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Abstract
In this paper, we study ergodic Z𝑟 -actions and investigate expansion properties along cyclic subgroups. We show
that under some spectral conditions, there are always directions which expand significantly a given measurable set
with positive measure. Among other things, we use this result to prove that the set of volumes of all r-simplices
with vertices in a set with positive upper density must contain an infinite arithmetic progression, thus showing a
discrete density analogue of a classical result by Graham.
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2 M. Björklund and A. Fish

1. Introduction

The upper density 𝑑 (𝐸) of a set 𝐸 ⊂ Z𝑟 is defined by

𝑑 (𝐸) = lim sup
𝑁→∞

|𝐸 ∩ [−𝑁, 𝑁]𝑟 ]
(2𝑁 + 1)𝑟 ,

and we say that E is large if 𝑑 (𝐸) > 0. Let ℱ𝑟 represent all finite subsets of Z𝑟 and let ℳ𝑟 denote all
maps 𝜑 : R𝑟 → R𝑟 . We think of Z𝑟 as the standard unimodular lattice in R𝑟 . Let 𝒜 ⊂ ℱ𝑟 and ℬ ⊂ ℳ𝑟

be two sets. The pair (𝒜,ℬ) is called a density pattern matching if, for every large set 𝐸 ⊂ Z𝑟 and
𝐹 ∈ 𝒜, the set

ℬ𝐹 (𝐸) := {𝜑 ∈ ℬ : 𝜑(𝐹) ⊂ 𝐸}

is nonempty. In simpler terms, it means that every finite pattern in 𝒜 can be transformed into any large
set by a function in ℬ. Two fundamental questions in Density Ramsey Theory arise:

◦ Which pairs (𝒜,ℬ) constitute density pattern matchings?
◦ If (𝒜,ℬ) is a density pattern matching and 𝐸 ⊂ Z𝑟 is a large set, how ‘large’ is the set ℬ𝐹 (𝐸) for a

given 𝐹 ∈ 𝒜?

Typically, the elements in ℬ depend on some parameters, so when we refer to ‘largeness’ of ℬ𝐹 (𝐸), it
will be with respect to these parameters.

An archetypical result in this context is the theorem of Furstenberg and Katznelson [8], which extends
an earlier breakthrough of Szemeredi [19] and asserts that

𝒜 = ℱ𝑟 and ℬ = {𝜑𝑎,𝑏 (𝑣) = 𝑎𝑣 + 𝑏 : 𝑎 ∈ Z \ {0}, 𝑏 ∈ Z𝑟 }

forms a pattern density matching. In fact, they show that for every large set 𝐸 ⊂ Z𝑟 and finite subset
𝐹 ⊂ Z𝑟 , there exists 𝐴 ⊂ Z \ 0 of positive density such that for every 𝑎 ∈ 𝐴, there is 𝐵𝑎 ⊂ Z𝑟 with
positive density satisfying

ℬ𝐹 (𝐸) ⊃ {𝜑𝑎,𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵𝑎}.

Numerous extensions of this fundamental result have been explored over the years.
More recently, Magyar [14] has introduced a captivating class of density pattern matchings. To

illustrate these examples, consider 𝑝 ≥ 2 and assume 𝑟 > 2𝑝 + 4. Let 𝒜 denote the set of all subsets
comprising 𝑝 + 1 affinely independent vectors in Z𝑟 . For 𝑚 = (𝑚1, 𝑚2) ∈ N2, a rotation 𝑢 ∈ 𝑂 (𝑟), and
𝑏 ∈ R𝑟 , define

𝜑𝑚,𝑢,𝑏 (𝑣) = 𝑚1
√
𝑚2𝑢(𝑣) + 𝑏, 𝑣 ∈ R𝑟 .

Now, consider the set ℬ, which consists of all maps 𝜑𝑚,𝑢,𝑏 with parameters (𝑚, 𝑢, 𝑏) as described
above. Magyar’s theorem [14, Theorem 1.1] establishes that (𝒜,ℬ) forms a density pattern matching,
and for every large set E and 𝐹 ∈ 𝒜, there are an integer 𝑚1 (depending solely on the density of E) and
an integer n such that for all integers 𝑚2 ≥ 𝑛, there exist a rotation 𝑢 ∈ 𝑂 (𝑟) and a vector 𝑏 ∈ R𝑟 such
that 𝜑𝑚,𝑢,𝑏 (𝐹) ⊂ 𝐸 . Several generalizations of this result have been proven; see, for instance, [12]. It is
worth noting that these results typically demand a substantial dimensionality, with r being significantly
larger than the size of the patterns one aims to map into large sets. For instance, in the aforementioned
result, at least nine dimensions are required to map any three affinely independent vectors into any
large set. A rich body of literature is dedicated to analogous embedding problems in Euclidean spaces,
exemplified by [5, 13, 20].

A different exploration of this theme was undertaken by the authors and Bulinski in a series of papers
[1, 2, 7]. Here, we briefly highlight a key combinatorial result in [1]. Let Γ be a ‘sufficiently large’
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subgroup of SL𝑟 (Z). For every large set 𝐸 ⊂ Z𝑟 and 𝑝 ≥ 1, there is an integer n such that, for every
finite set 𝐹 = {𝑣𝑜, . . . , 𝑣𝑝} ⊂ 𝑛 · Z𝑟 , there are 𝛾𝑜, . . . , 𝛾𝑝 ∈ Γ and 𝑏 ∈ 𝐸 such that

{𝛾𝑜 (𝑣𝑜) + 𝑏, . . . , 𝛾𝑝 (𝑣𝑝) + 𝑏} ⊂ 𝐸. (1.1)

This result differs from the theorems of Furstenberg and Katznelson and Magyar in several aspects.
Notably, it does not involve mapping elements in the finite set F into E by the same function. Additionally,
only finite subsets of 𝑛 · Z𝑟 can be mapped into the set E, where the integer n only depends on |𝐹 | and
the set E. This constraint is crucial; for instance, if 𝐸 = 𝑛𝑜 ·Z𝑟 for some 𝑛𝑜 ≥ 2 and 𝑣 ∈ Z𝑟 has relatively
prime coordinates, then the set 𝐹 = {0, 𝑣} cannot be mapped into E as described in (1.1). However, the
dilation n only depends on E and not the finite set F, as in the theorem of Furstenberg and Katznelson.

1.1. Main combinatorial result

Our first theorem in this paper can be seen as an amalgamation of the last two results mentioned above.
Recall that a vector 𝜆 = (𝑘1, . . . , 𝑘𝑟 ) ∈ Z𝑟 is primitive if gcd(𝑘1, . . . , 𝑘𝑟 ) = 1.

Theorem 1.1. For every large set 𝐸 ⊂ Z𝑟 and 𝑝 ≥ 2, there are positive integers n and 𝑚1 and a primitive
vector 𝜆 ∈ Z𝑟 such that for all 𝜆2, . . . , 𝜆𝑝 ∈ Z𝑟 , there are 𝑚2, . . . , 𝑚𝑝 ∈ Z \ {0} and 𝜆𝑜 ∈ 𝐸 such that

𝜆𝑜 + 𝑚1𝑛𝜆 ∈ 𝐸, 𝜆𝑜 + 𝑚2𝑛𝜆 + 𝑛𝜆2 ∈ 𝐸, . . . , 𝜆𝑜 + 𝑚𝑝𝑛𝜆 + 𝑛𝜆𝑝 ∈ 𝐸.

The requirement of n is clearly necessary as shows the example of 𝐸 = 𝑛Z𝑟 . It is essential to highlight
that there is no dimension constraint concerning p. Furthermore, akin to the outcomes in [1], we do not
map the finite set 𝜆2, . . . , 𝜆𝑝 into E using the same affine function. While the dilation is always the same
for all elements, the translation component varies from element to element.

Our main application of Theorem 1.1 is concerned with volume spectra of large sets. To elucidate
this concept, consider 𝑟 + 1 points 𝑣𝑜, 𝑣1, . . . , 𝑣𝑟 ∈ Z𝑟 such that the differences 𝑣1 − 𝑣𝑜, . . . , 𝑣𝑟 − 𝑣𝑜 are
linearly independent and form the r-simplex 𝑆(𝑣𝑜, . . . , 𝑣𝑟 ) ⊂ R𝑟 , defined by

𝑆(𝑣𝑜, . . . , 𝑣𝑟 ) =
{ 𝑟∑
𝑘=0

𝑝𝑘𝑣𝑘 : (𝑝𝑜, . . . , 𝑝𝑟 ) ∈ [0, 1]𝑟+1,
𝑟∑
𝑘=0

𝑝𝑘 = 1
}
.

