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Abstract. A flexible model for non-stationary Gaussian random fields on hypersurfaces
is introduced. The class of random fields on curves and surfaces is characterized by an
amplitude spectral density of a second order elliptic differential operator. Sampling is done
by a Galerkin–Chebyshev approximation based on the surface finite element method and
Chebyshev polynomials. Strong error bounds are shown with convergence rates depending
on the smoothness of the approximated random field. Numerical experiments that confirm
the convergence rates are presented.

1. Introduction

Random fields are powerful tools for modeling spatially dependent data. They have found
uses in a wide range of applications, for instance in geostatistics, cosmological data analysis,
climate modeling, and biomedical imaging [22, 12]. One challenge in the modeling of spatial
data is non-stationary behavior, i.e., different behaviors in different parts of the domain. An-
other challenge is that the domain may be a non-Euclidean space, for instance, a surface such
as the sphere or on the cortical surface of the brain. In this paper, we present a surface finite
element-based method to sample a flexible class of non-stationary random fields on curves and
surfaces and show its strong convergence. The method, building on the foundational work
for stationary fields introduced in [19], is an extension of the stochastic partial differential
equation (SPDE) approach pioneered by [27] and popularized by [21]. The idea behind our
method is to color white noise by applying a function of an elliptic differential operator L.
Formally, we study Gaussian random fields on curves and surfaces of the form

Z = γ(L)W,(1)

where L is an elliptic differential operator, W denotes white noise, γ is a function, called
amplitude spectral density in analogy to the spectral analysis of time signals [15]. By letting
the coefficients of the differential operator vary over the domain, we can obtain local, non-
stationary behaviors. If 1/γ is well-defined over R+, one may formally view Z as the solution
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(c) A random field on a star-
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Figure 1. Examples of random field samples generated with our method.

to the stochastic partial differential equation

(1/γ)(L)Z = W.

For instance, consider the three examples depicted in Figure 1. To generate random field
samples, there are two components of L that we can vary: the diffusion matrix and the
potential. In Figure 1(a), we use a diffusion matrix to give the field preferred directions, more
specifically it elongates field in the northwest-southeast direction. The potential is large over
the continents and small over the oceans, effectively “turning off” the random field over land.
In Figure 1(b), the potential is small in the front of the brain and large elsewhere, so that
the field is only large in the front of the brain. Finally, Figure 1(c) shows the method used to
generate a non-stationary random field in the one-dimensional case. To illustrate the value
of the field at a point, we move it in the normal direction for a distance proportional to the
value of the field. In all three cases, we see that the field behaves locally varying over the
domain. With the suggested model, we can achieve preferred directions, local activation, and
local deactivation.

The computational method we use to solve Equation (1), i.e., sample the random fields, is
based on the surface finite element method (SFEM), a computational method pioneered by
[10, 11] and that has been used in the context of the generation of Whittle–Matérn random
fields with Laplace–Beltrami operators in for instance [6, 18, 19]. Our main mathematical
contribution is a strong convergence result for equations with more general elliptic operators
and amplitude spectral densities than fractional powers. Using a functional calculus approach
to the finite element discretization error, we obtain a strong rate of convergence of order
O(Cα(h)h

2min{α−d/4;1}), where d = 2 for surfaces and d = 1 for curves, and Cα(h) is a
dimension-dependent logarithmic factor.

The SPDE approach to random fields and their approximation have been studied previously
for both surfaces and Euclidean geometries, examples include [6, 8, 3, 9, 18, 19, 21, 20].
However, to the best of our knowledge, we are the first to present a strong error analysis for
the non-stationary case on hypersurfaces that are only given by mesh points. In contrast to the
method presented in [16], we do not need to explicitly know the true hypersurface and perform
computations on it. Instead, we only require a polyhedral approximation of the hypersurface.
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Moreover, like in [9], we achieve this without requiring explicit approximation bounds on
the eigenfunctions of the elliptic operator, and contrary to for instance [8], computing the
eigenfunctions. In fact, the computation of eigenfunctions, with theoretical guarantees, is a
notoriously difficult problem, see e.g., [2]. Our method circumvents this issue by introducing
a Chebyshev approximation.

Our main contribution is a powerful, efficient, and flexible tool for the modeling and sam-
pling of non-stationary random fields on curves and surfaces with proven accuracy. In partic-
ular, using tools from complex analysis and operator theory, we derive strong error bounds for
approximations of arbitrary sufficiently smooth transformations of elliptic operators, where
we do not require assumptions on the approximability of individual eigenfunctions.

The paper is structured as follows: In Section 2, we introduce the relevant deterministic
framework. We provide the necessary background on geometry and functional analysis in
Section 2.1. This is followed by a description of the main computational tool, surface finite
elements in Section 2.2. Finally, Section 2.3 provides the relevant error estimates in the deter-
ministic setting. In Section 3, we collect all material in the stochastic setting. We introduce
first the class of considered random fields in Section 3.1 and their Galerkin–Chebyshev ap-
proximation in Section 3.2. The proof of its strong convergence is split into the SFEM error
in Section 3.3 and the Chebyshev approximation error in Section 3.4. In Section 4, we present
numerical experiments that confirm the strong error bounds. The source code used to generate
the figures is available at this address: https://github.com/mike-pereira/SFEMsim.

2. Deterministic theory: geometry, functional analysis and finite elements

Before we are able to approximate random fields on hypersurfaces, we need to introduce
and partially extend the existing literature on surface finite element approximations due to so
far unconsidered error bounds required in our stochastic setting. We introduce the functional
analytic setting in Section 2.1, discuss surface finite element methods in Section 2.2 and show
error bounds in the deterministic setting in Section 2.3.

2.1. Geometric and functional analytic setting. Let M ⊂ Rd+1 be a d-dimensional
(d ≤ 2) compact oriented smooth hypersurface (k ≥ 2) without boundary, i.e., for any
x0 ∈ M, there exists an open set Ux0 ⊂ Rd+1 containing x0 and a function ϕx0 ∈ C∞(Ux0)
such that ∇ϕx0 ̸= 0 on M∩ Ux0 and

M∩ Ux0 = {x ∈ Ux0 , ϕx0(x) = 0}.
The tangent space of M at x ∈ M is the d-dimensional subspace of Rd+1 given by TxM =
[∇ϕx]⊥ (where ∇ denotes the usual gradient of functions of C1(Rd+1) and ⊥ denotes the
orthogonal complement in Rd+1 with respect to the standard Euclidean inner product.). Since
M is oriented, there exists a smooth map ν : M → Rd+1 assigning to each point x ∈ M a unit
vector ν(x) = ±∇ϕx/∥∇ϕx∥ perpendicular to the tangent space TxM. Our hypersurface M
is a Riemannian manifold equipped with the metric g that is the pullback of the Euclidean
metric on Rd+1. For instance, if M = S2, this results in the standard round metric.

Let ∇M be the gradient operator acting on differentiable functions of M, and let ∆M
denote the Laplace–Beltrami operator on (M, g). We denote by dA the surface measure
on M, and by L2(M) the Hilbert space of dA-measurable square integrable complex-valued
functions, equipped with the inner product (·, ·)L2(M) defined by

(u, v)L2(M) =

∫
M
uv dA, u, v ∈ L2(M).

https://github.com/mike-pereira/SFEMsim
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The Sobolev spaces with smoothness index s ∈ R+ are then defined via Bessel potentials by

Hs(M) = (I −∆M)−s/2 L2(M),

with corresponding norm ∥ · ∥Hs(M) = ∥ (I −∆M)s/2 · ∥L2(M). For s < 0, Hs(M) is defined
as the space of distributions generated by

(2) Hs(M) =
{
u = (I −∆M)k v, v ∈ H2k+s(M)

}
,

where k ∈ N is the smallest integer such that 2k + s > 0. In this case, the corresponding
norm is given by ∥u∥Hs(M) = ∥v∥H2k+s(M). We set H0(M) = L2(M). The reader is referred

to [17], [25], [26], and references therein for more details on Sobolev spaces defined using
Bessel potentials.

In this work, we consider elliptic differential operators associated to bilinear forms AM
given by

AM(u, v) =

∫
M
(D∇Mu) · (∇Mv) dA+

∫
M
(V u)v dA, u, v ∈ H1(M),(3)

where for any x0 ∈ M the diffusion matrix D(x0) = [Dij(x0)]
d+1
i,j=1 is a real-valued, symmetric

matrix such that for any w ∈ Tx0M, D(x0)w ∈ Tx0M and (D(x0)w) · w > 0 if w ̸= 0. In
particular, since Tx0M = [ν(x0)

⊥], D(x0) is simply a matrix admitting ν(x0) as an eigenvector
with some eigenvalue µ1(x0) ∈ R, and such that the eigenvalues µi(x0), 2 ≤ i ≤ d + 1
associated with its other eigenvectors are positive. Without loss of generality, we may assume
that µ1(x0) = 0, meaning that Dν = 0, that the eigenvalues µi(x0), 2 ≤ i ≤ d + 1 are
uniformly lower-bounded and upper-bounded on M by positive constants, and for simplicity
that Dij ∈ C∞(M) for any 1 ≤ i, j ≤ d + 1. Finally, we assume that V ∈ L∞(M) is a
real-valued function that satisfies V− ≤ V ≤ V+ for some 0 < V− ≤ V+ < +∞.

Throughout this paper, let AM be coercive and continuous, i.e., there exist positive con-
stants δ and M such that for all u, v ∈ H1(M),

AM(u, u) ≥ δ∥u∥2H1(M),(4)

|AM(u, v)| ≤M∥u∥H1(M) ∥v∥H1(M).(5)

Following [28, Equation (1.33)], AM gives rise to an associated elliptic differential operator
L : H1(M) → H−1(M) defined weakly by

AM(u, v) =

∫
M
(Lu)v dA, u, v ∈ H1(M).

The spectral properties of this operator are detailed in the next proposition, which is proven
in Appendix A.

Proposition 2.1. Let δ > 0 be the coercivity constant defined in Equation (4). There exists a
set of eigenpairs {(λi, ei)}i∈N of L consisting of a sequence of increasing real-valued eigenvalues
0 < δ ≤ λ1 ≤ λ2 ≤ · · · with λi → +∞ as i → +∞, and {ei}i∈N forms an orthonormal basis
of L2(M) where each ei is real-valued.

Since the operator L differs from the Laplace–Beltrami operator only by a zeroth-order
potential term and a diffusion function in the second order term, switching between the two
operators corresponds to a change of metric on M. Therefore, the eigenvalue problem for L
is equivalent to that for the Laplace–Beltrami operator on M equipped with a possibly rough
metric if the coefficients of D are not smooth. The results in [1] imply growth rates on the
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eigenvalues in accordance with Weyl’s law, and more specifically that there exist cM, CM > 0
such that for any i ∈ N

(6) cMi2/d ≤ λi ≤ CMi2/d.

As a last step in this subsection, we introduce nonlinear functions of L which allow later in
Section 3 for the definition of a variety of Gaussian random fields. For that, we call a function
γ : R+ → R an α-amplitude spectral density if

1) γ is extendable to a holomorphic function on Hπ/2 := {z ∈ C : | arg z| ≤ π/2}.
2) There exist constants Cγ > 0 and α > 0 such that for all z ∈ Hπ/2,

(7) |γ(z)| ≤ Cγ |z|−α.

Applying a amplitude spectral density to L results in a linear operator γ(L) whose action on
functions f ∈ L2(M) is defined by

γ(L)f =
∞∑
i=1

γ(λi)(f, ei)L2(M)ei,(8)

where {(λi, ei)}i∈N are the eigenpairs of L defined in Proposition 2.1. A typical example
is the function γ(λ) = (κ2 + λ)−α for α > d/4 and κ > 0, which can be used to obtain
Whittle–Matérn random fields [19].

Remark 2.2. For any α-amplitude spectral density γ and any f ∈ L2(M), γ(L)f ∈ L2(M).
In fact, we have for any s ∈ [0, α], ∥Ls(γ(L)f)∥L2(M) <∞. Indeed,

∥Lsγ(L)f∥L2(M) =
∞∑
i=1

|λsiγ(λi)|2|(f, ei)L2(M)|2,

where, since γ is an α-amplitude spectral density and λi ∈ Hπ/2 for any i ∈ N, |λsiγ(λi)| ≲
|λi|−(α−s). Using then the fact that for any i ∈ N, λi ≥ λ1 > 0, and that α−s ≥ 0, we conclude

that |λsiγ(λi)| ≲ |λ1|−(α−s) ≲ 1 and therefore ∥Lsγ(L)f∥L2(M) ≲
∑∞

i=1 |(f, ei)L2(M)|2 =
∥f∥L2(M) <∞.

The goal of the remainder of this section is to study the approximation of functions of the
form u = γ(L)f , where f ∈ L2(M). Formally, if 1/γ is well-defined on the spectrum of L,
then this is the solution to the partial differential equation (1/γ)(L)u = f .

2.2. SFEM–Galerkin approximation. The idea behind the surface finite element method,
as introduced by [10], is to work on a polyhedral approximation of the surface that is in some
sense close to the true surface M. More precisely, fix h > 0 and let Mh be a piecewise
polygonal surface consisting of non-degenerate simplices (for d = 2, triangles and for d = 1,
line segments) with vertices on M, and such that h is the size of the largest simplex defined
as the in-ball radius. The set of simplices making up the discretized surface is denoted by Th,
thus meaning that

Mh =
⋃

Tj∈Th

Tj ,

and we assume that for any two simplices in Th, it holds that their intersection is either empty,
or a common edge or vertex.

Following [11, Section 1.4.1], we assume that the triangulation Th is quasi-uniform, shape-
regular, and that the number of simplices sharing the same vertex can be upper-bounded by
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M

Mh

νh

ν

x

a(x)

Figure 2. One-dimensional illustration of the lift. The lift is along the normal
vector ν to the surface M.

a constant independent of h. In turn, these two assumption imply that Nh ∝ h−d where
Nh ∈ N denotes the number of vertices of Mh.

The discrete surface Mh is close to the true surface M in the sense that Mh is contained
in a small neighborhood around M defined as follows. First, note that M can be seen as the
boundary of some bounded open set G ⊂ Rd+1 with exterior normal ν. Then, following [11,
Section 2.3], we consider that there exists some (small) ϖ > 0 such that Mh is contained in
a so-called tubular neighborhood Uϖ of M defined by

Uϖ = {x ∈ Rd+1 : |ds(x)| < ϖ},
where ds : Rd+1 → R denotes the oriented distance function given by

ds(x) =

{
infy∈M |x− y|, x ∈ Rd+1 \G,
infy∈M−|x− y|, x ∈ G.

