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Abstract 
Background.  Radiologically presumed diffuse lower-grade glioma (dLGG) are typically non or minimal enhancing 
tumors, with hyperintensity in T2w-images. The aim of this study was to test the clinical usefulness of deep learning 
(DL) in IDH mutation prediction in patients with radiologically presumed dLGG.
Methods.  Three hundred and fourteen patients were retrospectively recruited from 6 neurosurgical departments 
in Sweden, Norway, France, Austria, and the United States. Collected data included patients’ age, sex, tumor mo-
lecular characteristics (IDH, and 1p19q), and routine preoperative radiological images. A clinical model was built 
using multivariable logistic regression with the variables age and tumor location. DL models were built using MRI 
data only, and 4 DL architectures used in glioma research. In the final validation test, the clinical model and the 
best DL model were scored on an external validation cohort with 155 patients from the Erasmus Glioma Dataset.
Results.  The mean age in the recruited and external cohorts was 45.0 (SD 14.3) and 44.3 years (SD 14.6). The co-
horts were rather similar, except for sex distribution (53.5% vs 64.5% males, P-value = .03) and IDH status (30.9% 
vs 12.9% IDH wild-type, P-value <.01). Overall, the area under the curve for the prediction of IDH mutations in the 
external validation cohort was 0.86, 0.82, and 0.87 for the clinical model, the DL model, and the model combining 
both models’ probabilities.
Conclusions.  In their current state, when these complex models were applied to our clinical scenario, they did not 
seem to provide a net gain compared to our baseline clinical model.

Key Points

•  The clinical and the deep learning models showed good results predicting IDH status.

•  Combined, these models showed good overall test and diagnostic properties.

Under current standards, a glioma diagnosis is confirmed 
with tissue analyses and classification according to the 2021 
World Health Organization Classification of Tumors of the 
Central Nervous System (WHO-CNS).1 However, before sur-
gery, a glioma diagnosis is presumed from magnetic reso-
nance imaging (MRI) findings.1–6 Thus, the MRI evaluation is 
fundamental in decision making regarding treatment strategy. 
Paradoxically, benefits of surgical treatment strategies may 

depend on the diagnosis, which is not known before surgery. 
For instance, although safety is a major priority in decision 
making, surgically induced deficits are known to be associated 
with reduced survival in isocitrate dehydrogenase (IDH) wild-
type glioblastoma.7 Conversely, in IDH-mutated lower-grade 
gliomas, the survival benefit of extensive resections is much 
higher, especially in patients with astrocytoma.8 These factors, 
combined with patient rehabilitation potential and estimated 
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recovery times, may affect surgical aggressiveness in de-
cision making. Thus, there is great interest in predicting 
the histomolecular diagnosis based upon the preoperative 
MRI.9,10

In mixed datasets containing both typical IDH wild-type 
glioblastoma and IDH-mutated grade 2 gliomas, the pre-
diction of IDH status is very accurate.11 However, since the 
vast majority of glioblastomas exhibit ring-like enhance-
ment and radiological necrosis, traits in practice never seen 
in IDH-mutated grade 2 tumors, this is not as surprising. 
The main clinical problem is thus not to separate these ra-
diologically very different entities (Figure 1), albeit to pre-
dict IDH status in similar looking tumors, for instance the 
non and minimal enhancing diffuse gliomas traditionally 
said to be radiologically presumed lower-grade gliomas 
(dLGG). Non and minimal enhancing diffuse gliomas, usu-
ally seen in preoperative contrast-enhanced T1-weighted 
(T1c), include no contrast enhancement, faint and patchy 
contrast enhancement, and focal or nodular contrast en-
hancement in the intra-tumoral area.12–14

In our recent population-based study, approximately 
one third of the radiologically presumed dLGG (including 
non and minimal enhancing tumors) held a different di-
agnosis than dLGG after histomolecular evaluation.15 This 
phenomenon is also reflected in other case selections.14,16 
The idea that non-enhancing gliomas can be clearly separ-
ated is probably fueled because of specific features seen 
and used clinically as well. Features such as calcifications 
or the so-called T2-FLAIR mismatch provide fair hints of 
diagnosis.17

