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FORMAL SIEGEL MODULAR FORMS

FOR ARITHMETIC SUBGROUPS

JAN HENDRIK BRUINIER AND MARTIN RAUM

Abstract. The notion of formal Siegel modular forms for an arithmetic sub-
group Γ of the symplectic group of genus n is a generalization of symmetric
formal Fourier-Jacobi series. Assuming an upper bound on the affine cover-
ing number of the Siegel modular variety associated with Γ, we prove that all
formal Siegel modular forms are given by Fourier-Jacobi expansions of classi-
cal holomorphic Siegel modular forms. We also show that the required upper
bound is always met if 2 ≤ n ≤ 4. As an application we consider the case of
the paramodular group of squarefree level and genus 2.

1. Introduction

Let f be a holomorphic Siegel modular form of weight k for the full Siegel
modular group Γn = Spn(Z) of genus n, that is, a holomorphic function on the
Siegel upper half space Hn which transforms in weight k under the action of Spn(Z).
For any integer l with 0 ≤ l ≤ n, the function f has a Fourier-Jacobi expansion of
cogenus l of the form

f(τ ) =
∑
T2

φT2
(τ1, τ12)e(tr(T2τ2)),(1.1)

where we have written the variable τ ∈ Hn in block form as

τ =

(
τ1 τ12

tτ12 τ2

)

with τ1 ∈ Hn−l, τ2 ∈ Hl, and τ12 ∈ C(n−l)×l. Moreover, T2 runs over all positive
semidefinite symmetric half-integral l × l matrices. The series (1.1) converges nor-
mally on Hn. In the special case l = n it reduces to the usual Fourier expansion of
f .

The transformation law of f under the stabilizer in Spn(Z) of the standard
boundary component of degree n − l implies that the coefficients φT2

are Jacobi
forms of weight k, index T2, and genus n − l. In particular, they possess Fourier
expansions of the form

φT2
(τ1, τ12) =

∑
T1,T12

a

(
T1 T12

tT12 T2

)
e
(
tr(T1τ1) + 2 tr(T12

tτ12)
)
.(1.2)
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Here T1 runs through positive semidefinite symmetric half-integral (n − l) × (n −
l) matrices, and T12 runs through (n − l) × l matrices with half-integral entries.
Inserting these expansions into (1.1), one recovers the usual Fourier expansion of
f , which explains our particular notation for the Fourier coefficients in (1.2). The
transformation law of f under the Siegel parabolic subgroup (the stabilizer of the
standard boundary component of degree 0) implies that the Fourier coefficients
have the symmetry property

a(tuTu) = det(u)ka(T )(1.3)

for all T =
(

T1 T12
tT12 T2

)
and all u ∈ GLn(Z).

In recent works, several authors considered formal analogues of Fourier-Jacobi
expansions. A formal Fourier-Jacobi series f of weight k and cogenus l for the group
Spn(Z) is a formal series as in (1.1), where the coefficients φT2

are holomorphic
Jacobi forms of weight k, index T2, and genus n − l, but where no convergence of
the series is required. By considering the Fourier expansions of the φT2

as in (1.2)
and inserting them into the series (1.1), one obtains a formal Fourier expansion of
f . Recall that f is called symmetric, if the Fourier coefficients satisfy the symmetry
condition (1.3) for all half-integral symmetric metrices T and all u ∈ GLn(Z).

In particular, every holomorphic Siegel modular form of weight k for Spn(Z)
defines a corresponding symmetric formal Fourier-Jacobi series of cogenus l. The
main result of [BR] states that for n > 1 and for every l with 0 < l < n, the converse
also holds: Every symmetric formal Fourier-Jacobi series of weight k and cogenus
l for Spn(Z) arises as the Fourier-Jacobi expansion of a classical holmorphic Siegel
modular form.

In the special case when n = 2 this result was first proved by Aoki in [Ao]. It
was generalized to vector valued symmetric formal Fourier-Jacobi series for Sp2(Z)
in [Br] and [Rau]. The case of the paramodular group of genus 2 and level ≤ 4
was considered in [IPY]. Part of the argument of [BR] is revisited in [Kr] using
the arithmetic theory of Siegel modular forms of Faltings-Chai. Recent work of
Xia deals with the somewhat analogous case of the unitary group U(n, n) over a
norm-euclidian imaginary quadratic field [Xia]. Note that all these works deal with
(vector valued) formal Fourier-Jacobi series for the full Siegel modular group of level
1. The proofs mainly rely on analytic techniques, such as bounds on the dimension
of the space of symmetric formal Fourier-Jacobi series as the weight goes to infinity.

The purpose of the present paper is two-fold. First, we present a new approach
to the problem. It is based on interpreting symmetric formal Fourier-Jacobi series
as global sections of the line bundle of modular forms on the formal complex space
given by the completion of the Satake compactification at its boundary. Second,
we generalize the notion of symmetric formal Fourier-Jacobi series to arithmetic
subgroups of the Siegel modular group and prove modularity results in this context.
We now describe our results in more detail.

Let Γ ⊂ Spn(Q) be an arithmetic subgroup, that is, a subgroup which is com-
mensurable with Γn = Spn(Z). Recall that the rational closure H∗

n of Hn is the
disjoint union of Hn with all its proper rational boundary components. If H∗

n is
equipped with the cylindrical topology, then Γ acts properly discontinuously on
it, extending the action on Hn by fractional linear transformations. The Satake
compactification of the Siegel modular variety XΓ = Γ\Hn is given by the quotient
X∗

Γ = Γn\H∗
n, equipped with the Satake complex structure. It is a normal complex
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space, which has a natural structure as a projective algebraic variety over C. The
Satake boundary is a closed subspace of codimension n.

For 0 ≤ l ≤ n, let Il be the set of all rational boundary components of degree l.
We define a formal Siegel modular form of weight k and cogenus l for the group Γ
to be a family (fF )F∈In−l

, where fF is a formal Fourier-Jacobi series of weight k
for the boundary component F and the group Γ satisfying the following conditions:

(i) for all F ∈ In−l and all γ ∈ Γ we have fF |k γ = fγ−1F ;
(ii) for all pairs F, F ′ ∈ In−l and all degree 0 boundary components E ∈ I0

which are adjacent to F and F ′, the series fF and fF ′ are compatible at E.

Here, the action of Γ on fF in (i) is defined by the action on the coefficients of
the formal Fourier-Jacobi series. The compatibility condition in (ii) means that
fF and fF ′ have the same formal Fourier expansion at E, see Section 3.1 and

Definition 3.5 for details. We write FM
(n,l)
k (Γ) for the complex vector space of

formal Siegel modular forms of weight k and cogenus l for Γ.
In the special case when Γ = Γn is the full integral symplectic group and Fn−l is

the standard rational boundary component of degree n− l, a formal Fourier-Jacobi
series of weight k for the boundary component Fn−l and the group Γn is just a
formal Fourier-Jacobi series of cogenus l as considered before. Using the fact that
Γn acts transitively on In−l, it is easily seen that the compatibility condition (ii)
implies the symmetry condition (1.3). Hence formal Siegel modular forms of weight
k and cogenus l for Γn can be identified with symmetric formal Fourier-Jacobi series
of the same type.

In Section 3.3 we give an algebraic geometric description of formal Siegel modular
forms of cogenus 1. Let ω be the sheaf of modular forms of weight 1 on X∗

Γ. Let X̂
∗
Γ

be the formal complex space given by the completion of X∗
Γ at the Satake boundary

Y = X∗
Γ \XΓ, and write

i : X̂∗
Γ → X∗

Γ

for the natural morphism of formal complex spaces. We denote by ω̂⊗k the com-
pletion of the sheaf ω⊗k of modular forms of weight k with respect to Y . Since
ω⊗k is coherent, the natural map i∗(ω⊗k) → ω̂⊗k is an isomorphism. We provide
an explicit description of the sections of ω̂⊗k over a small open neighborhood of
any rational boundary component F in Proposition 3.8. To this end we use the
Grothendieck comparison theorem in the category of formal complex analytic spaces
[Ba, Theorem 2] to reduce the computation to a smooth toroidal compactification.
In particular, we find that for any rational boundary component F of degree n− 1,
the sections of ω̂⊗k over a small open neighborhood of F can be identified with
formal Fourier-Jacobi series of weight k for F . Moreover, these series satisfy the
compatibility condition (ii) above. Hence, we obtain an injective linear map

ω̂⊗k(X̂∗
Γ) → FM

(n,1)
k (Γ)(1.4)

taking a global section to its formal Fourier-Jacobi expansions of cogenus 1. Our
first result is a follows (see Theorem 3.13).

Theorem 1.1. The map in (1.4) is an isomorphism.
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Recall that the affine covering number acn(S) of a scheme S is defined as one
less than the smallest number of open affine sets required to cover S, see, e.g., [At],
[RV]. It gives an upper bound for the cohomological dimension of S. If S is a
quasi-projective scheme, then there is the trivial bound acn(S) ≤ dim(S). Using
this notion, we may formulate our main result (see Theorem 4.9).

Theorem 1.2. Assume that acn(XΓ) ≤ n(n+1)
2 − 2. Then the natural map

H0(X∗
Γ, ω

⊗k) → FM
(n,1)
k (Γ)(1.5)

taking a holomorphic modular form to its cogenus 1 formal Fourier-Jacobi expan-
sions is an isomorphism.

To prove this result, we use an algebraization theorem of Raynaud [Ray, Corol-

laire 2.8] to show that the natural map H0(X∗
Γ, ω

⊗k) → H0(X̂∗
Γ, ω̂

⊗k) is an isomor-
phism. Then the assertion can be deduced by means of Theorem 1.1, see Section 4.2.

This raises the problem of computing (or bounding) the affine covering number
of the Siegel modular variety XΓ. By the theory of Baily-Borel, acn(XΓ) is the
smallest non-negative integer j, for which there exist cusp forms F0, . . . , Fj for Γ
that have no common zero on Hn.

According to [At, Theorem 4], we have acn(XΓ) ≥ n(n−1)/2. It is believed that
this lower bound is actually an equality. However, for general n not much is known
in this direction. Here we employ results of Igusa, Salvati Manni, and Fontanari–
Pascolutti on the reducible locus of XΓn

to prove the required upper bounds for
small n, see Proposition 4.3 and Proposition 4.5. The following corollaries can be
derived.

Corollary 1.3. Assume that 2 ≤ n ≤ 4. Then the natural map (1.5) is an isomor-
phism.

Corollary 1.4. Assume that 2 ≤ n ≤ 4. Let U ⊂ X∗
Γ be an open analytic neigh-

borhood of the Satake boundary Y . Then the restriction map H0(X∗
Γ, ω

⊗k) →
H0(U, ω⊗k) is an isomorphism.

We remark that Theorem 1.2 and Corollary 1.3 have natural generalizations to
vector valued modular forms transforming with a finite dimensional representation
of Γ. Alternatively, one can derive such results for vector valued forms from the
scalar case by means of the argument of [Br]. Using induction on the cogenus as in
[BR, Lemma 5.2] one can also deduce an analogue for formal Siegel modular forms
of higher cogenus l < n.

As an application, we consider the case of the paramodular group K(N) ⊂
Sp2(Q) of level N and genus 2, see Section 4.4. We write K(N)∗ for the extension
of K(N) by all Atkin-Lehner type involutions. It contains K(N) as a normal
sugbroup, and

K(N)∗/K(N) ∼= (Z/2Z)ν(N),

where ν(N) denotes the number of prime divisors of N . Let f be a formal Fourier-
Jacobi series of weight k for the standard boundary component F1 and the group
K(N). Denote by

f(τ ) =
∑
T

a(T ) e(trTτ )
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its formal Fourier expansion at the boundary component F0. Here T runs through
all half integral positive semi-definite matrices 2× 2-matrices with N | T2. We call
f strongly symmetric if there exists a character χf : K(N)∗/K(N) → {±1} such
that

a(uT tu) = χf

(
tu−1 0
0 u

)
det(u)ka(T )(1.6)

for all T and all u ∈ Γ0(N)∗, the extension of Γ0(N) by the Atkin-Lehner involutions
(viewed as elements of SL2(R)).

Theorem 1.5. Let N be a square-free positive integer. Let f be a strongly sym-
metric formal Fourier-Jacobi series of weight k for the boundary component F1 and
the group K(N). Then f converges and defines a paramodular form in Mk(K(N)).

For a discussion of the relationship of the symmetry condition in this result and
the involution condition in the work of Ibukiyama, Poor, and Yuen [IPY] we refer
to Section 4.4.

Part of the motivation to investigate the modularity of formal Fourier-Jacobi
series comes from the Kudla program. Here certain generating series of classes of
special cycles in Chow groups of orthogonal and unitary Shimura varieties play a
central role, see, e.g., [Ku1], [Ku2], [Ku3]. The generating series of special cycles
of codimension n is conjectured to be a Siegel (respectively Hermitian) modular
form of genus n. By an argument of Wei Zhang [Zh] one can often show that the
generating series is given by a symmetric formal Fourier-Jacobi series of genus n and
cogenus n − 1. Hence the conjectured modularity can be deduced from a suitable
modularity result for symmetric formal Fourier-Jacobi series. In this way, Kudla’s
modularity conjecture was established for orthogonal Shimura varieties associated
with quadratic spaces of signature (m, 2) over Q in [BR] and for unitary Shimura
varieties associated with hermitian spaces of signature (m, 1) over norm-euclidian
imaginary quadratic fields in [Xia], based on Liu’s extension of Zhang’s work [Liu].
An analogous result for special cycles on integral models of orthogonal Shimura
varieties is proved in [HM]. Symmetric formal Fourier-Jacobi series can also be
used for the computation of Siegel modular forms, see, e.g., [IPY].