We denote by dAh the surface measure on Mh, and by L2(Mh) the Hilbert space of dAh-
measurable square integrable functions, equipped with the inner product (·, ·)L2(Mh) defined
by

(uh, vh)L2(Mh) =

∫
Mh

uhvh dAh, uh, vh ∈ L2(Mh).

Following [4, Section 1.2.1], we denote by σ : Mh → R+ the area element given by σ =
dA/dAh, such that for all v ∈ L2(M),∫

M
v dA =

∫
Mh

σv−ℓ dAh,(9)

where we next introduce the lift and its inverse denoted by ℓ and −ℓ, respectively.
A key element of SFEM is that we can move between M and Mh using the so-called lift

operator. To construct the lift operator, we note that ds ∈ Ck(Uϖ) for k ≥ 2, and that for
any x ∈ Uϖ, there exists a unique a(x) ∈ M such that

x = a(x) + ds(x)ν(a(x)),

where ν denotes the normal at a(x) to M. In particular, this implies that any point x ∈ Uϖ

can be uniquely described by the pair (a(x), ds(x)) ∈ M× R, and this procedure defines an
isomorphism p : Mh → M given by

p(x) = x− ds(x)ν(a(x)), x ∈ Mh.

Therefore, any function η : Mh → C may be lifted to M by ηℓ = η ◦ p−1 : M → C. Likewise,
the inverse lift of any function ζ : M → C is given by ζ−ℓ = ζ ◦p : Mh → C. The procedure is
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illustrated in Figure 2 in the one-dimensional setting. Note that the points on the discretized
surface are lifted along the normal ν to the surface M.

The mapping a is used to define the gradient of functions on Mh [11]. More specifically,
for a differentiable η : Mh → C, the gradient is given by

(10) ∇Mh
η(x) = ∇η̌(x)− (∇η̌(x) · νh(x))νh(x) ∈ TxMh,

where νh is the normal of Mh and η̌ is the continuous extension of η defined by η̌ : x ∈ Uϖ 7→
η̌(x) = ηℓ(a(x)). With this definition, the Laplace–Beltrami operator on Mh can be defined
by ∆Mh

= ∇Mh
· ∇Mh

, and Sobolev spaces on Mh are defined in complete analogy to those
on M.

The analogue of the bilinear form AM on Mh is given by

(11) AMh
(uh, vh) =

∫
Mh

(D−ℓ∇Mh
uh) · (∇Mh

vh) dAh +

∫
Mh

(V −ℓuh)vh dAh,

where uh, vh ∈ H1(Mh) and D−ℓ = [D−ℓ
ij ]d+1

i,j=1. As in [11], we assume that there exists

h0 ∈ (0, 1) small enough, such that AMh
is coercive (and continuous) whenever h ≤ h0.

Unless stated otherwise, we now assume that this last condition on h is fulfilled.
To conclude this subsection, we introduce the (linear) finite element space Sh on Mh. The

finite element space Sh is defined as the complex span of the standard real-valued nodal basis

ψ1, . . . , ψNh
: M → R,

where for any i ∈ {1, . . . , Nh}, ψi|T is a polynomial of at most degree one taking the value 1
at the i-th vertex of Mh and 0 at all the other vertices, i.e.,

Sh = span (ψ1, . . . , ψNh
) ⊂ H1(Mh).

By construction, Sh is a vector space of dimension Nh. Its counterpart on M is the lifted
finite element space Sℓ

h given by

Sℓ
h =

{
ϕℓh, ϕh ∈ Sh

}
⊂ H1(M).

On Sh, we can, as L on M, associate to the bilinear form AMh
in Equation (11) a linear

operator Lh : Sh → Sh which maps any uh ∈ Sh to the unique Lhuh ∈ Sh satisfying, for any
vh ∈ Sh, the equality

AMh
(uh, vh) = (Lhuh, vh)L2(Mh).

Similarly, if the bilinear form AM introduced in Equation (3) is restricted to Sℓ
h, we can

associate it to a linear operator Lh : Sℓ
h → Sℓ

h that maps any uℓh ∈ Sh to the unique Lhu
ℓ
h ∈ Sℓ

h

that satisfies, for any vℓh ∈ Sℓ
h, the equality

AM(uℓh, v
ℓ
h) = (Lhu

ℓ
h, v

ℓ
h)L2(M).

Since the bilinear forms AM and AMh
are coercive, positive definite, Hermitian and have

real coefficients, these two operators are diagonalizable in the sense that they each give rise
to a set of Nh eigenpairs [14]. On the one hand, there exists a sequence 0 ≤ Λh

1 ≤ · · · ≤ Λh
Nh

and an L2(Mh)-orthonormal basis Eh
1 , . . . , E

h
Nh

of Sh such that

LhE
h
i = Λh

i E
h
i , 1 ≤ i ≤ Nh,
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and similarly there exists a sequence 0 ≤ λh1 ≤ · · · ≤ λhNh
and an L2(M)-orthonormal basis

eh1 , . . . , e
h
Nh

of Sℓ
h such that

Lhe
h
i = λhi e

h
i , 1 ≤ i ≤ Nh.

In particular, using the same approach as in Proposition 2.1, we can assume that the eigen-
functions {Eh

i }1≤i≤Nh
and {ehi }1≤i≤Nh

are all real-valued. The eigenvalues of the operators
L, Lh and Lh are linked to one another through the following lemma, due to [5, Lemma 3.1],
[6, Lemma 4.1] and [24, Theorem 6.1].

In the following, A ≲ B is shorthand for that there is a constant C > 0 such that A ≤ CB.

Lemma 2.3 (Eigenvalue error bounds). Let {λi}i∈N, {λhi }1≤i≤Nh
and {Λh

i }1≤i≤Nh
denote the

eigenvalues of the operators L, Lh and Lh, respectively. Then,

λi ≤ λhi ≲ (1 + h2)λi, 1 ≤ i ≤ Nh,(12)

and

|λhi − Λh
i | ≲ h2λhi ≲ h2λi, 1 ≤ i ≤ Nh.(13)

Finally, we remark that the eigenvalues {Λh
i }1≤i≤Nh

of Lh can be linked to the eigenvalues
of some classical finite element matrices. Let C and R be the so-called mass matrix and
stiffness matrix, respectively, and defined from the nodal basis by

(14) C =
[
(ψk, ψl)L2(Mh)

]
1≤k,l≤Nh

, R = [AMh
(ψk, ψl)]1≤k,l≤Nh

.

As defined, C is a symmetric positive definite matrix and R is a symmetric positive semi-
definite matrix. Let then

√
C ∈ RNh×Nh be an invertible matrix satisfying

√
C(

√
C)T = C.

Then, by [19, Corollary 3.2], the eigenvalues {Λh
i }1≤i≤Nh

are also the eigenvalues of the matrix
S ∈ RNh×Nh defined by

(15) S =
(√
C
)−1
R
(√
C
)−T

.

Besides, if ψ denotes the vector-valued function given by ψ = (ψ1, . . . , ψNh
)T , then the

mapping F : RNh → Sh, defined by

F (v) = F (v) = ψT
(√
C
)−T

v, v ∈ RNh ,

is an isomorphism whose inverse maps the eigenfunctions {Eh
i }1≤i≤Nh

to (orthonormal) eigen-
vectors of S. This means in particular that S can also be written as

(16) S = V Diag
(
Λh
1 , . . . ,Λ

Nh
1

)
V T ,

where V =
(
F−1(Eh

1 )| · · · |F−1(Eh
Nh

)
)
∈ RNh×Nh .

2.3. Deterministic error analysis. From now on, let us make the following assumption
on the mesh size h. Let δ0 ∈ (0, δ/2) be fixed and arbitrary and let h0 ∈ (0, 1) such that
h−2
0 > δ0 and | log h0| > 1. We now assume for the remainder of the paper n that mesh size

satisfies h ∈ (0, h0).
Based on the introduced framework, we are now in place to quantify the error between

functions of the operators L, Lh and Lh. Let Ph : L2(M) → Sℓ
h be the L2-projection onto Sℓ

h
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and let Ph : L2(Mh) → Sh the L2-projection onto Sh. We note that the operators L, Lh, and
Lh define norms that are equivalent to the standard Sobolev norms, i.e.,

∥L1/2v∥L2(M) ∼ ∥v∥H1(M), ∥L
1/2
h Vh∥L2(M) ∼ ∥Vh∥H1(Mh),

∥L1/2
h vh∥L2(M) ∼ ∥vh∥H1(M),

(17)

for all v ∈ H1(M), and all vh ∈ Sℓ
h and Vh ∈ Sh.

With that at hand we are ready to state our main result in this section.

Proposition 2.4. Let γ be an α-amplitude spectral density. There exists some constant such
that for any h ∈ (0, h0), for all f ∈ L2(M) and for any p ∈ [0, 1] such that ∥Lpf∥L2(M) <∞,
we have

∥γ(Lh)Phf − γ(L)f∥L2(M) ≲ Cα+p(h)h
2min{α+p;1}∥Lpf∥L2(M),

where Cα+p(h) = | log h| if α+ p ≤ 1, and Cα+p(h) = 1 otherwise.

To prove this proposition we rely on a representation of functions of operators based on
Cauchy–Stieltjes integrals, which are constructed as follows. Since the sesquilinear form
defined by AM is continuous and coercive, the associated operators L and Lh are sectorial
with some (common) angle θ ∈ (0, π/2) [28, Theorem 2.1]. Therefore, the spectra of L and
Lh are contained in the complement of the set Gθ = {z ∈ C, θ ≤ arg(z) ≤ π}, as illustrated
in Figure 3(a), and the following inequalities are satisfied for any z ∈ Gθ (cf. [28, Equation
(2.2)]):

∥(z − L)−1v∥L2(M) ≤ Cθ|z|−1∥v∥L2(M), v ∈ L2(M),(18)

∥(z − Lh)
−1vℓh∥L2(M) ≤ Cθ|z|−1∥vℓh∥L2(M), vℓh ∈ Sℓ

h,(19)

where Cθ > 0 is a generic constant. Note in particular that by definition, Gθ is contained
in the resolvent sets of L and Lh, and that any amplitude spectral density γ is bounded,
holomorphic and satisfies the inequality |z|α|γ(z)| ≲ 1 for any z ∈ Gθ. Hence, the operators
γ(L) and γ(Lh) can be defined as functional calculi of the operators L and Lh as [28, Chapter
16, Section 1.2] by

γ(L) = 1

2πi

∫
Γ
γ(z)(z − L)−1 dz and γ(Lh) =

1

2πi

∫
Γ
γ(z)(z − Lh)

−1 dz,(20)

where Γ ⊂ C is any integral contour surrounding the spectra of L and Lh and contained
in Gθ. In particular, these new definitions of functions of operators are independent of the
choice of Γ, and coincide with the spectral definitions previously introduced in Equation (8)
(cf. e.g. [28, Remark 2.7]).

In the remainder, we split the contour Γ into

Γ = Γ+ ∪ Γ0 ∪ Γ−,(21)

where Γ+ is parametrized by g+(t) = teiθ for t ∈ (∞, δ0], Γ0 by g0(t) = δ0e
it for t ∈ [θ,−θ]

and Γ− by g−(t) = teiθ for t ∈ [δ0,∞) with δ0 < δ/2 (see Figure 3(b) for an illustration).
We use this contour to prove Proposition 2.4, while relying on the following bounds for the
resolvent error along Γ. The proof is included in Appendix B.3 and is an adaption of results
from [13, 6, 7].
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Re

Im ∂Gθ

∂Gθ

θ−θ
λ1 λ2 λ3

(a) Illustration of Gθ being the complement
of the shaded blue slice.

Re

Im Γ+

Γ−

Γ0

δ0

θ−θ
λ1 λ2 λ3

(b) Illustration of the contour Γ = Γ+∪Γ−∪
Γ0 used in the proof of Proposition 2.4.

Figure 3. Contours used to define the Cauchy–Stieltjes integral representa-
tion of operators.

Lemma 2.5. There exists some constant such that for any h ∈ (0, h0), for any z ∈ Γ, any
f ∈ L2(M), for any p ∈ [0, 1] such that ∥Lpf∥L2(M) < ∞, for any β ∈ [0, 1] such that
p ∈ [0, (1 + β)/2],

∥(z − Lh)
−1Phf − Ph(z − L)−1f∥L2(M) ≲ h2β|z|−(1+p−β)∥Lpf∥L2(M).(22)

We now provide a proof for Proposition 2.4.

Proof of Proposition 2.4. Let h ∈ (0, h0), f ∈ L2(M) and let p ∈ [0, 1] such that ∥Lpf∥L2(M) <

∞. We can therefore introduce u = Lpf ∈ L2(M). First, note using the triangle inequality,
we have

∥γ(Lh)Phf − γ(L)f∥L2(M) ≤ ∥γ(Lh)Phf − Phγ(L)f∥L2(M)

+ ∥Phγ(L)f − γ(L)f∥L2(M) = S1 + S2

where we take S1 = ∥γ(Lh)Phf − Phγ(L)f∥L2(M) and S2 = ∥Phγ(L)f − γ(L)f∥L2(M). We
now bound these two terms.

For the term S2, let us introduce the function γ̂ defined as γ̂(λ) = γ(λ)λ−p. In particular,
note that since γ is an α-amplitude spectral density, γ̂ is an (α+p)-amplitude spectral density,
and we have, by definition of u,

S2 = ∥(I − Ph)γ(L)f∥L2(M) = ∥(I − Ph)γ̂(L)u∥L2(M)

We then use the Bramble–Hilbert lemma (cf. Lemma B.4) with t = 2min{α + p; 1} ∈ (0, 2],

while noting that, following Remark 2.2, ∥Lt/2(γ̂(L)u)∥L2(M) ≲ ∥u∥L2(M) < ∞ (since t/2 ≤
α+ p):

S2 ≲ ht∥Lt/2(γ̂(L)u)∥L2(M) ≲ ht∥u∥L2(M) = h2min{α+p;1}∥Lpf∥L2(M).