Although extensive research has been produced in the 
field of deep learning, recent reviews have shown that 
there is a misuse of poor reporting standards and a lack of 
validation in clinical settings.11,18–20 Thus, it is still unclear 
what the net gain of complex models for radiological IDH 
status prediction is. Our aim was to test the clinical use-
fulness and to present the current level of performance 
using previously published well-performing deep learning 
architectures in radiologically presumed lower-grade 
glioma without significant contrast enhancement. We used 
multicenter cohorts for model building and an external val-
idation cohort, with reporting according to recent check-
lists developed for this field.

Materials and Methods

Patient Inclusion

In this multicentric study including adult patients diag-
nosed with glioma, patients from 6 neurosurgical de-
partments were selected for training and in-training 
validation of the predictive models (ie, modeling co-
hort). We selected patients from the Erasmus Glioma 
Database as our external validation cohort, serving as 
an unseen dataset.21 The 2016 World Health Organization 
Classification of Tumors of the Central Nervous System 
(WHO-CNS) was used for this study.22 The inclusion cri-
teria were adult patients (age ≥ 18 years old) with a diag-
nosis of diffuse glioma grades 2 or 3 with availability of 

Importance of the Study

Although there is a need to perform personalized glioma 
surgery, preoperatively, the histomolecular diagnosis is 
most often unknown for patients with non or minimal 
enhancing presumed glioma. Application of clinical 
models is not widespread and knowledge about their 
predictors may also vary among clinicians. In this sce-
nario, predicting IDH mutations with high specificity 

would allow time for better patient counseling and sur-
gery planning. This study shows that in their current 
state, the usefulness of deep learning in the radiolog-
ically presumed lower-grade glioma scenario is not 
clearly superior to conventional models based on clin-
ical data. Efforts to generate models to answer this clin-
ical question should be encouraged.

A B
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Figure 1. IDH-mutated diffuse glioma grade 2 compared to a grade 4 IDH wild-type glioblastoma. Axial images of 2 MRI, contrast-enhanced 
T1-weighted, showing a patient with a non-enhancing glioma (A) compared to another patient with a typical ring-like enhancing glioblastoma (B).
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routine preoperative MRI images (T1c, T2w images, and 
FLAIR images). Patients with a diagnosis of diffuse glioma 
WHO-CNS 2016 grade 4, and patients lacking molecular 
data needed for the WHO-CNS 2016 classification were ex-
cluded. For a flow chart and a detailed list of excluded pa-
tients by center of origin, we refer to the Supplementary 
Material.

The study was approved by the Swedish Ethical Review 
Authority, nr. 702-18. For further details on inclusion and 
the collected data, we refer to the Supplementary Material.

Clinical Variables and Analytical Methods

Recorded clinical variables included age, sex, tumor 
volume, coordinates of the tumor center of gravity (tumor 
location), molecular assessment of IDH status, and 1p19q 
status (required only for IDH-mutated tumors). Molecular 
assessment was provided by each center according to their 
institutional practice.

Tumor delineations in the preoperative MRI for the 
modeling cohort were produced centrally using a 
semiautomated method that was previously reported (ie, 
image segmentation).23 The Erasmus Glioma Database was 
provided with tumor delineations.21 Due to the characteris-
tics of the image processing method, in cases of multifocal 
tumors, only the main tumor component was preserved 
as the region of interest. For details on the segmentations 
of the region of interest, we refer to the Supplementary 
Material.

