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Abstract
For any ring R, we introduce an invariant in the form of a partially ordered abelian
semigroup S(R) built from an equivalence relation on the class of countably generated
projectivemodules.We call S(R) the Cuntz semigroup of the ring R. This construction
is akin to the manufacture of the Cuntz semigroup of a C*-algebra using countably
generated Hilbert modules. To circumvent the lack of a topology in a general ring R,
we deepen our understanding of countably projectivemodules over R, thus uncovering
new features in their direct limit decompositions, which in turn yields two equivalent
descriptions of S(R). The Cuntz semigroup of R is part of a new invariant SCu(R)

which includes an ambient semigroup in the category of abstract Cuntz semigroups
that provides additional information. We provide computations for both S(R) and
SCu(R) in a number of interesting situations, such as unit-regular rings, semilocal
rings, and in the context of nearly simple domains. We also relate our construcion to
the Cuntz semigroup of a C*-algebra.
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1 Introduction

The study of a ring using the collection of its projective (right) modules is central in
modern algebra.Much attention has been directed to finitely generated projectivemod-
ules, mostly with K-Theory in mind, since for a unital ring R the Grothendieck group
K0(R) is constructed out of the monoid V(R) of isomorphism classes of such mod-
ules. There has also been an intensive use of countably generated projective modules.
This may be justified keeping in mind that, by a well known theorem of Kaplansky,
any projective module is a direct sum of countably generated projective ones. In this
case, one might use the monoid V∗(R) of isomorphism classes of countably gener-
ated projective modules to analize the ring R. It is worth noticing that both monoids
V(R) and V∗(R) are naturally equipped with the so-called algebraic order, given by
complements.

The structure of V∗(R) has attracted considerable attention in the last years; see,
for instance [23, 24, 30]. For a semilocal ring, and following a result obtained in [33],
one has that V∗(R) can be viewed as a submonoid of V∗(R/J (R)), which in turn is
isomorphic to N

r
for a suitable r , where N = N ∪ {∞} with the obvious operations.

A relevant problem is then to determine which submonoids of N
r
are realized by

semilocal rings. A full characterization of such submonoids in the noetherian case
is obtained in [23, Theorem 2.6], as those defined by a system of equations in the
sense of [23, Definition 2.5]. (We note that previous results for semilocal rings, but for
the monoid V(R) and full affine submonoids of N

r , were already obtained in [17].)
Further progress was carried out in [24, Theorem 1.6] for not necessarily noetherian
semilocal rings. There, the authors studied countably generated projective modules
that are finitely generated modulo the Jacobson radical and showed that they appear
in a wide variety of situations.

Our aim here is to introduce an object S(R) that can also be built out of countably
generated projective modules, albeit using a relation weaker than isomorphism. Its
construction is inspired by that of the Cuntz semigroup of a C*-algebra, as the latter
possesses a rich ordered structure that extends the algebraic order, and has played
an important role in the theory of C*-algebras in recent years. Let us review this
construction in relation to the main theme of this paper.

For the class of C*-algebras, that is, self-adjoint, norm-closed subalgebras of the
algebra of bounded operators on a Hilbert space, we encounter in countably genera-
ted Hilbert modules the analytic siblings of countably generated projective modules.
Roughly speaking, a Hilbert module over a C*-algebra A is an A-module, together
with an A-valued inner product, which is complete with respect to a suitable norm.
The A-module A(N), with a natural inner product, gives rise to the standard Hilbert
module HA. It is a celebrated theorem due to Kasparov that any countably gener-
ated Hilbert A-module H is isometrically isomorphic to a complement of HA; see
[27]. From this point of view, countably generated Hilbert modules play a role akin
to countably generated projective modules for C*-algebras. In fact, an algebraically
finitely generated Hilbert module is a finitely generated projective module; see, e.g.
[8, Theorem 3.12]. Further, the monoid of isomorphism classes of finitely generated
Hilbert A-modules is isomorphic to the monoid V(A) of the C*-algebra, as shown in
[8, Proposition 3.10]. We also remark that, as proved recently by Brown and Lin in
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[11], over a separable C*-algebra every countably generated Hilbert module is projec-
tive (with bounded module maps as morphisms). This is a step forward in the direction
of characterizing projective Hilbert modules over a C*-algebra.

An equivalence relation among countably generated Hilbert A-modules, weaker
than isomorphism, was studied in [14]. In there, the authors proved that the monoid
arising from said equivalence relation may be identified with the complete Cuntz
semigroup Cu(A) of the C*-algebra A. (The terminology ‘semigroup’ is used for
historical reasons, although in fact Cu(A) is a monoid.) The original (uncomplete)
Cuntz semigroup WC(A) was constructed by Cuntz in [15] using positive elements
and a suitable comparison relation among them that, when restricted to idempotents,
yields the usual Murray-von Neumann comparison. In short, we say that a is Cuntz
subequivalent to b, and write a �Cu b, provided a can be approximated arbitrarily
well by elements of the form xbx∗. Compared with the construction of the group K0,
this approach is advantageous since every C*-algebra has an abundance of positive
elements but may have a complete lack of idempotents. The exact relation between
WC(A) and Cu(A) may be expressed by the isomorphism Cu(A) ∼= WC(A ⊗ K),
where K is the algebra of compact operators on an infinite dimensional separable
Hilbert space. Alternatively, Cu(A) may be thought of as the completion of WC(A);
see [3, Theorem 3.2.8]. It was shown in [14] that Cu(A) sits in a well-behaved category
of partially ordered monoids, termed Cu, in which each object admits suprema of
increasing sequences, among other continuity properties. Furthermore, the assignment
A �→ Cu(A) is a continuous functor; see [3, 14].