We briefly describe the contents of this paper. In Section 2 we recall some facts
on Siegel modular varieties, the Satake compactification, and on Siegel modular
forms. This mainly serves to fix notation and to collect some important facts that
will be used later. In Section 3 we introduce formal Siegel modular forms and
provide the algebraic geometric description as formal sections of the line bundle of
Siegel modular forms. In Section 4 we consider affine covering numbers of Siegel
modular varieties, Raynaud’s algebraization theorem, and its application to formal
Siegel modular forms. Finally we discuss the case of the paramodular group in
genus 2.

2. Siegel modular varieties

Here we recall some facts on Siegel modular varieties, the Satake compactifica-
tion, and Siegel modular forms. This mainly serves to fix notation and to provide
some background for the following sections.
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Let n be a positive integer, and denote by W = Q2n the standard symplectic
space of dimension 2n, equipped with the symplectic form given by 〈x, y〉 = xJ ty,
where

J =

(
0 1n

−1n 0

)

(x, y ∈ W are viewed as row vectors). Write Symn(C) for the space of symmetric
complex n × n-matrices. The real symplectic group G := Spn(R) acts on the
Siegel upper half space Hn = {τ ∈ Symn(C) | Im(τ ) > 0} by fractional linear
transformations

τ 
→
(
a b
c d

)
τ = (aτ + b)(cτ + d)−1.

The Cayley transformation τ 
→ z = (τ−i1n)(τ+i1n)
−1 mapsHn biholomorphically

to the bounded symmetric domain

Dn = {z ∈ Symn(C) | 1n − zz̄ > 0}.
The action of G on Hn induces a compatible action on Dn.

2.1. Boundary components. The action of G extends to the topological closure
D̄n of Dn in Symn(C). Two points in D̄n are called equivalent if they can be
connected by a finite chain of holomorphic curves ξi : {z ∈ C | |z| < 1} → D̄n. It is
easily seen that all points in Dn are equivalent. The equivalence classes in D̄n \Dn

are called the proper boundary components of Dn.
To any z ∈ D̄n we can associate a linear map

ψz : R2n → Cn, ν 
→ ν

(
i(1n + z)
1n − z

)
,

where the elements of R2n and Cn are viewed as row vectors. The subspace U(z) =
kerψz ⊂ R2n = WR is totally isotropic with respect to the symplectic form J . It
is non-trivial if and only if z ∈ D̄n \ Dn is a proper boundary point. Moreover,
U(z1) = U(z2) if and only if z1 and z2 are equivalent. Hence, we obtain a bijection
F 
→ U(F ) between the set of proper boundary components F of D̄n and the set of
non-trivial isotropic subspaces U ⊂ R2n, see [HKW, Chapter I.3A] and [Na, Section
4]. The group G acts on isotropic subspaces U ⊂ R2n by right translation U 
→
Ug−1 for g ∈ G. This action is compatible with the action on D̄n, as we have
U(gz) = U(z)g−1.

Recall that a boundary component F is called adjacent to another boundary
component F ′, if F̄ ′ ⊃ F and F ′ �= F . In this case we write F ′ > F . This is
equivalent to the condition that the isotropic subspace U(F ) correponding to F
strictly contains the subspace U(F ′).

For 0 ≤ m ≤ n, the subset

Fm =

{(
z′ 0
0 1n−m

)
| z′ ∈ Dm

}
⊂ D̄n

is a boundary component of Dn, called the standard boundary component of degree
m. The corresponding isotropic subspace U(Fm) has dimension n−m and is given
by

U(Fm) = {(x1, . . . , x2n) ∈ R2n | x1 = · · · = xn+m = 0}.(2.1)

In particular, we have Fn = Dn, and F0 is a point. The Cayley transformation
Hm → Dm induces an isomorphism Hm → Fm.
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The stabilizer

GF = {g ∈ G | g(F ) = F}(2.2)

of a boundary component F is a maximal parabolic subgroup of G. We also consider
the centralizer

G0
F = {g ∈ G | g(z) = z for all z ∈ F}(2.3)

of F , which is a normal subgroup of GF . We denote by G′
F the center of the

unipotent radical of GF , and by

GJ
F = {g ∈ G | ghg−1 = h for all h ∈ G′

F }
its centralizer in the group G. Recall from [Na, §7] and [AMRT, Chapter III.4] that
here is a homomorphism

p� : GF → Aut(G′
F ), g 
→ p�(g) = (h 
→ ghg−1).(2.4)

The image of p� preserves the quadratic form on G′
F induced by the Killing form

and the cone of positive elements. Moreover, we have GJ
F = ker(p�).

For the standard boundary component Fm we have

GFm
=

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
a 0 b ∗
∗ u ∗ ∗
c 0 d ∗
0 0 0 tu−1

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

,(2.5)

G0
Fm

=

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
1 0 0 ∗
∗ u ∗ ∗
0 0 1 ∗
0 0 0 tu−1

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

,(2.6)

where
(
a b
c d

)
∈ Spm(R) and u ∈ GLn−m(R). The quotient group GFm

/G0
Fm

is
isomorphic to Spm(R). Moreover, it is easily seen that

G′
Fm

=

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
1 0 0 0
0 1 0 s
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

,

and the normalizer of G′
Fm

in G is given by GFm
. The group GJ

F consists of those
matrices in GFm

for which u = ±1n−m. If we identify G′
Fm

∼= Symn−m(R), then the

action of g ∈ GFm
as in (2.5) on s ∈ Symn−m(R) is given by p�(g)(s) = s[tu] = us tu.

Let Γn = Spn(Z) and put

Γn,m = Γn ∩GFm
,(2.7)

Γ0
n,m = Γn ∩G0

Fm
.(2.8)

A boundary component F is called rational if GF is defined over Q. This is
equivalent to the condition that U(F ) ⊂ WR is defined over Q. Moreover, it is
equivalent to the condition that F is a Spn(Q)-translate of a standard boundary
component. We define the rational closure of Dn by

D∗
n =

⋃
F

F ⊂ D̄n,(2.9)
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where the union extends over all rational boundary components (including the non-
proper boundary component Dn). The action of Spn(Q) on Dn extends to an action
on D∗

n.

2.2. The cylindrical topology. Let 0 ≤ m ≤ n. Recall that there is a holomor-
phic map

πn,m : Hn → Hm
∼= Fm, πn,m

(
τ1 τ12

tτ12 τ2

)
= τ1,

and a real analytic map

ρn,m : Hn → Sym+
n−m(R), ρn,m

(
τ1 τ12

tτ12 τ2

)
= v2 − tv12v

−1
1 v12,

where v denotes the imaginary part of τ . Both maps are equivariant for the action
of the parabolic subgroup GFm

.
We now recall the definition of the cylindrical topology on D∗

n following [Fr,
Chapter II.6] (see also [Na, Section 5]). For a matrix v ∈ Sym+

n (R) we define

m(v) = min
x∈Zn

x�=0

v[x],

i.e., the minimum of the quadratic form x 
→ v[x] = txvx on non-zero integral
vectors. If U ⊂ Hm is open and C > 0, we consider the open subset

Wn(U,C) = {τ ∈ Hn | πn,m(τ ) ∈ U and m(ρn,m(τ )) > C}(2.10)

of Hn. Note that when n = m, we simply have Wn(U,C) = U . To define a basis of
neighbourhoods of a point z in the standard boundary component Fm

∼= Hm, we
consider the chain of standard boundary components

Dn = Fn > Fn−1 > · · · > Fm+1 > Fm

adjacent to Fm. Let U ⊂ Hm be an open neighbourhood of z. If n ≥ j ≥ m, we
may view

Wj(U,C) ⊂ Fj

as a subset via the identification Hj
∼= Fj . We use this to define a subset of D∗

n by

W̃n(U,C) = Γ0
n,m

⎛
⎝ ⋃

n≥j≥m

Wj(U,C)

⎞
⎠ .(2.11)

Note that when m = n, then W̃n(U,C) simply reduces to U .

Definition 2.1. A set V ⊂ D∗
n is called open if for all z ∈ V there exists a

g ∈ Spn(Q) such that gz is contained in a standard boundary component Fm

for some 0 ≤ m ≤ n and such that gV contains a set W̃n(U,C) for some open
neighbourhood U ⊂ Fm

∼= Hm of gz and some C > 0.

Proposition 2.2. The cylindrical topology is the weakest topology on D∗
n in which

all Spn(Q)-translates of all the sets W̃n(U,C) are open for U ⊂ Fm open, 0 ≤ m ≤
n, and C > 0. The induced topology on the standard boundary components Fm

agrees with the usual topology. The set Dn is open and dense in D∗
n. Moreover, D∗

n

is a Hausdorff space, and Spn(Q) acts on it by homeomorphisms.
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Remark 2.3. A sequence

τ (ν) =

(
τ
(ν)
1 ∗
∗ ∗

)
∈ Hn

∼= Dn

with τ
(ν)
1 ∈ Hm converges to a boundary point τ∗1 ∈ Hm

∼= Fm, if and only if

τ
(ν)
1 → τ∗1 in the usual sense and ρn,m(τ (ν)) → ∞. Here the latter condition means

that for any C > 0 we have m(ρn,m(τ (ν))) > C for all but finitely many ν. See,
e.g., [Fr, Hilfssatz 6.181].

We write z = x+ iy for the decomposition of z ∈ Hn into its real and imaginary
part. Moreover, we denote the Jacobi decomposition of y by

y = D[W ] = tWDW,(2.12)

where D is a diagonal matrix with diagonal entries d1, . . . , dn and W = (wij) is a
unipotent upper triangular matrix. Recall that for u > 0 the Siegel domain Fn(u)
is defined as the set of z ∈ Hn satisfying the following conditions:

(a) |xij | < u for all 1 ≤ i, j ≤ n,
(b) |wij | < u for all 1 ≤ i < j ≤ n,
(c) di < udi+1 for all 1 ≤ i ≤ n− 1,
(d) 1 < ud1,

see, e.g., [Fr, Chapter II, Definition 1.7]. The set of positive definite symmetric
matrices y ∈ Sym+

n (R) satisfying conditions (b) and (c) is denoted by Rn(u). If u
is sufficiently large, then Fn(u) is a fundamental set for the action of Γn on Hn,
that is, it is a measurable subset of Hn which has non-trivial intersection with the
Γn-orbit of any point in Hn. Moreover, for every u > 0, the set Fn(u) has finite
volume and there exist only finitely many γ ∈ Γn such that γFn(u) ∩ Fn(u) �= ∅.
We also define

F∗
n(u) = Fn(u) ∪ Fn−1(u) ∪ · · · ∪ F0(u) ⊂ D∗

n(2.13)

as in [Fr, page 98]. Here Fm(u) is viewed as a subset of the standard boundary
component Fm of degree m.

The following lemmas will be used to construct convenient neighborhoods of
boundary components.

Lemma 2.4. Let U ⊂ Hm be relatively compact.

(i) There exists a C > 0 such that every γ ∈ Γn satisfying

γ(Wn(U,C)) ∩Wn(U,C) �= ∅
is contained in Γn,m.

(ii) Moreover, there exists a C > 0 such that every γ ∈ Γn satisfying

γ(W̃n(U,C)) ∩ W̃n(U,C) �= ∅
is contained in Γn,m.

Proof. (i) The following argument is due to Eberhard Freitag. We decompose any
z ∈ Hn as

z =

(
z1 z12

tz12 z2

)
(2.14)
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with z1 ∈ Hm. We argue indirectly. Assume that there exists a sequence Cν → ∞
of positive real numbers such that for every ν ∈ Z>0 there exists a γν ∈ Γn \ Γn,m

and points z(ν), w(ν) ∈ Wn(U,Cν) satisfying

γνz
(ν) = w(ν).

By taking a suitable subsequence, we may assume that z
(ν)
1 converges to a point

z1 ∈ Hm for ν → ∞, and w
(ν)
1 converges to a w1 ∈ Hm. Hence, with respect to the

cylindrical topology we get convergent sequences

z(ν) → z1 ∈ Fm, w(ν) → w1 ∈ Fm.

According to [Fr, Hilfssatz 6.182] there exist elements αν in the stabilizer of z1
inside Γn such that all

z̃(ν) = αν(z
(ν))

are contained in some fixed Siegel domain Fn(u). Analogously, there are βν in the
stabilizer of w1 inside Γn such that all

w̃(ν) = βν(w
(ν))

lies in Fn(u). Both stabilizers are contained in Γn,m. The construction in loc. cit.
shows that

z
(ν)
1 = z̃

(ν)
1 , m(ρn,m(z(ν))) = m(ρn,m(z̃(ν))),

and similarly for the w(ν). Therefore, we may assume without loss of generality
from the outset that the sequences z(ν) and w(ν) are contained in a fixed Siegel
domain Fn(u).

The finiteness property of Siegel domains now implies that the γν belong to a
finite set. By taking a subsequence we may assume that γ = γν is independent of
ν. Since γ acts continuously on D∗

n we find that

γ(z1) = w1.

But this implies γ ∈ Γn,m, a contradiction.
(ii) Part (i) of the lemma immediately implies that there exists a C > 0 such

that for every j with n ≤ j ≤ m and every γ ∈ Γn,j satisfying

γ(Wj(U,C)) ∩Wj(U,C) �= ∅

we have γ ∈ Γn,m. We fix such a C and assume that z, w ∈ W̃n(U,C) and γ ∈ Γn

with the property that γz = w.
By definition there exist n ≥ j, j′ ≥ m and γ1, γ2 ∈ Γ0

n,m and z′ ∈ Wj(U,C),
w′ ∈ Wj′(U,C), such that

z = γ1z
′, w = γ2w

′, γγ1z
′ = γ2w

′.