All images were processed similarly before the anal-
ysis, producing a multicentric train and in-training valida-
tion dataset and an equally processed external validation 
dataset. The final datasets consisted of 3 sets of axial im-
ages per patient, including 3 MRI modalities T1c, T2w, 
and FLAIR. To avoid information leakages (ie, leaking in-
formation into the training data from the external valida-
tion dataset), all images were separately processed strictly 
respecting patient and the origin center partition. We fol-
lowed a standard image processing method previously 
reported.24 For details on image processing including all 
the steps from image extraction from the respective hos-
pital PACS (picture archiving and communication system) 
to the input of the artificial network, we refer to the 
Supplementary Material.

Statistics and Probability

Descriptive and comparative statistics were produced with 
IBM SPSS Statistics 28 (IBM Corp.). Central tendencies and 
variable distribution are expressed in means and standard 
deviations (SD). Data distribution was assessed with the 
Kolmogorov–Smirnov test. Comparison between groups 
were produced with the t-test or the Mann–Whitney test, 
and the Fisher’s exact test, as appropriate. In contrast to 
the machine-learning regression model, the deep learning 
model require 2 datasets for model building (ie, train and 
in-training validation partitions). For comparison pur-
poses, data about train and in-training validation partitions 
are grouped and presented together as the modeling co-
hort. The external validation dataset is presented as the ex-
ternal validation cohort.

Model Generation

A clinical-based machine-learning model was trained 
using multiple logistic regression. First, simple logistic re-
gressions with IDH status as the dependent variable were 
performed using the available preoperative clinical vari-
ables of the modeling cohort as predictors (ie, age, sex, 
tumor volume, and the coordinates of the tumor center 
of gravity). Then, a result-driven multivariable logistic re-
gression based upon the statistically significant predictors 
from the simple logistic regressions was produced. It also 
used IDH status as the dependent variable, and age to-
gether with the coordinates of the tumor center of gravity 
as predictors. All tests were 2-sided, the statistically sig-
nificant level was set to P-value < .05. For details on the 
simple and multivariable logistic regressions, we refer to 
the Supplementary Material.

The deep learning models were trained only with the pre-
operative imaging data without access to the preoperative 
clinical variables. Based on the evidence from the avail-
able literature, 4 analytical frameworks (ie, reproducible 
deep learning architectures or artificial neural networks) 
were chosen: Convolutional Auto-Encoders, Residual 
Network, Dense Network, and Mobile Network.25–28 For 
a short discussion of the selection process, we refer to 
the Supplementary Material. Using the modeling cohort, 
all frameworks were trained and internally validated re-
specting the same data partition (train and in-training val-
idation) and the same set of hyperparameters. According 
to a preplanned search grid, a total of 208 models were 
built. Only the model with the best performance in the 
in-training validation data partition was selected for ex-
ternal validation and discussed in the study. For details on 
data partition, set of hyperparameters, choice of analytical 
frameworks, and metrics of performance for model selec-
tion, we refer to the Supplementary Material.

In short, the clinical-based machine-learning model (here-
after baseline clinical model) and the deep learning model 
were generated based exclusively on the modeling cohort 
and were scored using the external validation cohort. For a 
flow chart describing model generation and scoring work-
flow, we refer to the Supplementary Material. All the results 
disclosed in the following sections derived from scoring 
these models in the external validation cohort.

Metrics of Reporting and Performance Evaluation

The metrics of reporting included a confusion matrix of the 
actual and predicted positive (IDH-mutated) and negative 
(IDH wild-type) classes, together with the model accuracy, 
sensitivity, specificity, positive predicted value (PPV), nega-
tive predicted value (NPV), and area under the curve (AUC) 
of the prediction (ie, classification task). Except for the 
area under the curve that was calculated with SPSS based 
upon the probability of the positive class of the resulting 
prediction, all other metrics derive from the confusion 
matrix. Youden’s J statistic was used to select the optimal 
predicted probability cut off. In addition, the default clas-
sification cutoff of 0.5 together with an optimal cutoff at 
specificity 0.90 were used to report the model metrics in 
the Supplementary Material.
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Radiological Post Hoc Analysis

A radiological post hoc analysis was carried on as an ad-
ditional evaluation method. All cases misclassified by the 
baseline clinical model, the deep learning model, or the 
combined model (ie, false positives and false negatives), 
were visually inspected by radiologists (E.T., J.F.S.). The in-
spection had 2 aims: first, to identify any irregularities in 
the images resulting from technical manipulation (image 
processing); second, to identify relevant clinical patterns in 
the images associated with the results of the prediction.