The Cuntz semigroup plays a prominent role in the classification programme of
C*-algebras initiated by G. A. Elliott and is a key ingredient in delimiting the optimal
class of such algebras amenable to classification by the Elliott invariant (that consists
essentially of K0, K1, and the trace simplex). Indeed, the examples constructed by A.
S. Toms in [37] can be distinguished by their Cuntz semigroups, but not by a swath of
other well known topological invariants for C*-algebras that include, among others,
the Elliott invariant and the stable rank.

When trying to adapt the ideas above to the purely algebraic setting one has to bear
in mind that, in nature, the Cuntz semigroup is an analytic object. Thus one first needs
to use an algebraic analogue of Cuntz comparison for general elements in a ring. We
take advantage of the approach carried out in [9], inwhich one defines x �1 y provided
x = r ys for some elements r , s ∈ R, in order to construct a partially ordered monoid
W(R) for any weakly s-unital ring R; see Paragraphs 2.4 and 2.5. By considering
suitable equivalence classes of increasing sequences with respect to the relation �1,
we obtain a monoid �(R) in the category Cu that contains W(R). The object �(R)

can be conveniently identifiedwith themonoid of intervals inW(R), but it is in general
too large for our purposes. This differs fundamentally from what happens in the C*-
algebraic case, and the reason may be found in the lack of a topology in R. To remedy
this drawback, we restrict our attention to a well-behaved partially ordered submonoid
S(R) of �(R) which, for a C*-algebra A, is resemblant to Cu(A) and its role as the
completion of WC(A). We will term S(R) the Cuntz semigroup of the ring R and this
is the main object of study in this paper. At this point, we mention that the construction
of the Cuntz semigroup WC(A) for a C*-algebra A served as inspiration to Hung and
Li to introduce in [26] a semigroup for any unital ring R, termed the Malcolmson
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semigroup, and denoted by WM(R), in order to study Sylvester rank functions over
the ring R. To construct this semigroup one uses a relation stronger than �1 and, as
it turns out, for any C*-algebra A the semigroup WC(A) is a homomorphic image of
WM(A) via an order-preserving map; see [26, Lemma 5.1, Proposition 5.2]. We shall
review this construction and its relation to our semigroup W(R) in Sect. 3.

To explain how one constructs the Cuntz semigroup S(R) we take a slight detour
that finally yields two equivalent pictures of the same object and spurs our motivation
at the same time. More concretely, given countably generated projective modules P
and Q over R, we combine the approach carried out for Hilbert modules in [14] with
an abstraction of the above-mentioned relation �1 to write P � Q if the inclusion of
any finitely generated module X of P may be factorized through Q; see Paragraph 4.4.
By antisymmetrizating the above relation, we get an ordered abelian monoid CP(R)

and a natural surjective morphism V∗(R) → CP(R). As we show in Sect. 6, if R is
either unit-regular or unital and semilocal, this is an isomorphism of abelian monoids,
but not of ordered monoids, as V∗(R) is algebraically ordered, but CP(R) is not,
except in trivial situations. Further investigation on countably generated projective
modules structure leads us to reformulate the proof, obtained in [38] and [31], that
any such module can be written as a sequential inductive limit of free modules such
that, for each n, the nth transition map consists of multiplication by a matrix xn with
the property that xn = yn+1xn+1xn for a suitable matrix yn+1 (hence in particular
xn �1 xn+1). Our arguments uncover additional and crucial information in such an
inductive limit decomposition and in doing soweare able to relate themonoidCP(R) to
the submonoid S(R) of�(R) consisting of (suitable equivalence classes of) increasing
sequences (xn) with respect to �1 arising from inductive limits as above:

Theorem A (4.13, 4.3) Let R be any ring. Then CP(R) and the Cuntz semigroup S(R)

of R are order-isomorphic monoids. Moreover, every increasing sequence in CP(R)

(or S(R)) has a supremum.

Despite the analogy of the construction of the Cuntz semigroup S(R) of a ring R
with that of a C*-algebra, it is unclear whether S(R) is a Cu-semigroup. We remedy
this fact by considering the pair SCu(R) = (�(R),S(R)). This is an instance of an
object in the category SCu of pairs (�, S), where � is a monoid in the category Cu
and S is a submonoid of � closed under suprema of a certain type of sequences. The
definition of this new abstract category balances the fact that S(R) might not be an
object in Cu with an ambient object which does belong to the category and is still
intimately related to S(R). More concretely, we prove:

Theorem B (5.7) Let Ringsws denote the category of weakly s-unital rings. Then, the
assignment

SCu : Ringsws −→ SCu
R �→ (�(R),S(R))

is functorial.

