
Real-Time Implementation of Machine-Learning DSP

Downloaded from: https://research.chalmers.se, 2024-12-20 13:28 UTC

Citation for the original published paper (version of record):
Börjeson, E., Liu, K., Häger, C. et al (2024). Real-Time Implementation of Machine-Learning DSP.
2024 Optical Fiber Communications Conference and Exhibition, OFC 2024 - Proceedings.
http://dx.doi.org/10.1364/ofc.2024.th3j.1

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



Real-Time Implementation of Machine-Learning DSP

Erik Börjeson, Keren Liu, Christian Häger, and Per Larsson-Edefors
Chalmers University of Technology, Gothenburg, Sweden

erikbor@chalmers.se

Abstract: While ML algorithms can learn and adapt to channel characteristics, imple-
mentation of ML-based DSP hardware is challenging. We demonstrate a real-time imple-
mentation of a model-based ML equalizer that compensates a non-linear and time-varying
channel. © 2024 The Author(s)

1. Introduction
Machine learning (ML) has garnered significant interest in recent literature as a potential avenue for advancing
digital signal processing (DSP) within optical communication receivers. This trend is driven by the potential of
ML to learn and compensate for signal impairments that are not easily addressed by conventional techniques, such
as non-linear effects. Indeed, traditional methods often rely on predefined algorithms that may not be well-suited to
handle the complex and dynamic nature of optical channels. In contrast, ML algorithms can learn and adapt to the
channel characteristics, potentially leading to more robust and efficient signal processing provided that a suitable
hardware implementation of these, often complex, algorithms can be developed. Generic function approximators
like deep neural networks, while powerful and general purpose, may require significant training data and often lack
interpretability due to their black-box nature. Model-based ML techniques on the other hand, take into account
domain-specific insights [1]: By infusing models with domain knowledge, such as the physical characteristics of
optical channels, these techniques can guide the learning process, potentially reducing the amount of required
training data and relaxing computational resources.

Real-time DSP ML implementations can be tested out on field-programmable gate arrays (FPGAs). Compared
to the graphics processing units (GPUs) more commonly associated with cloud-based ML, FPGAs have a num-
ber of advantages when used for real-time processing. FPGAs are customizable, enabling a designer to tailor
the implementation to a specific problem, using custom operations and datatypes, meeting requirements on data
throughput and latency. Often an FPGA design is used as a precursor to higher-throughput application-specific
integrated circuits (ASICs), commonly used in field-deployed DSP systems.

FPGA implementations of neural network (NN) ML equalizers with static non-linearity compensation have
been demonstrated for IM/DD links [2], passive optical networks [3], optical interconnects [4], and coherent
systems [5]. Additionally, ASIC design for model-based ML static equalization was studied in [6]. In all of the
papers cited above, training is performed offline and only the inference is implemented in hardware. The addition
of the ability to conduct on-chip training would allow for real-time adaptation to changing channel conditions.
However, this approach is less common in the literature, due to the high hardware complexity associated with
implementing online training. In [7], we introduced an FPGA implementation of a model-based multi-layer ML
equalizer with pilot-based on-chip training, which enables dynamic compensation of both linear and non-linear
impairments. FPGA-based on-chip training has been demonstrated also for other systems, such as IM/DD in [8]
and a self-coherent system in [9], which features an adaptive equalizer based on unsupervised K-means clustering.

Here, we introduce some of the concepts related to circuit implementations of ML algorithms, using as example
an extended version of our previous equalizer [7]. We demonstrate real-time ML equalization using an FPGA-
based Fiber-on-Chip (FoC) [10] test system and illustrate design tradeoffs for resource-efficient implementations.

2. Circuit Design for Machine Learning
When developing DSP circuits, a fixed-point number representation is often preferred over floating-point as it
results in a circuit with higher throughput, lower latency and lower resource usage. However, the precision is
limited and selecting a suitable wordlength for all signals in a design is a non-trivial task. Due to the bit-growth
associated with performing operations such as multiplication, truncation or rounding is extensively used through-
out a circuit implementation [10], which can affect the performance of both conventional DSP designs and neural
networks [11]. Additionally, complex expressions including e.g. trigonometric functions and exponentials do not
always have straightforward circuit implementations, but often need to be implemented using extensive look-up
tables (LUTs) or approximated using methods like Taylor expansions, resulting in a performance penalty.

