilizes specialized, negatively correlated experts to enhance model robustness and diversity (Jacobs et al., 1991).

The MoE model operates by deploying a set of expert sub-networks, each designed to be selectively activated based on the input.
This selective activation is governed by a gating network optimized to direct each input token to the most appropriate experts.
MoE provides a powerful strategy for scaling model capacity within a fixed computational budget and it has been instrumental in
nhancing the training efficiency (Zhou et al., 2022). This approach not only addresses computational constraints but also improves

the model adaptability to varying objectives, establishing a sophisticated tool in complex decision-making systems. In recent years,
MoE has been adapted for use in various fields including reinforcement learning applications such as water management and wind
farm control (Menezes et al., 2018). For example, Jin and Ma (2019) employed a constrained Markov decision process to address
multi-objective reinforcement learning challenges, aiming to identify Pareto optimal solutions. However, the application of MoE to
multi-objective problems in velocity optimization remains limited. Furthermore, the integration of different components using MoE
represents a critical aspect of our study, indicating a substantial gap in existing literature and underscoring the need for further
exploration in this area.

2.3. Battery degradation

Battery degradation in electric vehicles such as BETs can be classified into two aging degradation processes, cyclic and calendar.
atteries sustain cyclic aging with each charge/discharge cycle, while calendar aging occurs regardless of these cycles. Both types
f degradation are influenced by the state of battery and are exacerbated under unfavorable conditions, such as extremely high or
ow temperatures (𝑇 ≤ 5 ◦C or 𝑇 ≥ 35 ◦C) and high state of charge (SoC≥ 70%). Therefore, it is crucial to maintain these conditions
ithin optimal ranges to extend battery life (Chung et al., 2020). Despite the crucial role of battery degradation for electric trucks

operation and significant research about charging optimization for reducing battery degradation, to the best of our knowledge, there
is scarce research in developing reliable methods to consider battery degradation in velocity optimization, which is one of our main
contributions in this study.

On the discharging side, most research has focused on the vehicle-to-grid system, which addresses uncertainties such as
ommuting behavior, charging preferences, and energy requirements (Maeng et al., 2023). However, few studies have explored
3 
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optimizing the discharging process alongside vehicle dynamics or have considered battery degradation for BETs. Verbruggen et al.
(2019) employ a nested optimization approach to optimize battery degradation and lifetime, as well as electric machine size and
ther aspects in the design of electric trucks. Similarly, Zhang et al. (2022) and Wang et al. (2024b) propose a hybrid powertrain

for electric wheel loaders that takes into account battery degradation and the recapture of braking energy during acceleration to
xtend battery life. However, these models primarily focus on the powertrain configurations of electric wheel loaders, which are
ot solely powered by electricity and still pose environmental challenges due to their hybrid nature. Moreover, charging on BETs
ot only replenishes their energy (Schimpe et al., 2018b) but also generates heat, influencing thermal dynamics (Lin et al., 2014).

This process affects battery temperature, thereby enabling control over both SoC and temperature, which is crucial for minimizing
battery aging and capacity loss.

3. Methodology

This section introduces the proposed deep reinforcement learning framework for velocity optimization in BET, which integrates
onsiderations of battery degradation and energy optimization. As depicted in Fig. 1, the proposed framework considers three critical

components of BET velocity optimization: the vehicle dynamics model, the battery model, and the powertrain model. The vehicle
dynamics model is crucial as it pertains to driving performance characteristics such as efficiency, safety, and comfort, which are
significant for the BET agent in DRL. The powertrain model comprises the traction, transmission, and electrical power models, all of

hich significantly influence the energy consumption of BET. Additionally, the battery model is another vital aspect of this research.
n equivalent circuit model is proposed to represent the electrochemical behavior of the battery, reflecting the adaptive responses of

he battery of BET under varying driving and environmental conditions. Furthermore, a degradation model is employed to quantify
attery degradation that includes calendar and cycling battery aging. Building on these three components, the reward function is
eveloped using a mixture of experts model to facilitate the optimization process, as explained in Section 4. Then the environment

for this study is formulated based on the BET vehicle configuration and referenced trajectory data, as introduced in Section 5 to
simulate real-world conditions more accurately.

3.1. Problem formulation

In the DRL system, a velocity optimization strategy is designed to learn the optimal velocity planning action 𝑎𝑡 for BETs in a
ar-following scenario. This involves considering the BET state 𝑠𝑡 and battery degradation. Reinforcement learning facilitates the
ptimization by allowing a DRL agent to interact with the state of environment (Yang et al., 2024). Specifically, this study focuses
n a car-following scenario where the trajectory of the LV is considered. The rationale for emphasizing car-following scenarios is

that free-driving cases, extensively explored in existing research, are relatively simpler to optimize for BETs. In this context, BETs
learn an acceleration or deceleration action 𝑎𝑡 based on the current state 𝑠𝑡 at each time step 𝑡, and receive a reward 𝑟𝑡 based on
the objectives of BET velocity optimization. The state of BET is then determined by the action, progressing to the next state 𝑠𝑡+1.
This sequence continues until a terminal state is reached, at which point the velocity optimization process is reset. Ultimately, the
optimal velocity optimization policy is learned through analyzing the trajectories of all leading vehicles. The state for the 𝑛th BET
includes the following vehicle speed 𝑉𝑛(𝑡), spacing to the LV 𝑆𝑛−1,𝑛(𝑡), and the relative speed 𝛥𝑉𝑛−1,𝑛(𝑡). Additionally, the state of
charge of the battery is incorporated into the state dimensions as well (Du et al., 2022).

3.2. Powertrain model

The dynamic models consists of vehicle dynamics, electric motor, partially following the dynamic model from Verbruggen et al.
(2019), we formulate the model as follows.

3.2.1. Vehicle traction model
The traction force, generated by the electric powertrain motor, reflects the required force to achieve the desired vehicle speed

𝑣 (Verbruggen et al., 2019). Furthermore, the vehicle traction model, which accounts for rolling friction, aerodynamic drag, and
gradient resistance, is described as follows:

𝐹𝑟 = 𝑚𝑣

(

𝑐𝑟𝑔 cos(𝛼) + 𝑔 sin(𝛼) + 𝑑
𝑑 𝑡 𝑣

)

+ 1
2
𝜌𝐴𝑓 𝑐𝑑𝑣

2, (1)

Where road grade 𝛼 is set to be zero, and other detailed descriptions and values for these parameters are provided in Table 1.
The angular speed 𝜔, and torque demand 𝑇𝑣 at the wheels can be calculated by

𝜔 = 𝑣
𝑟𝑤

, (2)

𝑇𝑣 = 𝐹𝑟𝑟𝑤. (3)

where 𝑟 is the wheel radius.
𝑤

4 
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Fig. 1. Framework of BET velocity control.

Table 1
Summary of vehicle model parameters (Verbruggen et al., 2019).
Name Symbol Value Unit

Wheel radius 𝑟𝑤 0.492 m
Gravitational acceleration 𝑔 9.81 m/s2
Aerodynamic drag coefficient 𝑐𝑑 0.73 –
Frontal area 𝐴𝑓 0.75 m2

Rolling friction coefficient 𝑐𝑟 0.006 –
Air density 𝜌 1.225 kg/m3

3.2.2. Vehicle transmission model
The torque transmitted may experience some efficiency losses. To express the final drive transmission, the equations are

formulated as follows:

𝜔𝑚 = 𝜔𝑟𝑟𝑓 𝑟𝑔 , (4)

𝑇 =
𝑇𝑣 (𝜂 𝜂 )−sign(𝑇𝑣). (5)
𝑚 𝑟𝑓 𝑟𝑔

𝑓 𝑔

5 
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where 𝜔𝑚 and 𝑇𝑚 represent the angular speed and torque of the electric motor, respectively. Here, 𝜂𝑓 and 𝜂𝑔 are the fixed efficiencies
f the final drive and the transmission, both set at 97%, applicable across all gears 𝑥𝑔 . The transmission ratio 𝑟𝑔 and the ratio of the
inal drive 𝑟𝑓 are crucial; 𝑟𝑔 is assumed to be a value reflecting gear engagement, and 𝑟𝑓 is set to 1, indicating a 1:1 drive ratio.