In a subsequent paper [1] we examine other structural properties of the object
SCu(R), such as a natural notion of ideal and quotient, and how these notions
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parametrize the ideal lattice of a ring. There, we also show that the category SCu
admits inductive limits and analyse when the assignment R �→ SCu(R) is continuous.

We analyse the construction of this new Cuntz semigroup in a variety of situations.
Firstly, since the original motivation of this paper comes from C*-algebra theory, we
relate Cu(A) to S(A) for any C*-algebra A, by showing the former is a retract of the
latter, as follows:

Theorem C (7.6) Given a C*-algebra A, there exist ordered monoid morphisms
ϕ : Cu(A) → S(A) and φ : S(A) → Cu(A) that preserve suprema of increasing
sequences and such that φ ◦ ϕ = idCu(A).

Secondly, we show that in a number of interesting examples outside the class of
C*-algebras the monoids W(R) and S(R), together with their order structure, can be
identified:

Theorem D (6.11, 6.13, 8.4) Let R be a unital ring, and let P and Q be countably
generated projective R-modules. Then:

(i) If R is unit-regular, we have [P] ≤ [Q] inCP(R) precisely when P is isomorphic
to a submodule of Q. It follows thatW(R) ∼= V(R) and S(R) ∼= CP(R) ∼= �(R).
Thus S(R) is a Cu-semigroup.

(ii) If R semilocal, we have [P] ≤ [Q] in CP(R) precisely when P is isomorphic
to a pure submodule of Q. In this case, as abelian monoids, we have S(R) ∼=
CP(R) ∼= V∗(R).

(iii) If R is a nearly simple domain, then W(R) ∼= N × N, and (r , s) ≤ (r ′, s′)
precisely when r ≤ r ′ and r + s ≤ r ′ + s′. Moreover, SCu(J (R)) ∼= (N, 0).

The article is organized as follows. In Sect. 2 we review the definition of the Cuntz
semigroup WC(A) for a C*-algebra A and the category its completion naturally
belongs to, and we define its algebraic counterpart W(R) together with the natural
construction �(R), which will conveniently serve as an ambient monoid later on. In
Sect. 3 we relate the semigroup W(R) with the Malcolmson semigroup introduced in
[26], and show both semigroups may be identified for unital von Neumann regular
rings. Section4 constitutes the heart of this paper, where we construct the Cuntz semi-
group S(R) for a ring R and prove Theorem A. This is technically demanding as we
need to split the proof into the unital and non-unital case. In Sect. 5 we introduce the
category SCu and establish Theorem B. In Sect. 6 we study compact elements in S(R)

and prove parts (i) and (ii) of Theorem D. We revisit C*-algebras in Sect. 7 to relate
S(A) and Cu(A), thus proving Theorem C. Section8 is devoted to the analysis of the
class of nearly simple domains and to prove part (iii) of Theorem D.

2 The Cuntz semigroup of a C∗-algebra and the semigroupW(R)

In this section we recall the definition of the Cuntz semigroup of a C∗-algebra and its
most natural adaptation to a purely algebraic framework.
2.1 (Diagonal sum in M∞(R)) Given a ring R, we denote by M∞(R) the ring of
infinite matrices with only a finite number of nonzero entries. That is, given an element
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x ∈ M∞(R) there exist n,m ≥ 1 and a finite matrix z ∈ Mn×m(R) such that

x =
⎛
⎜⎝
z 0 · · ·
0 0
...

. . .

⎞
⎟⎠ .

Wewill call z a finite representative of x , and wewill say that x is the infinite matrix
represented by z. We will tacitly identify x and z when no confusion can arise.

Given two finite rectangular matrices x ∈ Mn1×m1(R) and y ∈ Mn2×m2(R), we
will denote by x ⊕ y the infinite matrix

⎛
⎜⎜⎜⎝

x 0 0 · · ·
0 y 0
0 0 0
...

. . .

⎞
⎟⎟⎟⎠ .

In other words, x ⊕ y is the infinite matrix represented by the rectangular matrix

(
x 0
0 y

)
∈ M(n1+n2)×(m1+m2)(R).

2.2 (Cuntz subequivalence and the Cuntz semigroup)We shall denote byK the algebra
of compact operators over an infinite-dimensional separable Hilbert space. Let A be
a C∗-algebra. Given positive elements a, b ∈ A, we say that a is Cuntz subequivalent
to b, in symbols a �Cu b, provided that there is a sequence (xn) in A such that
a = limn xnbx∗

n . Equivalently, there are sequences (xn), (yn) in A such that a =
limn xnbyn (see [15]). We say that a and b are Cuntz equivalent, in symbols a ∼Cu b,
if both a �Cu b and b �Cu a occur. One can use the second equivalent definition of
Cuntz subequivalence to extend ∼Cu to arbitrary elements. That does not have any
effect on the theory since, as it happens, a∗a ∼Cu aa∗ ∈ A+ and a ∼Cu aa∗ for any
a ∈ A.