Let us now bound the term S1. For any z ∈ Γ, set Fh(z) = (z−Lh)
−1Phf −Ph(z−L)−1f ,

which yields, using the integral representations of γ(L) and γ(Lh),

γ(Lh)Phf − Phγ(L)f =
1

2πi

∫
Γ
γ(z)Fh(z) dz.
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The definition of Γ and its parametrization allow to decompose the integral as

γ(Lh)Phf − Phγ(L)f =
−1

2πi

∫ ∞

δ0

γ(g+(t))Fh(g+(t))g
′
+(t) dt

− 1

2πi

∫ θ

−θ
γ(g0(t))Fh(g0(t))g

′
0(t) dt

+
1

2πi

∫ ∞

δ0

γ(g−(t))Fh(g−(t))g
′
−(t) dt,

where we recall that g′+(t) = eiθ, g′−(t) = e−iθ and g′0(t) = iδ0e
it. Taking norms on both sides

of this equality and using the triangle inequality then gives

S1 = ∥γ(Lh)Phf − Phγ(L)f∥L2(M)

≤ 1

2π

∫ ∞

δ0

|γ(g+(t))| ∥Fh(g+(t))∥L2(M) dt+
δ0
2π

∫ θ

−θ
|γ(g0(t))|∥Fh(g0(t))∥L2(M) dt

+
1

2π

∫ ∞

δ0

|γ(g−(t))| ∥Fh(g−(t))∥L2(M) dt

= I+ + I0 + I−.

Let us start by bounding I0. We apply Equation (7) and Equation (22) (with β = 1) to
obtain

I0 ≲
∫ θ

−θ
|g0(t)|−α h2|g0(t)|−p∥Lpf∥L2(M) dt = h2∥Lpf∥L2(M)

∫ θ

−θ
δ
−(α+p)
0 dt

≲ h2∥Lpf∥L2(M).

To bound I+, we distinguish between the three cases α+ p > 1, α+ p < 1 and α+ p = 1.
When α+ p > 1, we apply Equation (7) and Equation (22) (with β = 1) to get

I+ ≲ h2∥Lpf∥L2(M)

∫ ∞

δ0

|g+(t)|−(α+p) dt = h2∥Lpf∥L2(M)

∫ ∞

δ0

|t|−(α+p) dt

= h2∥Lpf∥L2(M)
δ
−(α+p−1)
0

α+ p− 1
.

Hence, we can conclude that if α+ p > 1, we have I+ ≲ h2∥Lpf∥L2(M).

For α + p < 1, recall that 0 < h < h0 < 1 for some fixed h0 such that h−2
0 > δ0. We then

introduce α̃ = (α+ p)/α and split I+ = I+1 + I+2 with

I+1 =

∫ h−2α̃

δ0

|γ(g+(t))| ∥Fh(g+(t))∥L2(M) dt,

I+2 =

∫ ∞

h−2α̃

|γ(g+(t))| ∥Fh(g+(t))∥L2(M) dt.

Let then eh = (1 − (α + p))/| log h| ∈ (0, 1 − (α + p)) and β = α + p + eh ∈ (0, 1). Note in
particular that p ∈ [0, (1+β)/2] since (1+β)/2−p = (1−p+α+eh)/2 > 0. We can therefore
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use Equation (7) and Equation (22) to bound I+1 by

I+1 ≲ h2β∥Lpf∥L2(M)

∫ h−2α̃

δ0

|g+(t)|−(α+1+p−β) dt = h2β∥Lpf∥L2(M)

∫ h−2α̃

δ0

|t|−(1−eh) dt

≲ h2β∥Lpf∥L2(M)

∫ h−2α̃

0
|t|−(1−eh) dt = h2β∥Lpf∥L2(M)

h−2α̃eh

eh

= h2(α+p)∥Lpf∥L2(M)
h−2(α̃−1)eh

eh
≲ h2(α+p)| log h|∥Lpf∥L2(M),

since h−2α̃eh = exp(2α̃(1 − (α + p))) ≲ 1. We proceed in the same manner to bound I+2,
using this time Equation (22) (with β = p):

I+2 ≲ h2p∥Lpf∥L2(M)

∫ ∞

h−2α̃

|g+(t)|−(α+1) dt = h2p∥Lpf∥L2(M)

∫ ∞

h−2α̃

|t|−(α+1) dt

≲ hph2α̃α∥Lpf∥L2(M) ≲ h2(α+p)∥Lpf∥L2(M).

Hence, we conclude that if α+ p < 1, we have I+ ≲ | log h| h2(α+p)∥Lpf∥L2(M).
Finally, for α+ p = 1 we repeat the same approach as for the case α+ p < 1. On the one

hand we use Equation (22) (with β = 1) to get for the term I+1 the bound

I+1 ≲ h2∥Lpf∥L2(M)

∫ h−2α̃

δ0

|t|−1 dt = h2∥Lpf∥L2(M)(log(h
−2α̃)− log δ0)

≲ h2∥Lpf∥L2(M)| log h|,

where we used the fact that h is upper-bounded by a fixed constant h0 satisfying h−2
0 > δ0

to derive the last inequality. On the other hand, we once again use Equation (22) with β = p
to bound the term I+2

I+2 ≲ h2p∥Lpf∥L2(M)

∫ ∞

h−2α̃

|t|−(α+1) dt ≲ hph2α̃α∥Lpf∥L2(M)

≲ h2(α+p)∥Lpf∥L2(M) = h2∥Lpf∥L2(M).

Hence, we have I+ ≲ h2| log h| ∥Lpf∥L2(M) when α+ p = 1.
Putting together the three cases, we can therefore conclude that

I+ ≲ Cα+p(h)h
2min{α+p;1}∥Lpf∥L2(M),

where Cα+p(h) = | log h| if α + p ≤ 1, and Cα+p(h) > 1 if α + p ̸= 1. Finally, note
that by symmetry, I− satisfies the same bounds as I+, meaning that we also get I− ≲
Cα+p(h)h

2min{α+p;1}∥Lpf∥L2(M).
In conclusion, putting together the estimates for I0, I+ and I− we get

S1 ≲ Cα+p(h)h
2min{α+p;1}∥Lpf∥L2(M),

and putting together the estimates pf S1 and S2 yields

∥γ(Lh)Phf − γ(L)f∥L2(M) ≲ Cα+p(h)h
2min{α+p;1}∥Lpf∥L2(M),

which concludes the proof. □
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A result similar to Proposition 2.4 can be derived to quantify the error between functions
of the operators Lh and Lh. To do so, we note that since AMh

is continuous and coercive,
the associated operator Lh is also sectorial with some angle in (0, π/2). Hence, without
loss of generality, the angle θ ∈ (0, π/2) can be assumed to be large enough to ensure that
Equation (19) also holds for Lh, i.e. that for any z ∈ Gθ,

∥(z − Lh)
−1vh∥L2(Mh) ≤ Cθ|z|−1∥vh∥L2(Mh), vh ∈ Sh,(23)

and that an integral representation similar to Equation (20) also holds for γ(Lh), namely:

γ(Lh) =
1

2πi

∫
Γ
γ(z)(z − Lh)

−1 dz.

Proposition 2.6. Let γ be an α-amplitude spectral density with α > d/4. Then, there exists

some constant such that for any h ∈ (0, h0), for any f̃ ∈ Sℓ
h,

(24)

∥∥∥∥(γ(Lh)f̃
)−ℓ

− γ(Lh)Ph(σf̃
−ℓ)

∥∥∥∥
L2(Mh)

≲ h2 ∥L−min{α+d/4;1}/2
h f̃∥L2(M).

This proposition can be seen as an extension of [6, Lemma 4.4] relying on extensions of
the estimates proven in [6, Lemma A.1]. Its proof is similar and therefore postponed to
Appendix B.

3. Stochastic theory: random fields on surfaces and convergence of SFEM
approximation

In this section, we introduce random fields and white noise on surfaces, thus allowing us
to make sense of Equation (1) in Section 1. Further, we give approximation methods based
on SFEM and prove strong error bounds.

3.1. Random fields on surfaces. Let (Ω,S,P) be a complete probability space. We are
interested in Gaussian random fields onM defined as L2(M)-valued random variables through
expansions of the form

Z =
∑
i∈N

Ziei,(25)

where {ei}i∈N denotes a real-valued orthonormal basis of L2(M) composed of eigenfunctions
of the operator L (cf. Proposition 2.1), and {Zi}i∈N is a sequence of real Gaussian random
variables such that E[Zi] = 0 for any i ∈ N and

∑
i∈N E[|Zi|2] <∞. As such, Z can be seen as

en element of the Hilbert space L2(Ω;L2(M)) of L2(M)-valued random variables, to which
we associate the inner product (·, ·)L2(Ω;L2(M)) (and norm ∥ · ∥L2(Ω;L2(M))) defined by

(Z,Z ′)L2(Ω;L2(M)) = E
[
(Z,Z ′)L2(M)

]
, Z,Z ′ ∈ L2(Ω;L2(M)).

Finally, in analogy to Equation (25), we formally define the Gaussian white noise on M by
the expansion

W =
∑
i∈N

Wiei,(26)

where {Wi}i∈N is a sequence of independent real standard Gaussian random variables. We
observe that even though this expansion does not converge in L2(Ω;L2(M)), it does how-
ever converge in L2(M;Hs(M)) for s < −d/2. Moreover, we have that for any ϕ ∈
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L2(M), the expansion (ϕ,W)L2(M) =
∑

i∈NWi(ϕ, ei)L2(M) converges in L2(Ω). Further,

(W, ϕ)L2(M) defines a complex Gaussian variable with mean 0, and for any ϕ′ ∈ L2(M),

Cov((ϕ,W)L2(M), (ϕ
′,W)L2(M)) = E[(ϕ,W)L2(M)(ϕ

′,W)L2(M)] = (ϕ, ϕ′)L2(M). As such,
the Gaussian white noise (26) can be interpreted as a generalized Gaussian random field
over L2(M).

Circling back to the class of random fields defined in Section 1, we can now make sense of
Equation (1) through Equation (8) and Equation (26), thus yielding the definition

(27) Z = γ(L)W =
∑
i∈N

γ(λi)Wiei,

which results in Z ∈ L2(Ω;Hs(M)) for any s ≥ 0 such that 4α− d > 2s. Note in particular
that all summands in Equation (27) are real-valued functions, and that therefore Z is real-
valued. In Figure 4 we illustrate the influence of the parameter choices on the resulting field
on S2 for generalized non-stationary Whittle–Matérn fields on S2

Z = (L)−αW,

where α > d/2. By selecting Dij(x) = δij and V (x) = κ2 with κ > 0 one recovers the classical,
stationary Whittle–Matérn fields studied in various settings in for instance [9, 3, 6, 21, 18, 27].
In Figures 4(a) and 4(b) we show this case with κ2 = 10 for a rougher field with α = 0.55
and a smoother one with α = 1.5, respectively.

Two non-stationary fields are shown in Figure 4(c) and Figure 4(d), obtained by varying
the coefficient functions Dij and V and setting α = 0.75. In Figure 4(c), we keep Dij = δij
but use

V (x) =

{
105 for x62 + x31 − x23 ∈ (0.1, 0.5),

10 else

resulting in the observed localized behavior, where the field is essentially turned off in the
region with large V . More specifically, V describes the local correlation length, where a large
V (x) corresponds to a small correlation length around x.

Finally, setting V = 10 constant again, we show the influence of varying parameters D in
Figure 4(d). To derive suitable coefficients, we select a smooth function f and compute its
gradient ∇S2f as well as its skew-gradient Xf given by x×∇f(x) at each point x ∈ S2. We
set for fixed ρ1, ρ2 > 0, D(x)u = ρ1(∇f(x) · u)∇f(x) + ρ2(Xf (x) · u)Xf (x) for any u ∈ TxS2.
Here, the inner product refers to the Riemannian inner product associated with the standard
round metric on S2. Since ∇S2f(x) and Xf (x) both are in TxS2, D(x) is a linear mapping
from TxS2 into itself. Further, as ∇S2f is perpendicular to Xf (x), by selecting ρ1 and ρ2, we
obtain a field that is elongated either orthogonally to the level sets of f (large ρ1, small ρ2)
or tangentially to the level sets (small ρ1, and large ρ2). To generate Figure 4(d), we selected
f(x) = x2, i.e., the function returning the second coordinate in Cartesian coordinates, ρ1 = 1
and ρ2 = 25. Finally, we remark that other types of amplitude spectral densities can be
considered. For instance, to generate Figure 1(c), we used an amplitude spectral density of
the form γ(λ) = sin(λ)λ−0.6.

3.2. Approximation of random fields with surface finite elements. Let γ be an α-
amplitude spectral density with α > d/4. Following the approach presented by [19], the
field Z is approximated by an expansion similar to that of Equation (27), but involving
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(a) Stationary Whittle–
Matérn field with low de-
cay parameter.

(b) Stationary Whittle–
Matérn field with high de-
cay parameter.

(c) Non-stationary
Whittle–Matérn field by
varying potential.

(d) Non-stationary
Whittle–Matérn field
by varying diffusion
matrix.

Figure 4. Some examples to highlight the influence of the different model
parameters.

only quantities defined on the polyhedral surface Mh. More precisely, we define the SFEM–
Galerkin approximation Zh of the field Z by the relation

(28) Zh =

Nh∑
i=1

γ(Λh
i )W

h
i E

h
i ,

where {W h
i }1≤i≤Nh

is a sequence of independent standard Gaussian random variables, whose
precise definition is clarified later in this section, and {(Λh

i , E
h
i )}1≤i≤Nh

are the eigenpairs of
Lh introduced in Section 2.2. Then, as proven in [19, Theorem 3.4], Zh can be decomposed
in the nodal basis {ψi}1≤i≤Nh

of Sh as

Zh =

Nh∑
i=1

Ziψi,

where the weights (Z1, . . . , ZNh
) form a centered Gaussian vector which covariance matrix

ΣZ can be expressed using the matrices C and S introduced in Equations (14) and (15) as
follows:

(29) ΣZ =
(√
C
)−T

γ(S)2
(√
C
)−1

,

and, following Equation (16), the function of matrix γ(S) is defined as

(30) γ(S)2 = V Diag
(
γ
(
Λh
1

)2
, . . . , γ

(
ΛNh
1

)2)
V T .

