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Abstract. As an extension of isotropic Gaussian random fields and Q-Wiener processes
on d-dimensional spheres, isotropic Q-fractional Brownian motion is introduced and sample
Hölder regularity in space-time is shown depending on the regularity of the spatial covari-
ance operator Q and the Hurst parameter H. The processes are approximated by a spectral
method in space for which strong and almost sure convergence are shown. The underly-
ing sample paths of fractional Brownian motion are simulated by circulant embedding or
conditionalized random midpoint displacement. Temporal convergence and computational
complexity are numerically tested, the latter matching the complexity of simulating a Q-
Wiener process if allowing for a temporal error.

1. Introduction

The approximation of stochastic partial differential equations (SPDEs) and corresponding
error analysis has been performed for the last 25 years to efficiently compute solutions to
models under uncertainty. In most models, the equations are driven by Wiener processes,
which yield SPDE solutions with Hölder regularity in time limited by 1/2. One option to
get more flexible smoothness in time is to consider infinite-dimensional fractional Brownian
motions. Theoretical results on the properties of solutions are available in Euclidean space and
in abstract Hilbert and Banach spaces, see [7] for an overview. At the same time, analysis and
numerical approximations on non-Euclidean domains are still rare. Motivated by applications
in environmental modeling and astrophysics, first approximations for fractional equations on
the sphere have been considered in [1]. An overview over the last 30 years of space-time models
in Euclidean space and on the sphere is given in [15].

In this work, we take a step back to carefully analyze and efficiently simulate fractional Brown-
ian motion on spheres in any dimension as an important building block and input for the later
simulation of SPDEs. In the first part, we construct isotropic Q-fractional Brownian motion
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2 A. LANG AND B. MÜLLER

with varying space regularity described by the covariance operator Q based on the Hilbert-
space framework of [4, 6], and the theory of isotropic Gaussian random fields on spheres de-
veloped in [11, 12]. We show the existence of a continuous modification with optimal Hölder
regularity in space, depending on Q, and in time, bounded by the Hurst parameter H ∈ (0, 1).

In the second part, we approximate Q-fractional Brownian motion by a spectral method in
space and show strong and almost sure convergence with rate determined by the smooth-
ing properties of Q. The temporal behavior is then determined by independent sample
paths of real-valued fractional Brownian motion. For their simulation, we exploit an exact
method using circulant embedding and fast Fourier transforms with computational complex-
ity O(N logN) in the number of time steps N (cf., e.g., [14] and references therein) and
compare it to an approximate method with conditionalized random midpoint displacement
of computational complexity O(N) ([13]). This allows to generate the correlated increments
of fractional Brownian motion with the same asymptotic speed as the independent incre-
ments of Brownian motion. Therefore, we achieve the same complexity for the simulation of
Q-fractional Brownian motion as for Q-Wiener processes on the sphere. We compare their
performance also with respect to the constants in the O-notation and numerically show the
convergence rate of the midpoint displacement method. In Figure 1, we show sample paths
generated with the same noise for Hurst parameter H = 0.1, 0.5, 0.9 at times T = 1, 2, 3. We
observe that while the spatial regularity is similar, the temporal behavior depends on H. For
H = 0.1, the correlation between temporal increments is negative, so the process stays around
0. For H = 0.9, the correlation is positive, so we observe a consistent temporal trend. In the
middle row, H = 0.5 is the standard Q-Wiener process with independent increments.

This article is organized as follows: In Section 2, we shortly introduce the necessary background
from real-valued fractional Brownian motion and Gaussian random fields on the unit sphere S2
to define Q-fractional Brownian motion on S2 and analyze its space-time regularity in Section 3.
Section 4 contains the generalization of the results to d-dimensional spheres. The second part
of the paper in Section 5 introduces a fully discrete approximation by a spectral method
in space and circulant embedding or conditionalized random midpoint displacement in time.
Strong and almost sure errors are analyzed and the performance and convergence is shown
numerically.

2. Real-valued stochastic processes and spherical Gaussian random fields

Q-fractional Brownian motion on the sphere is a space-time stochastic process, which we
construct based on properties of a spatial Gaussian random field on the sphere and real-
valued fractional Brownian motions. In this section, we first introduce the temporal processes
and the spatial fields separately with their properties as basis for the Q-fractional Brownian
motion in the next section.