Developing an FPGA design of an ML system comes with its own set of challenges, especially when including
on-chip training. Both the inference, or forward propagation (FP), and the training, or backward propagation (BP),
paths contain a large number of mathematical operations. Hardware resources in the FPGA fabric such as DSP
slices, which are specialized circuits containing efficient multipliers, can quickly become scarce. Since they are
a limited resource, we need to use DSP slices in an economical way. Many NN FPGA designs reuse the same



RNG mod RRC
transmitter

AWGN

channel

PSP rot. DGD PSP rot.

sectionsK

equalizer demod analysis

Kerr

receiver

FP

BP loss

(a)

decision

pilot

+
-

symbol

DD sel

difference

0

1

(b)

Fig. 1: Block diagrams showing (a) the integration of the ML equalizer into our FoC emulation environment and (b) the logic
added to the loss block to enable the equalizer to run in decision-directed (DD) mode.

multipliers for multiple different operations, but since the symbol rates targeted in fiber-optic communication
systems are much higher than the FPGA clock rate, this is not possible for the FP path. Here, we need to unroll
the NN layers and introduce parallel processing of samples to reach the target throughput. In the BP path, we can
process the data in mini-batches, which can facilitate reuse of FPGA resources. To reduce the number of weights
used during inference, pruning is commonly done. However, this works best for offline training: When online
training is used, pruning becomes difficult as the model parameters are unknown when designing the circuit.

Many FPGAs include multipliers with input wordlengths of 18 bits or more. Using longer wordlengths than
18 can thus incur a large resource overhead. In contrast, when targeting ASICs, each additional data bit can
have a significant impact on chip area: The wordlengths should thus be minimized under performance penalty
constraints. The DSP slice usage remains constant as long as the total number of data bits fits in one slice. The
choice of wordlength will clearly have an impact on other FPGA resources, but for DSP implementations the
FPGA’s DSP slices are typically the limiting resource.

Including the BP on the FPGA instead of using conventional offline training, e.g. in TensorFlow, creates a
feedback loop in the design; this poses an implementation challenge. Firstly, the delay in the FP does not just
affect the equalizer’s latency, but the combined FP and BP delay affects both the equalizer convergence speed and
the speed with which the equalizer can track time-dependent impairments. The delay is caused by the pipelining
registers inserted in the design to enable practical clock rates, which in turn affects how large the parallelism needs
to be to reach the target throughput. Secondly, with dynamic updates of the NN weights, the DSP system becomes
sensitive to small BP path errors, which may accumulate over time, potentially degrading system stability.

3. Model-Based ML Equalizer
The model-based ML equalizer used in this work is based on the split-step solution of the inverse Manakov
polarization mode dispersion (PMD) equation. The FP path consists of three sections, each with one fixed non-
linear Kerr-effect compensator and a trainable linear step. The linear steps are implemented as 2×2 multiple-input
multiple-output finite impulse response (MIMO-FIR) filters, which use real-value coefficients and are applied
independently to the I and Q parts of the two polarizations. We use 2x-oversampling for the input signals, which
are downsampled in a matched filter (MF), in the final FP stage. The BP path follows the same structure as the
FP path, having linear and non-linear layers. To reduce the resource usage, the BP of the MF and linear layers
use the extra clock cycles provided by batch-processing to reuse hardware. Basic reusable operators have been
extracted from the mathematical descriptions of the BP to enable resource sharing when simultaneous processing
is unnecessary. Compared to our previous paper [7], where more details of the implementation can be found, the
equalizer has been updated with a decision-directed (DD) mode and an alternate version of the BP Kerr module,
which uses LUTs instead of first-order Taylor expansions.

4. Evaluation Method
Designs containing feedback paths can suffer from stability issues, which can be challenging to uncover due to
the long time it takes to run logic simulations of complex circuit implementations. To speed up analysis, we use
our FoC system model, which emulates a fiber-optic communication system on an FPGA [10]. The FoC system
uses digital models of the transmitter and channel and on-board analysis tools, to reduce the evaluation times
of DSP modules by orders of magnitude over simulation. The FoC system block diagram in Fig. 1a includes the
Kerr-effect emulator described in [12]. This system enables us to change, during emulation, the amount of additive
white Gaussian noise (AWGN), principal state of polarization (PSP) rotations, differential group delay (DGD) and
Kerr effect. We can also control equalizer parameters, such as activation of DD mode.

5. Results
In the BP path, a non-biased round-to-even approach is used in all places where the signal wordlengths are reduced
to prevent bit-growth. To evaluate how a small rounding bias in the BP path affects the convergence and stability
of the equalizer, we replace one of these rounding operations in the loss function with round-half-up. This type of
rounding is very common in digital circuit design due to its simplicity, but it introduces a small positive bias to the
result by rounding all half-way values up. In the FoC evaluation, we emulate a 32-Gbaud dual-polarization QPSK



(a) (b)

Fig. 2: Results from FoC emulation runs showing (a) how the BER stability is affected by
a small rounding bias in the loss function, and (b) the difference between using a Taylor
expansion and a LUT in the Kerr BP calculation, including the use of a DD mode.