3.2.3. Electric powertrain model
As for the energy consumption part, the electric powertrain consumption 𝑃𝑚 is defined as

𝑃𝑚 = 𝜔𝑚𝑇𝑚𝜂
sign(𝑇𝑣)
𝑚 , (6)

where 𝜂𝑚 is the efficiency of electric motor, depending on the torque 𝜔𝑚 and angular speed 𝑇𝑚. we assume the efficiency of motor
o be constant as 𝜂𝑚 = 90% in this study (Verbruggen et al., 2019).

3.3. Battery degradation model

This section introduces the electric-thermal-degradation model of the BET battery (Schimpe et al., 2018b; Lin et al., 2014).
Additionally, the battery degradation of BET is modeled using a semi-empirical model that consist of calendar degradation and
cyclic degradation (Schimpe et al., 2018a; Chung et al., 2020).

3.3.1. Electrical model
Firstly, as for the electrical dynamics in the battery cells of BET, an equivalent circuit model is modeled, where the terminal

voltage 𝑉𝑡 is formulated as

𝑉𝑡 = 𝑉𝑂 𝐶 𝑉 (𝑆 𝑜𝐶 , 𝑇̄ ) + 𝐼 ⋅ 𝑅1(𝑆 𝑜𝐶 , 𝑇̄ ) + sgn(𝐼) ⋅ 𝑉ℎ𝑦𝑠(𝑆 𝑜𝐶) (7)

where 𝑉𝑂 𝐶 𝑉 is the open-circuit voltage (OCV), which is modeled by a semi-empirical model depends on the SoC and temperature 𝑇̄

𝑉𝑂 𝐶 𝑉 = 𝑉𝑜𝑐 𝑣,𝑅𝑒𝑓 (𝑆 𝑜𝐶) + (𝑇̄ − 𝑇𝑟𝑒𝑓 ) ⋅
(

𝑑 𝑉𝑂 𝐶 𝑉
𝑑 𝑇

)

𝑆 𝑜𝐶 ,𝑇𝑟𝑒𝑓
, (8)

Here, 𝑉𝑜𝑐 𝑣,𝑅𝑒𝑓 (𝑆 𝑜𝐶) is the open-circuit voltage related to SoC and temperature, and 𝐼 ⋅ 𝑅1(𝑆 𝑜𝐶 , 𝑇̄ ) captures the voltage drop under
current 𝐼 over the battery ohmic resistance 𝑅1. sgn(𝐼) represent the direction of current 𝐼 , and 𝑉ℎ𝑦𝑠(𝑆 𝑜𝐶) is another non-linear
relationship between hysteresis voltage and SoC.

Fig. 2 suggests the non-linear relationship of SoC to open circuit voltage 𝑉𝑂 𝐶 𝑉 , battery cell resistance to temperature, battery
cell resistance and hysteresis voltage to SoC on a Sony 26650 LiFePO4 battery which identified from Schimpe et al. (2018b). We
stimate the equivalent circuit model for BET battery cell based on the calibration of these relationship.

3.3.2. Thermal model
The temperature 𝑇̄ of battery cell is commonly defined as the average of the surface temperature 𝑇𝑠 and the core temperature

𝑐 as shown in Eq. (9).

𝑇̄ =
𝑇𝑠 + 𝑇𝑐

2
, (9)

where 𝑇̄ facilitates the modeling of heat generation of battery cells and heat conduction between the core and the surface of the
attery cells. This is regulated through heat convection at the battery surface in contact with the coolant. The heat generation at
he battery core, denoted by 𝑞𝑐 , and the thermal convection from the core can be modeled as

𝑑 𝑇𝑐
𝑑 𝑡 =

𝑇𝑠 − 𝑇𝑐
𝑅𝑐𝐶𝑐

+
𝑞𝑐
𝐶𝑐

, (10)

where 𝑅𝑐 is the heat conduction resistance, and 𝐶𝑐 is the core heat capacity. The heat generation 𝑞𝑐 can be derived from electric
odel in Eq. (7)

𝑞𝑐 = 𝐼(𝑉 𝑡 − 𝑉𝑂 𝐶 𝑉 ,𝑅𝑒𝑓 )

= 𝐼2𝑅1 + 𝐼sgn(𝐼) ⋅ 𝑉ℎ𝑦𝑠(𝑆 𝑜𝐶) + 𝐼(𝑇̄ − 𝑇𝑟𝑒𝑓 ) ⋅
(

𝑑 𝑉𝑂 𝐶 𝑉
𝑑 𝑇

)

𝑆 𝑜𝐶 ,𝑇𝑟𝑒𝑓
(11)

The surface temperature will then be cooled from the coolant in thermal management systems with the temperature 𝑇𝑓 based on
he surface convection resistance 𝑅𝑠 and surface heat capacity 𝐶𝑠

𝑑 𝑇𝑠
𝑑 𝑡 =

𝑇𝑓 − 𝑇𝑠
𝑅𝑠𝐶𝑠

−
𝑇𝑠 − 𝑇𝑐
𝑅𝑐𝐶𝑠

(12)

The parameters of electric-thermal-degradation model has been validated through experiments conducted on the 26650 LiFePO4
battery from Lin et al. (2014) and Chung et al. (2020). More detailed definitions, values of parameters, and 95% confident intervals
an be found in Table 2. In this study, the temperature of coolant is set to 25 ◦C.
6 
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Fig. 2. Reference model (Schimpe et al., 2018b).

Table 2
Summary of thermal model parameters (Lin et al., 2014).

Parameter Value Unit 95% Confident interval
𝑇𝑠 25 ◦C –
𝐶𝑠 4.5 J K−1 –
𝐶𝑐 62.7 J K−1 59.1–66.4
𝑅𝑠 3.19 K W−1 3.19–3.20
𝑅𝑐 1.94 K W−1 1.86–2.01

3.3.3. Degradation model
We utilize the degradation model developed in Schimpe et al. (2018a), which encompasses calendar aging and cyclic aging.

Calendar aging in battery is predominantly attributed to solid-electrolyte interface (SEI) layer. The degradation in capacity resulting
from this growth exhibits a decrease over time because of the self-limiting nature. This dynamic is quantitatively described by the
following integral model:

𝛥𝑄Cal = ∫ [𝑘Cal(SoC, 𝑇 ) ⋅ (2𝑡0.5)−1] 𝑑 𝑞 , (13)

where 𝑘Cal is the degradation rate (stress factor), which is defined in Eq. (14). It incorporates Tafel and Arrhenius relationships to
account for the impact of SoC-dependent effects and temperature dependence.

𝑘Cal = 𝑘Cal,Ref × exp
(

−
𝐸𝑎,Cal
𝑅𝑔

(

1
𝑇

− 1
𝑇Ref

))

×
(

exp[
𝛾 ⋅ 𝐹
𝑅𝑔

(𝑈𝑎,Ref − 𝑈𝑎(𝑆 𝑜𝐶)
𝑇Ref

)

] + 𝑘0

)

, (14)

where 𝐸𝑎,Cal represents the activation energy associated with the degradation process, determined by fitting empirical data to the
model at an SoC of 100%. The universal gas constant, 𝑅𝑔 , used in the calculations is a constant parameter listed in Table 3. The
second exponential term in Eq. (14) accounts for variations in the anode open circuit potential, 𝑈𝑎, which varies with the SoC.
Additional parameters, 𝛾 and 𝐹 , are detailed in Table 3.

In contrast to calendar aging, cyclic aging is influenced by different mechanisms (Chung et al., 2020), and it can be classified
into several parts: the high-temperature cyclic aging degradation 𝛥𝑄Cyc,HighT because of the SEI degradation, the low-temperature
degradation 𝛥𝑄Cyc,LowT, and the low-temperature-high-SoC degradation 𝛥𝑄Cyc,LowTHighSoC because of the lithium plating related to
SoC and temperature difference.
7 



R. Jia et al.

r

c

Transportation Research Part E 194 (2025) 103885 
Table 3
Summary of degradation model parameters (Schimpe et al., 2018a).