Note that sampling the weights (Z1, . . . , ZNh
), and therefore the field Zh, using directly

the expression of their covariance matrix requires in practice to fully diagonalize S (since
Equation (29) involves a function of a matrix). Such an operation would result in a prohibitive
computational cost (of order O(N3

h) operations). To avoid this cost, we use the Chebyshev
trick proposed by [19, Section 4], and approximate Zh by the field Zh,M defined by

(31) Zh,M =

Nh∑
i=1

Pγ,M (Λh
i )W

h
i E

h
i ,



16 E. JANSSON, A. LANG, AND M. PEREIRA

where Pγ,M is a Chebyshev polynomial approximation of degree M ∈ N of γ over an interval

[λmin, λmax] containing all the eigenvalues {Λh
i }1≤i≤Nh

of Lh (which we recall, coincide with
the eigenvalues of S). Such an interval can be obtained as follows. On the one hand, one
can take λmin = V−. On the other hand, following [19], a candidate for λmax is obtained by
applying the Gershgorin circle theorem to S.

The field Zh,M , called Galerkin–Chebyshev approximation of Z, is in essence defined by
just replacing the amplitude spectral density γ by the polynomial Pγ,M in the definition of
SFEM–Galerkin approximation Zh. The expansion of Zh,M into the nodal basis,

(32) Zh,M =

Nh∑
i=1

Z
(M)
i ψi,

is such that the weights (Z
(M)
1 , . . . , Z

(M)
Nh

) now form a centered Gaussian vector with covariance
matrix ΣZ(M) given by

(33) ΣZ(M) =
(√
C
)−T

P 2
γ,M (S)

(√
C
)−1

.

Hence, the matrix function in Equation (29) is now replaced by a matrix polynomial P 2
γ,M (S).

This eliminates the eigendecomposition need associated with matrix functions and therefore

speeds up the computations. Indeed, the weights (Z
(M)
1 , . . . , Z

(M)
Nh

) can be sampled through

(34)

 Z
(M)
1

...
Z

(M)
Nh

 =
(√
C
)−T

Pγ,M (S)W

where W = (w1, . . . , wNh
)T is a vector of independent standard Gaussian random variables,

and the matrix-vector product by Pγ,M (S) can be computed iteratively while just requiring
products between S and vectors. In the next two subsections, we provide error estimates
quantifying the error between our target random field Z and its successive SFEM and poly-
nomial approximations by Zh and Zh,M .

3.3. Error analysis of the SFEM discretization. We start with analyzing the error
between the random field Z defined on M and its SFEM approximation Zh, as stated in the
next theorem.

Theorem 3.1. Let γ be an α-amplitude spectral density with α > d/4. Then, for any h ∈
(0, h0), the strong approximation error of the random field Z by its discretization Zℓ

h satisfies
the bound

(35) ∥Z − Zℓ
h∥L2(Ω;L2(M)) ≤ Cα(h)h

2min{α−d/4;1},

where Cα(h) = | log h| if d/4 < α ≤ 1, Cα(h) = | log h|3/2 if 1 < α < 1 + d/2, and Cα(h) =

| log h|1/2 if α ≥ 1 + d/2.

To prove the strong error estimate, we rely on the deterministic error bounds proven in
the previous section, and on several intermediate approximations of Z defined on the spaces
Sℓ
h (i.e., on M) and Sh (i.e., on Mh). These intermediate approximations require in turn to

define approximations of the Gaussian white noise W on the spaces Sℓ
h and Sh.
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We first define on Sℓ
h (i.e., on M), the projected white noise W̃ as

W̃ =

Nh∑
j=1

ξje
h
j ,(36)

where we recall that {ehj }1≤i≤Nh
denotes an orthonormal basis of eigenfunctions of Lh, and for

any j ∈ {1, . . . , Nh}, we take ξj =
(
ehj ,W

)
L2(M)

. In particular, this last relation implies (by

definition of the white noise W) that ξ1, . . . , ξNh
are independent standard Gaussian random

variables.

Remark 3.2. By injecting the representation (26) of W in the definition of ξj , we get that

W̃ can itself be formally represented by W̃ =
∑∞

k=1WkPhek = PhW. This explains why

we refer to it as a projected white noise. In particular, note that W̃ ∈ L2(Ω;L2(M)) and

∥W̃∥2L2(Ω;L2(M)) = ∥
∑Nh

j=1 ξje
h
j ∥2L2(Ω;L2(M)) = Nh <∞.

Based on W̃, we can then introduce a first approximation, on the space Sℓ
h, of the field Z.

We denote this approximation by Z̃h and define it in analogy to Equation (27) as

Z̃h = γ(Lh)W̃ =

Nh∑
j=1

γ(λhj )ξje
h
j .(37)

Now, on the space Sh, we define two white noise approximations Ŵ and W which are based

on the projected white noise W̃:

Ŵ = Ph(σW̃−ℓ) and W = Ph(σ
1/2W̃−ℓ),

where σ is the ratio of area measures introduced in Section 2.2. On the one hand, we associate

to Ŵ an approximation Ẑh of the field Z on Sh, which we define in analogy to Equation (38)
as

Ẑh = γ(Lh)Ŵ.

On the other hand, by expanding Ŵ and W in the orthonormal basis {Eh
j }1≤i≤Nh

of eigen-
functions of Lh, we obtain alternative representations of these fields, and we can draw a link
between W and the SFEM–Galerkin approximation Zh, as stated in the next lemma.

Lemma 3.3. The noises Ŵ and W can be written as

Ŵ =

Nh∑
j=1

αjE
h
j and W =

Nh∑
j=1

βjE
h
j ,

where (α1, . . . , αNh
) and (β1, . . . , βNh

) are multivariate normal with mean 0 and respective
covariance matrices A = [(σEh

i , E
h
j )L2(Mh)]1≤i,j≤Nh

and B = I. In particular, it holds that

the SFEM–Galerkin approximation Zh defined in Equation (28) satisfies

Zh = γ(Lh)W,(38)

where we take for any j ∈ {1, . . . , Nh}, W h
j = βj.
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Proof. As Ŵ ∈ Sh, we can expand it in the orthonormal basis {Eh
j }1≤i≤Nh

to get

Ŵ =

Nh∑
j=1

αjE
h
j ,

where αj = (Ŵ, Eh
j )L2(Mh) = (σW̃−ℓ, Eh

j )L2(Mh). Then, by definition of σ, of W̃ and since

(Eh
j )

ℓ ∈ Sℓ
h, we further get for any 1 ≤ j ≤ Nh,

αj = (W̃, (Eh
j )

ℓ)L2(M) =

Nh∑
k=1

(W, ehk)L2(M)(e
h
k , (E

h
j )

ℓ)L2(M)

=

(
W,

Nh∑
k=1

(ehk , (E
h
j )

ℓ)L2(M)e
h
k

)
L2(M)

= (W, (Eh
j )

ℓ)L2(M).

Therefore, by definition of the white noise W, we can conclude that for any 1 ≤ i, j ≤ Nh, αj

is normally distributed with mean 0, and that

E[αiαj ] = Cov(αi, αj) =
(
(Eh

i )
ℓ, (Eh

j )
ℓ
)
L2(M)

=
(
σEh

i , E
h
j

)
L2(Mh)

= Aij .

Hence, (α1, . . . , αNh
) is indeed multivariate normal (any linear combination of the αj being

Gaussian by definition of W) with mean 0 and covariance matrix A.
Similarly, since W ∈ Sh, we can write again

W =

Nh∑
j=1

βjE
h
j ,

where βj = (W, Eh
j )L2(Mh) = (σ1/2W̃−ℓ, Eh

j )L2(Mh) = (σW̃−ℓ, σ−1/2Eh
j )L2(Mh), and the same

computations as before yield that βj =
(
W, (σ−1/2Eh

j )
ℓ
)
L2(M)

. Hence, we conclude this time

that for any 1 ≤ i, j ≤ Nh, βj is also normally distributed with mean 0, and that

E[βiβj ] =
(
σ(σ−1/2Eh

i ), (σ
−1/2Eh

j )
)
L2(Mh)

=
(
σ(σ−1/2Eh

i ), (σ
−1/2Eh

j )
)
L2(Mh)

= Bij ,

by orthonormality of {Eh
j }1≤i≤Nh

. In conclusion, (β1, . . . , βNh
) is indeed multivariate normal

with mean 0 and covariance matrix B = I. In particular, this means that β1, . . . , βNh
are

independent standard Gaussian variables.
Finally, note that we can write

γ(Lh)PhW =

Nh∑
j=1

γ(Λh
j )
(
PhW, Eh

j

)
L2(Mh)

Eh
j =

Nh∑
j=1

γ(Λh
j )
(
W, Eh

j

)
L2(Mh)

Eh
j

=

Nh∑
j=1

γ(Λh
j )βjE

h
j = Zh

where we take W h
j = βj in Equation (28). □

We now circle back to proving Theorem 3.1. Using the intermediate approximations Z̃h

and Ẑh and the equivalence of the L2 norms on M and Mh, we can upper-bound the error
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between the field Z and its SFEM–Galerkin approximation Zh by

∥Z − Zℓ
h∥L2(Ω;L2(M))

≲ ∥Z − Z̃h∥L2(Ω;L2(M)) + ∥Z̃h − Ẑℓ
h∥L2(Ω;L2(M)) + ∥Ẑℓ

h − Zℓ
h∥L2(Ω;L2(M))

≲ ∥Z − Z̃h∥L2(Ω;L2(M))+
∥∥(Z̃h

)−ℓ−Ẑh

∥∥
L2(Ω;L2(Mh))

+
∥∥Ẑh − Zh

∥∥
L2(Ω;L2(Mh))

.

We derive error estimates for each one of the three terms obtained in the last inequality. We
start with the term ∥Z − Z̃h∥L2(Ω;L2(M)).

Lemma 3.4. Let h ∈ (0, h0). It holds that

∥Z − Z̃h∥L2(Ω;L2(M)) ≲ Cα(h)h
2min{α−d/4;1},

where Cα(h) = | log h| if d/4 < α ≤ 1, Cα(h) = | log h|3/2 if 1 < α < 1 + d/2, and Cα(h) =

| log h|1/2 if α ≥ 1 + d/2.

Proof. Our aim is to bound the error between Z̃h and Z, where we remark in particular that
Z = γ(L)W and Zh = γ(Lh)PhW (cf. Remark 3.2). Recall that we consider h ∈ (0, h0)
(meaning in particular that | log h| > 1).

Similarly to the proof of [6, Theorem 5.2], we introduce εh = min{d/2;α− d/2}/(2| log h|),
η = 2(d/4 + εh), and let ζ = 2(α − d/4− εh) > 0, so that α = (η + ζ)/2. Note in particular
that εh > 0 since d ∈ {1, 2} and α > 1 > d/2, and εh < (α − d/2)/2 < α − d/2 < α − d/4.
Besides, η > d/2 and ζ > 0. We distinguish two cases: if α ≤ 1, and if α > 1.

Case α ≤ 1. The proof follows the same approach as [6, Theorem 5.2]. Indeed, note that the
triangle inequality yields

∥Z − Z̃h∥L2(Ω;L2(M)) = ∥γ(L)W − γ(Lh)PhW∥L2(Ω;L2(M)) ≤ S1 + S2,

where we take

S1 = ∥γ(L)W − γ(L)PhW∥L2(Ω;L2(M)), S2 = ∥γ(L)PhW − γ(Lh)PhW∥L2(Ω;L2(M)).

To bound the term S1, we use

S2
1 = ∥γ(L)(I − Ph)W∥2L2(Ω;L2(M)) = ∥

∑
i∈N

γ(λi)Wi(I − Ph)ei∥2L2(Ω;L2(M))

=
∑
i∈N

γ(λi)
2∥(I − Ph)ei∥2L2(M),

and since γ is an α-amplitude spectral density, we get

(39) S2
1 ≲

∑
i∈N

λ−2α
i ∥(I − Ph)ei∥2L2(M),

Applying the Bramble–Hilbert lemma (67) with t = 2((α− d/4)− εh) ∈ (0, 2) together with
Equation (39) gives

S2
1 ≲

∑
i∈N

h2tλ−2α+t
i = h4(α−d/4−εh)

∑
i∈N

λ
−2(d/4+εh)
i ≲ h4(α−d/4)

∑
i∈N

λ
−2(d/4+εh)
i ,
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since h−4εh = e4(α−d/4) ≲ 1. We can then write, using Equation (6),

S2
1 ≲ h4(α−d/4)

∑
i∈N

i−(1+4εh/d) ≲ h4(α−d/4)

∫ ∞

1
t−(1+4εh/d) dt

≲
1

4εh/d
h4(α−d/4) ≲ | log h|h4(α−d/4),

where we used the definition of εh for the last inequality. So, we conclude S1 ≲ | log h|1/2h2(α−d/4).
For the term S2, we note that

S2 = ∥γ(L)PhW − γ(Lh)Ph(PhW)∥L2(Ω;L2(M)),

where, following Equation (36), ∥PhW∥2L2(Ω;L2(M)) = ∥
∑Nh

j=1 ξje
h
j ∥2L2(Ω;L2(M)) = Nh <∞ (cf.

Remark 3.2). Hence, we can use Proposition 2.4 to deduce that since α ≤ 1,

S2 ≲ | log h|h2α∥PhW∥L2(Ω;L2(M)).

Note then that sinceNh ∝ h−d (uniform mesh assumption), we can write ∥PhW∥L2(Ω;L2(M)) =

N
1/2
h ≲ h−d/2. Therefore, we can conclude that

S2 ≲ | log h|h2α−d/2.

Putting together the bounds obtained for S1 and S2, we can then conclude that if α ≤ 1,

∥Z − Z̃h∥L2(Ω;L2(M)) ≤ S1 + S2 ≲ | log h|h2α−d/2 = | log h|h2min{(α−d/4);1},

where we use the fact that α− d/4 < α < 1 to derive the last inequality.

Case α > 1. We now assume that α > 1. We define the function γ̃(x) = γ(x)xζ/2. Note that

γ is an α-amplitude spectral density and γ̃ decays as |γ̃(x)| ≲ |x|−(α−ζ/2) = |x|−η/2. Hence,
γ̃ is a (η/2)-amplitude spectral density. Now, by definition of γ̃,

∥Z − Z̃h∥L2(Ω;L2(M)) = ∥γ̃(L)L−ζ/2W − γ̃(Lh)L
−ζ/2
h PhW∥L2(Ω;L2(M)),

so that the triangle inequality yields ∥Z − Z̃h∥L2(Ω;L2(M)) ≤ E1 + E2 where we take

E1 = ∥
(
γ̃(L)− γ̃(Lh)Ph

)
L−ζ/2W∥L2(Ω;L2(M)),

E2 = ∥γ̃(Lh)
(
PhL−ζ/2W −L−ζ/2

h PhW
)
∥L2(Ω;L2(M)).