By extending this relation in the natural way to M∞(A)+, one can define a partially
ordered set

WC(A) = M∞(A)+/∼,

with order given by [a]Cu ≤ [b]Cu whenever a �Cu b (and where [a]Cu denotes
the equivalence class of a). It becomes a positively ordered semigroup by defining
[a]Cu + [b]Cu = [a ⊕ b]Cu.The semigroup WC(A), originally defined in [15], is most
currently referred to as the classical Cuntz semigroup. The complete Cuntz semigroup
of a C∗-algebra A is Cu(A) = WC(A ⊗ K) (See [8, 19] for survey articles on the
Cuntz semigroup).

Coward, Elliott, and Ivanescu introduced in [14] the category Cu, which captures
continuity properties of the semigroup Cu(A).
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2.3 (The category Cu and abstract Cu-semigroups) Given a positively ordered monoid
S, we write x � y (and say that x is compactly contained in y, or that x is way-below
y), if whenever (yn) is an increasing sequence in S for which the supremum supn yn
exists, then y ≤ supn yn implies that there exists k such that x ≤ yk . (See [20, I-1].)

Using it, we consider the following axioms for S:

(O1) Every increasing sequence (xn) in S has a supremum supn xn ∈ S.
(O2) Every element x ∈ S is the supremum of a sequence (xn) such that xn � xn+1

for all n. We say that (xn) is a rapidly increasing sequence.
(O3) If x ′, x, y′, y ∈ S satisfy x ′ � x and y′ � y then x ′ + y′ � x + y.
(O4) If (xn) and (yn) are increasing sequences in S, then supn(xn + yn) = supn xn +

supn yn .

An abstract Cuntz semigroup (or just a Cu-semigroup) is a positively ordered
monoid satisfying axioms (O1)-(O4). A Cu-morphism between two Cu-semigroups
S and T is a positively ordered monoid morphism f : S → T that preserves compact
containment and suprema of increasing sequences. The category Cu has as objects the
Cu-semigroups and as morphisms the Cu-morphisms. It was shown in [14] that the
natural models of Cu-semigroups are the complete Cuntz semigroups of C∗-algebras.

Also, the natural models of Cu-morphisms are the *-homomorphisms of C∗-alge-
bras. More specifically, given C∗-algebras A and B and a *-homomorphism ϕ : A →
B, we may define Cu(ϕ) : Cu(A) → Cu(B) by Cu(ϕ)([a]) = [(ϕ ⊗ id)(a)], for any
a ∈ (A ⊗ K)+, which is a Cu-morphism. In this way, the assignment A �→ Cu(A)

determines a functor from the category of C∗-algebras to the category Cu, which turns
out to be continuous (see [14] and also [3]). It was shown in [3, Theorem 3.28] that
Cu(A) is, suitably interpreted, a completion of WC(A).

Elements thatwill become relevant in the theory are the so-called compact elements.
By definition, an element x in a Cu-semigroup S is termed compact provided x � x .
The natural sources of compact elements in Cuntz semigroups of C∗-algebras are the
classes of projections, i.e. self-adjoint idempotents. In significant cases, these are the
only ones (see, e.g. [12]). A Cuntz semigroup S is said to be algebraic provided every
element is the supremum of a sequence of compact elements ([3, Definition 5.5.1]).

A sub-Cu-semigroup of a Cu-semigroup T is a submonoid S of T which is itself
a Cu-semigroup for the partial order and addition inherited from T , and such that the
inclusion ι : S → T is aCu-morphism. (See [35, Section 4], and also [3]). For example,
letN be the set of natural numbers with 0. Then,N := N∪{∞} is a Cu-semigroup and
a submonoid of the Cu-semigroup [0,∞], but it is not a sub-Cu-semigroup of [0,∞],
because, for instance, 2 � 2 in N but 2 is not compactly contained in itself in [0,∞].

We now introduce an algebraic analog of the classical Cuntz semigroup. For this,
we first need to consider a class of rings suitable to our needs. The relation �1 below
was already considered in [9].
2.4 (s-unital rings) We recall that a ring R is said to be s-unital if, for every element
a ∈ R, there is b ∈ R such that a = ba = ab. Evidently this includes all unital rings,
σ -unital rings, and rings with local units. (We remark that the original definition of
s-unital demands that each element a ∈ R has a right and a left unit, that is, there are
elements b, c ∈ R such that a = ab = ca. It follows from [4, Lemma 2.2] that one
may choose b = c.)
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We will say that a ring R is weakly s-unital if for every n ≥ 1 and every element
a ∈ Mn(R), there are b, c ∈ Mn(R) such that a = bac.

Using again [4, Lemma 2.2], given a finite family a1, . . . , an of elements of an
s-unital ring R, there is b ∈ R such that bai = ai = aib for i = 1, . . . , n. From this,
one can show that if R is s-unital then so is the ring M∞(R). It also follows that any
s-unital ring is weakly s-unital.
2.5 (The semigroup W(R)) Let R be any ring. Given elements a, b ∈ R, we write
a �1 b if there exist elements r , t ∈ R such that

a = rbt .

The relation �1 is clearly transitive by construction. Assume further that R is weakly
s-unital, and then �1 is also reflexive. We write a ∼1 b provided a �1 b and b �1 a.