Model Parameter Value Environment

𝑘Cal,Ref 3.69 ⋅ 10−4 ⋅ ℎ−0.5 𝑇 = 25 ◦C, 𝑆 𝑜𝐶 = 50%
𝑘Cyc, High T, Ref 1.46 ⋅ 10−4 ⋅ 𝐴ℎ−0.5 𝑇 = 25 ◦C, 𝐼 = 1𝐶
𝑘Cyc, Low T, Ref 4.01 ⋅ 10−4 ⋅ 𝐴ℎ−0.5 𝑇 = 25 ◦C, 𝐼Ch = 1𝐶
𝑘Cyc,Low T High SoC,Ref 2.03 ⋅ 10−6 ⋅ 𝐴ℎ−1 𝑇 = 25 ◦C, 𝐼Ch = 1𝐶
𝐸𝑎,Cal 2.06 ⋅ 104 J/mol 𝑆 𝑜𝐶 = 100%
𝐸𝑎,Cyc, High T 3.27 ⋅ 104 J/mol 𝐼 = 1𝐶
𝐸𝑎,Cyc, Low T 5.55 ⋅ 104 J/mol 𝐼Ch = 1𝐶
𝐸𝑎,Cyc,Low T High SoC 2.33 ⋅ 105 J/mol 𝐼Ch = 1𝐶
𝛾 3.84 ⋅ 10−1

𝛽Low T 2.64 h
𝛽Low T High SoC 7.84 h
𝑇Ref 298.15 K
𝐼Ch,Ref 3 A
𝑈𝑎,Ref 1.23 ⋅ 10−1 V 𝑆 𝑜𝐶 = 50%
𝑘0 1.42 ⋅ 10−1

The 𝛥𝑄Cyc,HighT focus on the effect of SEI formation during cycling in a high temperature status. Similar to 𝛥𝑄Cal, the cyclic
degradation in high temperature is modeled as

𝛥𝑄Cyc,HighT = ∫ [𝑘Cyc,HighT(𝑇 ) ⋅ (2𝑞0.5)−1] 𝑑 𝑞 (15)

𝑘Cyc,HighT = 𝑘Cyc,HighT,Ref × exp
(

−
𝐸𝑎,Cyc,HighT

𝑅𝑔

(

1
𝑇

− 1
𝑇Ref

))

(16)

where the related degradation factor 𝑘Cyc,HighT,Ref and activation energy 𝐸𝑎,Cyc,HighT are detailed in Table 3.
The 𝛥𝑄Cyc,LowT and 𝛥𝑄Cyc,LowTHighSoC terms capture the effects of lithium plating under low temperature and high SoC,

espectively. The main term 𝛥𝑄Cyc,LowT is semi-empirically formulated as

𝛥𝑄Cyc,LowT = ∫ [𝑘Cyc,LowT(𝑇 , 𝐼) ⋅ (2𝑞0.5chg)
−1] 𝑑 𝑞chg, (17)

where 𝑞chg = ∫ |𝐼𝐶 ℎ(𝑡)|𝑑 𝑡 is total charging current of battery cells.

𝑘Cyc,LowT = 𝑘Cyc,LowT,Ref × exp
(𝐸𝑎,Cyc,LowT

𝑅𝑔

(

1
𝑇

− 1
𝑇Ref

))

× exp
(

𝛽LowT ⋅
𝐼Ch − 𝐼Ch,Ref

𝑄

)

, (18)

where the cell capacity 𝐶0, reference current during charging 𝐼Ch,Ref, and fitting parameter 𝛽LowT are given in Table 3
Another degradation term under low temperature with high SoC is modeled as

𝛥𝑄Cyc,LowTHighSoC = ∫

[

𝑘Cyc,LowTHighSoC ⋅ (2𝑞0.5𝑐 ℎ𝑔)−1
]

𝑑 𝑞𝑐 ℎ𝑔 . (19)

And for the stress factor 𝑘Cyc,LowTHighSoC, can be defined as

𝑘Cyc,LowTHighSoC =𝑘Cyc,LowTHighSoC,Ref ⋅ exp
(

−
𝐸𝑎,Cyc,LowTHighSoC

𝑅𝑔

(

1
𝑇

− 1
𝑇Ref

))

⋅ exp
(

𝛽LowTHighSoC ⋅
𝐼Ch − 𝐼Ch,Ref

𝑄

)

⋅
( sgn(𝑆 𝑜𝐶 − 𝑆 𝑜𝐶Ref) + 1

2

)
(20)

Therefore, the total capacity loss of battery cells 𝛥𝑄Total is formulated as the sum of calendar loss, 𝛥𝑄Cal, and cyclic losses. The
yclic losses are further broken down into 𝛥𝑄Cyc = 𝛥𝑄Cyc,HighT + 𝛥𝑄Cyc,LowT + 𝛥𝑄Cyc,LowTHighSoC.

𝛥𝑄Total = 𝛥𝑄Cal + 𝛥𝑄Cyc (21)

All the parameters are generated from the experiments conducted on a 26650 LiFePO4 battery in the literature (Chung et al., 2020;
Schimpe et al., 2018a). The values of parameters for battery degradation models are summarized in Table 3.

3.4. Deep reinforcement learning for BET velocity optimization

This section introduces the DRL algorithms applied to BET velocity optimization including the foundational Deep Q-learning
Network (DQN), Deep Deterministic Policy Gradient (DDPG) and Twin Delayed DDPG (TD3). These algorithms are chosen for their
effectiveness in handling tasks that demand continuous action spaces as detailed in Table 4. As outlined in Section 3.1, the objective
for BET velocity optimization is to optimize continuous acceleration actions while considering factors such as battery degradation
and energy consumption. To address this, the DDPG and TD3 algorithms are selected for this study.
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Table 4
Comparison of DRL Algorithms: DQN, DDPG, and TD3.
Algorithm Action Structure Policy Key features

DQN Discrete Value-based Off-policy, deterministic Utilizes a deep neural network to approximate the
Q-value function, introduces experience replay and
fixed Q-targets to stabilize learning in complex
environments.

DDPG Continuous Actor-Critic Off-policy, deterministic Uses a deterministic policy to operate in
continuous action spaces; employs actor-critic
architecture with a replay buffer and target
networks.

TD3 Continuous Actor-Critic Off-policy, deterministic Improves upon DDPG by using twin Q-networks to
reduce overestimation bias, delayed policy
updates, and target policy smoothing.

3.4.1. DDPG
We will start with introducing the DQN algorithm, which is a basic and value-based reinforcement learning method (Yang et al.,

2024). It evaluates the value of an action in a given state using a value function, which is continually updated through learning
xperiences. However, DQN is limited to discrete action spaces and does not suit tasks requiring continuous actions, such as truck
cceleration. To address continuous action domains, the Policy Gradient method and Actor-Critic architecture enhance decision-
aking by combining gradient ascent on expected rewards with a dual approach that integrates both policy and value functions to

ptimize actions (Yang et al., 2024).
DDPG is an extension of these concepts, merging the benefits of experience replay of DQN and delayed target network updates

with the Actor-Critic structure of Deterministic Policy Gradient. This hybrid method enhances training efficiency and robustness.
Experience replay involves storing state–action-reward transitions in a memory buffer, which is continuously updated. Learning
occurs from a minibatch randomly selected from this buffer, mitigating the correlation issues associated with sequential or related
experiences. Both the Actor and Critic employ a pair of networks: a target network that aids in convergence, and an evaluation
network facilitating continuous learning improvements. This structure ensures that both components update their strategies based
on reliable and decorrelates feedback from the stored experiences. The key steps in the update phase can be summarized as:

• Calculating target values for the sampled transitions using the target networks, which estimate future rewards.
• Minimizing the loss between these target values and the values predicted by the evaluation networks, thereby refining the

Critic estimates.
• Updating the Actor policy using a policy gradient method, thereby improving the policy based on the Critic feedback.
• Softly updating the target networks to slowly track the learned networks, maintaining stability.