Slice DSP Block
LUTs slices RAM

FoC 33,250 274 104
Equalizer 190,996 1,662 0
-FP 22,804 342 0
-BP 168,365 1,320 0
--loss 4,543 0 0
--MF 13,247 104 0
--linear 139,856 768 0
--Kerr 19,615 736 0

Total 52% 54% 7%

Table 1: FPGA resources used on a
Xilinx VC709 development board.

system, transmitting over a 300-km fiber using a 3-section channel model, shown in Fig. 1a, with randomized PSP
rotations and a PMD parameter of D = 0.2 ps/

√
km. The launch power is set to 10 dBm and the Kerr non-linearity

to γ = 1.2 rad/W/km. Finally, we add AWGN to reach a signal-to-noise ratio (SNR) of 16 dB. We run the FoC
system for 211 samples, capture the number of processed bits and bit errors every minute, and use those to calculate
the bit-error rate (BER) for the last minute of runtime, which corresponds to a window of approximately 2.5 ·109

samples. The results, shown in Fig. 2a, demonstrate that a small bias in the BP path can have a large effect on
the convergence time, stability and the BER after convergence. It also illustrates the need for long simulations to
uncover stability issues. Such simulations would be hard to accomplish without a system like FoC, which cuts the
runtime by approximately 5 orders of magnitude compared to software-based logic simulations.

To compare the two different implementations of the Kerr BP module, we perform FoC runs of both solutions
using the same channel parameters as above with identical randomized data and channel properties. To be able
to view fast changes we use a smaller capture window of 5 seconds. The results are shown in Fig. 2b, where the
LUT-based solution has a faster convergence speed and a lower final BER. A demonstration of the DD mode,
which is started after 1010 samples to be well away from the convergence phase, is also included in the graph. The
DD mode tracks the pilot-based version well, which is expected for this relatively high SNR.

The total utilization of a complete FPGA system targeting a Xilinx VC709 development board is shown in
Table 1, including an equalizer using the Taylor expansion in the Kerr BP module and non-biased rounding.
The majority of the resources are used by the BP portion of the equalizer, while the FoC system is relatively
small. Using non-biased rounding instead of the simpler round-half-up does not have any significant impact on
the resource usage. However, using a LUT-based solution instead of a Taylor expansion in the Kerr BP module
increases the total DSP usage of the equalizer with 13%. An additional issue is that the propagation delay of the
slower LUT-based Kerr BP module becomes a limiter to the maximum clock rate of the system. This can be solved
by introducing an extra pipelining stage at the cost of a higher latency in the feedback loop.

6. Conclusion
We have discussed some of the issues related to designing a machine-learning system targeting field-programmable
gate arrays (FPGAs) or application-specific integrated circuits (ASICs). We focus on a model-based approach,
where we include domain-specific insights to design a system, as opposed to a more generic deep neural network.
Using a non-linear multiple-input multiple-output (MIMO) equalizer as an example and an FPGA-based emulation
environment, we show how minor rounding biases and approximations, such as Taylor expansions, can have
significant effects on the equalizer output, illustrating the need for long simulations runs and highlighting the
challenge of finding good trade-offs between circuit complexity and DSP performance.
Acknowledgements: The work of C. Häger was supported by the Swedish Research Council under grant no. 2020-04718.

References
1. C. Häger et al., “Physics-based deep learning for fiber-optic communication systems,” IEEE J. Sel. Areas Commun. 39, 280–294 (2021).
2. M. Chagnon et al., “Quantized deep neural network empowering an IM-DD link running in realtime on a field programmable ...” in Proc. ECOC, (2019).
3. N. Kaneda et al., “FPGA implementation of deep neural network based equalizers for high-speed PON,” in Proc. OFC, (2020).
4. M. Li et al., “FPGA implementation of time-interleaved pruning neural network equalizer for short reach optical interconnects,” in Proc ACP, (2021).
5. P. J. Freire et al., “Implementing neural network-based equalizers in a coherent optical transmission system using field-programmable gate arrays,” JLT (2023).
6. C. Fougstedt et al., “ASIC implementation of time-domain digital backpropagation with deep-learned chromatic dispersion filters,” in Proc. ECOC, (2018).
7. K. Liu et al., “FPGA implementation of multi-layer machine learning equalizer with on-chip training,” in OFC, (2023), p. M1F.4.
8. J. Ney et al., “Unsupervised ANN-based equalizer and its trainable FPGA implementation,” in Proc. EuCNC/6G Summit, (2023).
9. E. Giacoumidis et al., “Real-time machine learning based fiber-induced nonlinearity compensation in energy-efficient ...” APL Photonics 5, 2–7 (2020).

10. E. Börjeson et al., “Fiber-on-Chip: Digital emulation of channel impairments for real-time DSP evaluation,” IEEE JLT 41, 888–896 (2023).
11. S. Gupta et al., “Deep learning with limited numerical precision,” in Proc. ICML, (2015), p. 1737–1746.
12. K. Liu et al., “FPGA-based optical Kerr effect emulator,” in SPPCom, (2022), p. SpTh1I.2.