The elements 𝑣𝑜, . . . , 𝑣𝑟 are referred to as the vertices of 𝑆(𝑣𝑜, . . . , 𝑣𝑟 ). For a large set 𝐸 ⊂ Z𝑟 , our
focus now lies in understanding the structure of the set consisting of the volumes of all r-simplices with
vertices in E. This set is termed the volume spectrum of E and will be denoted by VolSpec𝑟 (𝐸). It is
well known (see, for example, [18]) that

Vol𝑟 (𝑆(𝑣𝑜, . . . , 𝑣𝑟 )) =
det(𝑣1 − 𝑣𝑜, 𝑣2 − 𝑣𝑜, . . . , 𝑣𝑟 − 𝑣𝑜)

𝑟!
,

where Vol𝑟 is the (signed) Euclidean volume. Notably, if (𝑣1 − 𝑣𝑜, . . . , 𝑣𝑟 − 𝑣𝑜) are not linearly
independent, then Vol𝑟 (𝑆(𝑣𝑜, . . . , 𝑣𝑟 )) = 0. With this background, we can now formulate and swiftly
prove the following corollary of Theorem 1.1. Hopefully, the proof will demonstrate the relevance of
the patterns guaranteed by this theorem.

Corollary 1.2. For every large set 𝐸 ⊂ Z𝑟 with 𝑟 ≥ 2, there exists a nonzero integer n such that

𝑛 · (Z \ {0}) ⊂ 𝑟! · VolSpec𝑟 (𝐸).

Remark 1.3. In the paper [9], Graham proves a similar result for finite colorings of the Euclidean space
R
𝑟 . Specifically, he establishes that for any finite coloring of R𝑟 and 𝛼 > 0, there is a monochromatic

set E for which there is a r-simplex S with vertices in E satisfying Vol𝑟 (𝑆) = 𝛼.
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4 M. Björklund and A. Fish

Proof. Let 𝐸 ⊂ Z𝑟 be a large set. By Theorem 1.1, there are integers 𝑛𝑜 and 𝑚1 and a primitive vector
𝜆 ∈ Z𝑟 such that for all 𝜆2, . . . , 𝜆𝑟 ∈ Z𝑟 , there are 𝑚2, . . . , 𝑚𝑟 ∈ Z\ {0} and 𝜆𝑜 ∈ 𝐸 such that the vectors

𝑣𝑜 = 𝜆𝑜, 𝑣1 = 𝜆𝑜 + 𝑚1𝑛𝑜𝜆, 𝑣𝑘 = 𝜆𝑜 + 𝑚𝑘𝑛𝑜𝜆 + 𝑛𝑜𝜆𝑘 , 𝑘 = 2, . . . , 𝑟,

all belong to E. Utilizing the multilinearity and alternation of the determinant, we have

det(𝑣1 − 𝑣𝑜, . . . , 𝑣𝑟 − 𝑣𝑜) = 𝑚1𝑛
𝑟
𝑜 · det(𝜆, 𝜆2, . . . , 𝜆𝑟 ).

Let 𝑛 = 𝑚1𝑛
𝑟
𝑜. As 𝜆2, . . . , 𝜆𝑟 are arbitrary in Z𝑟 , we deduce that

𝑟! · VolSpec𝑟 (𝐸) ⊃ 𝑛 · {det(𝜆, 𝜆2, . . . , 𝜆𝑟 ) : 𝜆2, . . . , 𝜆𝑟 ∈ Z𝑟 }.

It is well known (see, for instance, [15, Section II, Chapter 5]) that for every primitive vector 𝜆 ∈ Z𝑟 ,
there exist 𝜆′

2, . . . , 𝜆
′
𝑟 ∈ Z𝑟 such that det(𝜆, 𝜆′

2, . . . , 𝜆
′
𝑟 ) = 1. In particular, considering (𝑟 − 1)-tuples

(𝜆2, . . . , 𝜆𝑟 ) of the form (𝑚𝜆′
2, 𝜆

′
3, . . . , 𝜆

′
𝑟 ), for 𝑚 ∈ Z \ {0}, we see that

{det(𝜆, 𝜆2, . . . , 𝜆𝑟 ) : (𝜆2, . . . , 𝜆𝑟 ) ∈ Z𝑟−1} = Z \ {0}

for every primitive 𝜆 ∈ Z𝑟 , and we are done. �

1.2. Main dynamical results

It is straightforward to observe, and the details are provided in Section 6, that Theorem 1.1 can be
derived through Furstenberg’s Correspondence Principle from the following dynamical result. For the
remainder of this section, let (𝑋,ℬ𝑋 ) denote a standard Borel space with a measurable Z𝑟 -action

Z
𝑟 × 𝑋 → 𝑋, (𝜆, 𝑥) ↦→ 𝜆.𝑥.

We assume 𝜇 is a Z𝑟 -invariant and Z𝑟 -ergodic probability measure on X, referring to the pair (𝑋, 𝜇) as
an ergodic Z𝑟 -space. We also fix a 𝜇-measurable set 𝐵 ⊂ 𝑋 with positive 𝜇-measure.

Theorem 1.4. For every 𝑝 ≥ 2, there are positive integers n and 𝑚1 and a primitive vector 𝜆 ∈ Z𝑟 with
the property that for all 𝜆2, . . . , 𝜆𝑝 ∈ Λ, there are positive integers 𝑚2, . . . , 𝑚𝑝 such that

𝜇
(
𝐵 ∩ 𝑚1𝑛𝜆.𝐵 ∩

( 𝑝⋂
𝑘=2

(𝑚𝑘𝑛𝜆 + 𝑛𝜆𝑘 ).𝐵
))

> 0.

To establish Theorem 1.4, it is crucial to comprehend the actions of cyclic subgroups of Z𝑟 on (𝑋, 𝜇),
even if these actions are not necessarily ergodic. Despite the potential absence of ergodicity for any
single cyclic subgroup, we demonstrate that, given certain spectral constraints on the set B, there must be
a direction that substantially expands B. To clarify this concept, we introduce the following definitions.

Definition 1.5. Given an ergodic Z𝑟 -space (𝑋, 𝜇), an element 𝜆 ∈ Z𝑟 \ 0 is termed an ergodic direction
if the action of the cyclic subgroup Z𝜆 on (𝑋, 𝜇) is ergodic. A 𝜇-measurable set 𝐵 ⊂ 𝑋 with positive
𝜇-measure is called directionally expandable if, for every 𝜖 > 0, there exists 𝜆𝜖 ∈ Z𝑟 \ 0 such that
𝜇(Z𝜆𝜖 .𝐵) > 1 − 𝜖 .

These definitions raise two immediate questions:

◦ Do ergodic directions always exist?
◦ Is every 𝜇-measurable set with positive 𝜇-measure directionally expandable?

As the following examples illustrate, the answer to both questions is ‘no’.
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Example 1.6 (No ergodic directions). This example falls into a class of weakly mixing Z𝑟 -actions
described in [16, Examples 2.11, 5.11], attributed to Bergelson and Ward. Consider a weakly mixing
Z-action 𝑇 � (𝑌, 𝜈) and define the Z𝑟 -space (𝑋, 𝜇) by

(𝑋, 𝜇) =
( ∞∏
𝑖=1

𝑌, 𝜈N
)

and (𝜆.𝑥)𝑖 = 𝑇 〈𝜆,𝜂𝑖 〉𝑥𝑖 , for 𝜆 ∈ Z𝑟 and 𝑖 ∈ N,

where (𝜂𝑖) of Z𝑟 \ {0} is a fixed enumeration of Z𝑟 \ {0} and 〈·, ·〉 denotes the standard inner product
on Z𝑟 . One can readily check that the action Z𝑟 � (𝑋, 𝜇) is weakly mixing. Fix a 𝜈-measurable set
𝐵𝑜 ⊂ 𝑌 with 0 < 𝜈(𝐵𝑜) < 1. For a given 𝜆 ∈ Λ, we fix an index i such that 〈𝜆, 𝜂𝑖〉 = 0 and define

𝐵𝑖 = {𝑥 ∈ 𝑋 : 𝑥𝑖 ∈ 𝐵𝑜} ⊂ 𝑋.

Then, 𝜇(𝐵𝑖) = 𝜈(𝐵𝑜) ∈ (0, 1) and 𝐵𝑖 is invariant under the subgroup Z𝜆 < Z𝑟 . Indeed, since 〈𝜆, 𝜂𝑖〉 = 0,
we have

𝜆.𝐵𝑖 = {𝜆.𝑥 ∈ 𝑋 : 𝑥𝑖 ∈ 𝐵𝑜} = {𝜆.𝑥 ∈ 𝑋 : (𝜆.𝑥)𝑖 ∈ 𝐵𝑜} = 𝐵𝑖 .

In particular, every cyclic subgroup Z𝜆 < Z𝑟 acts nonergodically on (𝑋, 𝜇). However, for a given index
i, note that if 𝜆𝑜 ∈ Z𝑟 is instead chosen so that 〈𝜆𝑜, 𝜂𝑖〉 = 𝑛 ≠ 0, then

Z𝜆𝑜 .𝐵𝑖 =
{
𝑥 ∈ 𝑋 : 𝑥𝑖 ∈

⋃
𝑘∈Z

𝑇−𝑘𝑛𝐵𝑜
}
,

which is a 𝜇-conull subset of X since T is weakly mixing on (𝑌, 𝜈). Hence, for a fixed index i, the set 𝐵𝑖
is directionally expandable (in fact, we can take the same direction 𝜆𝜀 for every 𝜀 > 0).