Algorithm 1 DDPG Algorithm for BET Velocity Optimization

1: Initialize Critic 𝑄(𝑠, 𝑎|𝜃𝑄) and Actor 𝜇(𝑠|𝜃𝜇) networks and their targets 𝑄′, 𝜇′.
2: Initialize replay buffer 𝑅.
3: for episode = 1, 𝑀 do
4: Initialize observation state 𝑠0: spacing, speed, relative speed, and battery degradation.
5: for 𝑡 = 1, 𝑇 do
6: Select and execute action of acceleration 𝑎𝑡 = 𝜇(𝑠𝑡|𝜃𝜇) +𝑁𝑡, observe reward 𝑟𝑡, and new state 𝑠𝑡+1.
7: Store (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in 𝑅.
8: Sample minibatch from 𝑅, compute 𝑦𝑡 = 𝑟𝑡 + 𝜁 𝑄′(𝑠𝑡+1, 𝜇′(𝑠𝑡+1)).
9: Update Critic and Actor networks.

10: Soft update target networks 𝜃𝑄′ , 𝜃𝜇′ .
11: end for
12: end for

The DDPG algorithm commences by initializing the evaluation and target networks for both the Critic and Actor, essential for
pproximating the Q-function and policy function, respectively. An empty replay buffer is also set up to store past experiences in

the Algorithm 1. Each training episode starts by gathering initial observations related to the dynamics of BET, such as spacing,
speed, and battery SoC. Actions, specifically vehicle acceleration, are selected using the current policy augmented with noise to
encourage exploration. This noise addition is crucial for ensuring that the policy does not converge prematurely to suboptimal
actions. Transitions consisting of the current state, action, resultant reward, and subsequent state are recorded in the replay buffer.
Training involves sampling from this buffer to break correlation between sequential updates, which is vital for stable learning. The
algorithm iterates through these steps until convergence or the end of the allowed episodes, updating policies and value estimations
to navigate the BET efficiently and safely.
9 
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3.4.2. TD3
TD3 algorithm enhances the foundational approaches of DDPG to address critical vulnerabilities, particularly in the context

f hyperparameter sensitivity and Q-value overestimation, which can degrade policy performance (Fujimoto et al., 2018). TD3
incorporates three innovative modifications to mitigate these issues, making it highly effective for applications like autonomous
velocity planning and control that require continuous action decisions. Compared to DDPG, TD3 addresses the drawbacks of DDPG
from three specific aspects:

• Clipped Double-Q Learning. TD3 mitigates the overestimation of Q-values, a common failure in DDPG, by maintaining two
separate Q-functions. It uses the minimum of these two Q-values to compute the target values in the Bellman update, which
helps in providing a more conservative estimate of the Q-values.

𝑦𝑡 = 𝑟𝑡 + 𝜁 min
𝑖=1,2

𝑄′
𝜙𝑖
(𝑠𝑡+1, 𝜇′(𝑠𝑡+1|𝜃𝜇

′
)|𝜃𝑄

′
𝑖 ) (22)

• Delayed Policy Updates. To prevent the policy from exploiting inaccuracies in the Q-function, TD3 updates the policy less
frequently than the Q-functions. Specifically, the policy and target networks are updated once for every two updates of the
Q-function, allowing the Q-function to provide more stable and reliable estimates before each policy update.

𝑎′(𝑠′) = clip
(

𝜇𝜃targ (𝑠
′) + clip(𝜖 ,−𝑐 , 𝑐), 𝑎Low, 𝑎High

)

, 𝜖 ∼  (0, 𝜎) (23)

• Target Policy Smoothing. TD3 introduces noise to the target policy to prevent the exploitation of Q-function errors. This noise
smooths out the action selection of policy, making it harder for the policy to focus excessively on regions where the Q-function
might be inaccurately high.

𝜃𝑄
′
𝑖 ← 𝜏 𝜃𝑄𝑖 + (1 − 𝜏)𝜃𝑄

′
𝑖 , 𝜃𝜇

′
← 𝜏 𝜃𝜇 + (1 − 𝜏)𝜃𝜇

′ (24)

Both DDPG and TD3 are effective reinforcement learning methods for continuous action space optimization. However, due to the
enhanced stability and reliability of TD3, it tends to be more effective in solving complex, non-linear problems, while DDPG may
offer advantages in simpler, more linear scenarios. In the context of BET velocity control, the non-linear empirical model introduces
a high level of complexity, which increases the optimization demands. The stability and robustness of TD3 make it particularly
well-suited for controlling BET speed in dynamic environments. The complete TD3 algorithm is summarized in Algorithm 2.
Algorithm 2 TD3 Algorithm for BET Velocity Control

1: Initialize two Critic networks 𝑄1(𝑠, 𝑎|𝜃𝑄1 ) and 𝑄2(𝑠, 𝑎|𝜃𝑄2 ), and Actor 𝜇(𝑠|𝜃𝜇) networks.
2: Initialize target networks 𝑄′

1, 𝑄
′
2 and 𝜇′ with weights 𝜃𝑄

′
1 ← 𝜃𝑄1 , 𝜃𝑄

′
2 ← 𝜃𝑄2 , 𝜃𝜇′ ← 𝜃𝜇 .

3: Initialize replay buffer .
4: for episode = 1, 𝑀 do
5: Initialize observation state 𝑠0: spacing, speed, relative speed, and battery degradation.
6: for 𝑡 = 1, 𝑇 do
7: Select and execute action 𝑎𝑡 = 𝜇(𝑠𝑡|𝜃𝜇) +𝑁𝑡 (where 𝑁𝑡 is noise for exploration).
8: Execute 𝑎𝑡, observe reward 𝑟𝑡 and new state 𝑠𝑡+1.
9: Store transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in .

10: if 𝑡 mod 𝑑 == 0 then update networks every 𝑑 steps
11: Sample minibatch from .
12: Compute target actions: 𝑎′ = 𝜇′(𝑠𝑗+1|𝜃𝜇

′ ) + clip( (0, 𝜎),−𝑐 , 𝑐).
13: Compute target values: 𝑦𝑗 = 𝑟𝑗 + 𝜁 min𝑖=1,2 𝑄′

𝑖(𝑠𝑗+1, 𝑎′|𝜃𝑄
′
𝑖 ).

14: Update 𝑄1 and 𝑄2 by minimizing the loss:

𝐿𝑖 =
1
𝑁

∑
(

𝑦𝑗 −𝑄𝑖(𝑠𝑗 , 𝑎𝑗 |𝜃𝑄𝑖 )
)2 for 𝑖 = 1, 2

15: Update 𝜇 using the sampled policy gradient:

∇𝜃𝜇𝐽 ≈ 1
𝑁

∑

∇𝑎𝑄1(𝑠, 𝑎|𝜃𝑄1 )|𝑠=𝑠𝑡 ,𝑎=𝜇(𝑠𝑡)∇𝜃𝜇𝜇(𝑠|𝜃𝜇)|𝑠𝑡

16: Soft update target networks:

𝜃𝑄
′
𝑖 ← 𝜏 𝜃𝑄𝑖 + (1 − 𝜏)𝜃𝑄

′
𝑖 for 𝑖 = 1, 2, 𝜃𝜇′ ← 𝜏 𝜃𝜇 + (1 − 𝜏)𝜃𝜇

′
.

17: end if
18: end for
19: end for

3.5. Mixture of experts

In the multi-objective optimization problem inherent in BET velocity optimization, the reward function comprises multiple
omponents with varying scales. While many studies opt to manually adjust the weight of each component using a linear reward
10 
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function (Du et al., 2022; Yang et al., 2024), this approach may not convincingly handle the complexities of different objectives.
Particularly in BET, where battery degradation, vehicle dynamics, and energy consumption vary in unit magnitude, ensuring precise
ptimization is crucial. A dominant objective could bias the velocity optimization strategy.

To address this, we have incorporated a Mixture of Experts structure in our study. The MoE concept (Jordan and Jacobs,
1994) employs a Gaussian mixture model that significantly enhances model capacity with minimal computational overhead. Recent
adaptations include the MoE layer, extending to deep neural networks, which has shown substantial success in various deep learning
applications. Typically, an MoE layer includes several expert networks that share the same architecture and are governed by a single
algorithm, with a gating function directing inputs to select experts (Chen et al., 2022).