Standards of Reporting

In this study, we followed the recommendations of the 
Checklist for Artificial Intelligence in Medical Imaging, in-
cluding aspects covered by the reproducibility and replica-
bility checklist, and the checklist for transparent reporting 
of multivariable prediction models for individual prognosis 
or diagnosis.29–31 These are available in the Supplementary 
Material together with the checklist for evaluation of 
radiomics research.32

Results

Patient Characteristics

A total of 1576 patients were screened for the inclusion, 
570 patients were excluded due to a diagnosis other than 
diffuse glioma grades 2 or 3 (according to the WHO 2016 
classification), 181 patients were excluded due to missing 
molecular data, and 356 patients were excluded due to 
lack of one or more of the necessary MRI sequences after 
image processing. Thus, a total of 469 patients were in-
cluded in the study. The mean age was 44.8 years (SD 14.4), 
and 268 were males (57 %). In the study cohort, there were 
352 patients with IDH-mutated tumors (75%), 173 patients 
with 1p19q co-deleted tumors (37%), and 333 patients 
with grade 2 tumors (71%). For details on tumor grade ac-
cording to WHO 2016, contrast enhancement, volume, and 
location, we refer to Table 1.

Data Partition and Cohort Comparison

Data partition was made at the patient level including 255 
(81.2%) patients in the training partition and 59 (18.8%) pa-
tients in the in-training validation partition. The training 
partition of the modeling cohort include patients from 
Sahlgrenska University Hospital (227 cases), Karolinska 
University Hospital (20 cases), and St. Olav’s University 
Hospital (8 cases). The in-training validation partition of the 
modeling cohort include patients exclusively from GHU 
Paris Psychiatrie & Neurosciences (12 cases), University of 
California (28 cases), and Medical University of Vienna (19 
cases). Finally, the external validation cohort included only 
patients from The Erasmus Glioma Database (155 cases).

A comparison between patients in the modeling and ex-
ternal validation cohorts showed that there was no statisti-
cally significant difference between cohorts regarding age, 

tumor volume, or tumor location (measured as center of 
gravity). Sex, IDH status, and tumor grade were different 
between the modeling and external validation cohorts. 
A similar proportion of minimal enhancing tumors was 
found among cohorts, with proportionally less focal or 
nodular contrast enhancing tumors in the external valida-
tion cohort. For details, we refer to Table 2.

Baseline Clinical Model

The AUC of the baseline clinical model predicting IDH-
mutated status based on clinical variables was 0.86 (ac-
curacy 0.76, sensitivity 0.73, specificity 0.95, PPV 0.99, 
NPV 0.35). A confusion matrix including actual and pre-
dicted values of the baseline clinical model is disclosed 
in Table 3.

Analytical Frameworks

The best performing analytical framework was ResNet152.26 
The AUC of this deep learning model classifying IDH-mutated 
status based on preoperative MRI was 0.82 (accuracy 0.82, 
sensitivity 0.82, specificity 0.80, PPV 0.97, NPV 0.40). A confu-
sion matrix including actual and predicted values of the deep 
learning model is disclosed in Table 3. The results from the 
grid search are reported in the Supplementary Material.