If e, f are idempotents in R, then an easy argument shows that e �1 f if and
only if e ∼ f ′ and f ′ ≤ f in the sense that e = xy whilst yx = f ′, for elements
x ∈ eR f ′, y ∈ f ′Re. That is, the relation �1 agrees with the usual Murray-von
Neumann subequivalence �MvN for idempotents. Therefore, if e ∼ f , then e ∼1 f ,
but the converse does not necessarily hold – it will if all idempotents are finite, in the
sense that they do not contain proper equivalent subidempotents.

In case A is a C∗-algebra and p, q ∈ A are projections, then it is known that
p �Cu q if and only if p = vv∗ and v∗v ≤ q for some v ∈ A. In other words, Cuntz
subequivalence, when restricted to projections, agrees with the usual Murray-von
Neumann subequivalence. It follows from this that p �Cu q precisely when p �1 q.
However, this will not hold for general positive elements, and thus one cannot expect
that our algebraic construction below coincides with the C∗-algebraic one. Notice also
that C∗-algebras are in general neither weakly s-unital nor s-unital.

We now extend the relation �1 to M∞(R) and define

W(R) = M∞(R)/∼1 .

Denote the class of a ∈ M∞(R) by [a]. As we show below, this partially ordered set
becomes an abelian semigroup by defining [a]+[b] = [( a 0

0 b )], for any a, b ∈ M∞(R).

Lemma 2.6 For any weakly s-unital ring R, the posetW(R), equipped with the addi-
tion defined above, is a positively ordered commutative monoid.

Proof We first have to show that addition is well-defined.
Note the following fact. Let u ∈ Mk×l(R) and v ∈ Mt×s(R) be finite matrices

with coefficients in R, and let x, y be the infinite matrices represented by u and v

respectively. Then x �1 y in M∞(R) if and only if there are matrices a ∈ Mk×t (R)

and b ∈ Ms×l(R) such that u = avb.
For the addition, let w,w′ ∈ W(R) and suppose that u and v are finite repre-

sentatives of w, and that u′ and v′ are finite representatives of w′. Using the above
observation we find finite matrices a, b, a′, b′ of suitable sizes such that

u = avb and u′ = a′v′b′.
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We then have that u⊕u′ = (a⊕a′)(v⊕v′)(b⊕b′). This shows that (u⊕u′) �1 (v⊕v′),
and similarly we have that (v ⊕ v′) �1 (u ⊕ u′), and thus [(u ⊕ u′)] = [(v ⊕ v′)].

The same argument shows that addition is compatible with the order in W(R).
Further, it is clear that the class [0] is the zero element and that addition is associative.

To see that it is also commutative, let w,w′ ∈ W(R), and let u, u′ be finite rep-
resentatives of w,w′, respectively. Since R is weakly s-unital, we may choose finite
matrices v, z, v′, z′ of suitable sizes such that vuz = u and v′u′z′ = u′.

Then, we have

(
u′ 0
0 u

)
=

(
0 v′
v 0

)(
u 0
0 u′

)(
0 z
z′ 0

)
�1

(
u 0
0 u′

)
.

Hence u′ ⊕ u �1 u ⊕ u′. Thus, one gets

w′ + w = [u′ ⊕ u] ≤ [u ⊕ u′] = w + w′,

and by symmetry w + w′ ≤ w′ + w, showing that w′ + w = w + w′, as desired. ��
2.7 (The semigroup V(R)) We shall denote as customary by V(R) the semigroup of
Murray-von Neumann equivalence classes of idempotents in M∞(R), and we denote
the class of an idempotent e ∈ M∞(R) by [e]MvN. Our observations above mean that
there is a an order-embedding ι : V(R) → W(R), given by [e]MvN �→ [e]. This map
is injective if R is stably finite, in the sense that x + y = x in V(R) precisely when
y = 0.

In particular, the next result shows how the different orders behave via ι. Indeed,
it is shown that every element of ι(V (R)) can be complemented in W(R). It is worth
noticing the converse does not always hold; see Remark 8.5.

Lemma 2.8 Let R be a weakly s-unital ring, and let x ∈ ι(V (R)) and y ∈ W(R). If
x ≤ y, then there exists z ∈ W(R) such that x + z = y.

Proof Let e be an idempotent in M∞(R) such that x = [e], and let v ∈ M∞(R)

satisfy y = [v]. Using that e �1 v, we can find elements r , s such that e = rvs.
Since e is idempotent, we may also assume that r = er and s = se. Thus, the element
f := vsr = vser is an idempotent in vR satisfying [ f ] = [e] = x .
Now set w := v − f v ∈ M∞(R). Since R is weakly s-unital, there exist a, b ∈

M∞(R) such that awb = w. Thus, we have

v = (
f a

) (
f 0
0 v − f v

) (
v

b

)

and, consequently, y = [v] ≤ [ f ] + [w] = x + [w].
Using once again that R is weakly s-unital, let c, d ∈ M∞(R) satisfy v = cvd.