The MoE layer in our context consists of 𝑀 expert networks, 𝑓1,… , 𝑓𝑀 , each paired with a linear gating network. The gating
function ℎ(𝑥;𝛩) aggregates input 𝑥 across 𝑃 dimensions, parameterized by 𝛩 = [𝜃1,… , 𝜃𝑀 ] ∈ R𝑑×𝑀 , and outputs an 𝑀-dimensional
vector. The final output 𝐹 of the MoE layer is computed as

𝐹 (𝑥;𝛩 ,𝐖) =
∑

𝑚∈𝑇𝑥

𝜋𝑚(𝑥;𝛩)𝑓𝑚(𝑥;𝐖), (25)

where 𝑇𝑥 ⊆ [𝑀] represents selected indices, and 𝜋𝑚(𝑥;𝛩) denotes the routing gate values,

𝜋𝑚(𝑥;𝛩) = exp(ℎ𝑚(𝑥;𝛩))
∑𝑀

𝑚′=1 exp(ℎ𝑚′ (𝑥;𝛩))
. (26)

Our implementation of MoE utilizes nonlinear neural networks for experts, critical for the success observed in our models.
pecifically, for the 𝑚th expert, we employ a convolutional neural network

𝑓𝑚(𝑥;𝐖) =
𝐽
∑

𝑗=1

[( 𝑃
∑

𝑝=1

(

𝑤𝑚,𝑗 ⋅ 𝑥
(𝑝))

)]

, (27)

with 𝑤𝑚,𝑗 ∈ R𝑑 representing the weight vector of the 𝑗th filter in the 𝑚th expert, and 𝐽 being the number of filters. The weights
𝑚 = [𝑤𝑚,1,… , 𝑤𝑚,𝐽 ] define the weight matrix of the 𝑚th expert, collectively denoted as 𝐖 = [𝐖𝑚]𝑀𝑚=1. In this approach, the
eights of each component in the reward function are dynamically adjusted during the reinforcement learning training process. This
djustment effectively addresses the challenge of balancing disparate objectives such as battery degradation and vehicle dynamics,
hich is crucial for managing the complexities inherent in BET velocity optimization strategies.

4. Features for reward function

The optimization objectives are structured around several primary aspects: battery degradation score 𝑟𝑏, energy consumption 𝑟𝑝,
driving efficiency 𝑟𝑒, safety 𝑟𝑠, and comfort 𝑟𝑐 , as formulated in Eq. (28):

𝑟 = 𝑤𝑏𝑟𝑏 +𝑤𝑒𝑟𝑒 +𝑤𝑠𝑟𝑠 +𝑤𝑐𝑟𝑐 (28)

where, 𝑤𝑏 represent the weighted coefficients optimized using the MoE layer for the reward of battery degradation, which vary
iscretely from 0.1 to 10. The weights for velocity control reward 𝑟𝑒, 𝑟𝑠, and 𝑟𝑐 to generally set to 1 to balance the effect of multiple

objectives in the total reward, which widely adopted in other studies (Yang et al., 2024).

4.1. Battery degradation and energy consumption

One of our primary objectives is to mitigate battery degradation during operation. Battery degradation, denoted as 𝛥𝑄Tot,
comprises both calendar and cyclic degradation components as described in Eq. (21).

𝛥𝑄Tot = 𝛥𝑄Cal + 𝛥𝑄Cyc (29)

In this way, the calendar loss and cyclic loss of BET can be formulated as

𝐿Cal =
𝛥𝑄Cal
𝑄

(30)

𝐿Cyc =
𝛥𝑄Cyc

𝑄
(31)

𝐿Total = 𝐿Cal + 𝐿Cyc (32)

where, 𝑄 = 3𝐶 signifies the capacity of the battery cell employed in our simulations. Additionally, the score of battery degradation
in the reward function, 𝑟𝑏, is defined by

𝑟𝑏 = 𝐿Total × 𝑘 (33)

where 𝑘 is a scaling factor reflecting the simulated number of cycles. Considering the subtle nature of degradation measurements in
he context of road experiments (Chung et al., 2020; Schimpe et al., 2018a), where the calendar and cyclic degradation during each
imulation cycle are on the order of 10−8 to 10−7 Ah, these values are too small to interpret meaningfully on their own. Therefore,
e applied the scaling factor 𝑘 to adjust the degradation values to a magnitude comparable to other parameters in the model. This

tudy models battery degradation over 10,000 operational cycles, thereby setting 𝑘 at 10,000. It is important to note that the value
f 𝑘 does not affect the total reward function due to the self-adjusting mechanism of the weighted MoE layer.
11 
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4.2. Driving efficiency

Efficient driving is characterized by maintaining a short headway that falls within a safe range, defined as the time interval
between the LV and the following vehicle (FV). In our research, the efficiency component of the reward function adopts the
lognormal distribution model to calculate time headway values, a methodology aligned with prevalent practices in the field
and partially based on Zhu et al. (2020). We use empirical NGSIM data to estimate the mean (𝜇 = 0.4226) and log standard
eviation(𝜎 = 0.4365) of time headway. This approach has been shown to enhance model stability and performance (Pu et al., 2020).

Accordingly, our reinforcement learning agents are optimized to maintain a time headway of approximately 1.26 s, reflecting the
optimal feature value identified in previous studies, where the probability density function is defined as

𝑓lognorm(𝑥|𝜇 , 𝜎) = 1

𝑥𝜎
√

2𝜋
𝑒−

(ln 𝑥−𝜇)2

2𝜎2 , 𝑥 > 0 (34)

where, 𝑥 represents the time headway in this study. Then the score of headway feature 𝑟𝑒 in the reward function is constructed as

𝑟𝑒 = 𝑓lognorm(headway|𝜇 = 0.4226, 𝜎 = 0.4365) (35)

4.3. Safety

Safety should be one of the most important elements of BET velocity planning which is evaluated by time to collision (TTC).
his metric estimates the time remaining before two vehicles potentially collide, and is formulated as

𝑇 𝑇 𝐶(𝑡) = − 𝑆𝑛−1,𝑛(𝑡)
𝛥𝑉𝑛−1,𝑛(𝑡)

(36)

Following the TTC calibrated in NGSIM data (Zhu et al., 2020), the normalized score of TTC feature in reward function is constructed
s

𝑟𝑠 =

⎧

⎪

⎨

⎪

⎩

log
(

𝑇 𝑇 𝐶
4

)

if 0 < 𝑇 𝑇 𝐶 ≤ 4

−1 otherwise
(37)

4.4. Driving comfort

The jerk of velocity profile 𝑗(𝑡), defined as the rate of change of acceleration, is a critical measure for assessing driving comfort
due to its significant impact on passenger comfort and vehicle stability (Du et al., 2022).

𝑗(𝑡) = 𝑎(𝑡) − 𝑎(𝑡 − 1)
𝛥𝑇

(38)

The jerk feature is evaluated as the score of comfort in the reward function 𝑟𝑐 , is computed by

𝑟𝑐 = − 𝑗(𝑡)2

1600
(39)

This formulation implies that smaller jerk values, which correspond to smoother driving, result in higher comfort levels. The squared
erk is normalized by dividing by 1600, a base value derived from the following rationale

• The time step 𝛥𝑇 is 0.1 s.
• The acceleration is constrained between −2 m∕s2 and 2 m∕s2 for BET configuration.
• Consequently, the maximum possible jerk value is 2−(−2)

0.1 = 40 m∕s3; squaring this value yields 1600.

Additionally, minimizing longitudinal acceleration enhances driving comfort by reducing speed variability, underscoring the
importance of both longitudinal jerk and acceleration in the evaluation of longitudinal ride comfort (Du et al., 2022). However,
it is noted that the scales of longitudinal jerk and acceleration differ significantly.

5. Experiment

5.1. BET vehicle configuration

To meet the voltage and power specifications for electric trucks, we incorporates a battery pack consisting of 88,000 LiFePO4
cells for BET configuration which includes 220 cells arranged in series to achieve over 700 V and 400 groups in parallel, with each
cell having a capacity of 3.0 Ah, resulting in a total nominal storage capacity of 845 kWh for the entire battery pack. The vehicle
configuration refers to Shoman et al. (2023) that suggests BETs should be equipped with a battery capacity sufficient for a 435
m range (approximately 750 kWh), and Zhang et al. (2022) that utilized a battery pack LiFePO4 cells providing 84.5 kWh within

electric wheel loaders. Additionally, as detailed in Section 3.3, the initial temperature is set at 25 degrees Celsius at the beginning
12 
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Table 5
Model parameters of the IDM model used throughout this paper.