For the term E1, we first note that ζ = d/2 + 2(α − d/2 − εh) > d/2 since εh < α − d/2.
Therefore, we can use [6, Lemma 4.2] and the fact that h (and therefore εh) is upper-bounded
to deduce that

∥L−ζ/2W∥2L2(Ω;L2(M)) ≤
ζ

ζ − d/2
≲ 1.

In particular, L−ζ/2W is in L2(Ω;L2(M)). Let then p = min{α−d/2; 1}−2εh. In particular,
we have p ∈ (0, 1) since p ≤ 1 − 2εh < 1 and p > min{α − d/2; 1} −min{α − d/2; d/2} ≥ 0.
Moreover, we have ζ/2−p = d/4+(α−d/2)−min{α−d/2; 1}+εh ≥ d/4+εh > d/4. Hence,
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using once again [6, Lemma 4.2], we can conclude that

∥LpL−ζ/2W∥2L2(Ω;L2(M)) = ∥L−(ζ/2−p)W∥2L2(Ω;L2(M))

≲
ζ/2− p

ζ/2− p− d/4
≲

{
| log h|, if α− d/2 ≤ 1

1, if α− d/2 > 1

where we used the definition of εh to derive the last inequality. Hence, we can apply Propo-
sition 2.4 to get

E2
1 = E[∥

(
γ̃(L)− γ̃(Lh)Ph

)
L−ζ/2W∥2L2(M)]

≲ Cη/2+p(h)
2h4min{η/2+p;1} E[∥LpL−ζ/2W∥2L2(M)]

≲ Cη/2+p(h)
2h4min{η/2+p;1}K ′

α(h)
2,

where we take on the one hand, Cη/2+p(h) = | log h| if η/2 + p ≤ 1, and Cη/2+p(h) = 1

otherwise, and on the other hand K ′
α(h) = | log h|1/2 if α ≤ 1+d/2 and K ′

α(h) = 1 otherwise.
Finally, note that according to Lemma A.1, η/2+p = min{α−d/2; 1}+d/4−εh ≥ min{α−

d/4; 1}−εh which implies that h4min{η/2+p;1} ≤ h4(min{α−d/4;1}−εh) = h4min{α−d/4;1} exp(2min{d/2;α−
d/2}). Besides, we note that if α > 1 + d/2, then η/2 + p = 1 + d/4− εh > 1 (since by con-
struction εh < d/4), and therefore Cη/2+p(h) = 1. We can therefore conclude that

E1 ≲ K1(h)h
2min{α−d/4;1}

where K1(h) = | log h|3/2 if 1 < α ≤ 1 + d/4 + εh, and K1(h) = | log h|1/2 if 1 + d/4 + εh <
α ≤ 1 + d/2 and K1(h) = 1 if α > 1 + d/2.

For E2, we first use the definition of the projection operator Ph and the self-adjointness of
L and Lh (which is a consequence of the definition of the associated bilinear form AM)

E2
2 =

∥∥∥∥ Nh∑
i=1

γ̃(λhi )

((
PhL−ζ/2W, ehi

)
L2(M)

−
(
L−ζ/2
h PhW, ehi

)
L2(M)

)
ehi

∥∥∥∥2
L2(Ω;L2(M))

=

∥∥∥∥ Nh∑
i=1

γ̃(λhi )

((
L−ζ/2W, ehi

)
L2(M)

−
(
PhW,L−ζ/2

h ehi
)
L2(M)

)
ehi

∥∥∥∥2
L2(Ω;L2(M))

=

∥∥∥∥ Nh∑
i=1

γ̃(λhi )

((
W,L−ζ/2ehi

)
L2(M)

−
(
W,L−ζ/2

h ehi
)
L2(M)

)
ehi

∥∥∥∥2
L2(Ω;L2(M))

=

∥∥∥∥ Nh∑
i=1

γ̃(λhi )
(
W,L−ζ/2ehi − L−ζ/2

h ehi
)
L2(M)

ehi

∥∥∥∥2
L2(Ω;L2(M))

.

Using the orthonormality of the basis {ehi }1≤i≤Nh
and the definition of the white noise W, we

conclude that

E2
2 = E

[ Nh∑
i=1

γ̃(λhi )
2|
(
W,L−ζ/2ehi − L−ζ/2

h ehi
)
L2(M)

|2
]

=

Nh∑
i=1

γ̃(λhi )
2∥L−ζ/2ehi − L−ζ/2

h ehi ∥2L2(M).
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On the one hand, using Proposition 2.4 with f = ehi ∈ Sℓ
h (1 ≤ i ≤ Nh), which has norm

∥ehi ∥L2(M) = 1, we have

∥L−ζ/2ehi − L−ζ/2
h ehi ∥L2(M) ≲ Cζ(h)h

2min{ζ/2;1}, where Cζ(h) =

{
1, ζ > 2,

| log h|, ζ ≤ 2.

Note that by definition of ζ and using Lemma A.1, we have min{ζ/2; 1} ≥ min{α− d/4; 1}−
εh > 0 (since εh ∈ (0, α − d/4)), which in turn gives h2min{ζ/2;1} ≤ h2(min{α−d/4;1}−εh) ≲
h2min{α−d/4;1}. Hence, we can conclude that

∥L−ζ/2ehi − L−ζ/2
h ehi ∥L2(M) ≲ Cζ(h)h

2min{α−d/4;1}

and therefore, E2
2 ≲ Cζ(h)

2h4min{α−d/4;1}∑Nh
i=1 γ̃(λ

h
i )

2. On the other hand, the term
∑Nh

i=1 γ̃(λ
h
i )

2can
be bounded using Equation (12) and Equation (6) which yield that

Nh∑
i=1

γ̃(λhi )
2 ≲

Nh∑
i=1

(λhi )
−η ≲

Nh∑
i=1

i−2η/d ≲
∫ ∞

1
t−2η/d =

1

2η/d− 1
≲ | log h|,

since 2η/d = 1 + 4εh/d > 1 and by definition of εh. Hence, we can conclude that

E2 ≲ Cζ(h)| log h|1/2h2min{α−d/4;1} ≲ K2(h)h
2min{α−d/4;1},

where K2(h) = Cζ(h)| log h|1/2, i.e., K2(h) = | log h|3/2 if 1 < α ≤ 1 + d/4 + εh, and K2(h) =

| log h|1/2 if α > 1 + d/4 + εh.
Hence, by putting together the estimates for E1 and E2, and noting that K1(h) ≤ K2(h),

we can conclude that if α > 1, then

∥Z − Z̃h∥L2(Ω;L2(M)) ≤ E1 + E2 ≲ K2(h)h
2min{α−d/4;1}.

In particular note that for any α > 1, we can clearly upper-boundK2(h) byK2(h) ≲ | log h|3/2.
But if moreover α ≥ 1+d/2, we have y definition of εh, 1+d/4+εh < 1+d/4+min{d/2;α−
d/2}/2 ≤ 1+d/2 ≤ α, and thereforeK2(h) = | log h|1/2. Hence, we can conclude that if α > 1,

∥Z − Z̃h∥L2(Ω;L2(M)) ≲ K ′
2(h)h

2min{α−d/4;1} where K ′
2(h) = | log h|3/2 if 1 < α < 1 + d/2 and

K ′
2(h) = | log h|1/2 if α ≥ 1 + d/2. And finally gathering the estimates obtained in the two

cases α ≤ 1 and α > 1, we obtain the result stated in the lemma. □

For the error between
(
Z̃h

)−ℓ
and Ẑh we get the following estimate, inspired by [6, Lemma

4.4].

Lemma 3.5. It holds that∥∥(Z̃h

)−ℓ − Ẑh

∥∥
L2(Ω;L2(Mh))

≲ | log(h)|(d−1)/2 h2.

Proof. Let

Eh =
∥∥(Z̃h

)−ℓ
− Ẑh

∥∥
L2(Ω;L2(Mh))

=
∥∥(γ(Lh)W̃

)−ℓ
− γ(Lh)Ph(σW̃−ℓ)

∥∥
L2(Ω;L2(Mh))

.

We note that W̃ is an Sℓ
h-valued random variable. Therefore, we can apply Proposition 2.6

to realizations of W̃, and take the expectation on both sides to get

Eh ≲ h2∥L−min{α+d/4;1}/2
h W̃∥L2(Ω;L2(M)).
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We then distinguish two cases. First, if d = 1, then we note that min{α+d/4; 1} ≥ α+d/4 >
d/2 since α > d/4. Besides, [6, Lemma 4.2] yields that for all r ∈ (d/2, 2), there is a constant
C > 0 such that

∥L−r/2
h W̃∥2L2(Ω;L2(M)) ≤ C

r

r − d/2
.(40)

Hence, using estimate (40), we conclude that

Eh ≲ h2
min{α+ d/4; 1}

min{α+ d/4; 1} − d/2
≲ h2.

If now d = 2, since α + d/4 > d/2 = 1, we have min{α + d/4; 1} = 1. We then note that by
the proof of [6, Lemma 4.2], for any ε > 0

∥L−1/2
h W̃∥2L2(Ω;L2(M)) ≲

Nh∑
j=1

λ−1
j ≲ λεNh

Nh∑
j=1

λ−1−ε
j .

Apply now Equation (6) to see that

∥L−1/2
h W̃∥2L2(Ω;L2(M)) ≲ N ε

h

Nh∑
j=1

j−(1+ε) ≲ N ε
h

1 + ε

ε
≲ h−2ε 1 + ε

ε
,

meaning that for any ε > 0,

Eh ≲

(
1 + ε

ε

)1/2

h2−ε.

In particular, taking ε = | log(h)|−1 yields

Eh ≲ | log(h)|1/2h2,
which concludes the proof. □

Finally, for the error between Ẑh and Zh we get the following estimate.

Lemma 3.6. Let h ∈ (0, h0). It holds that there is a constant such that

∥Zh − Ẑh∥L2(Ω;L2(Mh)) ≲ h2.

Proof. To prove this statement, we note that, using the same notations as the ones in the
proof of Lemma 3.3,

∥Zh − Ẑh∥2L2(Ω;L2(Mh))
=
∥∥∥γ(Lh)(Ŵ −W

)∥∥∥2
L2(Ω;L2(Mh))

= E


∥∥∥∥∥∥

Nh∑
j=1

γ(Λh
j )(αj − βj)E

h
j

∥∥∥∥∥∥
2

L2(Mh)

 =

Nh∑
j=1

γ(Λh
j )

2 E[|αj − βj |2],

where we applied the orthogonality of the eigenfunctions in the last step. Now, following the
definition of αj and βj given in the proof of Lemma 3.3,

E[|αj − βj |2] = E
[∣∣∣∣(W,

(
(1− σ−1/2)Eh

j

)ℓ)
L2(M)

∣∣∣∣2] = ∥∥∥∥((1− σ−1/2)Eh
j

)ℓ∥∥∥∥2
L2(M)

=
∥∥∥(σ1/2 − 1)Eh

j

∥∥∥2
L2(Mh)

≤
∥∥∥(σ1/2 − 1)

∥∥∥2
L∞(Mh)

.
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Besides, for all x ∈ Mh, it holds that

σ1/2(x)− 1=
√
1 + σ(x)− 1− 1 ≤

√
1 + |σ(x)− 1| − 1 ≤ 1 +

1

2
|σ(x)− 1| − 1=

1

2
|σ(x)− 1|.

Therefore, ∥∥∥(σ1/2 − 1)
∥∥∥2
L∞(Mh)

≤ ∥(σ − 1)∥2L∞(Mh)
≤ Ch2,

where [11, Lemma 4.1] was applied in the final step. We conclude that

∥Zh − Ẑh∥2L2(Ω;L2(Mh))
≤ Ch4

Nh∑
j=1

γ(Λh
j )

2,

and it remains to show that
∑Nh

j=1 γ(Λ
h
j )

2 is bounded by a constant. To this end, we use
Lemma 2.3, which implies that there exists some constant Cλ > 0 such that

|Λh
j /λ

h
j − 1| ≤ Cλh

2.

Recall then that the mesh size h satisfies h < h0, where h0 ∈ (0, 1). Without loss of generality,
let us further assume that Cλh0 < 1. Now, by the growth assumption on γ,

Nh∑
j=1

γ(Λh
j )

2 ≲
Nh∑
j=1

|Λh
j |−2α =

Nh∑
j=1

|λhj |−2α

∣∣∣∣∣1 +
(
Λh
j

λhj
− 1

)∣∣∣∣∣
−2α

≤ (1− Ch20)
−2α

Nh∑
j=1

|λhj |−2α

≲
Nh∑
j=1

|λhj |−2α.

Using Equation (12) and Equation (6), we bound

Nh∑
j=1

|λhj |−2α ≤
Nh∑
j=1

|λj |−2α ≲
∞∑
j=1

j−4α/d = ζ(4α/d),

where ζ denotes the Riemann zeta function. Thus,
∑Nh

j=1 γ(Λ
h
j )

2 is bounded by a constant
and

∥Zh − Ẑh∥2L2(Ω;L2(Mh))
≤ Ch4,

which proves the lemma. □

Equipped with the estimates derived in Lemmas 3.4 to 3.6 we are ready to prove Theo-
rem 3.1.

Proof of Theorem 3.1. By summing the three estimates derived in Lemmas 3.4 to 3.6, we get

∥Z − Zℓ
h∥L2(Ω;L2(M)) ≲ Cα(h)h

2min{α−d/4;1} + | log(h)|(d−1)/2 h2 + h2.

Noe then that 2min{α − d/4; 1} ≤ 2 and that | log(h)|(d−1)/2 ≲ Cα(h). Hence, we have the

bound | log(h)|(d−1)/2 h2 ≲ Cα(h)h
2min{α−d/4;1} which allows us to conclude that

∥Z − Zℓ
h∥L2(Ω;L2(M)) ≲ Cα(h)h

2min{α−d/4;1},

and the proof is complete. □
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Having bounded the SFEM error, we are now ready to derive the additional error associated
with the Chebyshev approximation which we use to compute SFEM–Galerkin approximations
in practice.

3.4. Error analysis of the Galerkin–Chebyshev approximation. The error between the
field Z and its Galerkin–Chebyshev approximation Zh,M described in Section 3.2 is derived
by combining Theorem 3.1 with an error bound between the SFEM–Galerkin approximation
Zh and the Galerkin–Chebyshev approximation Zh,M obtained using [19, Theorem 5.8]. The
latter bound is expressed in the next result.