Example 1.7 (A set which is not directionally expandable). Consider a finite-index subgroup Λ𝑜 < Z𝑟

such that Z𝑟/Λ𝑜 is not cyclic. Let 𝑋 = Z𝑟/Λ𝑜 with the canonical translation action by Z𝑟 and equip X
with the normalized counting measure 𝜇. The singleton set 𝐵 = {Λ𝑜} has positive 𝜇-measure, but for
every 𝜆 ∈ Z𝑟 , the cyclic subgroup Z𝜆.𝐵 has index at least two in X (since Z𝑟/Λ𝑜 is not cyclic). Hence,
𝜇(Z𝜆.𝐵) ≤ 1

2 for all 𝜆 ∈ Z𝑟 , and B is not directionally expandable.
Example 1.7 highlights that the existence of a finite (noncyclic) Z𝑟 -factor obstructs directional

expansion. Therefore, any meaningful results about the expansive properties of Z𝑟 -actions should
account for these finite factors. We address this by imposing a condition on the normalized spectral
measure of the rational spectrum, requiring it to be sufficiently small. To elaborate on this, we introduce
some notation.

If (𝑋, 𝜇) is an ergodic Z𝑟 -space and 𝐵 ⊂ 𝑋 is a 𝜇-measurable set with positive 𝜇-measure, by
Bochner’s theorem [11], there exists a unique finite and nonnegative Borel measure 𝜎𝐵 on the dual
group Ẑ𝑟 � T𝑟 such that

𝜇(𝐵 ∩ 𝜆.𝐵) =
∫
Ẑ𝑟

𝜉 (𝜆) 𝑑𝜎𝐵 (𝜉), for all 𝜆 ∈ Z𝑟 .

It is a well-known fact (see, for example, Lemma 2.5 below) that if 𝜇 is a Z𝑟 -ergodic measure, then
𝜎𝐵 ({1}) = 𝜇(𝐵)2 > 0, allowing us to define the normalized spectral measure �̃�𝐵 by

�̃�𝐵 =
𝜎𝐵

𝜎𝐵 ({1})
.

The finite Z𝑟 -factors of Z𝑟 � (𝑋, 𝜇) are directly related to an important subset Rat(Z𝑟 ) of Ẑ𝑟 known
as the rational spectrum, defined by

Rat(Z𝑟 ) = {𝜉 ∈ Ẑ𝑟 : 𝜉 |Λ𝑜 = 1, for some finite-index subgroup Λ𝑜 < Z𝑟 }.

Our second main dynamical result is stated as follows.
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Theorem 1.8. Let (𝑋, 𝜇) be an ergodic Z𝑟 -space and let 𝜀𝑜 ≥ 0. Suppose that 𝐵 ⊂ 𝑋 is a 𝜇-measurable
set with positive 𝜇-measure such that �̃�𝐵 (Rat(Z𝑟 ) \ {1}) ≤ 𝜀𝑜. Then, for all 𝜀 > 𝜀𝑜, there exists a
primitive vector 𝜆𝜀 ∈ Z𝑟 such that

𝜇(Z𝜆𝜀 .𝐵) > 1 − 𝜀.

A Z𝑟 -space is said to be totally ergodic if every finite-index subgroup of Z𝑟 acts ergodically on
(𝑋, 𝜇). In this context, it is evident that 𝜎𝐵 (Rat(Z𝑟 ) \ 1) = 0 for any 𝜇-measurable set 𝐵 ⊂ 𝑋 with
positive 𝜇-measure. As a result, we obtain the following corollary.

Corollary 1.9. If (𝑋, 𝜇) is a totally ergodic Z𝑟 -space, then every 𝜇-measurable set 𝐵 ⊂ 𝑋 with positive
𝜇-measure is directionally expandable.

Remark 1.10. In contrast to Theorem 1.8, it is noteworthy that Theorem 1.4 imposes no spectral
constraints on the set B. To derive Theorem 1.4 from Theorem 1.8, we initially establish that for
any B, there exists a finite-index subgroup Λ𝑜 < Z𝑟 along with an ergodic component 𝜈 for the action
Λ𝑜 � (𝑋, 𝜇) such that �̃�𝜈,𝐵 (Rat(Λ𝑜)\{1}) is small, while 𝜈(𝐵) is comparable to 𝜇(𝐵). This constitutes
a somewhat intricate step and is outlined in Section 4.

1.3. Organization of the paper

In Section 2, basic concepts essential for the proofs are introduced. Section 3.1 establishes a more
comprehensive version of Theorem 1.8. The subsequent Section 4 delves into the reduction of the size
of the rational spectrum upon passing to finite-index subgroups, a crucial step elucidated further in
Section 5 where a more generalized form of Theorem 1.4 is proven. In Section 6, we provide a proof
for Theorem 1.1.

2. Preliminaries

2.1. Free abelian groups and their duals

Let Λ be a free abelian group of rank r. We note that, upon fixing a Z-basis ℬ = (𝛽1, . . . , 𝛽𝑟 ) of Λ, the
map

Z
𝑟 → Λ, (𝑚1, . . . , 𝑚𝑟 ) ↦→

𝑟∑
𝑘=1

𝑚𝑘 𝛽𝑘

is a group isomorphism. For a positive integer 𝑛 ≥ 1, let Λ(𝑛) = 𝑛 · Λ. Note that Λ(𝑛) has finite index
in Λ. We will need the following basic result which is an immediate consequence of Schmidt’s normal
form.

Lemma 2.1. Let 𝑛 ≥ 1 and suppose that Λ′ < Λ(𝑛) is a finite-index subgroup. Then there is an integer
𝑁 ≥ 𝑛 such that Λ(𝑁) < Λ′.

2.1.1. Primitive vectors
A vector 𝜆 ∈ Λ is primitive if there are elements 𝜆2, . . . , 𝜆𝑟 ∈ Λ such that {𝜆, . . . , 𝜆𝑟 } is a Z-basis of Λ.
If we fix a basis ℬ = {𝛽1, . . . , 𝛽𝑟 } and write

𝜆 =
𝑟∑
𝑘=1

𝑚𝑘 𝛽𝑘 ,

then it is well known (see, for example, [17, Theorem 32]) that 𝜆 is primitive if an only if
gcd(𝑚1, . . . , 𝑚𝑟 ) = 1. We denote the set of primitive vectors in Λ by PΛ.
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2.1.2. Dual groups and rational spectrum
Let 𝑆1 ⊂ C∗ denote the (multiplicative) circle group and let Λ̂ = Hom(Λ, 𝑆1) denote the dual group of
Λ. Note that Λ̂ is a closed (hence compact and metric) subgroup of the countable product (𝑆1)Λ. We
define the rational spectrum Rat(Λ) of Λ̂ by

Rat(Λ) = {𝜉 ∈ Λ̂ : 𝜉 |Λ𝑜 = 1for some finite-index subgroup Λ𝑜 < Λ}.

Note that the trivial character 1 always belongs to Rat(Λ). If H is a subgroup of Λ, we write 𝐻⊥ for its
annihilator, defined by

𝐻⊥ = {𝜉 ∈ Λ̂ : 𝜉 (𝜆) = 1 for all 𝜆 ∈ 𝐻}.

Note that 𝐻⊥ is always a closed (hence compact) subgroup of Λ̂. If 𝜆 ∈ PΛ, we denote by 𝐿𝜆 = Z𝜆 the
cyclic subgroup generated by 𝜆. Note that

𝐿⊥
𝜆 = {𝜉 ∈ Λ̂ : 𝜉 (𝜆) = 1}.

2.1.3. Haystacks
Definition 2.2 (Haystack). An infinite subset H ⊂ PΛ is a haystack if for every r-tuple (𝜆1, . . . , 𝜆𝑟 ) of
distinct elements in H, the subgroup span

Z
(𝜆1, . . . , 𝜆𝑟 ) has finite index in Λ.

Remark 2.3. Note that if H is a haystack, then⋂
𝜆∈𝐹

𝐿⊥
𝜆 ⊆ Rat(Λ), for every 𝐹 ⊂ H with |𝐹 | ≥ 𝑟.

Indeed, if 𝜆1, . . . , 𝜆𝑟 generates a finite-index subgroup Λ𝑜 < Λ, then

𝑟⋂
𝑘=1

𝐿⊥
𝜆𝑘

= Λ̂⊥
𝑜 ,

and Λ̃⊥
𝑜 is clearly contained in Rat(Λ).

Haystacks can be produced in many different ways. The next lemma provides an explicit construction.

Lemma 2.4. Let ℬ = {𝛽1, . . . , 𝛽𝑟 } be a basis of Λ and let 1 < 𝑚1 < . . . < 𝑚𝑟 be relatively prime
integers. Then,

H =
{ 𝑟∑
𝑘=1

𝑚𝑛
𝑘 · 𝛽𝑘 : 𝑛 ≥ 1

}
is a haystack in PΛ.

Proof. First note that since 𝑚1, . . . , 𝑚𝑟 are relatively prime, H is contained in PΛ. Thus, to prove that
H is a haystack, it is enough to show that every set of r distinct elements 𝜆1, . . . , 𝜆𝑟 ∈ H is linearly
independent over R.