Parameter Typical value

Desired velocity 𝑣0 120 km/h
Safe time headway 𝑇 1.6 s
Maximum acceleration 𝑎 0.73 m/s2
Desired deceleration 𝑏 1.67 m/s2
Acceleration exponent 𝛿 4
Jam distance 𝑠0 2 m
Jam Distance 𝑠1 0 m

of running considering the effects of battery thermal management. In the BET experiment training, a random SoC ranging from
35% to 95% is used to account for battery degradation, enhancing the model robustness by simulating diverse battery conditions
and allowing the learning algorithm to explore a broader operational range. To simplify the model, it is assumed that all necessary
information regarding the battery components of BET is accurately detected and integrated without any biases. For instance, both
the environmental temperature and the temperature of the coolant interacting with the battery cells are set to be constant.

5.2. Reference trajectory data

The trajectory data are generated from Next Generation Simulation (NGSIM) project (Zhu et al., 2020). We focus on a truck
following scenario where the LV is taken from NGSIM data. The velocity optimization and control produced by the DDPG and TD3
algorithms are compared with empirical observations from the trajectory data, especially those LV and FV data on trucks. The used
rajectory data were collected on April 13, 2005, in the Bay area of Emeryville, CA. The dataset encompasses an aggregate of 45 min,

segmented into three 15-minute intervals. These intervals capture various traffic conditions, ranging from the buildup of congestion
o a fully congested state during peak traffic periods. Detailed vehicle location data, sampled at a rate of 0.1 s, were used to enhance

model accuracy. Furthermore, the reconstructed NGSIM I-80 data were employed to ensure high data quality (Zhu et al., 2020).

5.3. Training configuration

Utilizing the NGSIM I-80 trajectory dataset, which comprises 1,341 pairs, we allocate 70% (938 pairs) for training and 30%
403 pairs) for testing. The training involves over 1,000 learning episodes, with each episode consisting of randomly selected car-
ollowing events from this dataset. The architecture for the actor and critic layers in the DDPG and TD3 models is standardized,
ach featuring a three-layer actor and critic neural network with dimensions of 64, 128, and 64, respectively, and concludes with
 softmax activation layer. The MoE model consists of a three-layer GRU neural network with gate control. The design of DDPG,
D3, MoE, and their variants are detailed as follows:

• TD3 Veh: Applying the TD3 algorithm solely for BET vehicle velocity optimization, ignoring battery degradation with 𝑟𝑏 = 0.
The complete reward function is 𝑟 = 𝑟𝑒 + 𝑟𝑠 + 𝑟𝑐 .

• TD3 Linear: Using the TD3 algorithm for BET velocity optimization and battery degradation optimization, with equal weights
in the reward function, namely 𝑟 = 𝑟𝑏 + 𝑟𝑒 + 𝑟𝑠 + 𝑟𝑐 .

• TD3 MoE: Implementing the TD3 algorithm for BET velocity optimization and battery degradation optimization. The weight
for battery degradation, 𝑤𝑏, is optimized through a MoE layer during training.

• DDPG Veh: Employing the DDPG algorithm solely for BET velocity optimization, without considering battery degradation,
setting 𝑟𝑏 = 0. The complete reward function is 𝑟 = 𝑟𝑒 + 𝑟𝑠 + 𝑟𝑐 .

• DDPG Linear: Utilizing the DDPG algorithm for BET velocity optimization and battery degradation optimization, with all
weights in the reward function set to 1, such that 𝑟 = 𝑟𝑏 + 𝑟𝑒 + 𝑟𝑠 + 𝑟𝑐 .

• DDPG MoE: Implements the DDPG algorithm for BET velocity and battery degradation optimization. The weight of battery
degradation, 𝑤𝑏, is optimized through a MoE layer during training.

The training utilizes Pytorch 1.12.1 on an Nvidia A100 GPU and a 16-core CPU with 64 GB of memory.

5.4. Benchmark models

As for baseline model, we use intelligent driver model (IDM) as the benchmark (Treiber et al., 2000). The acceleration in IDM
s a continuous function incorporating different driving modes, which is given by

𝑎IDM(𝑠, 𝑣, 𝛥𝑣) = 𝑑 𝑣
𝑑 𝑡 = 𝑎

[

1 −
(

𝑣
𝑣0

)𝛿
−
(

𝑠∗(𝑣, 𝛥𝑣)
𝑠

)2
]

, (40)

𝑠∗(𝑣, 𝛥𝑣) = 𝑠0 + 𝑣𝑇 + 𝑣𝛥𝑣

2
√

𝑎𝑏
. (41)

The model parameters are referred to Treiber et al. (2000) and summarized in Table 5.
13 



R. Jia et al. Transportation Research Part E 194 (2025) 103885 
Fig. 3. Training reward comparison between DDPG, DDPG with MoE, TD3, TD3 with MoE.

6. Results

6.1. Training efficiency

Fig. 3 displays the rolling reward for six proposed reinforcement learning algorithms, illustrating their performance throughout
the training phase. Although the peak rewards attained by the six algorithms are relatively similar, underscoring their effectiveness in
velocity optimization, subtle differences are observed between episodes 800 to 1000. Among these, TD3-VEH and DDPG-VEH achieve
the highest rolling rewards, demonstrating that reinforcement learning algorithms can achieve significant control effectiveness in
terms of efficiency, safety, and comfort without considering battery degradation. When a linear score of battery degradation is
incorporated into the reward function, DDPG-Linear and TD3-Linear show the least effective results among the six methods. This
indicates that a simplistic linear integration of battery degradation may compromise the overall optimization objectives including
efficiency, safety and comfort. However, this loss is mitigated when introducing the MOE approach. Both DDPG-MoE and TD3-MoE
achieve more favorable optimization outcomes compared to their linear counterparts, highlighting the efficacy of the proposed
method. In the initial episodes (from 0 to 300 episodes), the TD3 method demonstrates a more rapid convergence than the DDPG
method. This observation is supported by the fact that the TD3-VEH curve is consistently lower than that of DDPG-VEH (0 to 50
episodes), which can be attributed to the variability in the initial SoC during training, leading to fluctuating initial rolling rewards.
However, after the initial 50 episodes, TD3-VEH consistently outperforms DDPG-VEH, illustrating its superiority in terms of training
efficiency. Furthermore, effectiveness of TD3 can be observed in the performance of TD3-Linear and TD3-MoE compared to their
DDPG counterparts. Both TD3 variants perform better than the corresponding DDPG variants, especially in scenarios where the
reward function incorporates the complexities of battery degradation. This suggests that TD3 is more effective in addressing complex
problems, particularly those involving intricate reward structures that account for battery degradation.

To further explore the performance of the proposed methods in terms of velocity and battery degradation optimization, a detailed
comparative analysis of model performances is presented in Table 6. This table summarizes key metrics calculated during training,
including average training reward scores (𝑟𝑠, 𝑟𝑒, 𝑟𝑐 , 𝑟𝑏), BET vehicle dynamics such as average headway, jerk, and TTC per simulation
step, as well as the average battery degradation and energy consumption after the rolling reward getting stable. It is important to
note that battery degradation is calculated for each individual battery cell. However, when expressed as a relative percentage, this
measure also reflects the overall degradation of the entire battery pack for the BET in this study. Moreover, energy consumption
is normalized based on the overall powertrain energy from Eq. (6) and divided by the travel distance during simulation to make it
comparable, resulting in a normalized unit of kWh/km. The total energy consumption is calculated for the entire BET, offering a
comprehensive view of its energy efficiency.
14 
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Table 6
Summary of model performance metrics.
Model 𝑟𝑠 𝑟𝑒 𝑟𝑐 𝑟𝑏 Hdw (s) Jerk (m/s3) TTC (s) 𝐿Total (%) Energy (kWh/km)

DDPG-VEH 0 0.6546 −0.0007 −0.0030 1.4776 0.0297 25.1168 2.2067 2.2153
DDPG-Linear 0 0.6560 −0.0004 −0.0024 1.6977 0.0348 23.3014 2.2033 1.5247
DDPG-MoE 0 0.6552 −0.0003 −0.0023 1.5469 0.0355 24.9655 2.1934 1.5230
TD3-VEH 0 0.6551 −0.0002 −0.0018 1.4079 0.0326 25.0124 2.2039 1.6073
TD3-Linear 0 0.6558 −0.0003 −0.0022 1.6086 0.0434 24.7638 2.1937 1.4332
TD3-MoE 0 0.6534 −0.0016 −0.0017 1.5242 0.0344 24.5878 2.1872 1.4897