Let us consider stochastic processes on the probability space (Ω,A,P) and on the finite time
interval T = [0, T ]. We recall that a real-valued fractional Brownian motion (fBm) βH with
Hurst parameter H ∈ (0, 1) is a continuous Gaussian process with mean zero and covariance

ϕH(s, t) = E
[
βH(t)βH(s)

]
=

1

2
(t2H + s2H − |t− s|2H).
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(a) H = 0.1, T = 1. (b) H = 0.1, T = 2. (c) H = 0.1, T = 3.

(d) H = 0.5, T = 1. (e) H = 0.5, T = 2. (f) H = 0.5, T = 3.

(g) H = 0.9, T = 1. (h) H = 0.9, T = 2. (i) H = 0.9, T = 3.

Figure 1. Samples of Q-fBm for H = 0.1, 0.5, 0.9 at time T = 1, 2, 3.

This process is Hölder continuous of order α ∈ (0, H), which we abbreviate by H−-Hölder
continuous or βH ∈ CH−

(T), in what follows. It generalizes Brownian motion, which we
recover for H = 1/2.

We next consider properties of spatial processes or random fields on the sphere. We follow
closely the introduction in [11] and denote the unit sphere by

S2 = {x ∈ R3|x21 + x22 + x23 = 1}
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and equip it with the geodesic distance, defined for all x, y ∈ S2 by dS2(x, y) = arccos(⟨x, y⟩R3).

Let U = L2(S2) be the space of all square-integrable functions and use the real-valued spherical
harmonic functions (Yℓ,m, ℓ ∈ N0,m = −ℓ, . . . , ℓ) as orthonormal basis. A centered U-valued
isotropic Gaussian random field (GRF) Z on S2 is given by the Karhunen–Loève or basis
expansion

(1) Z =

∞∑
ℓ=0

ℓ∑
m=−ℓ

√
Aℓ zℓ,m Yℓ,m,

where (Aℓ, ℓ ∈ N0), Aℓ ≥ 0 for all ℓ ∈ N0, is called the angular power spectrum and (zℓ,m, ℓ ∈
N0,m = −ℓ, . . . , ℓ) is a sequnce of independent, real-valued standard normally distributed
random variables. The expansion (1) converges in L2(Ω× S2) and for all x ∈ S2 in L2(Ω) [12,
Theorem 5.13]. The results for the real-valued spherical harmonics follow from the complex-
valued expansion by [11, Lemma 5.1].

The covariance kernel of Z is given by

ϕQ(x, y) = E [Z(x)Z(y)] =
∞∑
ℓ=0

ℓ∑
m=−ℓ

AℓYℓ,m(x)Yℓ,m(y),

and the corresponding nonnegative and self-adjoint covariance operator Q is characterized by
its eigendecomposition

QYℓ,m = AℓYℓ,m

with finite trace TrQ =
∑∞

ℓ=0(2ℓ+ 1)Aℓ, since Z is a U-valued Gaussian random variable.

In what follows, we will assume a summability condition on the angular power spectrum of
Q, as given in [11].

Assumption 2.1. Assume that the angular power spectrum (Aℓ, ℓ ∈ N0) of the covariance
operator Q satisfies for some η > 0 that

∑∞
ℓ=0Aℓℓ

1+η < ∞.

Under this assumption, Z is P-a.s. in C(η/2)−(S2), as shown by [11]. We use, for η > 2, the
standard extension of Hölder spaces to orders greater than 1.

3. Q-fractional Brownian motion on the sphere

Combining the time properties of real-valued fBm and space properties of GRFs on S2, we are
now ready to define Q-fractional Brownian motion on U following [6].

Definition 3.1. A U-valued continuous Gaussian process (BH
Q (t))t∈T with Hurst parameter

H ∈ (0, 1) is called an isotropic Q-fractional Brownian motion (Q-fBm), if there exists an
operator Q satisfying Assumption 2.1, such that for all u, v ∈ U and s, t ∈ T, E[⟨BH

Q (t), u⟩U ] =
0 and

E
[
⟨BH

Q (t), u⟩U ⟨BH
Q (s), v⟩U

]
= ϕH(t, s)⟨Qu, v⟩U .