One gets

(
f 0
0 v − f v

)
=

(
f c

c − f c

)
v

(
dsr d − dsrv

)
.
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This shows that [ f ] + [w] ≤ [v] = y. Setting z := [w], we obtain

x + z = [ f ] + [w] = y,

as desired. ��
In a more concrete settting, recall that an element a in a ring R is said to be a von

Neumann regular element provided there is x ∈ R such that a = axa. Upon replacing
x by x ′ = xax , we may also assume that x = xax . The ring R is said to be a von
Neumann regular ring if every element is von Neumann regular (See [21])

Lemma 2.9 Let R be a stably finite von Neumann regular ring. Then, the natural map
V(R) → W(R) is an order-isomorphism.

Proof Let a ∈ R, and write a = axa with x = xax . It is then an easy exercise to
verify that a ∼1 ax =: e, which is an idempotent. Since matrices over a von Neumann
regular ring are also von Neumann regular, this shows that the map V(R) → W(R)

is surjective. ��
The relation between �1 and �Cu for general positive elements in a C*-algebra is

examined with some more detail in the lemma below.

Lemma 2.10 Let A be a C∗-algebra, and let a, b ∈ A. If a �1 b, then a∗a �Cu b∗b.
Therefore, there is a positively orderedmonoid morphism ιC : W(A) → WC(A), given
by ιC([a]) = [a∗a]Cu.
Proof Suppose that a �1 b, and write a = sbr for some s, r ∈ A. Then

a∗a = r∗b∗s∗sbr �Cu b
∗s∗sb ≤ ‖s‖2b∗b �Cu b

∗b.

Notice that, in particular, since x ∼Cu x2 for any x ∈ A+, we have a �Cu b whenever
a, b ∈ A+ and a �1 b. ��
2.11 (The semigroup�(R)) We now proceed to construct an object in the category Cu
for anyweakly s-unital ring R. In theC∗-setting this can be done by simply considering
WC (A ⊗K), but there is no algebraic analogue of the compact operators K. Another
approach is through a completion of W(R) by a so called auxiliary relation in W(R);
see [20, Definition I-1.11], [3, Definition 2.2.4] and also Remark 6.4 below. But again,
there is no clear algebraic analogue of such an auxiliary relation for our needs.

The approach below is partly inspired by the description of Cu(A) in [14] using
certain increasing sequences. We will first make a general construction that works for
a general ring, and then specialize to the weakly s-unital setting.

Let R be a ring. Set

T (R) = {(an)n | an ∈ M∞(R) and an �1 an+1 for all n}.

Given (an), (bn) ∈ T (R), write (an) � (bn) if for any n, there existsm with an �1 bm .
We also write (an) ∼ (bn) provided (an) � (bn) and (bn) � (an). Notice that, since
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for (an) ∈ T (R) we have an �1 an+1, we see that (an) � (an) and thus the relation
� is reflexive even if R is not unital. It is also clearly transitive. Let

�(R) = T (R)/∼,

which is a partially ordered set with the order induced by �. We denote by [(an)] the
∼-equivalence class of a sequence (an) in T (R).We now equip�(R)with a semigroup
structure, and to this end we need to be careful with the choices of representatives.

Thus, in analogy to the terminology introduced in Paragraph 2.1, given an ele-
ment w ∈ �(R), a finite matricial representative of w is any sequence (un) such
that un ∈ Mkn+1×kn (R), where (kn) is a sequence of positive integers, for which
there exist matrices vn+1 ∈ Mkn+1×kn+2(R) and zn+1 ∈ Mkn+1×kn (R) such that
un = vn+1un+1zn+1 for all n, and with w = [(xn)], where xn is the infinite matrix
represented by un for each n ∈ N.

For w,w′ ∈ �(R), let (un) and (u′
n) be finite matricial representatives of w and w′

respectively. The sum w + w′ is then defined as

w + w′ = [(un ⊕ u′
n)] ∈ �(R).

Lemma 2.12 For any ring R, the poset �(R), equipped with the addition defined
above, is a positively ordered commutative monoid.

Proof The argument is similar to Lemma 2.6. We sketch the main steps in the proof.
If w,w′ ∈ �(R), let (un), (vn) be two finite matricial representatives of w, and let

(u′
n) and (v′

n) be finite matricial representatives of w′. Given n ∈ N, we see, using the
first observation in the proof of Lemma 2.6, that there is m ∈ N and finite matrices
a, b, a′, b′ of suitable sizes such that

un = avmb, u′
n = a′v′

mb
′.

Then un ⊕u′
n = (a⊕a′)(vm ⊕v′

m)(b⊕b′), and thus (un ⊕u′
n) � (vn ⊕v′

n). Likewise,
(vn ⊕ v′

n) � (un ⊕ u′
n), whence [(un ⊕ u′

n)] = [(vn ⊕ v′
n)].

The rest of the argument follows the lines of Lemma 2.6. ��
Proposition 2.13 Let R be any ring. Then every increasing sequence in �(R) has a
supremum. If, further, R is weakly s-unital, then �(R) is a Cu-semigroup.

Proof This is fundamentally contained in the arguments of [3, Proposition 3.1.6]. We
offer some details for the convenience of the reader.