Regarding safety, all six methods recorded no collisions (𝑟𝑠 = 0), demonstrating their robustness in safety-related objective.
oreover, 𝑟𝑐 and 𝑟𝑏, which represent the reward components for comfort and battery degradation respectively, show that these

alues are relatively close across all models. Compared to the efficiency metrics, the scores for comfort and battery degradation are
arginal. This suggests that assigning equal weights (𝑤 = 1) to all components may lead to an underestimate on objectives that

are less significant in scale. This observation highlights the necessity for a more refined approach in assigning weights to different
performance aspects in our models. Furthermore, by applying a mixture of experts for re-weighting, DDPG-MoE and TD3-MoE
achieved the lowest scores for battery degradation. The adaptive weighting in MOE allows for better adjustment of the relative
importance of battery degradation in the total reward, enhancing the precision in evaluating its impact on overall performance.

DDPG-VEH and TD3-VEH models prioritize velocity optimization without explicitly addressing battery degradation. These models
demonstrate relatively low headway times of 1.4776 s and 1.4079 s, respectively, which can increase traffic efficiency. Additionally,
hey achieve better safety performance with better TTC values compared to other methods. However, these models also exhibit
igher levels of battery degradation (2.2067% for DDPG-VEH and 2.2039% for TD3-VEH) and energy consumption (2.2153 kWh/km
or DDPG-VEH and 1.6073 kWh/km for TD3-VEH) compared to other methods.

Incorporating considerations of battery degradation into the reward mechanism reveals a significant trade-off. Models with more
aggressive acceleration profiles, such as DDPG-Linear (0.0348m/s3) and TD3-Linear (0.0434m/s3), also show a reduction in TTC
(23.3014 s for DDPG-Linear and 24.7639 s for TD3-Linear), indicating an improvement in overall vehicular dynamics. Furthermore,
these adjustments lead to enhanced total battery degradation and energy consumption metrics, as demonstrated by DDPG-Linear
and TD3-Linear.

Models utilizing mixture of experts approaches, DDPG-MoE and TD3-MoE, display improvements in battery degradation com-
pared to other configurations. These models achieve smoother acceleration and significantly lower energy consumption by tailoring

oE within the total reward function. Remarkably, TD3-MoE and DDPG-MoE exhibit the lowest total battery degradation rates at
.1872%, substantially enhancing battery longevity. Moreover, TD3-MoE records lower energy consumption at 1.4897 kWh/km,

while DDPG-MoE achieves 1.5230 kWh/km. Although TD-MoE shows higher energy consumption compared to TD3-Linear, this
observation does not undermine the effectiveness of the MoE approach. The subtlety of the optimal battery degradation reward
weight (𝑤𝑏) suggests that reductions in battery degradation are not immediately apparent in 𝐿Total. Given the inherent randomness
in training simulations, these variations are within acceptable limits, highlighting the nuanced effectiveness of the MoE strategy in
dynamic reward adjustment.

6.2. Model performance in testing

We further test proposed methods in the test dataset to check the BET velocity optimization performance without any inferior
in training dataset. We choose TD3-Linear and TD3-MoE which are the relatively best two methods as shown in Fig. 3. Unlike the
random variable SoC used from 35% SoC to 95% SoC during training, we set the initial SoC of BET to be 75% in this analysis to
ensure consistent and controlled comparisons of performance.

6.2.1. Demonstrations with sampled events
To illustrate the BET velocity optimization capabilities of the TD3 model, four car-following scenarios were selected and

ompared in this section. These scenarios were chosen to discuss the velocity optimization strategies across different driving
onditions, including deceleration, acceleration, speed fluctuations, and scenarios involving relatively high speeds. Fig. 4 displays

the observed leading vehicle speed alongside the actual human driving car-following speed, and the corresponding outputs generated
y the TD3-VEH, TD3-MoE, and IDM models. A deceleration trajectory is shown in Fig. 4(a), with the initial speed of the controlled
ET is based on the initial speed of the real car-following truck. The human driving trajectory exhibits some sudden stops and
tarts from the LV, whereas both TD3-VEH and TD3-MoE avoid these abrupt accelerations and deceleration, providing a smoother
rajectory. Notably, TD3-MoE more closely matches the trajectory of LV. Fig. 4(b) illustrates a low-speed acceleration scenario.
nitially, the policies trained by TD3-VEH and TD3-MoE attempt to reduce headway and closely follow the speed of LV within a safe
istance. However, the human driving trajectory and the IDM method exhibit larger variations and delayed responses to speed of
V changes. Fig. 4(c) presents a longer trajectory where the LV exhibits significant speed variations. Here, the trained TD3-VEH and
D3-MoE models follow trajectories that lie between those of the LV and human driving. Fig. 4(d) shows a relatively high-speed

acceleration scenario. The TD3-MoE demonstrates the smoothest trajectory, effectively meeting safety and comfort requirements.
hile the TD3-VEH also shows larger variations compared to TD3-MoE, but its trajectory generally lies between those of the LV

nd human driving, illustrating its effective adaptation to this driving context.
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Fig. 4. Four selected car-following scenarios for algorithm comparison.

Fig. 5. Cumulative distribution of headway of BET (SoC=75%).

6.2.2. Vehicle dynamics
Vehicle dynamic testing is conducted on the test dataset as illustrated in Fig. 5, Fig. 6 and Fig. 10. The TD3-Linear and TD3-

MoE, the two best-performing methods, are selected for this analysis. We set a consistent initial SoC of 75% for these tests. Time
headway for testing is measured at each time step, with the cumulative distributions presented in Fig. 5. The real NGSIM dataset,
which reflects human car-following driving behavior, exhibited a broad range of time headways, spanning from 0s to 6s. This range
included potentially dangerous headways under 1 s and inefficient headways exceeding 3 s. In contrast, the TD3-VEH and TD3-MoE
models maintained efficient and safe time headways, which are evident from their more centered distribution and reduced average
headway in Fig. 5. These models more close to real-world human driving patterns compared to the IDM model, effectively following
the leading vehicle with enhanced safety and efficiency.

Fig. 6 displays the cumulative distributions of TTC values for the TD3-VEH and TD3-MoE models, along with comparisons to
human drivers and the IDM. The results indicate that both the TD3-VEH and TD3-MoE models yield higher TTC values compared
16 
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Fig. 6. Cumulative distribution of time to collision of BET (SoC=75%).

Fig. 7. Cumulative distribution of Jerk of BET (SoC=75%).

to those observed in human drivers and the IDM algorithm, suggesting safer car-following behavior. Furthermore, no collisions are
recorded with either model during testing phases. The TTC distribution for both models is quite similar, with minor differences
observed in the 20 to 50 s range, where the TD3-MoE model consistently shows slightly higher TTC values, indicating a higher
safety margin.

Fig. 7 displays the cumulative distributions of jerk. It is evident that the TD3-VEH and TD3-MoE models produce trajectories
with lower jerk values, with distributions more concentrated around the center. As lower jerk values indicate smoother and more
comfortable driving experiences, it is reasonable to conclude that the TD3 models manage truck velocity more effectively than
human drivers, and they also slightly surpass the performance of the IDM.

6.3. Battery degradation under different initial soc

In Section 3.3, we discussed the modeling of calendar loss 𝐿Cal and cyclic loss 𝐿Cyc in BET battery across different initial SoC.
SoC is a critical factor in BET velocity optimization, significantly impacting battery degradation and energy consumption through a
non-linear relationship. To explore this, we initialize the SoC of battery cells at 35%, 55%, 75%, and 95% to evaluate the efficacy
of the proposed TD3-MoE method under varying initial SoC conditions. The detailed results of battery degradation are illustrated
in Table 7, which categorizes degradation into calendar loss 𝐿Cal, cyclic loss 𝐿Cyc, and total degradation loss 𝐿Total. It is important
to note that while human and IDM driving policies directly relate to real-world vehicle following dynamics, variations in SoC may
influence battery degradation values as well.