Table 1. Patient and Tumor Characteristics (N = 469)

Variable Study cohort

Age at surgery, mean (SD) 44.8 (14.4)

Male, No (%) 268 (57.1)

Molecular data, No (%):

  IDHa mutated 352 (75.1)

  1p19qb co-deletion 173 (36.9)

WHOc 2016 tumor grade, No (%)

  Grade 2 333 (71.0)

  Grade 3 136 (29.0)

Contrast enhancement in T1c images, No (%)

  Faint and patchy 108 (23)

  Focal and/or nodular 46 (9.8)*

Coordinates of the tumor center of gravity in MNId image space, 
mean (SD)

  x 88.3 (24.3)

  y 134.1 (27.5)

  z 95.7 (28.9)

Tumor volume in MNI space, mean (SD)

  Milliliters 78.5 (79.6)

aIsocitrate dehydrogenase.
bShort arm chromosome 1 and the long arm of chromosome 19.
cWorld Health Organization Classification of Tumors of the Central 
Nervous System.
dMontreal Neurological Institute.
*In 5 of the cases part of the tumor showed ring-like enhancement.
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Combined Results

To combine the baseline clinical model and the deep learning 
model, the individual probabilities of both models were aver-
aged (Figures 2 and 3). The AUC of the combined model classi-
fying IDH-mutated status based on the averaged probabilities 
of the clinical and deep learning models was 0.87 (accuracy 
0.91, sensitivity 0.93, specificity 0.75, PPV 0.96, NPV 0.63). A 
confusion matrix including actual and predicted values of the 
combined model is disclosed in Table 3. Additionally, a com-
parison of the results for all three model is shown in Table 4.

Radiological Post Hoc Analysis

A total of 50 cases were misclassified by any of the models. 
For details on the number of false positives and false nega-
tives for each one of the models, we refer to Table 3. Upon 
traditional radiological interpretation, no irregularities 
product of technical manipulation were found. An inspec-
tion of the original MRI sequences for all 50 misclassified 
cases revealed the presence of artifacts in 17 (34%) cases 
when any of the MRI modalities were included.

Regarding the 4 false-positive cases predicted by the 
deep learning model, expert opinion coincided in that the 
radiological diagnosis indicated an IDH-mutated tumor. 

Table 2. Cohort Comparison of Patient and Tumor Characteristics (N = 469)

Variable Modeling 
cohort
N = 314

External 
validation 
cohort
N = 155

P-value

Age at surgery, mean (SD) 45.0 (14.3) 44.3 (14.6) .65

Male, No (%) 168 (53.5) 100 (64.5) .03

Molecular data, No (%):

  IDHa mutated 217 (69.1) 135 (87.1) <.01

  1p19qb co-deletion 104 (33.1) 69 (44.5) .07

WHOc 2016 tumor grade, No (%)

  Grade 2 206 (65.6) 127 (81.9) <.01

Contrast enhancement in T1c images, No (%)

  Faint and patchy 64 (20.4) 44 (28.4) .06

  Focal and/or nodular 39 (12.4)* 7 (4.5)** <.01

Coordinates of the tumor center of gravity in MNIc image space, mean (SD)

  x 87.2 (23.8) 90.5 (25.1) .17

  y 134.1 (28.1) 134.2 (26.1) .98

  z 96.2 (29.0) 94.7 (31.5) .62

Tumor volume in MNId space, mean (SD)

  Milliliters 75.2 (73.2) 85.0 (91.1) .24

aIsocitrate dehydrogenase.
bShort arm chromosome 1 and the long arm of chromosome 19.
cWorld Health Organization Classification of Tumors of the Central Nervous System.
dMontreal Neurological Institute.
*In 3 of the cases, part of the tumor showed ring-like enhancement.
**In 2 of the cases, part of the tumor showed ring-like enhancement.