Let ([xk])k in �(R) be an increasing sequence. We thus have that xk � xk+1 for all
k. Write xk = (x (k)

n )n , with x (k)
n �1 x (k)

n+1 for all n and all k. By an inductive process,

we find an increasing sequence nk such that x
(i)
ni+ j �1 x (k)

nk if i + j ≤ k.

To see this, set n1 = 0 and using that x1 � x2, find n2 such that x (1)
n1+1 = x (1)

1 �1

x (2)
n2 . If ni is constructed for i ≤ k, we use that x1, . . . , xk � xk+1 to find nk+1 such

that x (1)
ni+k, x

(2)
n2+k−1, . . . , x

(k)
nk+1 �1 x (k+1)

nk+1 , and thus the induction is complete.
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After reindexing we may assume that ni = i and therefore x (i)
i+ j �1 x (i+ j)

i+ j for all

i, j . Setting yn = x (n)
n , we have that y := (yn) satisfies [y] = supn[xk]. This shows

the first part of the statement.
Assume now that R is weakly s-unital, hence x �1 x for each x ∈ M∞(R). Then,

if [(xn)] ∈ �(R), the sequence x (k) := (x1, . . . , xk, xk, . . . ) belongs to T (R), and it
is not difficult to show that [(xn)] = supk[x (k)].

Using this fact, one may check that, given [(xn)], [(yn)] ∈ �(R), we have [(xn)] �
[(yn)] in �(R) if and only if there is m such that xn �1 ym for all n.

From this, one gets that axioms (O2)-(O4) are satisfied in �(R) and, combined
with the first part of the proof, we obtain that �(R) is a Cu-semigroup. ��

In the weakly s-unital setting, the semigroup �(R) can be conveniently identified
with themonoid of intervals in the semigroupW(R). Wemake this connection explicit
below, and in the sequel we will use both pictures interchangeably. Intervals have been
used in many places, in connection with C∗-algebras and other algebraic structures;
see, for example [2, 32, 38], or [3]. Our discussion below consists of well-known facts
on intervals.
2.14 (Intervals) Let M be a positively ordered monoid. Recall that an interval in M is a
subset I ⊆ M which is upward directed and downward hereditary. The set of intervals
is denoted by �(M), and it becomes a positively ordered monoid by defining

I + J = {z ∈ M | z ≤ x + y where x ∈ I and y ∈ J },

and where order is given by set inclusion.
We say that an interval I in M is countably generated provided I has a countable,

cofinal subset. Equivalently, there is an increasing sequence (xn) in I such that I =
{x ∈ M | x ≤ xn for some n}. The set of countably generated intervals inM is denoted
by �σ (M), which is clearly a positively ordered submonoid of �(M). Indeed, if I
and J have countable cofinal subsets (xn) and (yn), respectively, then (xn + yn) is a
countable cofinal subset for I + J .

We have a positively orderedmonoidmorphism φ : M → �σ (M) given by φ(x) =
[0, x], which is an order-embedding. Notice that every increasing sequence (In) in
�σ (M) has a supremum, simply given by ∪n In . From this, and writing every interval
J ∈ �σ (M) as J = ∪n[0, yn] for an increasing cofinal sequence (yn), it follows
easily that I � J if and only if there is y ∈ J such that I ⊆ [0, y].

It is then clear that, for each I ∈ �σ (M) and x ∈ I , we have [0, x] � I and, if (xn)
is an increasing sequence in I which is a countable cofinal subset, then I = sup[0, xn]
with [0, xn] � [0, xn] � [0, xn+1].

It is also easy to verify that addition in �σ (M) is compatible with suprema and the
compact containment relation.

Lemma 2.15 Let M be a positively ordered monoid. Then, its set of countably gener-
ated intervals �σ (M) is always an algebraic Cu-semigroup.

Proof This follows directly from the discussion carried out in Paragraph 2.14. ��
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2.16 (The semigroup �W(R)) Let R be a weakly s-unital ring. We let

�W(R) = �σ (W(R)).

Notice that, if for example D is any division ring, one has W(D) ∼= N, where the
isomorphism is given by assigning to eachmatrix its rank. It follows that�W(D) ∼= N.

Another example is given by purely infinite simple rings. Recall that a unital simple
ring R is said to be purely infinite provided R is not a division ring and, for every non-
zero element a ∈ R, there are elements x, y ∈ R such that xay = 1 (see [6, Theorem
1.6]). This implies in particular that a ∼1 b for any non-zero elements a, b ∈ R, and
thus W(R) ∼= {0,∞} and also �W(R) ∼= {0,∞}.
Proposition 2.17 Let R be a weakly s-unital ring. Then there is an ordered monoid
isomorphism

�W(R) ∼= �(R).

Proof Given I ∈ �W(R), let ([an]) be an increasing sequence in W(R) such that it is
a cofinal subset for I . Define ϕ : �W(R) → �(R) by ϕ(I ) = [(an)].

If I ⊆ J and ([an]), ([bn]) are increasing, countable cofinal subsets for I and J ,
respectively, then for each n, there is m such that [an] ≤ [bm]. Therefore (an) � (bn)
and thus ϕ is well defined and order-preserving. It is easy to verify that ϕ also preserves
addition. Evidently, ϕ is surjective.