Fix an r-tuple 𝜆1, . . . , 𝜆𝑟 ∈ H and let 𝑞1, . . . , 𝑞𝑟 be real numbers such that

𝑟∑
𝑗=1

𝑞 𝑗𝜆 𝑗 = 0. (2.1)
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We want to show that 𝑞1 = . . . = 𝑞𝑟 = 0. After possibly permuting indices, we can find integers
1 ≤ 𝑛1 < 𝑛2 < . . . < 𝑛𝑟 such that

𝜆 𝑗 =
𝑟∑
𝑘=1

𝑚
𝑛 𝑗

𝑘 𝛽𝑘 , for all 𝑗 = 1, . . . , 𝑟 .

Then, since {𝛽1, . . . , 𝛽𝑟 } is a basis, it follows from (2.1) that

𝑟∑
𝑗=1

𝑞 𝑗𝑚
𝑛 𝑗

𝑘 = 0, for all 𝑘 = 1, . . . , 𝑟,

or equivalently, the vector 𝑞 = (𝑞1, . . . , 𝑞𝑟 ) belongs to the (left) kernel of the 𝑟 × 𝑟-matrix

𝐴 = {𝑒𝑛 𝑗 ln(𝑚𝑘 ) }𝑟𝑗,𝑘=1.

However, by [10, Chapter 1, Paragraph 2], the kernel (𝑥, 𝑦) ↦→ 𝑒𝑥𝑦 is strictly totally positive on R × R,
and thus det(𝐴) > 0 for all 𝑚1 < . . . < 𝑚𝑟 and 𝑛1 < . . . < 𝑛𝑟 . We conclude that 𝑞 = 0. �

2.2. Ergodic theory of free abelian groups

We say that a standard Borel probability space (𝑋, 𝜇) is a Λ-space if X is equipped with a measurable
Λ-action which preserves 𝜇, and we say that (𝑋, 𝜇) is an ergodic Λ-space if 𝜇 is also ergodic with
respect to this action.

2.2.1. Spectral measures and normalized spectral measures
Let (𝑋, 𝜇) be an ergodic Λ-space and let 𝐵 ⊂ 𝑋 be a 𝜇-measurable set with positive 𝜇-measure.
Bochner’s Theorem tells us that there is a unique finite and nonnegative Borel measure 𝜎𝐵 on Λ̂ such
that

𝜇(𝐵 ∩ 𝜆.𝐵) =
∫
Λ̂
𝜉 (𝜆) 𝑑𝜎𝐵 (𝜉), for all 𝜆 ∈ Λ.

If we wish to emphasize the dependence on the measure 𝜇, we write 𝜎𝜇,𝐵. Recall that if 𝜆 ∈ Λ, then 𝐿𝜆
denotes the cyclic subgroup Z𝜆 < Λ.

Lemma 2.5 (Spectral measures and annihilators). Let (𝑋, 𝜇) be an ergodic Λ-space and let 𝐵 ⊂ 𝑋 be a
𝜇-measurable set with positive 𝜇-measure. Then, 𝜎𝐵 ({1}) = 𝜇(𝐵)2 and 𝜎𝐵 (Λ̂) = 𝜇(𝐵), and for every
𝜆 ∈ Λ,

𝜎𝐵 (𝐿⊥
𝜆 ) =

∫
𝑋
E𝜇 [𝜒𝐵 | EZ𝜆]2 𝑑𝜇,

where EZ𝜆 denotes the sub-𝜎-algebra of ℬ𝑋 consisting of 𝜇-almost Z𝜆-invariant subsets, and 𝜒𝐵 is the
indicator function of B.

Proof. First, note that since 𝜉 (0) = 1 for all 𝜉 ∈ Λ̂, we have

𝜇(𝐵) = 𝜇(𝐵 ∩ 0.𝐵) =
∫
Λ̂

1 𝑑𝜎𝐵 (𝜉) = 𝜎𝐵 (Λ̂).

Let (𝐹𝑛) be a Følner sequence in Λ. Then, by the weak ergodic theorem,

lim
𝑛→∞

1
|𝐹𝑛 |

∑
𝜆∈𝐹𝑛

𝜇(𝐵 ∩ 𝜆.𝐵) = 𝜇(𝐵)2,
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and, for 𝜉 ∈ Λ̂,

lim
𝑛→∞

1
|𝐹𝑛 |

∑
𝜆∈𝐹𝑛

𝜉 (𝜆) =
{ 1 if 𝜉 = 1

0 if 𝜉 ≠ 1
.

Hence, by dominated convergence,

lim
𝑛→∞

1
|𝐹𝑛 |

∑
𝜆∈𝐹𝑛

𝜇(𝐵 ∩ 𝜆.𝐵) = lim
𝑁→∞

∫
Λ̂

( 1
|𝐹𝑛 |

∑
𝜆∈𝐹𝑛

𝜉 (𝜆)
)
𝑑𝜎𝐵 (𝜉) = 𝜎𝐵 ({1}),

which shows that 𝜎𝐵 ({1}) = 𝜇(𝐵)2. Fix 𝜆 ∈ Λ and consider the restriction of the action to the subgroup
𝐿𝜆 = Z𝜆. We denote by EZ𝜆 the sub-𝜎-algebra of ℬ𝑋 consisting of 𝜇-almost Z𝜆-invariant subsets.
Geometric summation tells us that

lim
𝑛→∞

1
𝑛

𝑛−1∑
𝑘=0

𝜉 (𝑘𝜆) = lim
𝑛→∞

1
𝑛

𝑛−1∑
𝑘=0

𝜉 (𝜆)𝑘 =

{ 1 if 𝜉 (𝜆) = 1
0 if 𝜉 (𝜆) ≠ 1,

,

or equivalently,

lim
𝑛→∞

1
𝑛

𝑛−1∑
𝑘=0

𝜉 (𝑘𝜆) = 𝜒𝐿⊥
𝜆
(𝜉), for all 𝜉 ∈ Λ⊥.

We conclude, by dominated convergence,

𝜎𝐵 (𝐿⊥
𝜆 ) = lim

𝑛→∞

1
𝑛

𝑛−1∑
𝑘=0

𝜇(𝐵 ∩ 𝑘𝜆.𝐵), for all 𝜆 ∈ Λ.

However, by the weak ergodic theorem and using that conditional expectations are projections on
𝐿2 (𝑋, 𝜇),

lim
𝑛→∞

1
𝑛

𝑛−1∑
𝑘=0

𝜇(𝐵 ∩ 𝑘𝜆.𝐵) = 〈𝜒𝐵,E𝜇 [𝜒𝐵 |EZ𝜆]〉𝐿2 (𝑋,𝜇) =
∫
𝑋
E𝜇 [𝜒𝐵 |EZ𝜆]2 𝑑𝜇,

which finishes the proof. �

2.2.2. Ergodic sets
Definition 2.6 (Ergodic set). A set 𝑆 ⊂ Z is ergodic if there exists an increasing sequence (𝑆𝑁 ) of finite
subsets of S such that for every Z-space (𝑌, 𝜈) and 𝑓 ∈ ℒ∞(𝑌 ), there is a 𝜈-conull set 𝑌 𝑓 ⊂ 𝑌 such that

lim
𝑁→∞

1
|𝑆𝑁 |

∑
𝑚∈𝑆𝑁

𝑓 (𝑚.𝑦) = E𝜈 [ 𝑓 | E] (𝑦), for all 𝑦 ∈ 𝑌 𝑓 ,

where E denotes the sub-𝜎-algebra of 𝜈-almost Z-invariant sets.

Birkhoff’s ergodic theorem tells us that Z is an ergodic set. However, there are also quite sparse
ergodic subsets of Z (see, for instance, [4] for a plethora of examples).
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3. Proof of Theorem 1.8

LetΛ be a free abelian group of rank r and let (𝑋, 𝜇) be an ergodicΛ-space. Let 𝐵 ⊂ 𝑋 be a 𝜇-measurable
set with positive 𝜇-measure. We recall that the normalized spectral measure �̃�𝐵 is defined as

�̃�𝐵 =
𝜎𝐵

𝜎𝐵 ({1})
,

where 𝜎𝐵 is the unique finite and nonnegative measure on Λ̂ which satisfies

𝜇(𝐵 ∩ 𝜆.𝐵) =
∫
Λ̂
𝜉 (𝜆) 𝑑𝜎𝐵 (𝜉), for all 𝜆 ∈ Λ.

If we wish to emphasize the dependence on the measure 𝜇, we write �̃�𝜇,𝐵.
In this section, we prove the following generalization of Theorem 1.8. Recall that PΛ denotes the set

of primitive vectors in Λ. For the definitions of haystack, ergodic set and Rat(Λ), we refer the reader to
Section 2.

Theorem 3.1. Suppose that �̃�𝐵 (Rat(Λ) \ {1}) ≤ 𝜀𝑜. Then, for all 𝜀 > 𝜀𝑜 and for every haystack
H ⊂ PΛ, there exists 𝜆𝜀 ∈ H such that

𝜇(𝑆𝜆𝜀 .𝐵) > 1 − 𝜀,

for every ergodic set 𝑆 ⊂ Z.