 

Table 3. Confusion Matrices. Results from the baseline clinical 
model, the deep learning model, and the combined model. All models 
were scored with the external validation cohort (N = 155)

Confusion matrix baseline clinical model

Actual condition

Positive Negative

Predicted condition Predicted positive 99 1

Predicted negative 36 19

Confusion matrix deep learning model

Actual condition

Positive Negative

Predicted condition Predicted positive 111 4

Predicted negative 24 16

Confusion matrix combined model

Actual condition

Positive Negative

Predicted condition Predicted positive 126 5

Predicted negative 9 15

D
ow

nloaded from
 https://academ

ic.oup.com
/noa/article/6/1/vdae192/7889021 by C

halm
ers U

niversity of Technology user on 08 January 2025



 6 Gómez Vecchio et al.: Deep learning application in presumed lower-grade glioma

None of the 4 false-positive cases expressed contrast en-
hancement in T1c images, and one of them showed signs 
of T2-FLAIR mismatch. As for the 24 false-negative cases 
predicted by the deep learning model, 12 (50%) of the false-
negative cases extended over any of the temporal lobes. In 
addition, 6 (25%) of the 24 false-negative cases expressed 
faint or nodular contrast enhancement in T1c images.

Discussion

Under the premise that radiologically presumed lower-grade 
glioma (grades 2 and 3 with non or minimal enhancement) 

encompasses different tumor entities based on their IDH 
mutation status, we tested the usefulness of deep learning 
models in this clinical scenario by comparing their best 
prediction results with the predictions results of the base-
line clinical model. Interestingly, the baseline clinical model 
showed good performance in predicting IDH status based 
solely upon patients’ age and voxel-based tumor location. 
Furthermore, when the models were combined the results 
showed good overall test and diagnostic properties.

Compared to the baseline clinical model, the deep 
learning model showed lower specificity and higher sen-
sitivity in predicting IDH-mutated tumors. Showing that, 
both models have the potential to answer different clin-
ical questions based upon the selected operating point 
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Figure 2. Scatter plot of the predicted and averaged probabilities. From left to right each column displays the predicted probabilities of each 
model (including the averaged combined model) for the 155 cases of the external test dataset. While the y-axis represents the predicted proba-
bility, the color markers represent the true IDH status.
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(ie, prediction threshold). Furthermore, when both models 
were combined, we noticed a slight improvement in the 
AUC together with better overall test and diagnostic prop-
erties. Our findings were also sustained by the qualitative 
radiological post hoc analysis, showing that no irregu-
larities were found that could have undermined the per-
formances of the models. In the proposed scenario, when 
aiming to preoperatively identify IDH-mutated tumors, the 
deep learning model failed to deliver additional gain over 
the baseline clinical model, where we found the baseline 
clinical model to deliver more specific results than both the 
deep learning and the combined model.

We are aware of 6 clinical studies applying deep learning 
in a similar setting (ie, the identification of IDH status in rou-
tine preoperative MRI of patients with diffuse glioma grades 
2 or 3).33–38 However, only one of the studies validated their 
findings with an external cohort.34 The others applied dif-
ferent methods of data partition using unseeing cases to 
validate their findings.33,35–38 Altogether, the studies without 
external validation reported accuracies ranging from 0.73 to 
0.94, claiming also high sensitivity and specificity. In con-
trast, and in line with our results, the only study disclosing 
external validation results reported an AUC of 0.81 (accu-
racy 0.74, sensitivity 0.73, specificity 0.77).34 Our findings 
are in line with the literature, additionally showing that 
when compared with a baseline clinical model the clinical 
gain provided by these complex models at present seems to 
be modest. Still, application of clinical models is not wide-
spread and knowledge about their predictors may also vary 
among clinicians. It might therefore prove more practical to 
implement a DL model based on automated MRI analyses.

Recent studies focusing on predicting IDH status ap-
plying deep learning in mixed glioma cohorts have shown 
promising results.34,39–43 Like in our study, these ap-
proaches also use data collections in addition to single or 
multicenter cohorts, validating their findings with external 
datasets. Unfortunately, most of the patients in these 
studies have WHO-CNS 2016 grade 4 tumors and pre-
sumably a high proportion of contrast enhancing tumors. 
Altogether, these studies reported AUC ranging from 0.79 
to impressive 0.97. Only one of the studies included a clin-
ical baseline consisting of a logistic regression based on 
patients’ age and the presence of contrast enhancement.41 
Although not directly answering to the presumed diffuse 
lower-grade glioma scenario, the additional clinical gain 
provided by these models remains unknown, specially 
knowing that conventional radiological assessment al-
ready showed good results identifying adult-type diffuse 
glioblastoma.2