By the definition, we see that BH
Q is centered and the covariance splits into the temporal

properties of real-valued fBm and the spatial description of GRFs on S2. This becomes even
more evident when citing existence of Q-fBm and its series expansion from [4] and [5].
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Theorem 3.2. Let Q satisfy Assumption 2.1 and H ∈ (0, 1). Then, Q-fBm exists with basis
expansion

BH
Q (t) =

∞∑
n=1

ℓ∑
m=−ℓ

√
Aℓβ

H
ℓ,m(t)Yℓ,m,

where (βH
ℓ,m, ℓ ∈ N0,m = −ℓ, . . . , ℓ) is a sequence of independent real-valued fBms with Hurst

parameter H. Furthermore, BH
Q ∈ CH−

(T;U).

We remark that [4] and [5] only state the existence for H > 1/2 but the existence proof of [4]
extends to all H ∈ (0, 1) since Q-fBm is a Gaussian process. Thus, the Kolmogorov–Chentsov
theorem is still applicable for H ≤ 1/2, since

E
[
∥BH

Q (t)−BH
Q (s)∥2nU

]
≤ |t− s|2nHCn(TrQ)n

for some constant Cn by [2, Proposition 2.19], which allows to apply [8, Theorem 4.23] for n
with 2nH > 1.

We note that the series expansion in Theorem 3.2 matches for H = 1/2 the expansion of an
isotropic Q-Wiener process on S2 as introduced in [11].

Having considered Q-fBm so far as U-valued, i.e., function-valued over S2, we are next inter-
ested in the spatial properties and in Q-fBm as a space-time process. For that we first observe
that

(2) BH
Q (t, x) =

∞∑
ℓ=0

ℓ∑
m=−ℓ

√
Aℓβ

H
ℓ,m(t)Yℓ,m(x)

is a Gaussian random field for fixed t that converges in L2(Ω;R) pointwise in x by a version of
the Peter–Weyl theorem, see [12, Theorem 5.13]. It follows then that BH

Q is a Gaussian process
on T × S2 since the linear combination

∑n
k=1 αkB

H
Q (tk, xk) is Gaussian for any coefficients

(αk, k = 1, . . . , n) and ((tk, xk), k = 1, . . . , n) given the independent Gaussian processes βH
ℓ,m.

We compute the covariance kernel k from (2)

k(t, x, s, y) = E
[
BH

Q (t, x)BH
Q (s, y)

]
=

∞∑
ℓ=0

ℓ∑
m=−ℓ

Aℓ E
[
βH
ℓ,m(t)βH

ℓ,m(s)
]
Yℓ,m(x)Yℓ,m(y)

= ϕH(t, s)ϕQ(x, y)

with ϕH and ϕQ given in Section 2.

Let us denote by Cα,β(T× S2) the subspace of functions f ∈ Cmin{α,β}(T× S2) such that for
all x ∈ S2, f(·, x) ∈ Cα(T), and for all t ∈ T, f(t, ·) ∈ Cβ(S2). We are now ready to state our
main result on the space-time regularity of BH

Q .

Theorem 3.3. Let Q satisfy Assumption 2.1, then BH
Q has a continuous modification which

is in CH−,(η/2)−(T× S2).
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To prove this theorem, we will first need to prove joint continuity in space-time with non-
optimal parameters. For this, consider the compact Riemannian manifold M = T × S2 of
dimension 3 equipped with the (topological) product metric

dM ((t, x), (s, y)) = |t− s|+ dS2(x, y)

for all (t, x), (s, y) ∈ T× S2. By [9, Remark 2], the Kolmogorov–Chentsov Theorem 1.1 in [9]
applied to a Gaussian process on M becomes:

Theorem 3.4. Let Z be a centered Gaussian process indexed by M . Assume there exist C > 0
and ξ ≤ 1 such that, for all (t, x), (s, y) ∈ M ,

(3) E
[
|Z(t, x)− Z(s, y)|2

]1/2 ≤ CdM ((t, x), (s, y))ξ.

Then, Z has a continuous modification on M , which is in Cξ−(M).

The proof uses a standard argument to compute p-th moments of Gaussian random variables
based on the variance. For completeness, we give the proof in Appendix A.

Applying this theorem to BH
Q , we obtain the following result.