Replacing γ by γ−1
2 γγ1 we may assume that γ1 = γ2 = 1 and z = z′, w = w′.

Since the action of Γn preserves the degree of a boundary component, we may
further assume that j = j′. But then, according to [Fr, Hilfssatz 2.5], the condition
γz = w ∈ Wj(U,C) ⊂ Fj implies that γ ∈ Γn,j . Consequently, by our choice of C,
we may conclude that γ ∈ Γn,m. �
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Lemma 2.5. Let U ⊂ Hm be relatively compact.

(i) There exists a C > 0 such that every γ ∈ Γn satisfying

γ(Wn(U,C)) ∩ Fn(u) �= ∅
is contained in Γn,m.

(ii) Moreover, there exists a C > 0 such that every γ ∈ Γn satisfying

γ(W̃n(U,C)) ∩ F∗
n(u) �= ∅

is contained in Γn,m.

Proof. This can be proved in the same way as Lemma 2.4. Therefore we omit the
details. �

We now fix a u > 0 such that Fj(u) is a fundamental set for the action of Spj(Z)
on Hj for every 0 ≤ j ≤ n.

Lemma 2.6. Let U ⊂ Fm(u) ⊂ Fm be relatively compact.

(i) There exists a C > 0 such that

Wn(U,C) ⊂ Γ0
n,mFn(u).

(ii) There exists a C > 0 such that

W̃n(U,C) ⊂ Γ0
n,mF∗

n(u).

Proof. We write z = x+ iy ∈ Hn for the decomposition in real and imaginary part.
To prove the lemma, we use the block Jacobi decomposition

y = D[W ] =

(
Y1 0
0 Y2

)[(
1m B
0 1n−m

)]
,

and put

D =

(
D1 0
0 D2

)
, W =

(
W1 W12

0 W2

)
,

where D1 is the diagonal matrix with diagonal entries d1, . . . , dm, and D2 the
diagonal matrix with entries dm+1, . . . , dn. The matrices W1 and W2 are unipotent
upper triangular. It is easily seen that Y1 = D1[W1], Y2 = D2[W2], and B =
W−1

1 W12.
(i) Let z ∈ Wn(U,C). We have to show that there exists a γ ∈ Γ0

n,m such that
γz ∈ Fn(u). We note that since z1 ∈ U , we have y1 = Y1 = D1[W1] ∈ Rm(u). We
may act with a matrix in Γ0

n,m of the form(
tA 0
0 A−1

)
, A =

(
1m 0
0 A2

)
,

where A2 ∈ GLn−m(Z), to transform Y2 to Y2[A2] ∈ Rn−m(u). Here Y1 remains
unchanged. Next we can act with a matrix in Γ0

n,m of the form(
tA 0
0 A−1

)
, A =

(
1m A12

0 1n−m

)
,

where A12 ∈ Zm×(n−m), to transform W12 to W ′
12 = W1A12+W12 with entries w′

ij

satisfying |w′
ij | < u. Here D, W1, W2 remain unchanged.

Finally, we can act with a matrix in Γ0
n,m of the form

M =

(
1n T
0 1n

)
, T =

(
0m T12
tT12 T2

)
,
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where T12 ∈ Zm×(n−m), T2 ∈ Z(n−m)×(n−m), to transform x12 to x12 + T12 and x2

to x2 + T2. Here x1 and y remain unchanged.
In this way we can transform z ∈ Wn(U,C) by an element of Γ0

n,m to a z′ ∈ Hn

meeting all conditions for Fn(u) except for possibly the condition

d′m < ud′m+1.(2.15)

Here and throughout we have indicated the Jacobi coordinates of z′ by d′i, w
′
ij , and

x′
ij . We claim that the condition (2.15) is also met if we choose C sufficiently large.

To see this we note that d′m is bounded, since z′1 = z1 is contained in the bounded
set U . Moreover, since Y ′

2 = Y2[A2] ∈ Rn−m(u), we have

m(Y ′
2) ≤ d′m+1,

see, e.g., [Fr, Hilfssatz 1.2]. Hence, if

C >
1

u
sup{dm | z1 ∈ U},

and z ∈ Wn(U,C) then

1

u
d′m < C < m(Y2) = m(Y ′

2) ≤ d′m+1.

This gives the remaining condition (2.15).
(ii) This assertion is an immediate consequence of (i). �

2.3. The Satake compactification. Let Γ ⊂ Spn(Q) be an arithmetic subgroup,
that is, a subgroup which is commensurable with Γn = Spn(Z). Then Γ acts
properly discontinuously on D∗

n. The quotient X∗
Γ := Γ\D∗

n, equipped with the
quotient topology, is a compact Hausdorff space, which contains XΓ := Γ\Dn as a
dense open subset. The complex structure on XΓ canonically extends to a complex
structure on X∗

Γ, equipping it with the structure of a normal complex space. It
is called the Satake compactification of XΓ, see, e.g., [BB, Theorem 10.4], [Na,
Section 5], or [Fr, Chapter II.6].

The boundary

∂X∗
Γ = X∗

Γ \XΓ(2.16)

is a closed analytic subset of codimension n. If F is a rational boundary component
of Dn of degree m, we let

ΓF = Γ ∩GF ,

Γ0
F = Γ ∩G0

F ,

Γ′
F = Γ ∩G′

F ,

ΓJ
F = Γ ∩GJ

F .

We may view
Γ̄F = ΓF /Γ

0
F

as an arithmetic subgroup of Spm(R). The quotient

XΓ,F = Γ̄F \F
is isomorphic to a Siegel modular variety of genus m. The boundary decomposes
as a finite disjoint union

∂X∗
Γ =

∐
F

XΓ,F
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of locally closed analytic subsets, where the union runs over the Γ-classes of proper
rational boundary components, see [BB, Corollary 4.11]. The following two propo-
sitions ensure the existence of convenient neighborhoods of the boundary compo-
nents.

Proposition 2.7. For every rational boundary component F there exists an open
neighborhood V (F ) ⊂ D∗

n of F satisfying the following properties:

(i) V (F ) is invariant under the stabilizer Γn,F of F in Γn.
(ii) The natural map

Γn,F \V (F ) → X∗
Γn

is injective.
(iii) V (δF ) = δV (F ) for all δ ∈ Γn.
(iv) If F and F ′ are rational boundary components of degree m, we have

V (F ) ∩ V (F ′) �= ∅ ⇒ F = F ′.

Proof. We first prove (i) and (ii) for the standard boundary components. Let m be
an integer with 0 ≤ m < n and consider the standard boundary component Fm of
degree m. Recall the notation Γn,Fm

= Γn,m.
Let u > 0 be such that Fj(u) is a fundamental set for the group Γj for all

0 ≤ j ≤ n. Choose a sequence Uν ⊂ Fm(u) of relatively compact open sets (for
ν ∈ Z>0) such that

Fm(u) =
⋃
ν≥1

Uν .

According to Lemma 2.6 and Lemma 2.5, we may choose Cν > 0 such that

W̃n(Uν , Cν) ⊂ Γ0
n,mF∗

n(u),(2.17)

and such that every γ ∈ Γn satisfying

γ(W̃n(Uν , Cν)) ∩ F∗
n(u) �= ∅(2.18)

is contained in Γn,m.
The union

S(Fm) =
⋃
ν≥1

W̃n(Uν , Cν) ⊂ D∗
n

is an open neighborhood of Fm(u). By the choice of u, the set

V (Fm) := Γn,m(S(Fm))(2.19)

is an open neighborhood of the full boundary component Fm. Moreover, by con-
struction, V (Fm) is invariant under Γn,Fm

.
We now show the injectivity of the natural map Γn,m\V (Fm) → X∗

Γn
. To this

end, let z, w ∈ V (Fm) and γ ∈ Γn such that

γz = w.

We have to show that γ ∈ Γn,m.
Possibly shifting z and w by elements of Γn,m, we can assume that z and w lie

in S(Fm). By (2.17) we can further assume that they are also contained in F∗
n(u).

Hence there exist μ, ν ∈ Z>0 such that

z ∈ W̃n(Uν , Cν) ∩ F∗
n(u),

w ∈ W̃n(Uμ, Cμ) ∩ F∗
n(u).
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Using condition (2.18) we see that γ ∈ Γn,m. This concludes the proof of (i) and
(ii) for the standard boundary component Fm.

If F is any rational boundary component of degree m, we choose δ ∈ Γn such
that F = δFm and put

V (F ) = δV (Fm).

By property (i) for V (Fm) this is independent of the choice of δ. Employing the
fact that Γn,Fm

= δ−1Γn,F δ, it is easily seen that V (F ) satisfies properties (i) and
(ii) for F . Moreover, in this way (iii) also holds.

Finally, to prove (iv), let F and F ′ be rational boundary components of degree
m, and let z ∈ V (F )∩V (F ′). Choose δ, δ′ ∈ Γn such that F = δFm and F ′ = δ′Fm.
Since V (F ) = δV (Fm) and V (F ′) = δ′V (Fm), there are z1, z2 ∈ V (Fm) such that

z = δz1 = δ′z2.

Then δ−1δ′z2 = z1, and by (ii) we obtain δ−1δ′ ∈ Γn,m. Consequently,

F ′ = δ′Fm = δ(δ−1δ′)Fm = δFm = F.

This concludes the proof of the proposition. �

Proposition 2.8. Let Γ ⊂ Spn(Q) be an arithmetic subgroup. For every ratio-
nal boundary component F there exists an open neighborhood W (F ) ⊂ D∗

n of F
satisfying the following properties:

(i) W (F ) is invariant under the action of ΓF .
(ii) The natural map

ΓF \W (F ) → X∗
Γ

is injective.
(iii) W (γF ) = γW (F ) for all γ ∈ Γ.
(iv) If F and F ′ are rational boundary components of degree m, we have

W (F ) ∩W (F ′) �= ∅ ⇒ F = F ′.

Proof. In the special case when Γ ⊂ Γn, it is easily seen that we may simply put
W (F ) = V (F ) with V (F ) as in Proposition 2.7.

Now let Γ ⊂ Spn(Q) be an arbitrary arithmetic subgroup. We choose a congru-
ence subgroup

Γ′ ⊂ Γ ∩ Γn

which is normal in Γ. For any rational boundary component F , we put

W (F ) =
⋂
δ∈Γ

δ−1V (δF ).

Since δ−1V (δF ) = V (F ) for δ ∈ Γ′, this is in fact an intersection of finitely many
different open neighborhoods of F in D∗

n. Hence it defines an open neighborhood
of F . We leave it the the reader to verify that properties (i)–(iv) hold. �

Remark 2.9. We may in addition require that the open neighborhood W (F ) in
Proposition 2.8 is connected. In fact, since the connected component of W (F )
containing F is stable under under ΓF , we may replace W (F ) by this connected
component if necessary.
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2.4. Siegel modular forms. Let k be an integer. We denote the usual action of
G = Spn(R) in weight k on functions f : Hn → C by

(f |k γ)(τ ) = det(cτ + d)−kf(γτ )

for γ =
(
a b
c d

)
∈ G. The composition of the quotient map and the inclusion defines

a natural holomorphic map

p : Hn → X∗
Γ.

We denote by ω the sheaf of modular forms of weight 1 on X∗
Γ. Recall that if

V ⊂ X∗
Γ is open, the module of sections ω(V ) is given by holomorphic functions

f : p−1(V ) → C satisfying

(f |1 γ)(τ ) = f(τ )

for all γ ∈ Γ and all τ ∈ p−1(V ). Moreover, when n = 1, it is also required that f is
holomorphic at the cusps contained in V . If n > 1, then regularity at the boundary
is automatically satisfied by the local Koecher principle.

The sheaf ω is a coherent OX∗
Γ
-module on X∗

Γ, which can be identified with the

Hodge bundle. The global sections of ω⊗k are given by holomorphic modular forms
of weight k for Γ, see, e.g., [BB, Section 10].

We now describe the sheaf ω⊗k near a rational boundary component F . By
possibly conjugating by an element of Γn it suffices to do this near the standard
boundary components Fm, where 0 ≤ m ≤ n. Let τ1 ∈ Fm be a boundary point.
According to Proposition 2.8 and Definition 2.1 there exists a relatively compact
open neighborhood U ⊂ Fm of τ1 and a C > 0 such that the open neighborhood
W̃n(U,C) ⊂ D∗

n defined in (2.11) satisfies

γW̃n(U,C) ∩ W̃n(U,C) �= ∅ ⇒ γ ∈ ΓFm
(2.20)

for γ ∈ Γ. If U is chosen sufficiently small, then the condition in (2.20) actually
implies that γ is contained in the stabilizer Γτ1 ⊂ Γ of τ1. This follows from the
fact that ΓFm

/Γ0
Fm

acts properly discontinuously on the boundary component Fm.