Lemma 3.7. Let [λmin, λmax] ⊂ (0,∞) be the interval on which the Chebyshev polynomial
approximation Pγ,M is computed, and let ξ = λmin/(λmax − λmin). Then, there exists a
constant C > 0 such that the error between the discretized field Zh and its approximation
Zh,M is upper-bounded by

(41) ∥Zh,M − Zh∥L2(Ω;L2(Mh)) ≤ Ch−d/2ϵ−1
ξ (1 + ϵξ)

−M

with ϵξ = ξ +
√
ξ(2 + ξ). In particular, setting λmin = V− and λmax = Λh

Nh
, the error is

bounded by

(42) ∥Zh,M − Zh∥L2(Ω;L2(Mh)) ≤ C−1
V h−(d/2+1) exp(−CV hM)

for some constant CV > 0 proportional to
√
V−.

Proof. Let Eξ ⊂ C be the ellipse centered at z = (λmin + λmax)/2, with foci z1 = λmin and
z2 = λmax, and semi-major axis aξ = λmax/2. In particular, note that Eξ ⊂ Hπ/2 and for any
z ∈ Eξ, Re(z) ≥ λmin/2 > 0. Hence, since γ is an amplitude spectral density, by definition γ
is holomorphic and bounded inside Eξ. We can then adapt the same proof as in [19, Theorem
5.8] to obtain the stated proposition. □

Hence, for a fixed mesh size h, the approximation error ∥Zh,M−Zh∥L2(Ω;L2(Mh)) converges to
0 as the order of the polynomial approximation M goes to infinity. Choosing M as a function
of h that grows fast enough then allows us to ensure the convergence of the approximation
error as n goes to infinity [19, Section 5.2]. In particular, by taking M = Mh = (d/2 +
3)C−1

V h−1| log h| = (d/2 + 3)C−1
V h−1 log(h−1) the bound (42) becomes

(43)
∥Zh,M − Zh∥L2(Ω;L2(Mh)) ≤ C−1

V exp((d/2 + 1) log(h−1)− (d/2 + 3) log(h−1))

= C−1
V h2.

Putting together Theorem 3.1 and Equation (43), we can now state the following result
which provides a bound between the field Z and its Galerkin–Chebyshev approximation Zh,Mh

.

Theorem 3.8. Let γ be an α-amplitude spectral density with α > d/4, let h ∈ (0, h0) and
take Mh = (d/2 + 3)C−1

V h−1| log h|. Then, The strong error between the random field Z by

its Galerkin–Chebyshev approximation Zℓ
h,Mh

satisfies the bound

(44) ∥Z − Zℓ
h,Mh

∥L2(Ω;L2(M)) ≲ Cα(h)h
2min{α−d/4;1},

where Cα(h) = | log h| if d/4 < α ≤ 1, Cα(h) = | log h|3/2 if 1 < α < 1 + d/2, and Cα(h) =

| log h|1/2 if α ≥ 1 + d/2.
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Remark 3.9. In practice, it is common to “chop” a Chebyshev polynomial approximation, i.e.
to truncate the polynomial approximation at an early order. Indeed, let us assume that we
have computed the coefficients {ck}0≤k≤Mh

of the Chebyshev series up to the order M =Mh

and let cmax = max0≤k≤Mh
|ck|. Let ε > 0 be fixed but arbitrary and assume that there exists

mε ∈ {0, . . . ,Mh − 1} such that for any k > mε, |ck|/cmax < ε. The error between the field
Zh,Mh

and its “chopped” counterpart Zh,mε is given by

∥Zh,Mh
− Zh,mε∥2L2(Ω;L2(Mh))

= ∥
Nh∑
i=1

(Pγ,Mh
(Λh

i )− Pγ,mε(Λ
h
i ))W

h
i E

h
i ∥2L2(Ω;L2(Mh))

=

Nh∑
i=1

(Pγ,Mh
(Λh

i )− Pγ,mε(Λ
h
i ))

2

where Pγ,Mh
(λ) =

∑Mh
k=0 ckTk(λ) is the Mh-th order Chebyshev approximation of γ and

Tk denotes the k-th (shifted) Chebyshev polynomial. In particular, we have |Pγ,Mh
(Λh

i ) −
Pγ,mε(Λ

h
i )| = |

∑Mh
k=mε+1 ckTk(λ)| ≤

∑Mh
k=mε+1 |ck| |Tk(λ)| ≤

∑Mh
k=mε+1 |ck| ≤ (Mh−mε)cmaxε ≤

Mhcmaxε. Hence, the error between Zh,Mh
and its “chopped” counterpart Zh,mε satisfies

∥Zh,Mh
− Zh,mε∥L2(Ω;L2(Mh)) ≤ N

1/2
h Mhcmaxε ≲ h−(1+d/2)| log h| ε

Hence, if we have ε ≲ | log h|−1h(3+d/2) then we can conclude that ∥Zh,Mh
−Zh,mε∥L2(Ω;L2(Mh)) ≲

h2, thus implying that once again we have ∥Z − Zℓ
h,mε

∥L2(Ω;L2(M)) ≲ Cα(h)h
2min{α−d/4;1}.

This means that in practice, if we notice that the coefficients of the Chebyshev polynomial
approximation {ck}0≤k≤Mh

decay fast enough that we can find some mε ∈ {0, . . . ,Mh − 1}
such that for any k > mε, |ck|/cmax < ε ≲ | log h|−1h(3+d/2), we can replace the field Zh,Mh

by its chopped counterpart while still maintaining the same strong error bound with respect
to the field Z.

4. Numerical experiments

In this section, we present numerical experiments confirming the strong error bound in
Equation (44). We consider two cases: when the manifold M is a circle (hence d = 1),
and when the manifold M is a sphere (hence d = 2). Indeed, in both cases we are able to
easily define nested meshes of various sizes h, and define appropriate noise projections at the
different levels.

In each case, the field Z is approximated by a Galerkin–Chebyshev field Zhfine,Mhfine
com-

puted at a very fine mesh size hfine. More precisely, 25 samples of {Z(i)
hfine,Mhfine

}1≤i≤25 of the

field Zhfine,Mhfine
are computed. In particular, let us denote by W

(i)
hfine

the projected white noise

used to compute the sample Z(i) = Pγ,Mhfine
(Lhfine

)W
(i)
hfine

. For a coarse mesh size h > hfine,

each sample Z(i) is compared to the sample of Z
(i)
h,Mh

computed from the white noise W
(i)
h

obtained by projecting the noise W
(i)
hfine

(defined in the fine mesh) down to the coarse mesh.
Note that, following Remark 3.9, the Galerkin–Chebyshev fields are systematically computed
by chopping the Chebyshev polynomial approximations at a small level ϵ = 10−12. Besides,
when computing the representation of a Galerkin–Chebyshev field in the nodal basis through
(34), the matrix

√
C is computed as a Cholesky factorization of the mass matrix C in the

first experiment, and is approximate using a (diagonal) mass lumping approach in the second
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(a) Sample (in green) of the random
field with α = 1.75 on the fine circle
mesh (in black). The distance to the
circle indicates the value of taken by
the field.
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(b) Strong error as a function the mesh size.

Figure 5. First numerical experiment (on the circle).

experiment. Finally, the strong error at a mesh size h is then estimated from the samples
using

(45) ∥Z − Zℓ
h,Mh

∥L2(Ω;L2(M)) ≈
(

1

25

25∑
i=1

∥Z(i)
hfine,Mhfine

− Z
(i)
h,Mh

∥2L2(Mh)

)1/2

.

In the first experiment, we consider a random field Z defined on the unit circle M with
amplitude spectral density given by the formula γ(λ) = (V0)

α(λ + cos(0.9π)
√
λ)−α where

V0 = 104 and for α ∈ {0.5, 1.05, 1.5}. The bilinear form M is taken as follows. The diffusion
matrix D is defined by D(x) = I − ν(x)ν(x)T , x ∈ M, where ν(x) = x/∥x∥ is the normal
vector to a point x ∈ M of the unit circle. The function V is defined as V (x) = 3V0,
x ∈ M, if θ(x) ∈]π/2, 3π/2[ and V (x) = V0 otherwise, and θ(x) ∈ [0, 2π[ denotes the circular
coordinate of the point x ∈ M. The fine mesh size is taken to be hfine = 2−19π and the
coarse mesh sizes are h = {2−13π, 2−14π, 2−15π, 2−16π}. An example of sample (on the fine
mesh) obtained with this choice of parameters is displayed in Figure 5(a). The results of this
first experiment are presented in Figure 5(b), where the log of the strong error (45) is plotted
against the log of the mesh size h, for the three amplitude spectral density obtained by taking
α ∈ {0.5, 1.05, 1.5}. As shown in the figure, we retrieve the rates (respectively 0.5,1.6 and 2)
predicted by Theorem 3.8.

In the second experiment, we consider a random field Z defined on the unit sphere M
with amplitude spectral density given by the formula γ(λ) = C0λ

−α where C0 = 500 and
for α ∈ {0.75, 1.25, 2.25}. The bilinear form M is taken as follows. The diffusion ma-
trix D is defined D(x) = ∇Mf(x)(∇Mf(x))T + ρ(x)∇⊥

Mf(x)(∇⊥
Mf(x))T , where f(x) =

2 cos(θ(x)) cos(ϕ(x)) sin2(θ(x)) and ρ(x) = 0.1 + 0.6/(1 + e−4 cos(θ(x))). Here x ∈ M and
(θ(x), ϕ(x)) denotes spherical coordinates. The function V is defined as V (x) = 500(1 +
5 cos2(πθ(x))). The fine mesh size is taken to be hfine = 2.16 × 10−3 and the coarse mesh
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(a) Sample of the random field with
α = 1.75 on the fine mesh. The col-
ors indicate the value of taken by the
field.
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Figure 6. Second numerical experiment (on the sphere).

sizes are h = {3.45 × 10−2, 1.73 × 10−2, 8.63 × 10−3, 4.32 × 10−3}. An example of sample
(on the fine mesh) obtained with this choice of parameters is displayed in Figure 6(a). The
results of this second experiment are presented in Figure 6(b), where once again the log of
the strong error (45) is plotted against the log of the mesh size h, for the three amplitude
spectral density obtained by taking α ∈ {0.75, 1.25, 2.25}. As seen in Figure 6(b), we retrieve
the rates (respectively 0.5,1.5 and 2) predicted by Theorem 3.8.
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Appendix A. Deterministic proofs

A.1. Proof of Proposition 2.1.

Proof. A standard result in the spectral theory of elliptic operators on compact Riemannian
manifolds (see e.g. [23, Section 8]) ensures that there exists a set of eigenpairs {(λi, fi)}i∈N
of L such that 0 ≤ λ1 ≤ λ2 ≤ · · · with λi → +∞ as i→ +∞, and {fi}i∈N is an orthonormal
basis of L2(M) composed of possibly complex-valued functions.

Hence, let us prove that λ1 ≥ δ and that we can build an orthonormal basis {ei}i∈N
of L2(M) such that each ei is real-valued and an eigenfunction of L with eigenvalue λi. On
the one hand, by definition of L, λ1 and f1, we obtain

λ1 = λ1(f1, f1)L2(M) = AM(f1, f1) ≥ δ∥f1∥2H1(M) ≥ δ∥f1∥2L2(M) = δ,

where for the last two inequalities we used the coercivity of AM and the definition of the
H1-norm.

On the other hand, let λ > 0 be one of the eigenvalues of L, and Eλ ⊂ L2(M) the associated
eigenspace. Following again the results from [23, Section 8], we get that Eλ ⊂ C∞(M),
dimEλ < ∞ and that if λ′ ̸= λ is another eigenvalue of L, then Eλ and Eλ′ are orthogonal.
Besides, Eλ is in fact generated by the set {fj}j∈Jλ , where Jλ = {i ∈ N : λi = λ} is finite
(since dimEλ <∞).

Take then u ∈ Eλ. Hence, for any v ∈ H1(M), AM(u, v) = λ(u, v)L2(M). But also, by
definition of AM,

AM(u, v) = AM(v, u) = AM(u, v) = λ(u, v)L2(M) = λ(u, v)L2(M),

where used the fact that D is a real symmetric matrix and V is real-valued for the first two
equalities. Consequently, we also have u ∈ Eλ, and so, the real-valued functions Re(u) =
(u+ u))/2 and Im(u) = (u− u))/2i (corresponding to real and imaginary parts of u) are also
in Eλ.

Circling back to the orthonormal basis {fj}j∈Jλ of Eλ, we consider the set of real-valued
functions Fλ = {Re(fj)}j∈Jλ ∪ {Im(fj)}j∈Jλ ⊂ Eλ, and the subspace Vλ ⊂ Eλ generated
by Fλ. In particular dimVλ ≤ dimEλ. By applying the Gram–Schmidt orthogonalization
process to Fλ, we get an orthonormal basis {ek}1≤k≤dimVλ

of Vλ which by construction is
composed of real-valued functions (since Fλ is composed of real-valued functions). Let us
show that {ek}1≤k≤dimVλ

is in fact a basis of Eλ, or equivalently that dimVλ = dimEλ.
We proceed by contradiction. Assume that dimVλ < dimEλ. This means in particular

that the orthogonal complement of Vλ in Eλ, denoted by V ⊥
λ , is not reduced to 0. Let then

0 ̸= w ∈ V ⊥
λ . By linearity, we have, for any j ∈ Jλ, (fj , w)L2(M) = (Re(fj), w)L2(M) +

i(Im(fj), w)L2(M) = 0, since Re(fj), Im(fj) ∈ Fλ ⊂ Vλ. Hence, since w ∈ Eλ and {fj}j∈Jλ
is an orthonormal basis of Eλ, it must hold that w = 0, which contradicts our initial claim.
Consequently, dimVλ = dimEλ, and therefore {ek}1≤k≤dimVλ

is an orthonormal basis of Eλ.
Finally, by repeating the construction above to each eigenspace Eλ associated with distinct

eigenvalues, and concatenating the obtained bases, we obtain an orthonormal basis L2(M)
(due to the fact that these eigenspaces are orthogonal to one another and span L2(M)). Each
element in this basis is an eigenfunction of L since it is built from a given eigenspace, and is
a real-valued function. This concludes our proof. □
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A.2. A useful inequality. We end this section by introducing a lemma which will be used
to obtain practical error bounds.