In the next subsection, we will show how Theorem 3.1 can be deduced from the following two
lemmas, whose proofs are given at the end of this section. Recall that if 𝜆 ∈ PΛ, then 𝐿𝜆 denotes the
cyclic subgroup Z𝜆, and 𝐿⊥

𝜆 its annihilator in Λ̂; that is,

𝐿⊥
𝜆 = {𝜉 ∈ Λ̂ : 𝜉 (𝜆) = 1}.

Lemma 3.2 (Expansion and spectral measures). For every 𝜇-measurable set 𝐵 ⊂ 𝑋 with positive
𝜇-measure and for every 𝜆 ∈ Λ,

𝜇(𝑆𝜆.𝐵) ≥ 1
�̃�𝐵 (𝐿⊥

𝜆 )

for every ergodic set 𝑆 ⊂ Z.

Lemma 3.3 (Haystacks and small annihilators). Let 𝜏 be a finite Borel measure on Λ̂ such that
𝜏(Rat(Λ)) = 0 and let H ⊂ PΛ be a haystack. Then, for every 𝛿 > 0, there exists 𝜆 ∈ H such that
𝜏(𝐿⊥

𝜆 ) < 𝛿.

3.1. Proof of Theorem 3.1 assuming Lemma 3.2 and Lemma 3.3

Fix 𝜀 > 𝜀𝑜 ≥ 0 and suppose that 𝐵 ⊂ 𝑋 is a 𝜇-measurable set with positive 𝜇-measure such that
�̃�𝐵 (Rat(Λ) \ {1}) ≤ 𝜀𝑜. We can thus write

�̃�𝐵 = 𝛿1 + 𝛼 + 𝜏,

where 𝛼 is a finite measure supported on Rat(Λ) \ {1} such that 𝛼(Rat(Λ) \ {1}) ≤ 𝜀𝑜 and 𝜏 is a finite
measure such that 𝜏(Rat(Λ)) = 0.

Let 𝑆 ⊂ Z be an ergodic set. By Lemma 3.2,

𝜇(𝑆𝜆.𝐵) ≥ 1
�̃�𝐵 (𝐿⊥

𝜆 )
, for all 𝜆 ∈ Λ.
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In particular, using the decomposition of �̃�𝐵 above, we have

𝜇(𝑆𝜆.𝐵) ≥ 1
1 + 𝜀𝑜 + 𝜏(𝐿⊥

𝜆 )
, for all 𝜆 ∈ Λ.

Pick

0 < 𝛿 <
1 − (1 + 𝜀𝑜) (1 − 𝜀)

1 − 𝜀
.

Let H be a haystack. By Lemma 3.3, we can find 𝜆 ∈ H such that 𝜏(𝐿⊥
𝜆 ) < 𝛿, and thus,

𝜇(𝑆𝜆.𝐵) ≥ 1
1 + 𝜀𝑜 + 𝛿

> 1 − 𝜀,

which finishes the proof (with 𝜆𝜀 = 𝜆).

3.2. Proof of Lemma 3.2

Let 𝐵 ⊂ 𝑋 be a 𝜇-measurable set with positive 𝜇-measure. We will need the following lemma.

Lemma 3.4. Let 𝑆 ⊂ Z be an ergodic set. Then, for every 𝜆 ∈ Λ,

𝜇(𝑆𝜆.𝐵) ≥ 𝜇({E𝜇 [𝜒𝐵 | E𝜆Z] > 0}),

where EZ𝜆 denotes the sub-𝜎-algebra of ℬ𝑋 consisting of 𝜇-almost Z𝜆-invariant subsets.

Proof. Fix 𝜆 ∈ Λ and consider the action Z𝜆 � (𝑋, 𝜇). Since S is an ergodic set, there is a sequence
(𝑆𝑛) of finite subsets of S such that

E𝜇 [𝜒𝐵 |EZ𝜆] (𝑥) = lim
𝑛→∞

1
|𝑆𝑛 |

∑
𝑚∈𝑆𝑛

𝜒𝐵 ((−𝑚𝜆).𝑥), 𝜇-almost everywhere.

By Egorov’s Theorem, for every 𝜀 > 0, there exist an integer 𝑁𝜀 and a 𝜇-measurable set 𝑋𝜀 ⊂ 𝑋 with
𝜇(𝑋𝜀) > 1 − 𝜀 such that���E𝜇 [𝜒𝐵 |EZ𝜆] (𝑥) − 1

|𝑆𝑛 |
∑
𝑚∈𝑆𝑛

𝜒𝐵 ((−𝑚𝜆).𝑥)
��� < 𝜀, for all 𝑛 ≥ 𝑁𝜀 and 𝑥 ∈ 𝑋𝜀 .

In what follows, we write

E𝑛 (𝑥) =
1

|𝑆𝑛 |
∑
𝑚∈𝑆𝑛

𝜒𝐵 ((−𝑚𝜆).𝑥).

Fix 𝜀 > 0 and 𝛿 > 𝜀. Then,

𝜇({E𝜇 [𝜒𝐵 |EZ𝜆] ≥ 𝛿}) = 𝜇({E𝜇 [𝜒𝐵 |EZ𝜆] − E𝑛 + E𝑛 ≥ 𝛿} ∩ 𝑋𝜀)

+ 𝜇({E𝜇 [𝜒𝐵 |EZ𝜆] ≥ 𝛿} ∩ 𝑋𝑐
𝜀) ≤ 𝜇({E𝑛 > 𝛿 − 𝜀}) + 𝜀

≤ 𝜇({E𝑛 > 0}) + 𝜀,

for all 𝑛 ≥ 𝑁𝜀 . Note that

𝜇({E𝑛 > 0}) = 𝜇(𝑆𝑛𝜆.𝐵) ≤ 𝜇(𝑆𝜆.𝐵).
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Hence, since 𝛿 > 𝜀 > 0 are arbitrary, we conclude that

𝜇({E𝜇 [𝜒𝐵 |EZ𝜆] > 0}) ≤ 𝜇(𝑆𝜆.𝐵),

which finishes the proof. �

To prove Lemma 3.2, we need to estimate 𝜇({E𝜇 [𝜒𝐵 |EZ𝜆] > 0}). To do this, we use the following
trick. Suppose f is a nonnegative 𝜇-measurable function on X. Then, by the Cauchy-Schwarz inequality,∫

𝑋
𝑓 𝑑𝜇 =

∫
𝑋

𝑓 𝜒{ 𝑓 >0} 𝑑𝜇 ≤
( ∫

𝑋
𝑓 2 𝑑𝜇

)1/2
𝜇({ 𝑓 > 0})1/2,

and thus,

𝜇({ 𝑓 > 0}) ≥

( ∫
𝑋

𝑓 𝑑𝜇
)2

∫
𝑋

𝑓 2 𝑑𝜇
.

If we apply this inequality to 𝑓 = E𝜇 [𝜒𝐵 |EZ𝜆], we see that

𝜇({E𝜇 [𝜒𝐵 |EZ𝜆] > 0}) ≥

( ∫
𝑋
E𝜇 [𝜒𝐵 |EZ𝜆] 𝑑𝜇

)2

∫
𝑋
E𝜇 [𝜒𝐵 |EZ𝜆]2 𝑑𝜇

=
𝜇(𝐵)2∫

𝑋
E𝜇 [𝜒𝐵 |EZ𝜆]2 𝑑𝜇

.

By Lemma 2.5,

𝜎𝐵 ({1}) = 𝜇(𝐵)2 and 𝜎𝐵 (𝐿⊥
𝜆 ) =

∫
𝑋
E𝜇 [𝜒𝐵 |EZ𝜆]2 𝑑𝜇,

so we conclude that

𝜇({E𝜇 [𝜒𝐵 |EZ𝜆] > 0}) ≥ 𝜎𝐵 ({1})
𝜎𝐵 (𝐿⊥

𝜆 )
=

1
�̃�𝐵 (𝐿⊥

𝜆 )
.

3.3. Proof of Lemma 3.3

Let 𝜏 be a finite probability measure on Λ̂ such that 𝜏(Rat(Λ)) = 0 and let H ⊂ PΛ be a haystack. Fix
an enumeration (𝜆𝑛) of the elements in H. Since H is a haystack and 𝜏(Rat(Λ)) = 0, we have, in view
of Remark 2.3,

𝜏
( ⋂
𝜆∈𝐹

𝐿⊥
𝜆

)
= 0, for every 𝐹 ⊂ H with |𝐹 | ≥ 𝑟.

Let 𝛿 > 0 and pick an integer 𝑁 ≥ 1 such that 𝑟 · 𝜏(Λ̂)/𝑁 < 𝛿. Lemma 3.3 is now an immediate
consequence of the following general measure-theoretic result, applied to

(𝑌, 𝜈) = (Λ̂, 𝜏) and 𝐴𝑛 = 𝐿⊥
𝜆𝑛

and 𝑝 = 𝑟.