Possibly replacing U by a smaller open set we may further attain that W̃n(U,C) is
invariant under Γτ1 . Then

V = Γτ1\W̃n(U,C) ⊂ X∗
Γ(2.21)

is an open neighborhood of τ1.
An element f ∈ ω⊗k(V ) is given by a continuous function f : W̃n(U,C) → C

which is holomorphic on Wn(U,C) and satisfies f |k γ = f for all γ ∈ Γτ1 . In
particular, f is invariant under the action of translations of the form⎛

⎜⎜⎝
1 0 0 0
0 1 0 s
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ∈ Γ′

Fm
,(2.22)

where s ∈ Symn−m(Z). Therefore f has a partial Fourier expansion

f(τ ) =
∑

T2∈Symn−m(Q)

φT2
(τ1, τ12) e(trT2τ2),(2.23)

which converges normally in a small neighborhood of U . Here the coefficients
φT2

vanish unless T2 is contained in a sublattice of Symn−m(Q) with bounded
denominators (the character lattice of the torus G′

Fm
/Γ′

Fm
). Moreover, φT2

vanishes
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if T2 is not positive semi-definite. We will refer to expansions as in (2.23) as Fourier-
Jacobi expansions. The transformation behavior of f under matrices of the form⎛

⎜⎜⎝
1 0 0 0
0 u 0 0
0 0 1 0
0 0 0 tu−1

⎞
⎟⎟⎠ ∈ Γ0

Fm
(2.24)

implies that

φT2[tu−1](τ1, τ12u) = det(u)k · φT2
(τ1, τ12)(2.25)

for all u ∈ GLn−m(Q) such that (2.24) belongs to Γ0
Fm

.
Now choose a small open neighborhood W (Fm) of the full boundary component

Fm as in Proposition 2.8. Then we easily obtain Lemma 2.10.

Lemma 2.10. Let

V = ΓFm
\W (Fm) ⊂ X∗

Γ

be the open neighborhood of the boundary stratum XΓ,Fm
induced by W (Fm). The

space of sections ω⊗k(V ) is given by those continuous functions f : W (Fm) → C

which are holomorphic on W (Fm)∩Dn and satisfy f |k γ = f for all γ ∈ ΓFm
. The

Fourier-Jacobi coefficients φT2
of f in the expansion (2.23) have the transformation

behavior

φT2
(τ1, τ12)e(trT2τ2) |k γ = φT2

(τ1, τ12)e(trT2τ2)(2.26)

for all γ in the Jacobi group ΓJ
Fm

= Γ ∩GJ
Fm

.

Hence the coefficient φT2
is a weakly holomorphic Jacobi form of weight k and

index T2 for an arithmetic subgroup of Spm(Q)�Matm,n−m(Q)2 which only depends
on Γ but not on T2.

3. Formal Siegel modular forms

We define formal Siegel modular forms for arithmetic subgroups of Spn(Q). We
interpret these as global sections of the formal completion of the sheaf Siegel mod-
ular forms along the Baily-Borel boundary.

3.1. Formal Fourier-Jacobi series. Let Γ ⊂ Spn(Q) be an arithmetic subgroup,
and fix k ∈ Z. Let F be a rational boundary component of degree m, where
0 ≤ m ≤ n. The center G′

F of the unipotent radical of GF is isomorphic to the
additive group of Symn−m(R), and Γ′

F defines a lattice LF in G′
F . Its dual lattice

L∨
F is the character lattice of the compact abelian group G′

F /Γ
′
F .

Definition 3.1. A formal Fourier-Jacobi series of weight k for the boundary com-
ponent F and the group Γ is a formal series

f(τ ) =
∑
t∈L∨

F
t≥0

ft(τ ),(3.1)

where the coefficients ft are holomorphic functions on Hn satisfying the transfor-
mation laws

ft |k g = t(g) · ft for all g ∈ G′
F ,(3.2)

ft |k γ = fp�(γ)(t) for all γ ∈ ΓF .(3.3)
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Here p�(γ)(t) denotes the action of γ on t ∈ L∨
F induced by (2.4). In particular, for

γ ∈ ΓJ
F the condition in (3.3) reduces to ft |k γ = ft.

Note that for m = n the boundary component F is simply Dn, the lattice LF

has rank 0, and hence the expansion in (3.1) is trivial.

Remark 3.2. Let F ′ be a second rational boundary component of degree m and
let δ ∈ Γn such that F ′ = δ−1F . Then conjugation g 
→ ϕδ(g) = δgδ−1 with δ
defines an automorphism of G, which restricts to an isomorphism GF ′ → GF . In
particular we have GF ′ = δ−1GF δ and (δ−1Γδ)F ′ = δ−1ΓF δ. The map ϕδ induces
an isomorphism G′

F ′/(δ−1Γδ)′F ′ → G′
F /Γ

′
F . Pull back via this isomorphism gives

rise to an isomorphism ϕ∗
δ : L∨

F → L∨
F ′ , t 
→ ϕ∗

δ(t) = t ◦ ϕδ of the corresponding
character lattices. We define the pull back f |k δ of the formal Fourier-Jacobi series
f in (3.1) by defining the coefficients as

(f |k δ)ϕ∗
δ(t)

:= ft |k δ(3.4)

for t ∈ L∨
F . It is easily checked that

(f |k δ)(τ ) =
∑
t∈L∨

F

(ft |k δ)(τ )(3.5)

defines a formal Fourier-Jacobi series of weight k for the boundary component F ′

and the conjugate group δ−1Γδ. That is, we have

ft |k δ |k g = ϕ∗
δ(t)(g) · ft |k δ for all g ∈ G′

F ′ ,

ft |k δ |k γ = fp�(γ)(ϕ∗
δ(t))

|k δ for all γ ∈ (δ−1Γδ)F ′ .

This definition is compatible with the pull back of convergent Fourier-Jacobi series.

Remark 3.3. Assume that δ ∈ Γn. Then f is a formal Fourier-Jacobi series of
weight k for the boundary component F and the group Γ if and only if f |k δ is a
formal Fourier-Jacobi series of weight k for the boundary component δ−1F and the
group δ−1Γδ.

Let F be a rational boundary component of degree m and assume that E < F is
a rational boundary component of degree 0 which is adjacent to F . Then we have
inclusions of groups

G′
F

�� G′
E

�� GF ∩GE

Γ′
F

��

��

Γ′
E

��

��

ΓF ∩ ΓE

�� ,

which induce an inclusion G′
F /Γ

′
F → G′

E/Γ
′
E and a surjective homomorphism of

the character lattices L∨
E → L∨

F , s 
→ s | LF .
Let f =

∑
t∈L∨

F
ft be a formal Fourier-Jacobi series of weight k for the boundary

component F and the group Γ. The transformation law (3.3) implies that ft has a
normally convergent Fourier expansion

ft =
∑
s∈L∨

E

s|LF=t

ft,s,(3.6)
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where the coefficients fs := fs|LF ,s are holomorphic functions on Hn satisfying the
transformation law

fs |k g = t(g) · fs(3.7)

for all g ∈ G′
E and s ∈ L∨

E . Putting these expansions together, we obtain the formal
Fourier expansion

f =
∑
s∈L∨

E

fs(3.8)

of f at E.
We call the formal Fourier-Jacobi series f regular at the boundary component E

if its formal Fourier expansion (3.8) defines a formal Fourier-Jacobi series of weight
k for the boundary component E in the sense of Definition 3.1. That is, fs = 0
unless s ≥ 0, and

fs |k γ = fp�(γ)(s) for all γ ∈ ΓE .(3.9)

Remark 3.4. Assume the above notation. If E′ < F is another rational boundary
component of degree 0 which is adjacent to F , we may choose a δ ∈ Γn such that

F = δF ; E = δE′.

Then the pull back f |k δ is a formal Fourier-Jacobi series of weight k for F and
the group δ−1Γδ. It is easily seen that f is regular at the boundary component E if
and only if f |k δ is regular at E′. In particular, f is regular at all adjacent degree
0 boundary components E < F if and only if it regular for a set of representatives
of the ΓF -classes of such boundary components.

In the special case when F = Fm is equal to the standard boundary component of
degreem we identify L∨

F with a sublattice of Symn−m(Q) via the symmetric bilinear
form (A,B) 
→ tr(AB). Then the action of γ ∈ ΓFm

as in (2.5) on T2 ∈ L∨
Fm

is
given by p�(γ)(T2) = T2[u]. We may write the function fT2

as

fT2
(τ ) = φT2

(τ1, τ12)e(trT2τ2),

where φT2
is holomorphic on Hn, independent of τ2, and satisfies the transformation

law

φT2
(τ1, τ12)e(trT2τ2) |k γ = φT2[u](τ1, τ12)e(trT2[u]τ2)(3.10)

for all γ ∈ ΓFm
. The above formal series (3.1) can be rewritten as

f(τ ) =
∑

T2∈L∨
Fm

T2≥0

φT2
(τ1, τ12) e(trT2τ2),(3.11)

where the coefficients φT2
are weakly holomorphic Jacobi forms of index T2 and

weight k for the group ΓJ
Fm

. Under this identification the Fourier expansion of fT2

at the standard degree 0 boundary component F0 < Fm can be written as

φT2
(τ1, τ12) =

∑
T1∈Symm(Q)

∑
T12∈Matm,n−m(Q)

a

(
T1 T12

tT12 T2

)
e(trT1τ1 + 2 tr tT12τ12).

(3.12)
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Putting these expansions together, we obtain the formal Fourier expansion

f(τ ) =
∑

T∈Symn(Q)

a(T ) e(trTτ )(3.13)

at F0. Moreover, f is regular at F0 if a(T ) = 0 unless T ≥ 0, and

det(u)ka(T ) = a(T [u])(3.14)

for all T ∈ L∨
F0

⊂ Symn(Q) and all

(
u s
0 tu−1

)
∈ ΓF0

.

Now assume that F , F ′ are two rational boundary component of degree m and
that there exist a rational boundary component E of degree 0 such that F > E and
F ′ > E. Let f , f ′ be formal Fourier-Jacobi series of weight k for the group Γ and
the boundary components F , F ′, respectively. Then f and f ′ have formal Fourier
expansions

f =
∑
s∈L∨

E

fs, f ′ =
∑
s∈L∨

E

f ′
s

at E as in (3.8). We say that f is compatible with f ′ at E if these formal expansions
agree.

Definition 3.5. Let Im be the set of all rational boundary components of degree
m, and let 0 ≤ l ≤ n. A formal Siegel modular form of weight k and cogenus l for
the group Γ is a family (fF )F∈In−l

, where fF is a formal Fourier-Jacobi series of
weight k for the boundary component F and the group Γ satisfying the following
conditions:

(i) for all F ∈ In−l and all γ ∈ Γ we have fF |k γ = fγ−1F ;
(ii) for all pairs F, F ′ ∈ In−l and all degree 0 boundary components E ∈ I0

with F > E and F ′ > E, the formal Fourier-Jacobi series fF and fF ′ are
compatible at E.

We write FM
(n,l)
k (Γ) for the complex vector space of formal Siegel modular forms

of weight k and cogenus l for Γ.

Remark 3.6.

(1) Because of condition (i), the family (fF )F∈In−l
is determined by the fF for

F in a system of representatives for In−l/Γ. According to Remark 3.4 it suffices to
check condition (ii) for a set of representatives of ΓF -classes of adjacent degree 0
rational boundary components E < F .

(2) Conditions (i) and (ii) imply that fF is regular at all adjacent degree 0
rational boundary components E < F . In fact, if γ ∈ ΓE , then E < γ−1F .
Applying condition (ii) for fF and fγ−1F we see that the transformation law (3.9)
holds.

Example 3.7.

(1) Let f ∈ Mk(Γ) be a holomorphic Siegel modular form of weight k for Γ.
Then at each boundary component F ∈ In−l the function f has a (convergent)
Fourier-Jacobi expansion fF as in (3.1), which we may as well view as a formal
series. The family (fF )F∈In−l

defines a formal Siegel modular form of weight k and
cogenus l for Γ.

(2) Let V ⊂ X∗
Γ be an open neighborhood of the boundary ∂X∗

Γ. Then any

section f ∈ ω⊗k(V ) defines an element of FM
(n,l)
k (Γ) for every l.
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(3) Assume that Γ = Γn. Then any symmetric formal Fourier–Jacobi series of

weight k and cogenus l in the sense of [BR] defines an element of FM
(n,l)
k (Γn).

3.2. Formal completion of the sheaf of modular forms. Throughout this
section we fix an arithmetic subgroup Γ ⊂ Spn(Q). We briefly write X for XΓ and
X∗ for X∗

Γ. We denote by

Y = ∂X∗ ⊂ X∗

the boundary of X as in (2.16). Then Y is a closed analytic subset of codimension
n of the projective complex algebraic variety X∗. If n > 1 then Y is connected.

We let X̂∗ = (X̂∗,OX̂∗) be the formal complex space given by the completion of
X∗ along Y , and we write

i : X̂∗ → X∗(3.15)

for the natural morphism of formal complex spaces. We denote by ω̂⊗k the com-
pletion of the sheaf ω⊗k of modular forms of weight k with respect Y . Since ω⊗k

is coherent, the natural map i∗(ω⊗k) → ω̂⊗k is an isomorphism. The adjunction
map ω⊗k → i∗i

∗ω⊗k defines an injective map on global sections

ω⊗k(X∗) → ω̂⊗k(X̂∗).(3.16)

Let W (Fm) be a connected open neighborhood of Fm as in Proposition 2.8, and
put

V = ΓFm
\W (Fm) ⊂ X∗.

As before, we view Γ′
Fm

as a lattice LFm
in Symn−m(Q), and identify its dual

L∨
Fm

with a sublattice of the same space via the symmetric bilinear form (A,B) 
→
tr(AB). Recall the description of ω⊗k on V given in Lemma 2.10. We now give a
description of the completion ω̂⊗k on this boundary stratum.