Corollary 3.5. Assume that Assumption 2.1 is satisfied. Then, BH
Q has a continuous modi-

fication on M , which is in Cmin{H,η/2}−(M).

Proof. We start the proof by splitting

E
[(
BH

Q (t, x)−BH
Q (s, y)

)2]1/2
≤ E

[(
BH

Q (t, x)−BH
Q (s, x)

)2]1/2
+ E

[(
BH

Q (s, x)−BH
Q (s, y)

)2]1/2
.

The first term satisfies

E
[(
BH

Q (t, x)−BH
Q (s, x)

)2]
= (ϕβ(t, t) + ϕβ(s, s)− 2ϕβ(t, s))ϕQ(x, x) ≤ CQ|t− s|2H ,

where CQ = ϕQ(x, x) < ∞ is constant since BH
Q is isotropic. The second term is the increment

of a Gaussian random field with angular power spectrum (ϕβ(s, s)Aℓ, ℓ ∈ N0), which by [11,
Lemma 4.3] and ϕβ(s, s) = s2H ≤ T 2H is bounded by

E
[(
BH

Q (s, x)−BH
Q (s, y)

)2] ≤ Cηϕβ(s, s)dS2(x, y)
min{η,2} ≤ CηT

2HdS2(x, y)
min{η,2}.

Setting ζ = min{H, η/2} < 1, we obtain, since zζ is concave, for some constants C̃ and C

E
[(
BH

Q (t, x)−BH
Q (s, y)

)2]1/2 ≤ C̃
(
|t− s|ζ + dS2(x, y)

ζ
)
≤ CdM ((t, x), (s, y))ζ ,

and applying Theorem 3.4 finishes the proof. □

Without loss of generality, we denote by BH
Q this unique continuous modification. For now,

we have found the best possible (joint) Hölder exponent if we take the underlying space to
be (M,dM ). The next lemma will be used in the proof of Theorem 3.3 to obtain the ideal
exponent for space and time separately.
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Lemma 3.6. Let Assumption 2.1 be satisfied. Then, BH
Q (t, ·) is in C(η/2)−(S2) for all t ∈ T,

and BH
Q (·, x) is in CH−

(T) for all x ∈ S2.

Proof. The first claim follows from [11, Theorem 4.6]. In the proof of Corollary 3.5, we showed
that

E
[
(BH

Q (t, x)−BH
Q (s, x))2

]
≤ CQ|t− s|2H .

Combining this with bounds of the p-th moments of Gaussian distributions as in the proof of
Theorem 3.4 and applying [8, Theorem 4.23] yields the claim. □

Remark 3.7. Given the continuity, we conclude that for a fixed x, BH
Q (·, x) is a rescaled real-

valued fBm since it is a Gaussian process satisfying E[BH
Q (t, x)] = 0 and E[BH

Q (t, x)BH
Q (s, x)] =

ϕβ(t, s)ϕQ(x, x).

Now we have all results at hand to prove our main result on the space-time regularity of BH
Q .

Proof of Theorem 3.3. By Corollary 3.5, we have already obtained the optimal index for the
smaller parameter α < H or β < η/2 and obtained constants independent of t and x. Assume
that α < β. We omit the similar argument yielding the result for β < α.

For that we combine Corollary 3.5 with the ideas from the proof of [11, Theorem 4.6]. Set
k = ⌈η/2⌉ − 1 and consider

Y (t) = (1−∆S2)
k/2BH

Q (t) =

∞∑
ℓ=0

ℓ∑
m=−ℓ

√
Aℓ(1 + ℓ(ℓ+ 1))k/2βH

ℓ,m(t)Yℓ,m,

where ∆S2 denotes the Laplace–Beltrami operator on S2 with eigenvalues (−ℓ(ℓ+ 1), ℓ ∈ N0)
of multiplicity 2ℓ+ 1 and the spherical harmonic functions as eigenbasis. The process Y is a
Q̃-fBm with Q̃ given by the angular power spectrum (Aℓ(1 + ℓ(ℓ+ 1))k, ℓ ∈ N0) that satisfies
Assumption 2.1 for η̃ = η − 2k ∈ (0, 2]. Therefore, Y has a continuous modification by
Corollary 3.5 based on constants not depending on t and x. This modification is by Lemma 3.6
in C(η̃/2)−(S2) for all t ∈ T and in CH−