Lemma 3.5. Let (𝑌, 𝜈) be a finite measure space and let p be a positive integer. Then, for every positive
integer N and for every sequence (𝐴𝑛) of 𝜈-measurable sets in Y such that

𝜈
( ⋂
𝑛∈𝐹

𝐴𝑛

)
= 0, for every 𝐹 ⊂ N with |𝐹 | ≥ 𝑝, (3.1)

there exists an index 𝑛 ≤ 𝑁 such that 𝜈(𝐴𝑛) < 𝑝 · 𝜈(𝑌 )/𝑁 .
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Proof. We can without loss of generality assume that 𝜈(𝑌 ) = 1. Let us fix a positive integer N and
let (𝐴𝑛) be a sequence of 𝜈-measurable sets in Y which satisfies (3.1). We assume, for the sake of
contradiction, that

𝜈(𝐴𝑛) ≥
𝑝

𝑁
, for all 1 ≤ 𝑛 ≤ 𝑁.

Then, ∫
𝑌

(
1
𝑁

𝑁∑
𝑛=1

𝜒𝐴𝑛

)
𝑑𝜈 ≥ 𝑝

𝑁
,

and thus, the set

𝐶𝑁 =

{
𝑥 ∈ 𝑋 :

𝑁∑
𝑛=1

𝜒𝐴𝑛 (𝑥) ≥ 𝑝

}

has positive 𝜈-measure. Define F𝑝,𝑁 = {𝐹 ⊆ {1, . . . , 𝑁} : |𝐹 | ≥ 𝑝} and note that

𝐶𝑁 =
⋃

𝐹 ∈F𝑝,𝑁

𝐶𝑁 ,𝐹 , (3.2)

where

𝐶𝑁 ,𝐹 = {𝑥 ∈ 𝑋 : 𝑥 ∈ 𝐴𝑛, for all 𝑛 ∈ 𝐹} =
⋂
𝑛∈𝐹

𝐴𝑛.

Since we assume that 𝜈(𝐶𝑁 ) > 0, it follows from (3.2) that there must be at least one subset 𝐹 ⊂
{1, . . . , 𝑁} with |𝐹 | ≥ 𝑝 such that

𝜈(𝐶𝑁 ,𝐹 ) = 𝜈
( ⋂
𝑛∈𝐹

𝐴𝑛

)
> 0,

which contradicts (3.1). �

4. Rational spectrum and ergodic decomposition

LetΛ be a free abelian group of rank r and let (𝑋, 𝜇) be an ergodicΛ-space. Let 𝐵 ⊂ 𝑋 be a 𝜇-measurable
set with positive 𝜇-measure and let Λ(𝑛) = 𝑛 · Λ for 𝑛 ≥ 1. Note that Λ(𝑛) has finite index in Λ.

In the previous section, we have seen that we can achieve significant directional expansion of the set
B if �̃�𝐵 (Rat(Λ) \ {1}) is small enough. However, for the applications to volume spectra that we have in
mind, this is not a natural assumption. The aim of this section is to show that upon passing to a small
enough finite index subgroup Λ𝑜 of Λ, we can always select a good ergodic component 𝜈𝑜 of the sub-
action of Λ𝑜, for which the normalized spectral measure �̃�𝜈𝑜 ,𝐵 (Rat(Λ𝑜) \ {1}) of the rational spectrum
is small.

The exact statement reads as follows.
Proposition 4.1 (Shrinking the rational spectrum). For every 𝜀𝑜 > 0, there exist an integer n, a positive
constant c and a Λ(𝑛)-invariant and Λ(𝑛)-ergodic probability measure 𝜈 on X such that

𝜇(𝐵) < 3 · 𝜈(𝐵)

and

�̃�𝜈,𝐵 (Rat(Λ(𝑛)) \ {1}) < 𝜀𝑜,
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and

𝜇
( ⋂
𝜆∈𝐹

𝜆.𝐵
)
≥ 𝑐 · 𝜈

( ⋂
𝜆∈𝐹

𝜆.𝐵
)
,

for every 𝐹 ⊂ Λ(𝑛).

Remark 4.2. We stress that the integer n, the measure 𝜈 and the constant c will in general depend on
the set B.

Proposition 4.1 will be a consequence of the following technical lemma, whose proof will be given
at the end of this section. To explain its statement, note that if Λ𝑜 < Λ is any subgroup, then there is
always a continuous restriction homomorphism

𝜋𝑜 : Λ̂ → Λ̂𝑜, 𝜉 ↦→ 𝜉 |Λ𝑜 .

In particular, 𝜋−1
𝑜 (Rat(Λ𝑜)) ⊂ Rat(Λ) provided that Λ𝑜 is of finite index.

Lemma 4.3 (Rational spectrum and finite-index subgroups). For every finite-index subgroup Λ𝑜 < Λ,
there exist a Λ𝑜-invariant and Λ𝑜-ergodic probability measure 𝜈 on X and a positive constant c such that

𝜇(𝐵) < 3 · 𝜈(𝐵)

and

�̃�𝜈,𝐵
(
Rat(Λ𝑜) \ {1}

)
≤ 3 · �̃�𝜇,𝐵

(
𝜋−1
𝑜

(
Rat(Λ𝑜) \ {1}

) )
and

𝜇
( ⋂
𝜆∈𝐹

𝜆.𝐵
)
≥ 𝑐 · 𝜈

( ⋂
𝜆∈𝐹

𝜆.𝐵
)

for every 𝐹 ⊂ Λ𝑜.

4.1. Proof of Proposition 4.1 assuming Lemma 4.3

Fix 𝜀𝑜 ≥ 0 and a 𝜇-measurable set 𝐵 ⊂ 𝑋 with positive 𝜇-measure. By Lemma 4.3, there are, for every
n, a Λ(𝑛)-invariant and Λ(𝑛)-ergodic probability measure 𝜈𝑛 on X, and a positive constant 𝑐𝑛 such that

𝜇(𝐵) < 3 · 𝜈𝑛 (𝐵)

and

�̃�𝜈𝑛 ,𝐵 (Rat(Λ(𝑛)) \ {1}) < 3 · �̃�𝜇,𝐵 (𝜋−1
𝑛 (Rat(Λ(𝑛)) \ {1}))

and

𝜇
( ⋂
𝜆∈𝐹

𝜆.𝐵
)
≥ 𝑐𝑛 · 𝜈𝑛

( ⋂
𝜆∈𝐹

𝜆.𝐵
)

for every 𝐹 ⊂ Λ(𝑛), where 𝜋𝑛 : Λ̂ → �Λ(𝑛) denotes the restriction map 𝜉 ↦→ 𝜉 |Λ(𝑛) . It thus suffices to
show that we can find n such that

�̃�𝜇,𝐵 (𝜋−1
𝑛 (Rat(Λ(𝑛)) \ {1})) ≤ 𝜀𝑜/3,

in which case, the proposition holds with 𝑐 = 𝑐𝑛 and 𝜈 = 𝜈𝑛.
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Since �̃�𝜇,𝐵 is a finite nonnegative measure on Λ̂, and the sequence of sets

𝐴𝑚 = 𝜋−1
𝑚! (Rat(Λ(𝑚!)) \ {1}) ⊂ Λ̂, 𝑚 ≥ 1

is decreasing, it is enough to prove that

𝐴∞ :=
∞⋂
𝑚=1

𝐴𝑚 = ∅. (4.1)

Assume, for the sake of contradiction, that this intersection is nonempty, and pick an element 𝜉 ∈ 𝐴∞.
Then, for every 𝑚 ≥ 1, we have 𝜉 |Λ(𝑚!) ≠ 1, and there is a finite-index subgroup Λ𝑚 ⊂ Λ(𝑚!) such that
𝜉 |Λ𝑚 = 1. By Lemma 2.1, there exists an integer N such that Λ(𝑁) < Λ𝑚. However, this implies that
𝜉 |Λ(𝑁 !) = 1 (or equivalently, 𝜉 ∉ 𝐴𝑁 ), which is a contradiction to the assumption that 𝜉 ∈ 𝐴∞.

4.2. Proof of Lemma 4.3

LetΛ𝑜 < Λ be a finite-index subgroup. Since 𝜇 isΛ-invariant andΛ-ergodic, there exists, by [6, Theorem
8.20], a Λ-invariant and Λ-ergodic probability measure 𝛼 on the (weak*) Borel set Proberg

Λ𝑜
(𝑋) ⊂

Prob(𝑋) such that

𝜇 =
∫

Proberg
Λ𝑜

(𝑋 )
𝜈 𝑑𝛼(𝜈).