Proposition 3.8. The space ω̂⊗k(V ) of sections is given by the space of all formal
series

f(τ ) =
∑

T2∈L∨
Fm

T2≥0

φT2
(τ1, τ12) e(trT2τ2)(3.17)

satisfying the following conditions:

(i) The coefficients φT2
(τ1, τ12) are holomorphic on W (Fm) ∩ Dn for all T2 ∈

L∨
Fm

.
(ii) The transformation law f |k γ = f holds for all γ ∈ ΓFm

.
(iii) For every S ∈ LFm

that is primitive, positive semidefinite of rank 1, and
for all t ∈ Z≥0, the sub-series

∑
T2∈L∨

Fm
T2≥0

tr(T2S)=t

φT2
(τ1, τ12) e(trT2τ2)

converges normally on W (Fm)∩D and defines a holomorphic function there.
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Remark 3.9.

(1) In condition (ii) the transformation law is to be understood coefficientwise
as in (3.10).

(2) In condition (iii) of Proposition 3.8, the matrix S determines a 1-dimensional
rational isotropic subspace of U(Fm), and therefore a degree n−1 rational boundary
component E with E ≥ Fm. Now condition (iii) means that in the formal Fourier-
Jacobi expansion of f with respect to E all formal Fourier-Jacobi coefficients (of
cogenus 1) converge.

(3) In the case m = n − 1, the lattice LFm
has rank 1, and hence LFm

= hZ
for some positive rational number h. Then L∨

Fm
= h−1Z and the conditions of

Proposition 3.8 mean that

f(τ ) =
∑

T2∈ 1
hZ≥0

φT2
(τ1, τ12) e(T2τ2)(3.18)

is a formal series, whose coefficients φT2
(τ1, τ12) are holomorphic on Hn−1 × Cn−1

and satisfy the transformation law (ii) of a Jacobi form for γ ∈ ΓFn−1
.

We now turn to the proof of Proposition 3.8, which will occupy the rest of this
subsection. We use the Grothendieck comparison theorem [EGA3, Theorem 4.1.5]
in the category of formal complex analytic spaces [Ba, Theorem 2] to reduce the
computation to a smooth toroidal compactification.

3.2.1. Toroidal compactification. We begin by recalling some facts about toroidal
compactifications. Our main references are [AMRT] and [Na].

Let Σ = (ΣF )F be a Γ-admissible collection of fans as in [AMRT], Definition 5.1
in Chapter 3. According to Theorem 5.2 of loc. cit. there exist a toroidal compact-
ification Xtor = Xtor

Σ of X = XΓ associated with Σ. Throughout we assume that
Σ is smooth. Then Xtor is a compact Moishezon space (i.e. an algebraic space over
C) which is smooth in the orbifold sense. It contains X as a dense open subset
and the complement is a divisor with normal crossings. Moreover, there is a proper
morphism

π : Xtor → X∗

to the Baily-Borel compactification X∗ which restricts to the identity on X. We
define the sheaf of weight 1 modular forms on Xtor as the pull back ωtor = π∗(ω).
The local Koecher principle implies that π∗(ω

tor) = π∗π
∗(ω) = ω.

Let F be a rational boundary component of degree m. Let W (F ) be a connected
open neighborhood of F as in Proposition 2.8, and put

V = ΓF \W (F ) ⊂ X∗.

We write V̂ = i−1(V ) for the inverse image of V under the morphism i : X̂∗ → X∗.

Moreover, we denote by X̂tor the completion of Xtor with respect to the toroidal
boundary divisor π−1(Y ), and by V̂ tor the completion of V tor = π−1(V ) with
respect to π−1(Y ∩V ). Then we have the commutative diagram of formal complex
spaces

V̂ tor ��

��

X̂tor itor ��

π̂
��

Xtor

π

��
V̂ �� X̂∗ i �� X∗

,
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where the vertical morphisms are proper. We denote by ω̂tor the completion of ωtor

with respect to π−1(Y ). Since ωtor is coherent, the natural map (itor)∗(ωtor) → ω̂tor

is an isomorphism, see [Ba, Lemma 2.3].
We now recall the description of Xtor near a rational boundary component F of

degree m. Let D(F ) = G′
F,C · Dn be the Siegel domain of the third kind associated

with F , see [AMRT, Definition III.4.5], and put D(F )′ = D(F )/G′
F,C. Then there

is a two step holomorphic fibration

D(F ) → D(F )′ → F,

which is equivariant for the action of GF ·G′
F,C. Here D(F ) → D(F )′ is a principal

G′
F,C-bundle, and Dn ⊂ D(F ) is an open subset. If F = Fm is the standard

boundary component of degree m we have

D(Fm) =

{(
τ1 τ12

tτ12 τ2

)
| τ1 ∈ Hm, τ12 ∈ Cm×(n−m), τ2 ∈ Symn−m(C)

}
,

and the map D(F ) → D(F )′ is the natural projection to the Hm×Cm×(n−m) part.
The quotient

TF = G′
F,C/Γ

′
F

is a complex algebraic torus of rank r = 1
2 (n−m)(n−m+ 1), and

Γ′
F \D(F ) → D(F )′(3.19)

is a principal TF -bundle containing Γ′
F \Dn as an open subset. The fan ΣF deter-

mines a torus embedding

TF → TF,ΣF
.(3.20)

The toroidal variety on the right hand side has an open covering by affine toric
varieties

TF → TF,σ(3.21)

for the cones σ ∈ ΣF . Recall that if N denotes the co-character lattice of TF and
N∨ its dual (the character lattice), then TF,σ = SpecC[σ∨ ∩ N∨]. By taking the
contraction product of (3.19) and (3.20), we obtain the fiber bundle

(Γ′
F \D(F ))ΣF

:= (Γ′
F \D(F ))×TF TF,ΣF

(3.22)

over D(F )′ associated to (3.19) with fiber TF,ΣF
. Now define

(Γ′
F \Dn)ΣF

(3.23)
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as the interior of the closure of Γ′
F \Dn in (Γ′

F \D(F ))×TF TF,ΣF
. It can be viewed

as a partial compactification of Γ′
F \Dn in the direction F . The group ΓF /Γ

′
F acts

properly discontinuously on (Γ′
F \Dn)ΣF

, and there is a holomorphic map

(ΓF/Γ
′
F )\(Γ′

F\Dn)ΣF
→ Xtor,

which restricts to an isomorphism in a sufficiently small neighborhood of the F -
stratum of the toroidal boundary, see [AMRT], p. 175. In particular, V tor can be
identified with an open subset of the left hand side as follows. Define(

Γ′
F \(W (F ) ∩ Dn)

)
ΣF

as the interior of the closure of Γ′
F \(W (F ) ∩ Dn) in (Γ′

F \D(F )) ×TF TF,ΣF
. The

group ΓF /Γ
′
F acts properly discontinuously, and the holomorphic map

(ΓF /Γ
′
F )\

(
Γ′
F \(W (F ) ∩ Dn)

)
ΣF

→ Xtor

is an open immersion with image V tor.
For the rest of this subsection we assume that F = Fm is the standard boundary

component of degree m. The space of sections ω⊗k(V tor) is given by all continuous
functions f : W (Fm) → C that are holomorphic on W (Fm) ∩ Dn and satisfy f |k
γ = f for all γ ∈ ΓFm

. Then f has a Fourier-Jacobi expansion of the form

f(τ ) =
∑

T2∈L∨
Fm

T2≥0

φT2
(τ1, τ12) e(trT2τ2).(3.24)

Let ρ ∈ ΣFm
be a ray (i.e. a cone of dimension 1), and let eρ ∈ LFm

be the unique
primitive ray generator. The ray determines a toroidal boundary divisor Dρ, and
we write Iρ ⊂ OXtor for the corresponding ideal sheaf. Then (ω⊗k ⊗ Iρ)(V tor)
is given by the subspace of those f ∈ ω⊗k(V tor) whose Fourier-Jacobi coefficients
φT2

vanish identically for all T2 ∈ L∨
Fm

with (T2, eρ) = 0. Proposition 3.10 gives a

description of the formal completion (ω̂tor)⊗k over V tor.

Proposition 3.10. The space (ω̂tor)⊗k(V tor) of sections is given by the space of
all formal series as in (3.24) satisfying the following conditions:

(i) The coefficients φT2
(τ1, τ12) are holomorphic on W (Fm) ∩ Dn for all T2 ∈

L∨
Fm

.
(ii) The transformation law f |k γ = f holds for all γ ∈ ΓFm

in the sense of
(3.10).

(iii) For all rays ρ ∈ ΣFm
with primitive ray generator eρ ∈ LFm

and for all
t ∈ Z≥0, the sub-series

∑
T2∈L∨

Fm
T2≥0

(T2,eρ)=t

φT2
(τ1, τ12) e(trT2τ2)(3.25)

converges normally on W (Fm) ∩ Dn and defines a holomorphic function
there.

Proof. The result is a consequence of the fiber bundle structure (3.22) and Propo-
sition 3.12 on toroidal varieties. �
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Proof of Proposition 3.8. According to the Grothendieck comparison theorem [Ba,
Theorem 2], the natural map

ω̂ = (π∗ω
tor)̂ → π̂∗(ω̂

tor)(3.26)

is an isomorphism of OX̂∗ -modules. In particular, there is a natural isomorphism

ω̂⊗k(V ) ∼= (ω̂tor)⊗k(V tor),

and therefore we may compute the left hand side using Proposition 3.10. Since
the first two conditions of Proposition 3.10 agree with the first two conditions of
Proposition 3.8 it remains to compare the corresponding third conditions.

We first notice that any S ∈ LFm
⊂ Symn−m(Q) which is primitive and positive

semidefinite of rank 1 determines a 1-dimensional rational subspace of the isotropic
subspace U(Fm) ∼= Rn−m as in (2.1). It is given as the orthogonal complement
of ker(S) with respect to the standard scalar product on Rn−m. Therefore S de-
termines a rational boundary component E of degree n − 1 with E ≥ Fm, and
ZS = LE ⊂ LFm

. Moreover, it determines a ray R≥0S ∈ ΣE , and hence, according
to [AMRT] Definition 5.1 in Chapter 3, also a ray in ΣFm

. Consequently, condition
(iii) in Proposition 3.10 implies (iii) in Proposition 3.8.

It remains to show the implication in the other direction. Assume that condition
(iii) in Proposition 3.8 holds. Let ρ ∈ ΣFm

be a ray whose primitive ray generator
eρ ∈ LFm

has rank greater than 1, and let t ∈ Z≥0. We need to prove that the
series (3.25) converges.

Let γ ∈ GLn−m(Q) such that D := γ−1eρ
tγ−1 is diagonal. Without loss of

generality, we may assume that D = diag(d1, . . . , dn−m) with di ∈ Z≥0 and d1 > 0.
Let Eii ∈ Symn−m(Q) be the symmetric matrix with entries all 0 except for a 1 at
the position (i, i). For every positive semidefinite T2 ∈ Symn−m(Q) we have

0 ≤
n−m∑
i=1

di · (T2, Eii) = (T2, D).

Hence, 0 ≤ d1(T2, E11) ≤ (T2, D). In particular, we obtain

0 ≤ d1(
tγT2γ,E11) ≤ (tγT2γ,D),

and thereby

0 ≤ d1(T2, γE11
tγ) ≤ (T2, γD

tγ) = (T2, eρ).

Let c ∈ Q>0 such that

S := c · γE11
tγ ∈ L∨

Fm

is primitive. By construction, S is positive semidefinite of rank 1, and

0 ≤ (T2, S) ≤
c

d1
(T2, eρ).

Hence if (T2, eρ) = t, then 0 ≤ (T2, S) ≤ c
d1
t. Consequently, the series in (3.25) is

a sub-series of ∑
T2∈L∨

Fm
T2≥0

(T2,S)≤ c
d1

t

φT2
(τ1, τ12) e(trT2τ2).

The latter series converges normally, since it is a finite sum of normally conver-
gent series by condition (iii) of Proposition 3.8. Therefore, (3.25) is also normally
convergent. This concludes the proof of the Proposition. �
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3.2.2. Completion of toroidal varieties. Here we summarize some facts about the
completion of toroidal varieties at their boundary. This can be reduced to consid-
ering affine toric varieties.

Let r and d be positive integers with 1 ≤ r ≤ d. Let OCd be the sheaf of
holomorphic functions on Cd and consider the ideal sheaf in I ⊂ OCd generated by
(z1 · · · zr).

Proposition 3.11. Let a = (a1, . . . , ad) ∈ Cd with a1 · · · ar = 0. Let U ⊂ Cd be
an open polydisc of radius R = (R1, . . . , Rd) around a. Assume that Ri < |ai| for
all i ∈ {1, . . . , r} with ai �= 0. The family of natural maps of sheaves

OU/(z1 · · · zr)n → OU/(z1 − a1, . . . , zd − ad)
n

for n ∈ Z>0 induces an injective map(
lim
n

OU/(z1 · · · zr)n
)
(U) → C[[z − a]].

Its image is given by those formal power series

f =
∑

ν=(ν1,...,νd)∈Nd
0

cν · (z − a)ν(3.27)

for which the subseries

fi,t =
∑

ν=(ν1,...,νd)∈Nd
0

νi=t

cν · (z − a)ν(3.28)

converge normally on U for all i ∈ Ja := {i ∈ N | 1 ≤ i ≤ r, ai = 0} and for all
t ∈ N0, and hence define holomorphic functions there.

Proof. By the hypothesis on a the set Ja is non-empty. For n ∈ N, consider the
morphisms of OU -modules

OU/(z1 · · · zr)n
ϕ ��

∏
i∈Ja

OU/(zi)
n πj �� OU/((z1 − a1)

n, . . . , (zd − ad)
n).