Lemma A.1. For any a, b ∈ R and any ε > 0, min{a− ε; b}+ ε ≥ min{a; b}.

Proof. Indeed, if a < b, we have min{a−ε; b}+ε = a−ε+ε = a = min{a; b}. If b ≤ a < b+ε,
min{a− ε; b}+ ε = a− ε+ ε = a ≥ b = min{a; b}. And finally if a ≥ b+ ε, min{a− ε; b}+ ε =
b+ ε > b = min{a; b}. □

Appendix B. Error estimates

B.1. Geometric consistency estimate. The following geometric consistency estimate quan-
tifies the error between the bilinear forms AM and AMh

. Its proof is a straightforward adap-
tation of the proof of [11, Lemma 4.7] to account for the diffusion matrix D.

Lemma B.1. There is a constant C > 0 such that for all h < h0 and uh, vh ∈ Sℓ
h,∣∣∣AM(uℓh, v

ℓ
h)− AMh

(uh, vh)
∣∣∣ ≤ Ch2∥uℓh∥H1(M)∥vℓh∥H1(M).(46)

Proof. We first note that, by definition of D, for any x0 ∈ M, and any w,w′ ∈ Tx0M,
(D(x0)w) ·w′ defines an inner product on Tx0M. We denote by ∥ ·∥ the usual Euclidean norm
of vectors of Tx0M ⊂ Cd+1 and by ∥ · ∥D(x0) the norm defined by ∥w∥2D(x0)

= (D(x0)w) · w,
w ∈ Tx0M.

Let Π = I − ννT (resp. Πh = I − νhν
T
h ) be the orthogonal projection onto the tangent

planes of M (resp. Mh), and let H : M → R(d+1)×(d+1) be the extended Weingarten map of
M (cf. [11, Definition 2.5]). Recall in particular that H(x)ν(x) = 0 for any x ∈ M, meaning

in particular that HΠ = ΠH = H. Finally, we introduce the map Qh : M → R(d+1)×(d+1)

defined as

Qh =
1

σℓ
Π(I − dℓsH)Πℓ

hDΠℓ
h(I − dℓsH)Π,

where ds is the oriented distance function restricted to Mh and introduced in Section 2.2.
On the one hand, note that for any uh, vh ∈ Sh,

(D−ℓ∇Mh
uh)·∇Mh

vh

=
(
D−ℓΠh(I − dsH−ℓ)Π−ℓ(∇Muℓh)

−ℓ
)
·
(
Πh(I − dsH−ℓ)Π−ℓ(∇Mvℓh)

−ℓ
)

= σ
(
Q−ℓ

h (∇Muℓh)
−ℓ
)
· (∇Mvℓh)

−ℓ,

which gives, after integrating both sides over Mh and using Equation (9),

(47)

∫
Mh

(D−ℓ∇Mh
uh) · (∇Mh

vh) dAh =

∫
M

(
Qh∇Muℓh

)
· (∇Mvℓh) dA.

Let then Aℓ
Mh

: Sℓ
h × Sℓ

h → R be the Hermitian form defined for any uℓh, v
ℓ
h ∈ Sℓ

h by

Aℓ
Mh

(uℓh, v
ℓ
h) =

∫
M

(
Qh∇Muℓh

)
· (∇Mvℓh) dA+

∫
M

(
σℓ
)−1

V uℓhv
ℓ
h dA.(48)
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Note that following Equations (9) and (47), Aℓ
Mh

satisfies for any uh, vh ∈ Sh the equality

Aℓ
Mh

(uℓh, v
ℓ
h) = AMh

(uh, vh). Therefore, for any uh, vh ∈ Sh, we bound∣∣AM(uℓh, v
ℓ
h)− AMh

(uh, vh)
∣∣ = ∣∣AM(uℓh, v

ℓ
h)− Aℓ

Mh
(uℓh, v

ℓ
h)
∣∣

≤
∣∣∣∣∫

M
((Qh −D)∇Muℓh) · (∇Mvℓh) dA

∣∣∣∣+ ∣∣∣∣∫
M
(1−

(
σℓ
)−1

)V uℓhv
ℓ
h dA

∣∣∣∣ .(49)

We now bound these two terms. Recall that [11, Lemma 4.1] shows

(50) ∥σ∥L∞(Mh) ≲ 1, ∥σ−1∥L∞(Mh) ≲ 1, ∥σ−1∥L∞(Mh) ≲ h2, ∥σ−1−1∥L∞(Mh) ≲ h2.

Hence, since V takes positive values,∣∣ ∫
M
(1−

(
σℓ
)−1

)V uℓhv
ℓ
h dA

∣∣ ≤ ∫
M

|1−
(
σℓ
)−1| V |uℓh| |vhℓ|dA

≤ ∥1− σ−1∥L∞(Mh)

∫
M
V |uℓh| |vhℓ|dA,

which in turn gives (using the Cauchy–Schwartz inequality and Equation (50)),∣∣ ∫
M
(1−

(
σℓ
)−1

)V uℓhv
ℓ
h dA

∣∣ ≲ h2
(∫

M
V |uℓh|2 dA

)1/2(∫
M
V |vhℓ|2 dA

)1/2

.(51)

To bound the other term, we first introduce for any B ∈ R(d+1)×(d+1) the notation ∥B∥ =
sup∥x∥=1 ∥Bx∥. Then we have

∥Qh −D∥ =
∥∥(σℓ)−1

(
Π(I − dℓsH)Πℓ

hDΠℓ
h(I − dℓsH)Π−D

)
+
(
(σℓ)−1 − 1

)
D∥

≤
∥∥(σℓ)−1

∥∥
L∞(M)

∥∥Π(I − dℓsH)Πℓ
hDΠℓ

h(I − dℓsH)Π−D
∥∥

+
∥∥(σℓ)−1 − 1

∥∥
L∞(M)

∥∥D∥∥.
By Equation (50) and since D has bounded eigenvalues over M, we obtain

∥Qh −D∥ ≲
∥∥Π(I − dℓsH)Πℓ

hDΠℓ
h(I − dℓsH)Π−D

∥∥+ h2,(52)

where the constant in the inequality is independent of the location on M. We split the first
term on the right into∥∥Π(I − dℓsH)Πℓ

hDΠℓ
h(I − dℓsH)Π−D

∥∥
=
∥∥ΠΠℓ

hDΠℓ
hΠ−D −ΠΠℓ

hDΠℓ
hd

ℓ
sHΠ− dℓsHΠℓ

hDΠℓ
h(I − dℓsH)Π

∥∥
≤
∥∥ΠΠℓ

hDΠℓ
hΠ−D

∥∥+ ∥∥ΠΠℓ
hDΠℓ

hd
ℓ
sHΠ

∥∥+ ∥∥dℓsHΠℓ
hDΠℓ

h(I − dℓsH)Π
∥∥.

Since ∥ds∥L∞(Mh) ≲ h2 by [11, Lemma 4.1] and H is defined independently of h, we conclude
that ∥∥Π(I − dℓsH)Πℓ

hDΠℓ
h(I − dℓsH)Π−D

∥∥ ≲
∥∥ΠΠℓ

hDΠℓ
hΠ−D

∥∥+ h2.(53)

We notice that D = ΠDΠ, since by definition of D, Dν = 0, which implies∥∥ΠΠℓ
hDΠℓ

hΠ−D
∥∥ =

∥∥ΠΠℓ
hΠDΠΠℓ

hΠ−ΠDΠ
∥∥ =

∥∥(ΠΠℓ
hΠ−Π)DΠΠℓ

hΠ+ΠD(ΠΠℓ
hΠ−Π)

∥∥
≤
∥∥ΠΠℓ

hΠ−Π
∥∥∥∥DΠΠℓ

hΠ
∥∥+ ∥∥ΠD

∥∥∥∥ΠΠℓ
hΠ−Π

∥∥.
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Using that
∥∥ΠΠℓ

hΠ−Π
∥∥ ≲ h2 by the proof of [11, Lemma 4.1], we deduce that

∥∥ΠΠℓ
hDΠℓ

hΠ−
D
∥∥ ≲ h2. Injecting this inequality into Equation (53), and the resulting inequality into

Equation (52), we conclude that

∥Qh −D∥ ≲ h2.

This allows us to write∣∣∣∣∫
M
((Qh −D)∇Muℓh) · (∇Mvℓh) dA

∣∣∣∣ ≤ ∫
M

∥(Qh −D)∇Muℓh∥ ∥∇Mvh
ℓ∥ dA

≲
∫
M
h2∥∇Muℓh∥ ∥∇Mvh

ℓ∥ dA ≤ h2
∫
M
(µmin)

−1∥∇Muℓh∥D ∥∇Mvh
ℓ∥D dA,

where µmin : M → R+ maps any x ∈ M to the smallest eigenvalue of D(x) associated with
an eigenvector in ν⊥. This last inequality is a consequence of the fact that by construction
∇Muℓh,∇Mvℓh ∈ ν⊥ and using the characterization of eigenvalues through Rayleigh quotients.
Since the non-zero eigenvalues of D are uniformly bounded above and below by positive
constants, we conclude that∣∣ ∫

M
((Qh −D)∇Muℓh) · (∇Mvℓh) dA

∣∣ ≲ h2
∫
M

∥∇Muℓh∥D ∥∇Mvh
ℓ∥D dA.

Then, using the Cauchy–Schwartz inequality yields∣∣∣∣∫
M
((Qh −D)∇Muℓh) · (∇Mvℓh) dA

∣∣∣∣
≲ h2

(∫
M

∥∇Muℓh∥2D dA

)1/2(∫
M

∥∇Mvℓh∥2D dA

)1/2

.

(54)

Inserting the derived bounds Equation (51) and Equation (54) into Equation (49), we derive

∣∣AM(uℓh, v
ℓ
h)− AMh

(uh, vh)
∣∣ ≲ h2

(∫
M

∥∇Muℓh∥2D dA

)1/2(∫
M

∥∇Mvℓh∥2D dA

)1/2

+ h2
(∫

M
V |uℓh|2 dA

)1/2(∫
M
V |vhℓ|2 dA

)1/2

.

Note that for any u ∈ H1(M),

AM(u, u) ≥
∫
M
V |u|2 dA, and AM(u, u) ≥

∫
M

D∇Mu · ∇MudA =

∫
M

∥∇Mu∥2D dA,

so we obtain ∣∣∣AM(uℓh, v
ℓ
h)− Aℓ

Mh
(uℓh, v

ℓ
h)
∣∣∣ ≲ h2

√
AM(uℓh, u

ℓ
h)
√

AM(vℓh, v
ℓ
h).

Finally, due to Equation (5),√
AM(uℓh, u

ℓ
h)
√
AM(vℓh, v

ℓ
h) ≲ ∥uℓh∥H1(M)∥vℓh∥H1(M),

and the result follows. □
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B.2. Norm estimates. We start by introducing a few norm estimates involving the resol-
vents of L and Lh. These results are straightforward extensions of the results introduced in
[7, Lemmma 6.3], but adapted to the contour Γ used to define functions of operators in this
paper. We also recall a finite element error estimate which derives from a result in [7, Lemma
6.1].

Lemma B.2. For any z ∈ Γ, s ∈ [0, 1], v ∈ L2(M), and vh ∈ Sℓ
h, it holds

∥Ls(z − L)−1v∥L2(M) ≲ |z|−(1−s)∥v∥L2(M),(55)

∥Ls
h(z − Lh)

−1vh∥L2(M) ≲ |z|−(1−s)∥vh∥L2(M).(56)

Besides, for any β ∈ [0, 1] and for any φ ∈ L2(M),

(57) ∥L(1−β)/2
h Ph(L−1 − L−1

h Ph)φ∥L2(M) ≲ h2β∥L−(1−β)/2φ∥L2(M)

Proof. We start with the proof of Equation (55). To this end, let z ∈ Γ and s ∈ [0, 1]. Let then
v ∈ L2(M) and w = (z−L)−1v ∈ D(L), where D(·) denotes the domain of an operator. Since
L is self-adjoint, we have D(Ls) = [L2(M),D(L)]s with isometry, where [L2(M),D(L)]s the
intermediate space between L2(M) and D(L) obtained by the complex interpolation method
[28, Theorem 16.1]. In particular, we have

(58) ∥Lsw∥L2(M) = ∥w∥[L2(M),D(L)]s ≤ ∥Lw∥sL2(M)∥w∥
1−s
L2(M)

where the inequality derives from a classical result on interpolation spaces (see e.g., [28,
Section 5.1]). On the one hand, we obtain by Equation (18) that

∥w∥L2(M) = ∥(z − L)−1v∥L2(M) ≲ |z|−1∥v∥L2(M).

On the other hand, adding and subtracting z(z − L)−1v yields

∥Lw∥L2(M) = ∥z(z−L)−1v − v∥L2(M) ≤ |z|∥(z−L)−1v∥L2(M) + ∥v∥L2(M) ≲ 2∥v∥L2(M),

where we once again use Equation (18) to derive the last inequality. Combining these two
estimates with Equation (58), we get

∥Ls(z−L)−1v∥L2(M)=∥Lsw∥L2(M) ≲ ∥v∥sL2(M)|z|
−(1−s)∥v∥1−s

L2(M)
= |z|−(1−s)∥v∥L2(M),

hence proving Equation (55). As for Equation (56), it is proven using the same steps as
Equation (55) but substituting L by Lh, Equation (18) by Equation (19), and D(L) by Sℓ

h.
Finally, let us prove Equation (57). Let β ∈ (0, 1] and φ ∈ L2(M). Then, we have

∥L(1−β)/2
h Ph(L−1 − L−1

h Ph)φ∥L2(M) ≲ ∥L(1−β)/2Ph(L−1 − L−1
h Ph)φ∥L2(M)

≲ ∥L(1−β)/2(L−1 − L−1
h Ph)φ∥L2(M)

where we use [7, Lemma 5.2] to derive the first inequality, and [7, Lemma 5.1] to derive the
second inequality. Finally, noting that L satisfies elliptic regularity for indices α ∈ (0, 1] (cf.
[7, Assumption 1]), we can apply [7, Lemma 6.1] with α = β and s = (1 − β)/2 to conclude

that ∥L(1−β)/2(L−1 − L−1
h Ph)φ∥L2(M) ≲ h2β∥L−(1−β)/2φ∥L2(M) and therefore

∥L(1−β)/2
h Ph(L−1 − L−1

h Ph)φ∥L2(M) ≲ h2β∥L−(1−β)/2φ∥L2(M).