(T) for all x ∈ S2. Therefore, [16, Theorem XI.2.5]
implies that BH

Q ∈ Cα,β(T × S2;R) for α < H and β < k + η̃/2 = η, which finishes the
proof. □

4. Q-fractional Brownian motion on Sd−1

Analogous results hold when considering the hypersphere Sd−1 in Rd instead of S2. In the
framework of [18], we denote the real-valued spherical harmonics on Sd−1 by (Sℓ,m, ℓ ∈ N0,m =
1, . . . , h(ℓ, d)) with h(ℓ, d) = (2ℓ+ d− 2) · (ℓ+ d− 3)!/((d− 2)!ℓ!).

Let (βH
ℓ,m, ℓ ∈ N0,m = 1, . . . , h(ℓ, d)) be a sequaence of independent real-valued fBms. Assum-

ing
∑∞

ℓ=0 h(ℓ, d)Aℓ < ∞, we obtain combining the results on S2 in Section 3 with Karhunen–
Loève expansions on Sd−1 for isotropic GRFs from [11] the expansion

BH
Q (t) =

∞∑
ℓ=0

h(ℓ,d)∑
m=1

√
Aℓβ

H
ℓ,m(t)Sℓ,m.
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To substitute S2 by Sd−1 in Section 3, we only need to apply the corresponding results for Sd−1

from [11]. For that the generalized version of Assumption 2.1 becomes

Assumption 4.1. Assume that the angular power spectrum (Aℓ, ℓ ∈ N0) of the covariance
operator Q in Sd−1 satisfies for some η > 0 that

∑∞
ℓ=0Aℓℓ

d−2+η < ∞.

Replacing dS2 by dSd−1 and applying [11, Theorem 4.7], the regularity results in Theorem 3.3
extend to Q-fBm on Sd−1, which we state for completeness in the following theorem.

Theorem 4.2. Let Q satisfy Assumption 4.1, then BH
Q has a continuous modification which

is in CH−,(η/2)−(T× S2).

5. Efficient simulation of Q-fractional Brownian motion

In the past sections, we have characterized the regularity properties of Q-fBm in terms of its
parameters Q and H. From the opposite perspective, we can now construct Q-fBms with
given regularity properties by prescribing Q and H through Theorem 3.3. To use the process
in applications, we need to be able to simulate it. This section constructs and analyzes an
approximation to the expansion (2) by truncating it and simulating independent sample paths
of real-valued fBms.

5.1. Spectral approximation in space. We return here to S2 and truncate the basis ex-
pansion (2) at the parameter κ ∈ N to obtain the finite sum

(4) BH,κ
Q (t, x) =

κ∑
ℓ=0

ℓ∑
m=−ℓ

√
Aℓβ

H
ℓ,m(t)Yℓ,m(x).

A spatial convergence analysis of this spectral approximation has been performed in [11,
Propositions 5.2 & 5.3] for a time-independent GRF on S2 in L2(Ω;L2(S2)) and Lp(Ω;L2(S2))
as well as P-a.s. in [11, Corollary 5.4]. For a fixed t, the proof applies to our situation up to
a constant factor of tH < TH , noting that E[βH

ℓ,m(t)2] = t2H . This yields immediately the
following theorem.

Theorem 5.1. Let the angular power spectrum (Aℓ, ℓ ∈ N0) of the covariance operator Q
decay algebraically with order α > 2, i.e., there exist constants C > 0 and ℓ0 ∈ N such that
Aℓ ≤ C · ℓ−α for all ℓ > ℓ0. Then the sequence of approximations (BH,κ

Q , κ ∈ N) converges to
BH

Q in Lp(Ω;L2(S2)) for any finite p ≥ 1 uniformly in T, and the error is bounded by

sup
t∈T

∥BH
Q (t)−BH,κ

Q (t)∥Lp(Ω;L2(S2)) ≤ Ĉp T
H κ−(α−2)/2

for κ ≥ ℓ0, where Ĉp depends on p, C, and α. This implies P-a.s. convergence such that for
all β < (α− 2)/2, the error is asymptotically bounded by