(3.29)

Here ϕ is induced by the quotient maps, and the πj are obtained by composing the
j-th projection with the quotient map for j ∈ Ja. It is easily checked on stalks that
ϕ is injective. Notice that for i ∈ {1, . . . , r} with ai �= 0 the class of zi is invertible
in OU,b for all b ∈ U by the assumption on U . By taking the limit over n and
sections over U , we obtain

(
lim
n

OU/(z1 · · · zr)n
)
(U)

ϕU ��
∏
i∈Ja

(
lim
n

OU/(zi)
n
)
(U)

πj,U �� C[[z − a]].(3.30)

Since the limit and the global sections functors are left exact, the map ϕU is injec-
tive.

Let i ∈ Ja. Since U is a Stein domain, by taking power series expansions, the
limit (

lim
n

OU/(zi)
n
)
(U) ∼= lim

n
OU (U)/(zi)

n
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can be identified with the subalgebra of C[[z − a]] consisting of those formal power
series as in (3.27) for which the subseries

fi,t =
∑

ν=(ν1,...,νd)∈Nd
0

νi=t

cν · (z − a)ν

converge on U for all t ∈ N0, and hence define holomorphic functions there. In
particular, the maps πj,U are injective. Moreover, the composition πj,U ◦ ϕU is
independent of j. Therefore the image Im(ϕU ) of the map ϕU is contained in the
space B of formal power series as claimed in the statement of the proposition.

To prove the inclusion B ⊂ Im(ϕU ), let f ∈ B and denote its power series
expansion as in (3.27). Let n ∈ N. The convergence of the subseries in (3.28) for
all i ∈ Ja and all t ∈ N0 implies that

Fn :=
∑
ν∈Nd

0
∃i∈Ja: νi<n

cν · (z − a)ν

converges and hence defines an element of OU (U). Moreover, the image Fn +
(z1 · · · zr)n ∈ OU (U)/(z1 · · · zr)n is mapped to Fn−1 + (z1 · · · zr)n−1 ∈ OU (U)/
(z1 · · · zr)n−1 under the natural projection. Consequently, the family F = (Fn)n∈N

defines an element of the projective limit limn OU (U)/(z1 · · · zr)n with the property
that ϕU (F ) = f . This concludes the proof of the proposition. �

Let N ∼= Zd be a lattice with dual M = N∨. Write 〈n,m〉 for the natural Z-
bilinear pairing of n ∈ N and m ∈ N∨. Recall that a rational polyhedral cone σ in
NR is a subset which is generated over R≥0 by finitely many vectors n1, . . . , nl ∈ N ,
that is,

σ = {t1n1 + · · ·+ tlnl | t1, . . . tl ∈ R≥0}.
The dual cone of σ is defined by

σ∨ =
{
m ∈ N∨

R | 〈n,m〉 ≥ 0 for all n ∈ σ
}
.

It is a rational polyhedral cone in N∨
R . The cone σ is called strongly convex if it

contains no full lines. This is equivalent to σ∨ being of full dimension d in N∨
R . For

any rational polyhedral cone σ, the monoid σ∨ ∩N∨ is finitely generated, and the
monoid algebra Aσ = C[σ∨∩N∨] is a finitely generated C-algebra. The affine toric
variety

Tσ = SpecC[σ∨ ∩N∨]

associated with σ is a normal irreducible affine algebraic variety over C, containing
the torus TN = SpecC[N∨] as an open dense subvariety.

Let Σ be a rational fan in NR, that is, a collection of strongly convex rational
polyhedral cones in NR satisfying the conditions:

• If σ ∈ Σ and τ ≤ σ is a face of σ, then τ ∈ Σ.
• If σ ∈ Σ and τ ∈ Σ, then σ ∩ τ ≤ σ and σ ∩ τ ≤ τ .

We write TΣ for the toric variety over C associated with Σ. It is obtained by gluing
the Tσ for σ ∈ Σ along common faces, see, e.g., [Fu].

The dimension of a cone σ in NR is the dimension of the R-vector space σ+(−σ).
A rational polyhedral cone is called smooth if it is generated by part of a basis of N .
In this case it has exactly l = dimσ edges (i.e. 1-dimensional faces) and a canonical
set of generators (which is part of a basis of N) is given by the ray generators of the
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edges of σ. A fan Σ is called smooth if all its cones are smooth. This is equivalent
to TΣ being smooth.

If X is a scheme of finite type over C, we denote by Xan its analytification as
in [SGA1, Exposé XII]. We now consider the toric variety T an

Σ associated with a

smooth rational fan Σ inNR as a complex analytic space. Let T̂ an
Σ be the completion

of T an
Σ at the toric boundary divisor

DΣ =
∑
τ∈Σ

dim τ=1

Dτ ,

where Dτ denotes the toric divisor associated with a ray τ . We write eτ ∈ N ∩τ for
the ray generator of τ . Proposition 3.11 immediately implies the following result.

Proposition 3.12. Let a be a point in the torus orbit corresponding to a cone
σ ∈ Σ, and let U ⊂ T an

σ be an open polydisc around a. The C-algebra OT̂ an
Σ
(U) is

given by those formal power series

f =
∑

ν∈N∨

cν · zν ∈ C[[N∨]]

with the following properties:

(i) We have cν = 0 unless ν ∈ σ∨.
(ii) For all edges τ ≤ σ, and for all t ∈ N0 the subseries

fτ,t =
∑

ν∈N∨

〈eτ ,ν〉=t

cν · zν

converges normally and defines a holomorphic function on U .

Here we have put zν = e2πi〈ζ,ν〉 for ζ ∈ NC/N .

Proof. Denote by r the dimension of σ. Let τ1, . . . , τr be the edges of σ and let
ei ∈ τi ∩ N be the corresponding ray generators. Then e1, . . . , er is the minimal
set of generators of σ and there exist er+1, . . . , ed ∈ N such that e1, . . . , ed are a
lattice basis of N . Let e∨1 , . . . , e

∨
d ∈ N∨ be the corresponding dual basis of N∨.

The assignment e∨i 
→ Xi determines a C-algebra isomorphism

Aσ = C[σ∨ ∩N∨] → C[X±1
r+1, . . . , X

±1
d ][X1, . . . , Xr],(3.31)

and hence an isomorphism (C×)d−r ×Cr ∼= T an
σ . The vanishing ideal of the restric-

tion of DΣ to Tσ is given by

Iσ = (e∨1 + · · ·+ e∨r ) ⊂ C[σ∨ ∩N∨].

It corresponds to the ideal (X1 · · ·Xr) = (X1 · · ·Xd) ⊂ C[X±1
r+1, . . . , X

±1
d ][X1, . . . ,

Xr] under (3.31). Hence we may use Proposition 3.11 to compute the completion

ÔT an
σ ,Iσ = lim

n
OT an

σ
/Inσ

of the structure sheaf OT an
σ

at the ideal Iσ. With the above identifications we obtain
the assertion. �
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3.3. Formal Siegel modular forms of cogenus 1. Let f ∈ ω̂⊗k(X̂∗) be a global
section. If F is any rational boundary component of degree n− 1, we may restrict
f to ΓF \W (F ). By Proposition 3.8, we obtain a formal Fourier-Jacobi series fF
of weight k for F and the group Γ. In particular, for the standard boundary
component Fn−1 we obtain an expansion as in (3.18). The family (fF )F∈In−1

of
formal Fourier-Jacobi series is compatible in the sense of Definition 3.5. Hence it
determines a formal Siegel modular form of weight k and cogenus 1 for Γ. The
assignment f 
→ (fF ) defines a homomorphism of complex vector spaces

ω̂⊗k(X̂∗) → FM
(n,1)
k (Γ).(3.32)

Since any global section f ∈ ω̂⊗k(X̂∗) is uniquely determined by its formal Fourier-
Jacobi expansion of cogenus 1, the map is injective.

Theorem 3.13. The above map in (3.32) is an isomorphism.

Proof. We have to show that the map is surjective. Let g = (gF )F∈In−1
∈

FM
(n,1)
k (Γ). For every proper rational boundary component F we chose a suffi-

ciently small open neighborhood of V (F ) = ΓF \W (F ) as in Proposition 2.8. We
show that g determines a section in ω̂⊗k(V (F )) for every F and that these sections
agree on all pairwise intersections of these open neighborhoods. Hence they glue
to a global section f ∈ ω̂⊗k(X̂∗) which maps to g under the map (3.32). First, we
assume that Γ = Γn(N) is the principal congruence subgroup of level N and genus
n.

(1) We begin with the rank n−1 standard boundary component Fn−1. Accord-
ing to Proposition 3.8, the expansion

gFn−1
(τ ) =

∑
T2∈Q

φT2
(τ1, τ12) e(T2τ2)(3.33)

of gFn−1
as in (3.11), together with the transformation law (3.10), imply that gFn−1

defines an element of ω̂⊗k(V (Fn−1)).
(2) Now we consider the rank 0 standard boundary component F0. The formal

Fourier-Jacobi series gFn−1
has a formal Fourier expansion

gFn−1
=

∑
T∈Symn(Q)

a(T ) e(trTτ )(3.34)

as in (3.13). Since gFn−1
is regular at the boundary component F0 (by Remark 3.6),

the Fourier coefficients a(T ) satisfy the transformation law (3.14). Hence the series
(3.34) satisfies conditions (i) and (ii) of Proposition 3.8 for V (F0). It remains to
show that it also satisfies condition (iii).

To this end let S ∈ LF0
⊂ Symn(Q) be primitive and positive semi-definite of

rank 1. Denote by R ∈ LF0
the positive semi-definite generator of the 1-dimensional

lattice LFn−1
. Then R is a matrix with entries all 0 except for the position (n, n).

Write

S = h · uR tu

with u ∈ GLn(Z) and h ∈ Q>0. Consider the boundary component F = δFn−1,
where δ =

(
u 0
0 tu−1

)
∈ Γn,0, and the corresponding formal Fourier-Jacobi series gF .
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The formal Fourier expansions of gFn−1
and gF at F0 are given by

gFn−1
=
∑
t≥0

∑
T≥0

trTR=t

a(T )qT ,

gF =
∑
t≥0

∑
T≥0

trTS=t

b(T )qT .

Since Fn−1 > F0 and F > F0, the series gFn−1
and gF must be compatible at

F0, and therefore a(T ) = b(T ). Since gF is a formal Fourier-Jacobi series for the
boundary component F , the formal Fourier-Jacobi coefficients∑

T≥0
trTS=t

a(T )qT

converge normally for all t. This gives the desired convergence condition (iii) of
Proposition 3.8, and therefore shows that the formal Fourier expansion of gFn−1

defines an element of ω̂⊗k(V (F0)), which agrees with gFn−1
on V (F0) ∩ V (Fn−1).

(3) Now let 0 ≤ m ≤ n− 1 and consider the boundary component Fm. We use
the formal Fourier expansion (3.34) of gFn−1

to define Fourier-Jacobi coefficients

ψT2
(τ1, τ12) =

∑
T=

(
T1 T12

tT12 T2

)
≥0

a(T )e(trT1τ1 + 2 trT12
tτ12)

for T2 ∈ L∨
Fm

⊂ Symn−m(Q). These series converge normally, since they are sub-
series of the Fourier expansions of the Fourier-Jacobi coefficients φT∗

2
in (3.33),

where T ∗
2 denotes the lower right entry of T2. Then we have the identity of formal

series

gFn−1
=

∑
T2∈Symn−m(Q)

ψT2
(τ1, τ12) e(trT2τ2).(3.35)

By Lemma 3.14, the transformation law of (3.33) under ΓFn−1
, and the trans-

formation law of (3.34) under ΓF0
imply that (3.35) has the transformation law of

Proposition 3.8 (ii) for ΓFm
(note that it is here where the choice of the group Γn(N)

plays a role). Moreover, condition (iii) of Proposition 3.8 follows from the corre-
sponding condition for the formal Fourier expansion (3.34). Hence (3.35) defines
a section in ω̂⊗k(V (Fm)), which is compatible with the sections in ω̂⊗k(V (Fn−1))
and ω̂⊗k(V (F0)) that were constructed before.

(4) Let E be any proper rational boundary component. Let 0 ≤ m ≤ n− 1 and
δ ∈ Γn such that E = δFm. Consider the translated series gF |k δ, which defines a
formal Fourier Jacobi series for Fm and the group δ−1Γδ by Remark 3.2. According
to part (3) above it defines a section g̃ ∈ ω̂⊗k(δ−1ΓEδ\δ−1W (E)). By taking its
pullback g̃ |k δ−1, we obtain a section in ω̂⊗k(V (E)).

(5) We now show that the local sections of (1)–(4) agree on all open intersections.
Since the support of ω̂⊗k is given by the boundary Y , it suffices to consider all pairs
of proper rational boundary components F and F ′ for which

F̄ ∩ F̄ ′ �= ∅.
This implies that there exists a rational degree 0 boundary component E such that
F ≥ E and F ′ ≥ E. In view of part (3) we may assume without loss of generality
that F and F ′ both have degree n − 1. We have to show that the restrictions to
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V (E) of the sections of ω̂⊗k(V (F )) and ω̂⊗k(V (F ′)) constructed in (4) agree, which
is a consequence of the compatibility of gF and gF ′ at E. This concludes the proof
if Γ = Γn(N).

(6) In the above argument we have only used the assumption that Γ = Γn(N)
in step (3) for 0 < m < n− 1 when we invoked Lemma 3.14. If n ≤ 2 there are no
such integers m and hence the argument also applies for any arithmetic subgroup
Γ ⊂ Spn(Q). Finally, assume that n ≥ 2 and that Γ ⊂ Spn(Q) is an arbitrary
arithmetic subgroup. There exists a positive integer N such that Γ′ := Γn(N) is a
subgroup of Γ of finite index. This corresponds to a finite covering π : X∗

Γ′ → X∗
Γ

of complex spaces and of their completions at the Satake boundaries. We may

view the formal Siegel modular form g as an element FM
(n,1)
k (Γ′). By the above

argument, it determines a section f ∈ ω̂⊗k(X̂∗
Γ′). Condition (i) of Definition 3.5

implies that f is actually invariant under the action of Γ, and hence descends to a
section in ω⊗k(X̂∗

Γ), which maps to g under the map (3.32). �

We conclude this subsection with the lemma that was used in the proof of The-
orem 3.13.