This concludes the proof of Lemma B.2. □
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We now prove some estimates for the norm of shifted inverses of the operators Lh and Lh,
and for the error between inverses of these two operators. These results can be seen as
extensions of the ones stated in [6, Lemma A.1].

Lemma B.3. Let v ∈ L2(M), vh ∈ Sℓ
h and Vh ∈ Sh be arbitrary. Then, for all z ∈ Γ, for

any q ∈ [−1, 1], and any r ∈ (0, 2), and any s ∈ [0, 1],

∥Lh(z − Lh)
−1Vh∥L2(Mh) ≲ |z|−1/2∥Vh∥H1(Mh),(59)

∥(z − Lh)
−1vh∥L2(M) ≲ |z|r/2−1∥L−r/2

h vh∥L2(M),(60) ∥∥∥(L−1
h vh)

−ℓ − L−1
h Ph(σv

−ℓ
h )
∥∥∥
H1(Mh)

≲ h2∥L−1/2
h vh∥L2(M).(61)

Proof. To prove Equation (59), we first observe that the estimate in Equation (56) carry over
to the case when Lh is used instead of Lh, and L

2(M) (resp. Sℓ
h) is replaced by its counterpart

L2(Mh) (resp. Sh) on the polyhedral surface. Hence, for any z ∈ Γ, Vh ∈ L2(Mh), we have

∥Lsh(z − Lh)
−1Vh∥L2(Mh) ≲ |z|−(1−s)∥Vh∥L2(Mh)

In particular, we retrieve (by taking s = 1/2)

∥Lh(z − Lh)
−1Vh∥L2(Mh) = ∥L1/2h (z − Lh)

−1L
1/2
h Vh∥L2(Mh)

≲ |z|−1/2∥L1/2h Vh∥L2(Mh) ≲ |z|−1/2∥Vh∥H1(Mh),
(62)

where we used the equivalence of norms (17) in the last inequality.
To bound Equation (60), we apply Equation (56) with s = r/2 to obtain

∥(z − Lh)
−1vh∥L2(M) = ∥Lr/2

h (z − Lh)
−1L−r/2

h vh∥L2(M) ≲ |z|−(1−r/2)∥L−r/2
h vh∥L2(M).

Finally, to prove the bound in Equation (61), we rely on the geometric consistency estimate

of Lemma B.1. Let uh = L−1
h vh and let Uh = L−1

h Ph(σv
−ℓ
h ). Note that by definition of L−1

h ,

(Lhuh, wh)L2(M) = AM(uh, wh) = (vh, wh)L2(M),

for all wh ∈ Sℓ
h. Likewise, for L

−1
h we obtain

(LhUh,Wh)L2(Mh) = AMh
(Uh,Wh) = (Ph(σv

−ℓ
h ),Wh)L2(Mh)

= (σv−ℓ
h ,Wh)L2(Mh) = (vh,W

ℓ
h)L2(M),

for all Wh ∈ Sh, where we used the definition of σ in the last step. Let us now select a fixed,
but arbitrary, Ξh ∈ Sh. Then, by combining the last two equations,

|AMh
(u−ℓ

h − Uh,Ξh)| = |AMh
(u−ℓ

h ,Ξh)− AMh
(Uh,Ξh)|

= |AMh
(u−ℓ

h ,Ξh)− (vh,Ξ
ℓ
h)L2(M)| = |AMh

(u−ℓ
h ,Ξh)− AM(uh,Ξ

ℓ
h)|,

meaning that an application of Lemma B.1 results in the bound

|AMh
(u−ℓ

h − Uh,Ξh)| ≲ h2∥uh∥H1(M)∥Ξℓ
h∥H1(M).(63)

Further, note that for any Ξℓ
h ∈ Sℓ

h, the equivalence of norms (17) gives

∥Ξℓ
h∥2H1(M) ∼ ∥L1/2

h Ξℓ
h∥2L2(M) = (LhΞ

ℓ
h,Ξ

ℓ
h)L2(M) = AM(Ξℓ

h,Ξ
ℓ
h),(64)
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where the last equality comes from the definition of Lh. And similarly, for any Ξh ∈ Sh, we
have

∥Ξh∥2H1(Mh)
∼ AMh

(Ξh,Ξh).(65)

Then, applying the triangle inequality to the (last) right-hand side of Equation (64) gives

∥Ξℓ
h∥2H1(M) ≲ AMh

(Ξh,Ξh) +
∣∣AM(Ξℓ

h,Ξ
ℓ
h)− AMh

(Ξh,Ξh)
∣∣

≲ ∥Ξh∥2H1(Mh)
+ h2∥Ξℓ

h∥2H1(M),

where we used Equation (65) and Lemma B.1 to derive the second inequality. This means in
particular that there exists C > 0 independent of h such that ∥Ξℓ

h∥2H1(M) ≤ C(∥Ξh∥2H1(Mh)
+

h2∥Ξℓ
h∥2H1(M)). Recall that h ∈ (0, h0) for some h0 ∈ (0, 1) small enough. Assuming that espe-

cially 1−Ch20 > 0 yields ∥Ξℓ
h∥2H1(M) ≤ C(1−Ch2)−1∥Ξh∥2H1(Mh)

≤ C(1−Ch20)−1∥Ξh∥2H1(Mh)
,

which allows us to conclude that

∥Ξℓ
h∥2H1(M) ≲ ∥Ξh∥2H1(Mh)

.(66)

Now, applying successively Equation (65) and Equation (63) with Ξh = u−ℓ
h −Uh, we obtain

∥u−ℓ
h − Uh∥2H1(Mh)

≲ h2∥uh∥H1(M)∥uh − U ℓ
h∥H1(M) ≲ h2∥uh∥H1(M)∥u−ℓ

h − Uh∥H1(Mh),

where the last inequality is derived from applying Equation (66). Therefore, we end up with

∥uh − U ℓ
h∥H1(M) ≲ h2∥uh∥H1(M) ≲ h2∥L−1/2

h vh∥L2(M),

where the equivalence of norms (17) together with the definition of uh are used in the final
step. This concludes the proof of Equation (61). □

Finally, we recall the Bramble-–Hilbert lemma (cf. [6, Equation (4.8)]), which is used in
several proofs in this paper.

Lemma B.4 (Bramble-–Hilbert lemma). For any t ∈ [0, 2] and any φ ∈ Ht(M),

(67) ∥(I − Ph)φ∥L2(M) ≲ ht∥φ∥Ht(M) ≲ ht∥Lt/2φ∥L2(M),

where we used the equivalence of Sobolev norms dot-spaces norms in the last inequality.

B.3. Proof of Lemma 2.5.

Proof. Let h ∈ (0, h0), z ∈ Γ. Let f ∈ L2(M) and let p ∈ [0, 1] such that ∥Lpf∥L2(M) < ∞.
Finally, let β ∈ [0, 1] such that p ∈ [0, (1 + β)/2]. We then define Fh(z) by Fh(z) = (z −
Lh)

−1Ph − Ph(z − L)−1. Note then

Fh(z) = (z − Lh)
−1Lh(L−1

h Ph(z − L)L−1 − L−1
h (z − Lh)PhL−1)L(z − L)−1

= (z − Lh)
−1Lh(PhL−1 − L−1

h Ph)L(z − L)−1

Hence,

∥Fh(z)f∥L2(M) = ∥(z − Lh)
−1Lh(PhL−1 − L−1

h Ph)L(z − L)−1f∥L2(M)

= ∥L1−(1−β)/2
h (z − Lh)

−1L(1−β)/2
h (PhL−1 − L−1

h Ph)L(z − L)−1f∥L2(M)

≲ |z|−(1−β)/2∥L(1−β)/2
h (PhL−1 − L−1

h Ph)L(z − L)−1f∥L2(M)
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where we used Equation (56) with s = (1−β)/2 ∈ [0, 1/2] to derive the inequality. Note then
that, using Equation (57), we have

∥Fh(z)f∥L2(M) ≲ |z|−(1−β)/2h2β∥L−(1−β)/2L(z − L)−1f∥L2(M)

= h2β|z|−(1−β)/2∥L(1+β)/2(z − L)−1f∥L2(M)

= h2β|z|−(1−β)/2∥L(1+β)/2−p(z − L)−1Lpf∥L2(M)

Using then Equation (55) with s = (1 + β)/2− p ∈ [0, 1], we retrieve

∥Fh(z)f∥L2(M) ≲ h2β|z|−(1−β)/2|z|−(1−(1+β)/2+p)∥Lpf∥L2(M)

= h2β|z|−(1−β+p)∥Lpf∥L2(M).

This concludes the proof. □

B.4. Proof of Proposition 2.6. Based on the results in the previous subsections, we can
now move on to the proof of Proposition 2.6.

Proof. Let f̃ ∈ Sℓ
h. We introduce the inverse lift operator Pℓ : L

2(M) → L2(Mh) which maps

any F ∈ L2(M) to PℓF = F−ℓ. Let then Eh =
∥∥(γ(Lh)f̃

)−ℓ − γ(Lh)Ph(σf̃
−ℓ)
∥∥
L2(Mh)

=∥∥Pℓγ(Lh)f̃ − γ(Lh)Ph(σPℓf̃)
∥∥
L2(Mh)

. Note that by the integral representations of the opera-

tors (20)

Eh =
∥∥ 1

2πi

∫
Γ
γ(z)F(z)f̃ dz

∥∥
L2(Mh)

,

where we take for any z ∈ Γ, F(z) = Pℓ(z − Lh)
−1 − (z − Lh)

−1PhσPℓ. Similarly, as in the
proof of Proposition 2.4, we use the splitting (21) of Γ and the triangle inequality to deduce
that

(68)

Eh ≤ 1

2π

∫
Ω+

|γ(g+(t))|
∥∥∥F(g+(t))f̃

∥∥∥
L2(Mh)

dt+
δ0
2π

∫
Ω0

|γ(g0(t))|∥F(g0(t))f̃∥L2(Mh) dt

+
1

2π

∫
Ω−

|γ(g−(t))|
∥∥∥F(g−(t))f̃

∥∥∥
L2(Mh)

dt,

where we take Ω+ = Ω− = [δ0,∞) and Ω0 = [−θ, θ]. For ∗ ∈ {+, 0,−}, let us then introduce
the quantity

E∗
h =

∫
Ω∗

|γ(g∗(t))| ∥F(g∗(t))∥L2(Mh)
dt,

so that Equation (68) may be rewritten as Eh ≲ E+
h + E0

h + E−
h and in particular, g∗(t) ∈ Γ

for any t ∈ Ω∗.
We now fix ∗ ∈ {+, 0,−} and bound the term E∗

h. First, for any z ∈ Γ, we rewrite F(z)
and split

F(z) = (z − Lh)
−1Lh

(
(zL−1

h − I)PℓL−1
h − L−1

h PhσPℓ(zL−1
h − I)

)
Lh(z − Lh)

−1

= (z − Lh)
−1Lh

(
zL−1

h (I − Phσ)PℓL−1
h + L−1

h PhσPℓ − PℓL−1
h

)
Lh(z − Lh)

−1

= F1(z) + F2(z),
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where we take F1(z) = (z − Lh)
−1Lh

(
zL−1

h (I − Phσ)PℓL−1
h

)
Lh(z −Lh)

−1 = z(z − Lh)
−1(I −

Phσ)Pℓ(z−Lh)
−1 and F2(z) = (z − Lh)

−1Lh
(
L−1
h PhσPℓ − PℓL−1

h

)
Lh(z−Lh)

−1. Hence, by
the triangle inequality,

E∗
h ≲

∫
Γt

|γ(g∗(t))|
( ∥∥∥F1(g∗(t))f̃

∥∥
L2(Mh)

+
∥∥F2(g∗(t))f̃

∥∥
L2(Mh)

)
dt.(69)

We first bound
∥∥∥F1(z)f̃

∥∥∥
L2(Mh)

. Using successively Equation (23) and the geometric esti-

mates in [5, Corollary 2.2] results in∥∥∥F1(z)f̃
∥∥∥
L2(Mh)

= |z|
∥∥∥(z − Lh)

−1(I − Phσ)Pℓ(z − Lh)
−1f̃

∥∥∥
L2(Mh)

≲
∥∥∥(I − Phσ)Pℓ(z − Lh)

−1f̃
∥∥∥
L2(Mh)

≲ h2
∥∥∥(z − Lh)

−1f̃
∥∥∥
L2(M)

.

Using then Equation (60), we conclude that, for any p ∈ (0, 2),

(70)
∥∥∥F1(z)f̃

∥∥∥
L2(Mh)

≲ h2|z|−(1−p/2)
∥∥∥L−p/2

h f̃
∥∥∥2
L2(M)

.

To bound
∥∥F2(z)f̃

∥∥
L2(Mh)

, we apply Equations (59) and (61) to obtain∥∥∥F2(z)f̃
∥∥∥
L2(Mh)

≲ |z|−1/2
∥∥∥(L−1

h PhσPℓ − PℓL−1
h

)
Lh(z − Lh)

−1f̃
∥∥∥
H1(Mh)

≲ |z|−1/2h2
∥∥∥L1/2

h (z − Lh)
−1f̃

∥∥∥
L2(M)

= |z|−1/2h2
∥∥∥L(1+p)/2

h (z − Lh)
−1L−p/2

h f̃
∥∥∥
L2(M)

and with Equation (56) (applied with s = (1 + p)/2)

(71)
∥∥∥F2(z)f̃

∥∥∥
L2(Mh)

≲ h2|z|−(1−p/2)
∥∥∥L−p/2

h f̃
∥∥∥
L2(M)

.

Using Equations (70) and (71) with p = min{α+d/4; 1} together with Equation (69) gives

E∗
h ≲

∫
Ω∗

|γ(g∗(t))|h2|g∗(t)|−(1−p/2)∥L−p/2
h f̃∥L2(M) dt,

which yields in turn (since γ is an α-amplitude spectral density)

E∗
h ≲ h2∥L−p/2

h f̃∥L2(M)

∫
Ω∗

|g∗(t)|−(1+α−p/2) dt ≲ h2∥L−min{α+d/4;1}/2
h f̃∥L2(M),

since α−p/2 = max{α−(α+d/4)/2;α−1/2} = max{(α−d/4)/2;α−1/2} ≥ (α−d/4)/2 > 0.
Finally, since this inequality holds for any ∗ ∈ {+, 0,−}, we retrieve the claim (24) using
Equation (68). □
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