∥BH
Q (t)−BH,κ

Q (t)∥L2(S2) ≤ κ−β, P-a.s..
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5.2. Simulation of real-valued fractional Brownian motion. Computing the above spec-
tral approximation requires the simulation of independent sample paths of fBm. Since fBm
does not have independent increments like Brownian motion does, different simulation meth-
ods are required. This is a widely explored topic, cf., e.g., [3, 17] and references therein. A
widely used method is the circulant embedding method (cf., e.g., [14] and references therein).
If we accept an approximating algorithm, the conditionalized random midpoint displacement
method ([13]) can simulate a sample path of length N in O(N) time. We describe both
methods here and do a performance comparison. Both algorithms simulate the correlated
increments of fBm which need to be added up to obtain sample paths.

5.2.1. Circulant embedding. The principle of the circulant embedding (CE) method is the same
as that of the well-known Cholesky method: multiplying an iid standard Gaussian vector by
the square root of the covariance matrix. However, it makes use of the structure of the
covariance matrix by employing the fast Fourier transform (FFT) to multiply a vector by the
matrix square root.

To explain the method in the context of fBm, let TN be an equidistant time grid with 0 =
t0 < · · · < tN = T and step size h and denote by ∆βH(tj) = βH(tj+1)−βH(tj) the correlated
but stationary increments of βH . Setting γ(|j−k|h) = γ(|tj − tk|) = E[∆βH(tj)∆βH(tk)], the
covariance matrix Σ = (γ(|tj − tk|))N−1

j,k=0 (marked in grey below) is a Toeplitz matrix which
can be embedded into the circulant matrix

C =



γ(0) γ(h) . . . γ((N − 1)h) γ((N − 2)h) γ((N − 3)h) . . . γ(h)
γ(h) γ(0) . . . γ((N − 2)h) γ((N − 1)h) γ((N − 2)h) . . . γ(2h)

...
...

. . .
...

...
...

. . .
...

γ((N − 1)h) γ((N − 2)h) . . . γ(0) γ(h) γ(2h) . . . γ((N − 2)h)
γ((N − 2)h) γ((N − 1)h) . . . γ(h) γ(0) γ(h) . . . γ((N − 3)h)
γ((N − 3)h) γ((N − 2)h) . . . γ(2h) γ(h) γ(0) . . . γ((N − 4)h)

...
...

. . .
...

...
...

. . .
...

γ(h) γ(2h) . . . γ((N − 2)h) γ((N − 3)h) γ((N − 4)h) . . . γ(0)


that is again a covariance matrix, as shown in [14]. The description of the algorithm below
follows [3] and [14].

We observe that C = UΛU∗ has an eigendecomposition, where U consists of the eigenvectors
which are the Fourier modes and Λ is a diagonal matrix with eigenvalues (λk, k = 0, . . . , 2N −
3) computed exactly by a discrete Fourier transform (DFT) of the first row of C. These
eigenvalues only need to be precomputed once for the generation of an arbitrary number of
sample paths. The square root of C is then given by C1/2 = UΛ1/2U∗ and N (0, C)-distributed
random samples can be generated by computing C1/2W for W ∼ N (0, Id2N−2) via two DFT
and a multiplication, which we do in O((2N −2) log(2N −2)) via FFT. To omit one FFT, one
can compute the distribution of U∗W as exploited, e.g., in [3, 10]. Alternatively, one chooses,
as in [14], W = V1 + iV2 for independent V1, V2 ∼ N (0, Id2N−2) and computes Z = UΛ1/2W

by a single FFT of the vector (
√
λk/(2N − 2)wk, k = 1, . . . , 2N − 2). Then, Z contains

independent N (0, C)-distributed random samples in the real and imaginary part. The first N
entries of the random vectors Re(Z) and Im(Z) are the increments of fBm sample paths.

5.2.2. CRMD. The conditionalized random midpoint displacement (CRMD) method is based
on Lévy’s construction of Brownian motion using the Brownian bridge, and we introduce it
following [13].
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X0,1

X1,1 X1,2

X2,1 X2,2 X2,3 X2,4

X3,1 X3,2 X3,3 X3,4 X3,5 X3,6 X3,7 X3,8

Figure 2. Visual representation of the CRMD method (µ = 2, ν = 1). X3,5

is simulated conditional on X2,3, X3,3, and X3,4, ignoring its dependence on
X2,4, X3,1, and X3,2.

