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Summary
Gothenburgh Einstein solver Collection (GECo) is a collection of solvers for stationary self-
gravitating collisionless kinetic (Vlasov) matter. The gravitational interaction may be taken
to be either Newtonian or general relativistic. GECo is focused on the solutions which are
axisymmetric, meaning that the gravitational and matter fields have a rotational symmetry.
In this setting stationary solutions may be generated with the choice of a particular ansatz
function for the Vlasov distribution function. GECo allows users to easily introduce new ansatz
functions and explore the properties of the resulting stationary solutions.

Statement of need
In understanding a physical model one usually starts with a simplified setting, such as by
imposing symmetry assumptions. In the case of self-gravitating kinetic matter, stationary
solutions in the spherically symmetric setting are well understood (Andréasson, 2011; Binney
& Tremaine, 2008). However, many of the physical systems of interest such as accretion
disks, galaxies, galaxy clusters and so on, require models beyond spherical symmetry. When
going beyond spherical symmetry, the coupled and nonlinear PDE systems in high dimensions
– such as the self-gravitating Vlasov equations – are difficult to investigate analytically, and
numerical approaches are essential to understand behavior of solutions and to answer questions
of physical and mathematical interest. The GECo code started with the desire to understand
properties of stationary and axisymmetric solutions of the Einstein-Vlasov system.

Method and implementation
To construct stationary solutions, the code relies on a reduction method in which the distribution
function for the matter is assumed to depend on the position and momentum phase-space
coordinates solely through conserved quantities, such as the particle energy and angular
momentum about the axis of symmetry. With this ansatz the Einstein–Vlasov or Vlasov–Poisson
system (depending on the gravitational model used) forms a semi-linear integro-differential
system of equations. In GECo, the form of the ansatz is called a MaterialModel and several
different choices are implemented as subclasses of the FEniCS/DOLFIN Expression class. The
semi-linear integro-differential system is solved via a mass-preserving fixed point scheme using
Anderson acceleration (Walker & Ni, 2011). At each step of the fixed point method, the
linear system of equations is solved using finite elements implemented with the FEniCS toolkit
(Logg et al., 2012). The computational domain is taken to be the half-meridional plane
{(𝑟, 𝑧) ∶ 𝑟 > 0, 𝑧 > 0} in cylindrical coordinates, with a semi-circular outer boundary; see
Figure 1. Details of the mathematical formulation and implementation can be found in (Ames
et al., 2016)
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Functionality
The entrypoint for GECo is a run script written in Python. In this file, the user selects the solver
class (EinsteinVlasovSolver or VlasovPoisson) that specifies the model for the gravitational
interaction, a MaterialModel to specify the particular form of the reduction ansatz, and several
parameters related to the model and discretization. Calling the solve method within the script
invokes the solver to construct a stationary solution via the fixed point scheme mentioned
above, which runs until convergence within a specified tolerance. Gravitational fields and
matter quantities are saved in XMDF and XML format that can be consumed by visualization
software like Paraview and VisIT, as well as postprocessing scripts. Multi-component solutions
may be constructed from multiple MaterialModels by combining models in a weighted sum.

GECo includes several postprocessing routines that:

• generate additional scalar data not computed during the fixed point iteration;
• represent the matter density as well as an ergoregion (if present) in ℝ2 (i.e. reflected

about the reflection plane and symmetry axis), as shown in Figure 2;
• represent the matter density as well as an ergoregion (if present) as a volume in ℝ3,

facilitating visualization of contours, as shown in Figure 3;
• represent the density as a three-dimensional point cloud, as shown in Figure 4;
• compute the Kretschmann curvature scalar.

Figure 1: Computed spatial density of torus solution on the quarter plane computational domain.
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Figure 2: Computed spatial density of torus solution extended to 𝑥𝑦-plane.

Figure 3: Computed spatial density of torus solution visualized as iso surfaces in 3D.
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Figure 4: Computed spatial density of torus solution visualized as a point cloud.

Documentation
The documentation for GECo is published on the GECo GitHub pages.

Limitations and future work
We briefly list a few directions of interest for future work.

• GECo currently uses a uniform mesh. However, in axisymmetry (unlike spherical sym-
metry) the solution is not uniquely defined outside the support of the matter, and
asymptotically flat boundary conditions must be applied sufficiently far from the matter.
An adaptive mesh refinement algorithm was developed and used in (Ames et al., 2019)
to investigate properties of extreme rotating toroidal solutions. It remains however to
integrate such an adaptive mesh refinement scheme into the core of GECo.

• Currently the particles only interact via the gravitational field generated by the particle
distribution. An exciting area at the frontier of astrophysics currently is the study of
accretion disks, where both central black holes and electromagnetic fields play important
roles. To lay groundwork for this area in fundamental relativity, it is thus highly desirable
to extend GECo to the Einstein-Vlasov-Maxwell system and allow the inclusion of central
black holes.

• While multi-species solutions can be generated in which the different species follow
different distribution ansatzes, the particle properties are otherwise taken to be the same.
Astrophysical systems however often consist of particle-like entities with very different
properties (such as stars and dust). We thus propose to allow different particle species
to have different particle properties such as mass and charge.
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