We believe that due to the generalized lack of essential 
metrics, poor reporting, and inclusion of mixed glioma 
cohorts, current deep learning implementations fail to 
provide a unified radiological solution in glioma tumor 
sub-classification. Our results indicate that DL models may 
facilitate sensitivity tuned inquiries showing that deep 
learning approaches, when applied to MRI in patients with 
radiologically presumed lower-grade glioma, seem to be 
able to produce accurate and stable predictions of IDH 
status. While DL models still have promising potential to 
predict IDH status, in our proposed scenario these complex 
models do not seem to provide a net gain when compared 
to baseline clinical models.

Although our study followed comprehensive reporting 
standards, it has some relevant limitations. Due to the 
restrictions imposed by the ethical review board, were 
we unable to include patients with diagnoses other than 
glioma. Based on our clinical experience, in clinical co-
horts of radiologically presumed adult-type diffuse glioma 
grades 2 or 3, there is generally a small proportion of pa-
tients with a differential diagnosis (eg, ganglioglioma and 
dysembryoplastic neuroepithelial tumors). In addition, 
our cohort lacks identification of CDKN2A/B homozy-
gous deletions, a key molecular marker for the identifica-
tion of IDH-mutant grade 4 tumors that might occur in a 
rather small proportion of our cohort. Due to the strict 
registration process applied to the images in the study, a 
considerable proportion of the modeling cohort was con-
sidered as missing key MRI sequences. This is presented 
as a limitation given the unavoidable dropout. However, 
it also represents a strength since images with irregular-
ities from technical manipulation were discarded. Due 
to the characteristics of the data, model generation and 
the comparison of the predicted results were carried on 
an unbalance dataset as is expected in presumed dLGG. 
To compensate for these class imbalances, different loss 
functions with focal hyperparameters were used to train 
the deep learning models. In addition, the predicted re-
sults were presented in confusion matrices including the 
actual patient count. Also, the inclusion of a radiological 
post hoc analysis allowed us to qualitatively assess our 
findings. Acknowledging that the DL models might be fur-
ther improved, for instance, by including the clinical vari-
ables as an additional input, for comparability purposes, 
the models were implemented respecting their original 
architectures.

Considering these limitations, our study is the first to ap-
proach applying deep learning to an entire cohort consisting 
exclusively of patients with adult-type diffuse glioma grades 

Table 4. Comparative Results Table of the Baseline, Deep Learning, and Combined Models Scored with the External Validation Cohort (N = 155)

Model Acc.a Sen. Spec. PPV NPV AUC

Baseline clinical model 0.76 0.73 0.95 0.99 0.35 0.86

Deep learning model 0.82 0.82 0.80 0.97 0.40 0.82

Combined model 0.91 0.93 0.75 0.96 0.63 0.87

aAll values were rounded to 2 decimals. Abbreviations: accuracy (acc.), sensitivity (sen.), specificity (spec.), positive predicted value (PPV), nega-
tive predicted value (NPV), area under the curve (AUC). Optimal predicted probability cutoff values from the coordinates of the AUC tables.
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2 or 3, typically demonstrating non or minimal contrast en-
hancement in which the final validation test was produced 
with an external cohort. Also, our study presents a large co-
hort of patients with adult-type diffuse glioma grades 2 or 3 
subject to a deep learning IDH status prediction, where the 
addition of a clinical baseline model provides new insights 
over the advantages and disadvantages of the tested method.

Conclusions

The compared models showed moderate to good test and 
diagnostic properties. However, in their current state, the 
usefulness of deep learning in the radiologically presumed 
lower-grade glioma scenario is not clearly superior to con-
ventional models based on clinical data. Efforts to generate 
models to answer clinically relevant questions should be 
encouraged.

Supplementary material
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