Similarly to Section 5.2.1, we want to simulate a sample path of βH on the equidistant time
grid TN with T = 1, N = 2n0 , and n0 ∈ N. The initialization step is to simulate the increment
X0,1 = βH(1)− βH(0) ∼ N (0, 1). The discretization grid is then dyadically refined such that
in the n-th step for n ≤ n0, we want to generate the increments (Xn,k = βH(k2−n)−βH((k−
1)2−n), k = 1, . . . , 2n) given by the recursive relationship

Xn−1,k = Xn,2k−1 +Xn,2k, k = 1, . . . , 2n−1.

Assume now that we have simulated refinement step n− 1 and Xn,1, . . . , Xn,2k−2. In contrast
to the Markovian structure of Brownian motion, where the next increment to be simulated
Xn,2k−1 only depends on Xn−1,k, the long-range dependence of fBm requires to condition on
all previously known increments Mn,2k−1 = (Xn−1,k, . . . , Xn−1,2n−1 , Xn,1, . . . , Xn,2k−2). As
computed in detail in [13], Xn,2k−1 is a Gaussian random variable with conditional mean
E[Xn,2k−1|Mn,2k−1] and variance Var[Xn,2k−1|Mn,2k−1] that can be computed via the covari-
ance matrix of the extended vector Xn,2k−1 ×Mn,2k−1. Once Xn,2k−1 has been sampled, we
compute Xn,2k = Xn−1,k −Xn,2k−1. This procedure is exact but of computational complex-
ity O(N2).

To decrease the complexity to O(N), we need to compute the conditional distributions more
efficiently while accepting that the resulting samples are approximate sample paths. For that
let us reduce the maximal number of increments to condition on from the right and left
by ν, µ ∈ N and set Mν,µ

n,2k−1 = (Xn−1,k, . . . , Xn−1,min(k+ν,2n−1), Xn,max(2k−1−µ,1), . . . Xn,2k−2).
We sample now Xn,2k−1 based on the approximate conditional mean E[Xn,2k−1|Mν,µ

n,2k−1] and
variance Var[Xn,2k−1|Mν,µ

n,2k−1]. This is illustrated in Figure 2. Note that E[Xn,2k−1|Mν,µ
n,2k−1]

can be computed as a dot product of a fixed vector e with Mν,µ
n,2k−1 and Var[Xn,2k−1|Mν,µ

n,2k−1] =
v is a scalar value that only needs to be rescaled. Only for points near the boundary, up to
ν · µ different e and v are required, which can also be precomputed. The vectors e are of size
at most µ + ν, and therefore the computational complexity is reduced to O((µ + ν)N), i.e.,
linear in N . This makes CRMD asymptotically faster than CE.

Theoretical error bounds in ν and µ are to the best of our knowledge unknown. Dieker [3]
compares the covariance functions for different µ and ν and performs statistical tests on the
obtained sample distributions. To estimate the strong error numerically, we set ν = ⌈µ/2⌉ due
to the symmetry in the algorithm. Denoting by βH,µ the approximation of fBm by CRMD,
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Figure 3. Performance comparison and convergence of CRMD for varying parameters.

this yields for µ ≪ N with Figure 3(b) the bound

(5) sup
t∈T

∥βH,µ(t)− βH(t)∥L2(Ω) ≤ Cµ−1

based on M = 10000 Monte Carlo samples for H = 0.2 and 0.8. The constant C depends
on H but not on N . The exact reference solution βH is computed with µ = N .

The fully discrete approximation of the Q-fBm (2) on the sphere based on the spectral ap-
proximation (4) and CRMD is then given by

BH,κ,µ
Q (t, x) =

κ∑
ℓ=0

ℓ∑
m=−ℓ

√
Aℓ β

H,µ
ℓ,m (t)Yℓ,m(x).

Its strong error can be split into

∥BH
Q (t)−BH,κ,µ

Q (t)∥L2(Ω;L2(S2))

≤ ∥BH
Q (t)−BH,κ

Q (t)∥L2(Ω;L2(S2)) + ∥BH,κ
Q (t)−BH,κ,µ

Q (t)∥L2(Ω;L2(S2)),

where the first term is bounded by Theorem 5.1. The second term satisfies based on (5)

∥BH,κ
Q (t)−BH,κ,µ

Q (t)∥L2(Ω;L2(S2)) ≤ C
√
TrQµ−1.