Since Λ𝑜 acts trivially on Proberg
Λ𝑜

(𝑋), the action of Λ on this space descends to an action by the finite
group Λ/Λ𝑜. Since 𝛼 is ergodic with respect to this action, we see that the support of 𝛼 consists of
a single Λ/Λ𝑜-orbit. In particular, the support of 𝛼 is finite, so we conclude that there is a finite set
𝑄 ⊂ Proberg

Λ𝑜
(𝑋) with |𝑄 | ≤ |Λ/Λ𝑜 | and a strictly positive function 𝛼 : 𝑄 → [0, 1] such that∑

𝜈∈𝑄
𝛼(𝜈) = 1 and 𝜇 =

∑
𝜈∈𝑄

𝛼(𝜈)𝜈. (4.2)

Since 𝜇(𝐵) > 0, the set 𝑄𝐵 = {𝜈 ∈ 𝑄 : 𝜈(𝐵) > 0} is nonempty. Furthermore,

𝑐 := min{𝛼(𝜈) : 𝜈 ∈ 𝑄𝐵} > 0, (4.3)

and for every 𝜈 ∈ 𝑄𝐵, it follows from (4.2) that

𝜇(𝐵′) ≥ 𝑐 · 𝜈(𝐵′) for every 𝜇-measurable 𝐵′ ⊂ 𝐵. (4.4)

In particular, if 𝐹 ⊂ Λ𝑜 and 𝜆𝑜 ∈ 𝐹, we can write⋂
𝜆∈𝐹

𝜆.𝐵 = 𝜆𝑜 .𝐵
′, where 𝐵′ =

⋂
𝜆∈𝐹−𝜆𝑜

𝜆.𝐵 ⊂ 𝐵,

and thus, for every 𝜈 ∈ 𝑄𝐵, using that both 𝜇 and 𝜈 are Λ𝑜-invariant, we see that

𝜇
( ⋂
𝜆∈𝐹

𝜆.𝐵
)
= 𝜇(𝜆𝑜 .𝐵′) = 𝜇(𝐵′) ≥ 𝑐 · 𝜈(𝐵′)

= 𝑐 · 𝜈(𝜆𝑜 .𝐵′) = 𝑐 · 𝜈
( ⋂
𝜆∈𝐹

𝜆.𝐵
)
. (4.5)
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Note that for every 𝜆 ∈ Λ𝑜,

𝜇(𝐵 ∩ 𝜆.𝐵) =
∫
Λ̂
𝜉 (𝜆) 𝑑𝜎𝜇,𝐵 (𝜉) =

∫
Λ̂
𝜉 |Λ𝑜 (𝜆) 𝑑𝜎𝜇,𝐵 (𝜉)

=
∫
Λ̂𝑜

𝜂(𝜆) 𝑑 (𝜋𝑜)∗𝜎𝜇,𝐵 (𝜂),

and

𝜇(𝐵 ∩ 𝜆.𝐵) =
∑
𝜈∈𝑄𝐵

𝛼(𝜈) · 𝜈(𝐵 ∩ 𝜆.𝐵) =
∑
𝜈∈𝑄𝐵

𝛼(𝜈) ·
∫
Λ̂𝑜

𝜂(𝜆) 𝑑𝜎𝜈,𝐵 (𝜂)

=
∫
Λ̂𝑜

𝜂(𝜆)𝑑𝜎′(𝜂), where 𝜎′ =
∑
𝜈∈𝑄𝐵

𝛼(𝜈) · 𝜎𝜈,𝐵 .

Since finite measures on Λ̂𝑜 are uniquely determined by their Fourier transforms, we conclude that
(𝜋𝑜)∗𝜎𝜇,𝐵 = 𝜎′, that is to say,

(𝜋𝑜)∗𝜎𝜇,𝐵 =
∑
𝜈∈𝑄𝐵

𝛼(𝜈) · 𝜎𝜈,𝐵 . (4.6)

In particular,

𝜎𝜇,𝐵 (𝜋−1
𝑜 (Rat(Λ𝑜) \ {1})) = 0 =⇒ �̃�𝜈,𝐵 (Rat(Λ𝑜) \ {1}) = 0, for all 𝜈 ∈ 𝑄𝐵 .

Hence, if we pick any 𝜈 ∈ 𝑄𝐵 such that 𝜈(𝐵) is maximal, then 𝜇(𝐵) ≤ 𝜈(𝐵) and 𝜈 will satisfy all of the
properties asserted in the lemma.

Let us from now on assume that �̃�𝜇,𝐵 (𝜋−1
𝑜 (Rat(Λ𝑜) \ {1})) > 0. First, note that

𝜇(𝐵)2 =

( ∑
𝜈∈𝑄𝐵

𝛼(𝜈)𝜈(𝐵)
)2

≤
( ∑
𝜈∈𝑄𝐵

𝛼(𝜈)
)
·
( ∑
𝜈∈𝑄𝐵

𝛼(𝜈)𝜈(𝐵)2

)

≤
∑
𝜈∈𝑄𝐵

𝛼(𝜈)𝜈(𝐵)2 (4.7)

by Hölder’s inequality. Hence, by (4.6) and (4.7),

(𝜋𝑜)∗�̃�𝜇,𝐵 =
(𝜋𝑜)∗𝜎𝜇,𝐵

𝜇(𝐵)2 =

∑
𝜈∈𝑄𝐵

𝛼(𝜈) 𝜎𝜈,𝐵
𝜇(𝐵)2 ≥

∑
𝜈∈𝑄𝐵

𝛼(𝜈) 𝜎𝜈,𝐵∑
𝜈∈𝑄𝐵

𝛼(𝜈)𝜈(𝐵)2

=

∑
𝜈∈𝑄𝐵

𝛼(𝜈)𝜈(𝐵)2 · �̃�𝜈,𝐵∑
𝜈∈𝑄𝐵

𝛼(𝜈)𝜈(𝐵)2 =
∑
𝜈∈𝑄𝐵

𝛽(𝜈) �̃�𝜈,𝐵, (4.8)

where 𝛽 : 𝑄𝐵 → [0, 1] denotes the probability measure

𝛽(𝜈) = 𝛼(𝜈)𝜈(𝐵)2∑
𝜈′ ∈𝑄𝐵

𝛼(𝜈′)𝜈′(𝐵)2 , 𝜈 ∈ 𝑄𝐵,

and the inequality in (4.8) is interpreted in the sense of nonnegative measures on Λ̂𝑜. In particular, if
we apply (4.8) to the sets Rat(Λ𝑜) \ {1} and Λ̂𝑜, respectively, we get the inequalities
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�̃�𝜇,𝐵 (𝜋−1
𝑜 (Rat(Λ𝑜) \ {1})) ≥

∑
𝜈∈𝑄𝐵

𝛽(𝜈)�̃�𝜈,𝐵 (Rat(Λ𝑜) \ {1}), (4.9)

and

�̃�𝜇,𝐵 (𝜋−1
𝑜 (Λ̂𝑜)) = �̃�𝜇,𝐵 (Λ̂) =

1
𝜇(𝐵) ≥

∑
𝜈∈𝑄𝐵

𝛽(𝜈)�̃�𝜈,𝐵 (Λ̂𝑜) =
∑
𝜈∈𝑄𝐵

𝛽(𝜈)
𝜈(𝐵) , (4.10)

since, by Lemma 2.5, we have

�̃�𝜇,𝐵 (Λ̂) =
𝜇(𝐵)
𝜇(𝐵)2 =

1
𝜇(𝐵) and �̃�𝜈,𝐵 (Λ̂𝑜) =

𝜈(𝐵)
𝜈(𝐵)2 =

1
𝜈(𝐵) , for all 𝜈 ∈ 𝑄𝐵 .

Let us now define the sets

𝑆1 = {𝜈 ∈ 𝑄𝐵 : �̃�𝜈,𝐵 (Rat(Λ𝑜) \ {1}) ≥ 3 · �̃�𝜇,𝐵 (𝜋−1
𝑜 (Rat(Λ𝑜) \ {1}))}

and

𝑆2 =

{
𝜈 ∈ 𝑄𝐵 :

1
𝜈(𝐵) ≥ 3

𝜇(𝐵)

}
.

Then, since �̃�𝜇,𝐵 (𝜋−1
𝑜 (Rat(Λ𝑜) \ {1})) > 0, the bounds (4.9) and (4.10), combined with Markov’s

inequality, tell us that

𝛽(𝑆1) ≤ 1/3 and 𝛽(𝑆2) ≤ 1/3,

and thus, 𝑇 := 𝑆𝑐1 ∩ 𝑆𝑐2 is nonempty. For every 𝜈 ∈ 𝑇 , we have

�̃�𝜈,𝐵 (Rat(Λ𝑜) \ {1}) < 3 · �̃�𝜇,𝐵 (𝜋−1
𝑜 (Rat(Λ𝑜) \ {1})) and 𝜇(𝐵) < 3 · 𝜈(𝐵).

We conclude that any 𝜈 in T will satisfy the properties asserted in the lemma, and we are done.

5. Proof of Theorem 1.4

LetΛ be a free abelian group of rank r and let (𝑋, 𝜇) be an ergodicΛ-space. Let 𝐵 ⊂ 𝑋 be a 𝜇-measurable
set with positive 𝜇-measure. In this section, we will prove the following generalization of Theorem 1.4.

Theorem 5.1. For every 𝑝 ≥ 2, there is a positive integer n, such that for every haystack H ⊂ PΛ and
ergodic set 𝑆 ⊂ Z, there exist 𝜆 ∈ H and 𝑚1 ∈ 𝑆 with the property that for all 𝜆2, . . . , 𝜆𝑝 ∈ Λ, there are
𝑚2, . . . , 𝑚𝑝 ∈ 𝑆 such that

𝜇
(
𝐵 ∩ 𝑚1𝑛𝜆.𝐵 ∩

( 𝑝⋂
𝑘=2

(𝑚𝑘𝑛𝜆 + 𝑛𝜆𝑘 ).𝐵
))

> 0.