Lemma 3.14. Assume that Γ = Γn(N) is the principal congruence subgroup of level
N and genus n. Then for every triple of adjacent rational boundary components
F > F ′ > F ′′, where F has degree n− 1 and F ′′ has degree 0, the stabilizer ΓF ′ is
generated by ΓF ∩ ΓF ′ and ΓF ′′ ∩ ΓF ′ .

Proof. Since Γ = Γn(N) is a normal subgroup of the full Siegel modular group Γn,
and since Γn acts transitively on chains of adjacent rational boundary components
of fixed degrees, it suffices to prove the assertion for triples of standard boundary
components

Fn−1 > Fm > F0,

where n− 1 > m > 0. Let

γ =

⎛
⎜⎜⎝
a 0 ∗ ∗
∗ u ∗ ∗
c 0 d ∗
0 0 0 tu−1

⎞
⎟⎟⎠

be an element of ΓFm
, where u ∈ GLn−m(Z) is congruent to 1 modulo N . Then

δ =

⎛
⎜⎜⎝
1 0 0 0
0 u 0 0
0 0 1 0
0 0 0 tu−1

⎞
⎟⎟⎠

belongs to ΓF0
∩ ΓFm

. The product δ−1γ is contained in ΓFn−1
∩ ΓFm

, proving the
assertion. �
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4. Modularity of formal Siegel modular forms

4.1. Affine covering numbers. Let S be a scheme. Recall that the affine covering
number acn(S) of S is defined as one less than the smallest number of open affine
sets required to cover S, see, e.g., [At], [RV]. It gives an upper bound for the
cohomological dimension of S, which is the largest integer j such that Hj(S,F) �= 0
for some quasicoherent sheaf F [RV, Proposition 4.12]. If S is quasi-projective, then
according to [RV, Example 4.8], we have the trivial bound acn(S) ≤ dim(S).

We consider this notion for the Siegel modular variety XΓ = Γ\Hn associated
with an arithmetic subgroup Γ ⊂ Spn(Q). Since the line bundle of modular forms
on the Baily-Borel compactification X∗

Γ is ample, the complement of the divisor
div(F ) of any holomorphic modular form F of weight k defines an affine open
subset of X∗

Γ. If F is a cusp form, then X∗
Γ \div(F ) is actually an affine open subset

of XΓ. Hence, acn(XΓ) is the smallest non-negative integer j, for which there exist
cusp forms F0, . . . , Fj for Γ having no common zero on XΓ.

It is our goal to find upper bounds for acn(XΓn
), where Γn = Spn(Z). According

to [At, Theorem 4], we have acn(XΓn
) ≥ n(n− 1)/2. It is an interesting question

whether this lower bound is actually an equality. If n = 1, then acn(XΓ1
) = 0,

since XΓ1
is affine. For n = 2 it is easy to see that

acn(XΓ2
) = 1,

since the Igusa cusp forms χ10 and χ12 for Γ2 (see p. 848 in [Ig1]) have no common
zeros on H2. However, for general n not much is known in this direction. It even
seems to be difficult to find upper bounds that improve upon the trivial bound
n(n+ 1)/2.

Here we use theta functions to obtain upper bounds for acn(XΓn
) for further

small values of n, see Propositions 4.3 and 4.5. Recall that for every theta charac-
teristic m = ( ab ) ∈ Z2n of genus n and for τ ∈ Hn there is a theta constant defined
by

θ
[
m
]
(τ ) = θ

[
a
b

]
(τ ) =

∑
x∈Zn

exp
(
πi
(
t(x+ a/2)τ (x+ a/2) + t(x+ a/2)b

))
.

Since this function depends up to the sign only on m modulo (2Z)2n, it is common
to define θ

[
m
]
(τ ) = θ

[
ι(m)

]
(τ ) for m ∈ F2n

2 . Here ι is defined by the embedding

F2 → Z, 0 
→ 0, 1 
→ 1.

A theta characteristic m = ( ab ) ∈ F2n
2 is called even if tab ≡ 0 (mod 2), and odd

otherwise. There are 2n−1(2n +1) even and 2n−1(2n − 1) odd theta characteristics
in genus n. The function θ

[
m
]
vanishes identically if and only if m is odd. We

denote by m 
→ γ.m the usual action of γ ∈ Γn on the theta characteristcs, see,
e.g., [Fr, Chapter I.3]. There are two orbits under this action, given by the even and
the odd characteristics. We write En ⊂ F2n

2 for the set of even theta characteristics.
The theta transformation formula implies that

θ8[γ.m](γτ ) = det(cτ + d)4 · θ8[m](τ )
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for all γ =
(
a b
c d

)
∈ Γn. In particular, the theta constants are modular forms for a

congruence subgroup of Γn. Sightly more precisely, their eighth powers are modular
forms of weight 4 for the principal congruence subgroup Γn(2) ⊂ Γn of level two,
see, e.g., [Ig2, Chapter V.1]. For a subset S ⊂ En we write

θ[S](τ ) =
∏
m∈S

θ[m](τ )

for the corresponding product of theta constants. It is a modular form of weight
#S/2.

If n = n1 + n2 and mi =
( ai

bi

)
∈ F

2ni
2 are theta characteristics of genus n1 and

n2, respectively, then

a =

(
a1
a2

)
, b =

(
b1
b2

)
(4.1)

determine a theta characteristic m = ( ab ) ∈ F2n
2 . In this case we write m =

(m1,m2). If S1 ⊂ En1
and S2 ⊂ En2

are subsets, then S1 × S2 ⊂ En and we may
consider the corresponding theta products θ[S1 × S2] of genus n. Lemma 4.1 is an
easy consequence of the behavior of theta constants under the Siegel phi operator,
see, e.g., Remark 3.10 in Chapter I.3 of [Fr].

Lemma 4.1. Let S ⊂ En and assume that #S > 2n−1(2n−1 + 1). Then θ[S] is a
cusp form.

As in [FP] and [Ig1] we consider the following modular forms of genus n:

Fnull = θ[En],(4.2)

F1 =
∑

m∈En

θ[En \ {m}]8.(4.3)

These forms have weight 2n−2(2n +1) and 2n+1(2n +1)− 4, respectively. If n ≥ 2,
then according to Lemma 4.1, they are both cusp forms for Γn. If n = 1, then
F 8
null = Δ. For n = 2 we have have F 2

null = χ10.
We define the pushforward Mk(Γn(2)) → Mk(Γn) of modular forms of genus n

by

Pn(f) =
∑

γ∈Γn(2)\Γn

f |k γ(4.4)

for f ∈ Mk(Γn(2)). It takes cusp forms to cusp forms. For example, let E∗
n =

En \ {0}. Then the theta transformation formula and the fact that Γn(2)\Γn acts
transitively on En imply that

Pn(θ[E∗
n]

8) = C · F1,

where C denotes the order of the stabilizer in Γn(2)\Γn of the zero characteristic.
For n = 3 the form Fnull is a cusp form of weight 18, denoted χ18 in [Ig1], and F1

is a cusp form of weight 140, denoted Σ140 in [Ig1]. By a result of Igusa [Ig1, Lemma
11], the common vanishing locus div(Fnull) ∩ div(F1) is exactly the reducible locus
of XΓ3

, i.e., the image of the natural map XΓ1
×XΓ2

→ XΓ3
.

We now construct two cusp forms for Γ3 whose simultaneous vanishing locus is
disjoint from the reducible locus. To this end we consider the subsets

E1,2 := E1 × E2,
E1,1,1 := E1 × E1 × E1



1426 JAN HENDRIK BRUINIER AND MARTIN RAUM

of E3. By Lemma 4.1, the corresponding theta products θ[E1,2]8 and θ[E1,1,1]8 are
cusp forms for Γ3(2) of weight 120 and 108, respectively. We define cusp forms for
Γ3 by

F1,2 = P3(θ[E1,2]8),
F1,1,1 = P3(θ[E1,1,1]8).

Lemma 4.2.

(i) The restriction of F1,2 to XΓ1
×XΓ2

is given by

F1,2

(
τ1 0
0 τ2

)
= C ·Δ(τ1)

10 · χ10(τ2)
12,

where τ1 ∈ H1, τ2 ∈ H2, and C is the order of the stabilizer in Γ3(2)\Γ3 of the set
E1,2.

(ii) The restriction of F1,1,1 to X3
Γ1

is given by

F1,1,1

⎛
⎝τ1

τ2
τ3

⎞
⎠ = C ·Δ(τ1)

9Δ(τ2)
9Δ(τ3)

9,

where C is the order of the stabilizer in Γ3(2)\Γ3 of the set E1,1,1.

Proof. We only carry out the proof of (i), since the proof of (ii) is analogous. We
compute the restriction to H1 ×H2 of the summands

θ[E1,2]8 |120 γ = θ[γ−1E1,2]8

in the definition of P3(θ[E1,2]8) for every γ ∈ Γ3(2)\Γ3. There are two cases.
First, if γ takes E1,2 to itself, then θ[γ−1E1,2]8 = θ[E1,2]8, and therefore the

restriction is given by

θ[E1,2]8
(
τ1 0
0 τ2

)
=

∏
m1∈E1
m2∈E2

θ[m1](τ1)
8θ[m2](τ2)

8

= θ[E1](τ1)80 · θ[E2](τ2)24 = Δ(τ1)
10 · χ10(τ2)

12.

Second, if γ does not take E1,2 to itself, then there exists an m ∈ E1,2 with
m̃ := γ−1m /∈ E1,2. Writing m̃ = (m̃1, m̃2) as in (4.1), we see that m̃1 ∈ F2

2 must
be odd. But this implies that

θ[m̃]8
(
τ1 0
0 τ2

)
= θ[m̃1](τ1)

8θ[m̃2](τ2)
8 = 0.

This proves the claim. �

Proposition 4.3. The cusp forms Fnull, F1, F1,2, and F1,1,1 for Γ3 have no com-
mon zero on H3. In particular, acn(XΓ3

) = 3.

Proof. According to [Ig1, Lemma 11], the common vanishing locus of Fnull and
F1 is exactly the reducible locus of XΓ3

. But Lemma 4.2 and the fact that the
vanishing divisor of χ10 is precisely the reducible locus of XΓ2

imply that F1,2 and
F1,1,1 never vanish simultaneously on the reducible locus of XΓ3

. �
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We now turn to the case n = 4. Following [FP] we consider the following modular
forms, for Γn, which are defined for any n:

FH =
∑

A⊂F2n
2

θ[En \A]8,(4.5)

FT = 2n
∑

m∈En

θ[m]16 −
( ∑

m∈En

θ[m]8
)2

.(4.6)

In (4.5), the subsets A runs through all suitable sets of v(n) characteristics corre-
sponding to the irreducible components of the hyperelliptic locus of XΓn(2) as in

[FP, Theorem 2]. These forms have weight 2
(
2n+2
n+1

)
and 8, respectively. For n = 4,

we have v(4) = 10 and FH is cuspidal by Lemma 4.1. Moreover, FT is the Schottky
cusp form.

Lemma 4.4. For n = 4, the common vanishing locus of the cusp forms Fnull, F1,
FH , FT is the reducible locus Xred

Γ4
of XΓ4

.

Proof. By a result of Igusa [Ig3, p. 544], the intersection div(Fnull) ∩ div(F1) ∩
div(FT ) is equal to the union of the hyperelliptic locus and the reducible locus of
XΓ4

. According to [FP, Lemma 2], the form FH never vanishes on the hyperelliptic
locus, while it vanishes on the reducible locus by the argument in the proof of
[FP, Theorem 1]. �

Proposition 4.5. There are 5 cusp forms for Γ4 that have no common zero on
Xred

Γ4
. In particular, acn(XΓ4

) ≤ 8.

Proof. We argue similarly as in the proof of Proposition 4.3. We use the pushfor-
ward of suitable theta products in genus 4 to construct the desired cusp forms. We
let

F1,3 = P4(θ[E1 × E3]8),
F ∗
1,3 = P4(θ[E1 × E∗

3 ]
8),

F1,1,2 = P4(θ[E1 × E1 × E2]8),
F1,1,1,1 = P4(θ[E1 × E1 × E1 × E1]8).

By Lemma 4.1 these modular forms are cuspidal. Their weights are 432, 420,
360, 324, respectively. Their restriction to H1 × H3 ⊂ H4 can be computed as in
Lemma 4.2. For instance, we have

F1,3

(
τ1 0
0 τ2

)
= C1 ·Δ(τ1)

36Fnull(τ2)
24,

F ∗
1,3

(
τ1 0
0 τ2

)
= C2 ·Δ(τ1)

35F1(τ2)
3,

where C1, C2 are suitable positive integral constants and τ1 ∈ H1, τ2 ∈ H3. By
means of Proposition 4.3 it can be concluded that these four cusp forms never
vanish simultaneously on the image of the natural map XΓ1

×XΓ3
→ XΓ4

.
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If we define in addition the cusp form

F2,2 = P4(θ[E2 × E2]8)
of weight 400, then a similar argument shows that the three cusp forms F2,2, F1,1,2,
F1,1,1,1 never vanish simultaneously on the image of the natural map XΓ2

×XΓ2
→

XΓ4
. Consequently, the five cusp forms F1,3, F ∗

1,3, F1,1,2, F1,1,1,1, F2,2 have no

common zero on Xred
Γ4

.
The bound on acn(XΓ4

) now follows by means of Lemma 4.4. �
4.2. A special case of Raynaud’s Lefschetz Theorem. Here we state a special
case of an algebraization theorem of Raynaud. We will use it to show that the map
(3.16) is surjective provided that a certain upper bound for the affine covering
number holds.