This allows us to conclude the analysis of CRMD with the following corollary.

Corollary 5.2. Under the assumptions of Theorem 5.1 and (5) with µ ≪ N , the strong error
of the fully discrete spectral and CRMD approximation of (2) is bounded by

sup
t∈TN

∥BH
Q (t)−BH,κ,µ

Q (t)∥L2(Ω;L2(S2)) ≤ C(κ−(α−2)/2 +
√
TrQµ−1).
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5.2.3. Comparison of computational performance. We have seen that the computational costs
of CE behave asymptotically as O(N logN) while CRMD performs with linear complexity.
In this section, we compare their performance for relevant choices of N based on our Julia
implementation. We check when the constants hidden by the O-notation matter compared to
the extra logN factor in the asymptotics.

Figure 3(a) shows the computation time required by both methods for the simulation of sample
paths of varying length N , ranging from 210 to 224 ≈ 1.68 · 107, with H = 0.8. Note that
both methods perform optimally when N is a power of 2 and allow for the precomputation
of certain steps that depend only on N (and µ for CRMD) and do not need to be repeated
for every new sample path. The time taken by this was excluded in our analysis here. The
computation was performed single-threaded on an Intel® Core™ i5-1245U system with 16 GB
of RAM.

A slowdown of CRMD for higher values of µ is observed, since the computational cost per
increment increases due to the required evaluation of wider dot products. For small values
of µ, the CRMD method is faster than the CE method, while for larger µ, CRMD becomes
slower than CE.

We remark that CRMD can be implemented to only require memory for the N floating point
values representing the resulting sample path and O(µ3) values to store the vectors e and
scalars v used to computed the conditional mean and variance. CE on the other hand requires
about 4N floating point values to be stored due to the embedding into the larger matrix and
the use of complex numbers.

Considering the results in Figure 3(a), the choice of method is a trade-off between accuracy and
computational performance. If low accuracy is sufficient, better performance can be obtained
by using CRMD with small µ. On the other hand, if higher accuracy is required, CE is the
method of choice. Our tests show that, on our system, it is not advisable to use CRMD with
µ = 20 since we can obtain distributionally exact samples with the same computational costs
using the CE method. Dieker [3] performed a similar comparison of computational cost, albeit
including the precomputation steps, and reported similar relative costs. However, we note a
significant speedup of all computations.

Finally, we note that CE can be expressed quite simple in terms of Fourier transforms, for
which highly optimized library implementations of FFT are available. CRMD, on the other
hand, is a significantly more complex algorithm. Hence, from an implementation and usability
perspective, CE is preferred.
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Appendix A. Proof of Theorem 3.4

This theorem arises from [9, Theorem 1.1] by the standard argument on finiteness of all
moments of a Gaussian distribution. By assumption, we know that Z(t, x)−Z(s, y) ∼ N (0, σ2)

for some σ. Then, the standard deviation is E
[
|Z(t, x)− Z(s, y)|2

]1/2
= σ since the Gaussian

is centered. We further know that

E [|Z(t, x)− Z(s, y)|p] = E [|σU |p] = σp E [|U |p] = C(p)σp

for some U ∼ N (0, 1) and all p ∈ N. Now, by assumption (3), σ ≤ CdM (x, y)ξ and hence

E [|Z(t, x)− Z(s, y)|p] ≤ C(p)CpdM (x, y)pξ = C̃pdM (x, y)pξ.
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Choose p > d
ξ arbitrary, and q = ξp. This yields

E [|Z(t, x)− Z(s, y)|p] ≤ C̃pdM (x, y)q,

and the assumptions of [9, Theorem 1.1] are satisfied, where our C̃p is their M . Note that
our space M is a compact Riemannian manifold of dimension 3, cf. [9, Remark 2]. Thus,
we obtain the desired bounds and a modification that is β-Hölder continuous for all β ∈
(0, q/p− d/p) = (0, ξ− d/p). Letting p tend to infinity, we obtain that there is a modification
that is in Cξ−(M). □
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