Proof. Let us fix an integer 𝑝 ≥ 2, a 𝜇-measurable set 𝐵 ⊂ 𝑋 with positive 𝜇-measure and 𝜀𝑜 > 0 to
be chosen later. By Proposition 4.1, we can find an integer n, a positive constant c and a Λ(𝑛)-invariant
and Λ(𝑛)-ergodic probability measure 𝜈 on X such that 𝜇(𝐵) < 3 · 𝜈(𝐵),

�̃�𝜈,𝐵 (Rat(Λ(𝑛)) \ {1}) < 𝜀𝑜, (5.1)

and

𝜇
( ⋂
𝜆∈𝐹

𝜆.𝐵
)
≥ 𝑐 · 𝜈

( ⋂
𝜆∈𝐹

𝜆.𝐵
)
, (5.2)
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for every 𝐹 ⊂ Λ(𝑛). Fix a haystack H ⊂ PΛ and an ergodic set 𝑆 ⊆ Z. Note that the set H(𝑛) := 𝑛 ·H
is a haystack in PΛ(𝑛) . Fix 𝜀 > 𝜀𝑜. By Theorem 3.1, applied to the action Λ(𝑛) � (𝑋, 𝜈), we can find
𝜆𝜀 ∈ H(𝑛) such that

𝜈(𝑆𝜆𝜀 .𝐵) > 1 − 𝜀. (5.3)

Note that 𝜆𝜀 = 𝑛𝜆 for some 𝜆 ∈ H. We first claim that there exists 𝑚1 ∈ 𝑆 such that

𝜈(𝐵 ∩ 𝑚1𝜆𝜀 .𝐵) >
𝜈(𝐵)2

2
. (5.4)

Indeed, since S is an ergodic set, there is an increasing sequence (𝑆𝑁 ) of finite subsets of S, such that

lim
𝑁→∞

1
|𝑆𝑁 |

∑
𝑚∈𝑆𝑁

𝜈(𝐵 ∩ 𝑚𝜆.𝐵) =
∫
𝑋
E𝜈 [𝜒𝐵 | EZ𝜆𝜀 ]2 𝑑𝜈 ≥ 𝜈(𝐵)2,

where EZ𝜆𝜀 denotes the sub-𝜎-algebra of ℬ𝑋 consisting of 𝜈-almost Z𝜆𝜀-invariant sets. This readily
implies (5.4). Let us now fix a (𝑝 − 1)-tuple 𝜆2, . . . , 𝜆𝑝 ∈ Λ and define the sets

𝐵1 = 𝐵 ∩ 𝑚1𝜆𝜀 .𝐵 and 𝐵𝑘 = (𝑆𝜆𝜀 + 𝑛𝜆𝑘 ).𝐵, for 𝑘 = 2, . . . , 𝑝.

Note that by (5.4) and (5.3), combined with the fact that 𝜈 is Λ(𝑛)-invariant, we have

𝜈(𝐵1) >
𝜈(𝐵)2

2
and 𝜈(𝐵𝑘 ) = 𝜈(𝑛𝜆𝑘 .(𝑆𝜆𝜀).𝐵) > 1 − 𝜀.

Hence,

𝜈(𝐵1 ∩ 𝐵2 ∩ . . . ∩ 𝐵𝑝) = 1 − 𝜈(𝐵𝑐1 ∪ 𝐵𝑐2 ∪ . . . 𝐵2
𝑝)

> 1 −
𝑝∑
𝑘=1

𝜈(𝐵𝑐𝑘 ) = 𝜈(𝐵1) − (𝑝 − 1)𝜀

>
𝜈(𝐵)2

2
− (𝑝 − 1)𝜀,

and the right-hand side is strictly positive if 𝜀 is chosen so that

𝜀 <
𝜈(𝐵)2

2(𝑝 − 1) .

If 𝜇(𝐵) < 3 · 𝜈(𝐵), then

𝜇(𝐵)2

18(𝑝 − 1) <
𝜈(𝐵)2

2(𝑝 − 1) .

Hence, if we take 𝜀𝑜 < 𝜀 < 𝜇(𝐵)2/18(𝑝 − 1), then,

𝜈(𝐵1 ∩ 𝐵2 ∩ . . . ∩ 𝐵𝑝) > 0.

After unwrapping the definitions of the sets 𝐵1, . . . , 𝐵𝑝 , we conclude that with these choices of 𝜀𝑜 and
𝜀, there exist 𝑚2, . . . , 𝑚𝑝 ∈ 𝑆 such that

𝜈(𝐵 ∩ 𝑚1𝜆𝜀 .𝐵 ∩ (𝑚2𝜆𝜀 + 𝑛𝜆2).𝐵 ∩ . . . ∩ (𝑚𝑝𝜆𝜀 + 𝑛𝜆𝑝).𝐵) > 0.
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By (5.2), applied to the set

𝐹 = {0, 𝑚1𝜆𝜀 , 𝑚2𝜆𝜀 + 𝑛𝜆2, . . . , 𝑚𝑝𝜆𝜀 + 𝑛𝜆𝑝} ⊂ Λ(𝑛),

we see that

𝜇(𝐵 ∩ 𝑚1𝜆𝜀 .𝐵 ∩ (𝑚2𝜆𝜀 + 𝑛𝜆2).𝐵 ∩ . . . ∩ (𝑚𝑝𝜆𝜀 + 𝑛𝜆𝑝).𝐵) > 0,

which finishes the proof. �

6. Proof of Theorem 1.1

Let Λ be a free abelian group of rank r. If 𝐸 ⊂ Λ and F = (𝐹𝑁 ) is a Følner sequence in Λ, we define
the upper density 𝑑F (𝐸) along F by

𝑑F (𝐸) = lim
𝑁→∞

|𝐸 ∩ 𝐹𝑁 |
|𝐹𝑁 | .

If Λ = Z𝑟 and F𝑁 = [−𝑁, 𝑁]𝑑 , we see that 𝑑F coincides with the upper density introduced in the
introduction. The upper Banach density 𝑑∗Λ (𝐸) is given by

𝑑∗Λ(𝐸) = sup{𝑑F (𝐸) : F is a Følner sequence in Λ}.

In this section, we prove Theorem 1.1 in the following form.

Theorem 6.1. Let 𝐸 ⊂ Λ such that 𝑑∗Λ (𝐸) > 0. Then there is a positive integer n such that for all
𝑝 ≥ 2, there exist 𝜆 ∈ PΛ and 𝑚1 ∈ Z with the property that for all 𝜆2, . . . , 𝜆𝑝 ∈ Λ, there are
𝑚2, . . . , 𝑚𝑝 ∈ Z \ {0} such that

𝑑∗Λ(𝐸 ∩ (𝐸 − 𝑚1𝑛𝜆) ∩ (𝐸 − (𝑚2𝑛𝜆 + 𝑛𝜆2)) ∩ . . . ∩ (𝐸 − (𝑚𝑝𝑛𝜆 + 𝑛𝜆𝑝))) > 0.

In particular, there is an element 𝜆𝑜 ∈ 𝐸 such that

𝜆𝑜 + 𝑚1𝑛𝜆 ∈ 𝐸, 𝜆𝑜 + 𝑚2𝑛𝜆 + 𝑛𝜆2 ∈ 𝐸, . . . , 𝜆𝑜 + 𝑚𝑝𝑛𝜆 + 𝑛𝜆𝑝 ∈ 𝐸.

6.1. Proof of Theorem 6.1

Let 𝐸 ⊂ Λ such that 𝑑∗Λ(𝐸) > 0. By the classical Furstenberg’s Correspondence Principle (see, for
instance, [3, Proposition A.4]), we can find an ergodic Λ-space (𝑋, 𝜇) and a 𝜇-measurable set 𝐵 ⊂ 𝑋
such that 𝑑∗Λ(𝐸) = 𝜇(𝐵) > 0 and

𝑑∗Λ

( ⋂
𝜆∈𝐹

(
𝐸 − 𝜆

) )
≥ 𝜇

( ⋂
𝜆∈𝐹

𝜆.𝐵
)

(6.1)

for every finite subset 𝐹 ⊂ Λ. By Theorem 5.1, for every 𝑝 ≥ 2, we can find a positive integer n, a
primitive element 𝜆 ∈ Λ and 𝑚1 ∈ Z\ {0} with the property that for every (𝑝−1)-tuple 𝜆2, . . . , 𝜆𝑝 ∈ Λ,
there are 𝑚1, . . . , 𝑚𝑝 ∈ Z \ {0} such that

𝜇
( ⋂
𝜆∈𝐹

𝜆.𝐵
)
> 0,

where

𝐹 = {0, 𝑚1𝑛𝜆, 𝑚2𝑛𝜆 + 𝑛𝜆2, . . . , 𝑚𝑝𝑛𝜆 + 𝑛𝜆𝑝}.
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By (6.1), we conclude that

𝑑∗Λ(𝐸 ∩ (𝐸 − 𝑚1𝑛𝜆) ∩ (𝐸 − (𝑚2𝑛𝜆 + 𝑛𝜆2)) ∩ . . . ∩ (𝐸 − (𝑚𝑝𝑛𝜆 + 𝑛𝜆𝑝))) > 0.
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