Table 7 reveals that higher SoC levels accelerate battery degradation regardless of velocity optimization algorithm, predominantly
due to calendar loss, which is 2 to 10 times greater than the cyclic loss observed. The differences in calendar loss across various
methods are trivial, but the variations in cyclic loss affected by velocity optimization contribute significantly to the difference in
overall battery degradation. The total degradation 𝐿Cyc is optimized by approximately 30% to 40% across different initial SoC
levels compared to human driving data. Specifically, for TD3-MoE, the cyclic battery degradation 𝐿Cyc is reduced by 27.7% at
SoC=35%, 29.6% at SoC=55%, 29.8% at SoC=75%, and 29.5% at SoC=95% compared to the same initial SoC in human driving data,
significantly mitigating cyclic loss. Furthermore, the MoE design significantly enhances the reduction in total battery degradation.
𝐿Total is reduced by 8.3% at SoC=35%, 7.6% at SoC=55%, 5.2% at SoC=75%, and 2.4% at SoC=95% compared to a human-driven
car following behavior. As for the energy consumption, TD3-MoE help to reduce 35.6% at SoC=35%, 39.8% at SoC=55%, 38.5%
at SoC=75%, and 35.3% at SoC=95%.
17 
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Table 7
Performance metrics across different models and SoC levels.
Model SoC Hdw (s) Jerk (m/s3) TTC (s) 𝐿Cal (%) 𝐿Cyc (%) 𝐿Total (%) Energy (kWh/km)

TD3-VEH

35%

1.4589 0.0235 25.1496 1.2406 0.4265 1.6671 1.5380
TD3-MoE 1.5083 0.0174 23.8236 1.2413 0.4083 1.6496 1.4855
Human 1.6581 0.0191 19.0823 1.2335 0.5646 1.7981 2.3082
IDM 3.0074 0.0880 19.6172 1.2375 0.6529 1.8905 1.5340

TD3-VEH

55%

1.4749 0.0240 24.8181 1.5507 0.4109 1.9616 1.5191
TD3-MoE 1.4941 0.0253 23.8456 1.5511 0.3898 1.9409 1.3906
Human 1.6581 0.0191 19.0823 1.5489 0.5537 2.1026 2.3082
IDM 3.0074 0.0880 19.6172 1.5499 0.6471 2.1969 1.5340

TD3-VEH

75%

1.4468 0.0267 23.8439 2.0331 0.3490 2.3821 1.4724
TD3-MoE 1.5358 0.0257 24.1842 2.0347 0.3335 2.3682 1.4204
Human 1.6581 0.0191 19.0823 2.0234 0.4748 2.4982 2.3082
IDM 3.0074 0.0880 19.6172 2.0284 0.5535 2.5819 1.5340

TD3-VEH

95%

1.4085 0.0235 24.1879 2.4777 0.1662 2.6438 1.4614
TD3-MoE 1.5158 0.0241 24.3272 2.4778 0.1612 2.6390 1.4941
Human 1.6581 0.0191 19.0823 2.4762 0.2286 2.7049 2.3082
IDM 3.0074 0.0880 19.6172 2.4770 0.2584 2.7354 1.5340

Fig. 8. Cumulative distribution of BET headway at different SoC.

TD3-MoE and TD3-VEH have similar metrics, yet TD3-MoE shows some improvements in reducing battery degradation, primarily
due to better cyclic degradation results (4.3% better at SoC=35%, 5.1% at SoC=55%, 4.4% at SoC=75%, and 3.0% at SoC=95%).
Since calendar loss is inevitable, improvements in cyclic loss may have more substantial benefits in long-term BET velocity
optimization scenarios. The differences between TD3-MoE and TD3-VEH mainly arise from energy consumption perspectives, with
improvements in energy consumption of 3.4% at SoC=35%, 8.5% at SoC=55%, 3.5% at SoC=75%, and a reduction −2.2% at
SoC=95% by TD3-MoE. This negative value of −2.2% at SoC=95% suggests that in this state, TD3-MoE focuses more on other
scores in the reward function, with the battery degradation score being less than 𝑟𝑏 = 1 compared to the TD3-Linear model. It is
easonable to assume that at high SoC, a slight trade-off from energy consumption is made to improve driving efficiency (7.0%
arger headway), safety (0.6% larger TTC), and battery degradation (3.0% reduction).

Fig. 8 shows that the TD3-MoE with an initial SoC of 55% achieves the lowest headway, suggesting enhanced performance in
traffic flow efficiency. However, it is crucial to note that while our velocity optimization methods exhibit optimal performance at
an SoC of 55%, this does not necessarily mean that the strategy at this SoC level is superior to those at other initial SoC. Indeed, the
performance differences among various SoC levels for TD3-MoE are trivial, with all configurations surpassing both human driving
and the IDM model. The similar conclusion is supported by the cumulative distribution of TTC and Jerk depicted in Fig. 9 and
Fig. 10. Notably, with an initial SoC of 35%, the trained TD3-MoE tends to produce more aggressive control responses, such as larger
headways, shorter TTCs, and more pronounced jerk. This can be interpreted as a consequence of battery degradation constraints,
where the reinforcement learning algorithm compensates by reducing control precision to allow larger safety margins.

7. Discussion and conclusion

This study proposes a TD3-MoE reinforcement learning method to optimize BET velocity during car-following scenarios
considering multiple objectives including safe, efficient and comfortable driving while minimizing battery degradation. Real-world
driving data from NGSIM dataset are used to train and test the model. The proposed method is validated by comparing results with
several benchmark models including DDPG, real car-following data, and the IDM with variants of considering battery degradation
in velocity optimization or not. Results indicate that the proposed model for BET significantly outperforms human drivers and
18 
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Fig. 9. Cumulative distribution of TTC of BET at different SoC.

Fig. 10. Cumulative distribution of Jerk of BET at different SoC.

baseline models, demonstrating its capability to drive safely, efficiently, comfortably, with less battery degradation and better energy
efficiency. The findings of this study can be summarized as follows:

• The convergence of the proposed TD3 algorithm, integrated with a mixture of experts model, shows superior performance
and faster convergence compared to its counterparts. This outcome suggests that the algorithm configuration is well-suited for
rapid adaptation with complex objectives.

• The TD3-MoE model consistently displays lower headway values and higher TTC values, with smoother trajectories compared
to TD3-VEH, human driving data, and the IDM algorithm. The MOE structure helps to achieve better trade-off between velocity
optimization and battery degradation rather than simply using constant weights in the reward function. Velocity optimization
using TD3-MoE within safety bounds, enhances traffic flow efficiency and reduces battery degradation compared to other
methods.

• As the SoC decreases, the proposed TD3-MoE becomes more effective at optimizing total battery degradation, achieving
reductions of 𝐿Total by 8.3% at SoC=35%, 7.6% at SoC of 55%, 5.2% at SoC of 75%, and 2.4% at SoC of 95% compared
to a human driver. The main role of the TD3-MoE policy is to minimize cyclic loss to achieve this goal.

• The TD3-MoE model with an initial SoC of 55% achieves better energy consumption reduction compared to human drivers,
with reductions of 39.8% at SoC of 55%. Moreover, reductions of energy consumption can reach 35.6% at SoC of 35%, 38.5%
at SoC of 75%, and 35.3% at SoC of 95% as well.

However, this study could be further enhanced by designing better advanced reward mechanisms and by incorporating weight
comparisons within the MoE model. For instance, the results show that, particularly concerning energy consumption, TD3-MoE
increases total battery degradation at SoC of 95% by 2.2%. This shortfall could be addressed by incorporating a more complex
MoE that separately handles calendar degradation and cyclic degradation with different weight to achieve a more balanced policy.
Additionally, regenerative braking of BETs was not fully considered in our model. As a complex but widely applied strategy,
this direction merits deeper exploration in subsequent studies. Furthermore, battery temperature can vary due to many factors,
and maintaining a uniform temperature requires additional energy consumption. Moreover, road conditions (e.g., grade, surface
smoothness) and traffic flow information were not considered in this study due to the lack of available data. Future work could
incorporate these factors to further enhance real-world applicability.
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