Theorem 4.6. Let k be a field and let X be a scheme over k which is of finite
type, separated, and proper. Let Y ⊂ X be a closed subscheme, and write X̂ for
the formal completion of X along Y . Assume that the complement U = X \ Y is
smooth and satisfies

acn(U) ≤ dim(U)− 2.

Then for every finite locally free sheaf F on X the canonical morphism

H0(X,F) → H0(X̂, F̂)

is an isomorphism.

Proof. This is a special case of [Ray, Corollaire 2.8]. To see this, we note that the
assumptions imply that X has a dualizing complex. We put c = acn(U) and let d
be an integer such that for all points u ∈ U we have

depthu(F) ≥ inf(d− c, d− trdeg(κ(u)/k)),(4.7)

where κ(u) denotes the residue field of u. Then [Ray, Corollaire 2.8] states that for
all i < d− c− 1 the canonical morphism

Hi(X,F) → Hi(X̂, F̂)

is an isomorphism.
To deduce the claimed result, we put i = 0 and d = c + 2. Since U is smooth

and F is locally free, we have

depthu(F) = dim(U)− trdeg(κ(u)/k).

Hence, condition (4.7) simplifies to

dim(U) ≥ inf(2 + trdeg(κ(u)/k), c+ 2).

Our assumption c = acn(U) ≤ dim(U)−2 implies that this condition is satisfied. �
Remark 4.7. It is an interesting question whether the hypothesis of the theorem
can be weakened. For instance, can the upper bound on acn(U) be replaced by an
upper bound on the affine stratification number (see [RV]) or on the cohomological
dimension of U?

We now specialize to the case that the ground field is C. By means of GAGA
we also have an analogous result for complex analytic spaces. Recall that if X is
a scheme of finite type over C, we denote by Xan its analytification, and we let
h : Xan → X be the analytification morphism, see [SGA1, Exposé XII]. If F is a
coherent sheaf on X, we write Fan = h∗(F) for its analytification.
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Corollary 4.8. Let X be a scheme over C which is of finite type, separated, and
proper. Let Y ⊂ X be a closed subscheme, and write X̂an for the formal completion
of Xan along Y an (in the category of formal complex analytic spaces as in [Ba]).
Assume that the complement U = X \ Y is smooth and satisfies

acn(U) ≤ dim(U)− 2.

Then for every finite locally free OXan-module G on Xan the canonical morphism

H0(Xan,G) → H0(X̂an, Ĝ)

is an isomorphism. Here Ĝ denotes the completion of G along Y an in the category
of formal complex analytic spaces.

Proof. By the GAGA theorem, there exists a unique finite locally free OX -module
F on X such that G = Fan. By Theorem 4.6 the canonical homomorphism

H0(X,F) → H0(X̂, F̂)

is an isomorphism. The left hand side is canonically isomorphic to H0(Xan,Fan).
Let I ⊂ OX be the ideal sheaf defining Y . The canonical homomorphism

H0(X̂, F̂) → lim
k

H0(X,F/IkF)(4.8)

is an isomorphism. By GAGA for the coherent sheafs F/IkF , the right hand side
of (4.8) is isomorphic to

lim
k

H0(Xan, (F/IkF)an) ∼= H0(X̂an, (Fan)̂ ).

Putting these maps together, we obtain a natural isomorphism

H0(Xan,Fan) → H0(X̂an, (Fan)̂ ).

This completes the proof of the corollary. �

4.3. Algebraization of formal Siegel modular forms. Here we combine Corol-
lary 4.8 and Theorem 3.13 to derive a modularity result for formal Siegel modular
forms of cogenus 1. We use the notation of Section 3. In particular, Γ ⊂ Spn(Q)
denotes an arithmetic subgroup.

Theorem 4.9. Assume that acn(XΓ) ≤ n(n+1)
2 − 2. Then the natural map

H0(X∗
Γ, ω

⊗k) → FM
(n,1)
k (Γ)(4.9)

taking a modular form to its cogenus 1 formal Fourier-Jacobi expansions is an
isomorphism.

Proof. We first assume that Γ = Γn(N) is the principal congruence subgroup of

level N ≥ 3 and that the condition acn(XΓ) ≤ n(n+1)
2 − 2 holds. Then Γ acts freely

on Hn and ωk is locally free of rank 1. The map (4.9) is part of the commutative
diagram

H0(X∗
Γ, ω

⊗k) ��

��

FM
(n,1)
k (Γ)

H0(X̂∗
Γ, ω̂

⊗k)

�������������

,
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where the diagonal arrow is given by (3.32). According to Theorem 3.13 this di-
agonal map is an isomorphism. Moreover, by Corollary 4.8 the vertical map is an
isomorphism. This implies the assertion.

Now we consider the case that Γ is an arbitrary arithmetic subgroup of Spn(Q).
We choose a principal congruence subgroup Γ′ of level N ≥ 3 such that Γ′ ⊂ Γ.
Since finite morphisms are affine, we have acn(XΓ′) ≤ acn(XΓ). The covering map
π : X∗

Γ′ → X∗
Γ induces a pull back map

π∗ : FM
(n,1)
k (Γ) → FM

(n,1)
k (Γ′).(4.10)

Hence, if f = (fF )F∈In−1
∈ FM

(n,1)
k (Γ), we may apply the above argument to

deduce that π∗(f) ∈ FM
(n,1)
k (Γ′) is the image of an element g ∈ H0(X∗

Γ′ , ω⊗k).
Then at each boundary component F ∈ In−1 the series fF is the (convergent!)
Fourier-Jacobi expansion as in (3.1) of the holomorphic modular form g for Γ′. But
now condition (i) of Definition 3.5 implies that

g |k γ = fF |k γ = fγ−1F = g

for every γ ∈ Γ. Hence g ∈ H0(X∗
Γ, ω

⊗k), concluding the proof of the corollary. �

Corollary 4.10. Assume that 2 ≤ n ≤ 4. Then the natural map (4.9) is an
isomorphism.

Proof. If Γ is contained in the full Siegel modular group Γn, the assertion follows
from Theorem 4.9 combined with the bounds on acn(XΓn

) of Section 4.1.
Otherwise, we consider the auxiliary congruence subgroup Γ′ = Γ ∩ Γn. The

covering map π : X∗
Γ′ → X∗

Γ induces a pull back map as in (4.10). Pulling back

f ∈ FM
(n,1)
k (Γ), we find that π∗(f) is the image of an element g ∈ H0(X∗

Γ′ , ω⊗k).
As in the proof of Theorem 4.9 we conclude that g actually descends to an element
of H0(X∗

Γ, ω
⊗k). �

Remark 4.11.

(i) Theorem 4.9 and Corollary 4.10 have natural generalizations to vector valued
modular forms transforming with a finite dimensional representation of Γ. Alter-
natively, one can deduce such results for vector valued forms from those for scalar
forms by means of the argument of [Br].

(ii) Using induction on the cogenus as in [BR, Lemma 5.2] one can also deduce
an analogue for formal Siegel modular forms of higher cogenus l < n.

(iii) The above results are also valid in the slighltly more general case when Γ
is an arithmetic subgroup of Spn(R) (rather than of Spn(Q)), that is, a subgroup
which is commensurable with Γn. Note that by [Ch] the elements of such a subgroup
are automatically projective rational.

4.4. The case of the paramodular group. Here we apply Theorem 4.9 to prove
the modularity of certain formal Fourier-Jacobi series for the paramodular group
of genus 2.
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Throughout this subsection we let n = 2 and let N be a positive integer. Recall
that the paramodular group of level N is the arithmetic subgroup K(N) ⊂ Sp2(Q)
consisting of matrices of the form⎛

⎜⎜⎝
∗ N∗ ∗ ∗
∗ ∗ ∗ ∗/N
∗ N∗ ∗ ∗
N∗ N∗ N∗ ∗

⎞
⎟⎟⎠ ,(4.11)

where the stars stand for integral entries. For every exact divisor d‖N we put
d′ = N/d and choose α, β, γ, δ ∈ Z such that αδd− βγd′ = 1. Then the matrix

Vd =
1√
d

⎛
⎜⎜⎝

dδ −Nγ 0 0
−β dα 0 0
0 0 dα β
0 0 Nγ dδ

⎞
⎟⎟⎠

belongs to Sp2(R) and is projective rational. The coset VdK(N) is independent of
the choices of the parameters. Moreover, we have V 2

d ∈ K(N) and VdK(N)Vd =
K(N). In the special case where d = N , we may choose β = 1, γ = −1, and
α = δ = 0. Then we obtain for VN the (projective) involution

μN =
1√
N

⎛
⎜⎜⎝

0 N 0 0
−1 0 0 0
0 0 0 1
0 0 −N 0

⎞
⎟⎟⎠ .

We denote by K(N)∗ the arithmetic subgroup of Sp2(R) which is generated by
K(N) and the Vd for d‖N . It contains K(N) as a normal sugbroup, and

K(N)∗/K(N) ∼= (Z/2Z)ν(N),

where ν(N) denotes the number of prime divisors of N , see, e.g., [GH].
The structure of the rational boundary components of K(N) and K(N)∗ is

known, see, e.g., [PY]. If N is square-free, the situation is particularly simple.
Then for K(N)∗ there is exactly one orbit of 0-dimensional rational boundary
components and one orbit of 1-dimensional rational boundary components. For
the group K(N) there is one orbit of 0-dimensional rational boundary components,
and there are 2ν(N) orbits on 1-dimensional rational boundary components. The
orbits can be represented by the VdF1 for d‖N , and these representatives intersect
exactly in the standard 0-dimensional boundary component F0. Moreover, we have
K(N)∗F1

= K(N)F1
, and K(N)∗F0

is obtained from K(N)F0
by extending with the

involutions Vd.
Let f be a formal Fourier-Jacobi series of weight k for the standard boundary

component F1 and the group K(N). Denote by

f(τ ) =
∑

T∈Sym2(Q)

a(T ) e(trTτ )

its formal Fourier expansion at the boundary component F0 as in (3.13). We assume
that f is strongly symmetric in the following strong sense: There exists a character
χf : K(N)∗/K(N) → {±1} such that

f |k γ = χf (γ)f(4.12)
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for all γ ∈ K(N)∗F0
. This condition can be rephrased as

a(T [tu]) = χf

(
tu−1 0
0 u

)
det(u)ka(T )(4.13)

for all T ∈ Sym2(Z)
∨ positive semi-definite with N | T2, and for all u ∈ Γ0(N)∗ ⊂

SL2(R). Here the latter group denotes the extension of Γ0(N) by all Atkin-Lehner
involutions Wd with d‖N . We obtain the following result.

Theorem 4.12. Let N be a square-free positive integer. Let f be a strongly sym-
metric formal Fourier-Jacobi series of weight k for the boundary component F1 and
the group K(N). Then f converges and defines the Fourier-Jacobi expansion of a
modular form in Mk(K(N)).

Proof. We define a formal Siegel modular form forK(N) as follows. For any rational
boundary component F ∈ I1 we choose δ ∈ K(N)∗ such that F = δ−1F1 and put

fF := χf (δ)f |k δ.

By Remark 3.3, fF is a formal Fourier-Jacobi series for the boundary component F
and the group K(N). It is easily checked that the family (fF )F∈I1 defines a formal
Siegel modular form of weight k for K(N). According to Corollary 4.10 it must
come from a holomorphic Siegel modular form in Mk(K(N)). �

Remark 4.13. It suffices to check condition (4.13) for u running through a set of
generators of Γ0(N)∗. Therefore, Theorem 4.12 may be useful for computations
with Siegel modular forms for the paramodular group. For instance, if N = 1, 2, 3,
then Γ0(N)∗ is generated by the translation matrix ( 1 1

0 1 ) and the Fricke involution.
Hence, in this case the strong symmetry condition follows from the formal modu-
larity of f for K(N)F1

and from (4.12) for the single matrix γ = μN . This recovers
part of the main result (Theorem 1.2) of [IPY].

In [IPY] the authors ask whether for general N it actually suffices to require
(4.12) for the single element μN . More precisely, they consider a formal Fourier-
Jacobi series f of weight k for the standard boundary component F1 and the group
K(N) as above. They say that f satisfies the involution condition, if there is an
ε ∈ ±1 such that the formal Fourier expansion of f satisfies f |k μN = εf . In terms
of the Fourier coefficients this means

a

(
T2/N −T12

−T12 NT1

)
= ε · a

(
T1 T12

T12 T2

)
(4.14)

for all T =
(

T1 T12
T12 T2

)
∈ L∨

F1
. It is asked in the introduction of loc. cit. whether any

formal Fourier-Jacobi series f as before which satisfies the involution condition is
the expansion of a classical holomorphic modular form of weight k for the group
K(N)?

When N is prime, one could try to approach this question by using the fact
that K(N)∗ is generated by K(N)F1

and μn to show that any formal Fourier-
Jacobi series f which satisfies the involution condition (4.14) is actually strongly
symmetric in the sense of (4.12). To this end one would have to show that for any
γ ∈ K(N)F0

the formal Fourier-Jacobi series fF1
and fγF1

are compatible at F0.
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