Let us check that ϕ is an order-embedding. Suppose that I , J ∈ �W(R) satisfy
ϕ(I ) ≤ ϕ(J ). Let ([an]), ([bn]) be increasing, countable cofinal sequences for I and
J , respectively. Then by definition of the order in�(R)we have that, for each n, there
is m with an �1 bm , which clearly implies that I ⊆ J .

Therefore ϕ is an ordered monoid isomorphism. ��
Remark 2.18 We note that Proposition 2.17 offers an alternative proof that �(R) is an
object in Cu in the weakly s-unital setting.

3 TheMalcomlson semigroup, Sylvester rank functions, and
dimension functions

In this section, we briefly recall the construction of the Malcomlson semigroup as
introduced in [26] and its relation to W(R).
3.1 (The Malcomlson semigroup) Let R be a unital ring. Following [26] with a slight
change of notation, we define a relation �0 in M∞(R) by a �0 b if either a �1 b or
a = ( c 0

0 d ) and b = ( c e
0 d ) for suitable c, d, e ∈ M∞(R).

Define �M to be the transitive closure of �0, so that a �M b if and only if there
exist a1, . . . , an ∈ M∞(R) with a = a1 �0 a2 �0 · · · �0 an = b. Set ∼M as the
antisymmetrization of �M and define

WM(R) = M∞(R)/∼M .
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Denote the elements inWM(R) by [a]M. It follows that WM(R) is a positively ordered
abelian semigroup with addition given by [a] + [b] = [( a 0

0 b )] and order induced by
�M.

Since clearly�M isweaker than�1,we have a positively orderedmonoidmorphism
ιM : W(R) → WM(R), given by [a] �→ [a]M.

As shown in [26, Lemma 5.1], if A is a C*-algebra and a, b ∈ M∞(A), one has
that a �M b implies a �Cu b. There is then a positively ordered monoid morphism
ι̃C : WM(A) → WC(A). Combining this with Lemma 2.10, we have the following
commutative diagram

W(A)
ιM

ιC

WM(A)

ι̃C

WC(A)

.

3.2 (States, Sylvester rank functions and dimension functions) Given a positively
ordered monoid S with an order-unit u, recall that a state on S normalized at u is a
positively ordered semigroup map s : S → [0,∞) such that s(u) = 1. The set of
states is customarily denoted by St(S, u).

Let R be a unital ring. A map d : M∞(R) → [0,∞) such that the following
conditions hold:

(i) d(0) = 0 and d(1) = 1;
(ii) d(ab) ≤ d(a), d(b) or, equivalently, d(a) ≤ d(b) whenever a �1 b;
(iii) d(a) + d(b) = d( a 0

0 b ),

will be called a dimension function. If, furthermore, d satisfies

(iv) d(a) + d(b) ≤ d( a c
0 b ),

then we say that d is a Sylvester matrix rank function for R.
Denote the set of dimension functions by DF(R), and the subset of Sylvester matrix

rank functions by P(R). Note that P(R) may be identified with the states on WM(R)

normalized at [1]. Indeed, given d ∈ P(R), set sd([a]) = d(a). Conversely, if s ∈
St(WM(R), [1]), define ds(a) = s([a]). Likewise, one may check that the set of
dimension functions may be identified with St(W(R), [1]).

Lemma 3.3 Let R be an s-unital ring. Let a, b, c ∈ M∞(R). If a is a von Neumann
regular element, then

(
a 0
0 b

)
�1

(
a c
0 b

)
.

In particular, if R is a unital von Neumann regular ring, then �1 is equivalent to �M
and thus the natural map ιM : W(R) → WM(R) is an order-isomorphism, whence
DF(R) = P(R).
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Proof Let S = M∞(R). Since a is von Neumann regular and R is s-unital, there are
elements a′, b′ ∈ S such that a = aa′a and b = b′b = bb′ and c = cb′ = b′c.
Therefore

(
aa′ 0
0 b′

)
·
(
a c
0 b

)
·
(
a′a −a′c
0 b′

)
=

(
a −aa′c + aa′cb′
0 b′bb′

)
=

(
a 0
0 b

)
.

The second part of the statement follows by definition of �M: if a �M b, then there
are elements a1, . . . , an ∈ M∞(R) such that a = a1 �0 · · · �0 an = b. For each i ,
we have by definition of �0 and the first part of the proof that ai �1 ai+1, whence
a �1 b. ��
3.4 (Functionals) Let S be a Cu-semigroup. Recall that a functional on S is a posi-
tively ordered monoid morphism λ : S → [0,∞] that respects suprema of increasing
sequences. The set of functionals on S is denoted by F(S).

Proposition 3.5 Let R be a unital ring. Then, any dimension function d on R induces a
unique functional λd ∈ F(�W(R)) such that λd(φ([x])) = d(x) for all x ∈ M∞(R),
where φ : W(R) → �W(R) is the canonical homomorphism. In particular, this is the
case for any Sylvester matrix rank function.

Proof ByProposition 2.17,�W(R) is order-isomorphic to�(R). Let x ∈ �(R) and let
(xn) be a representative for its class, which by definition satisfies xn �1 xn+1 for each
n. Given a dimension function d ∈ DF(R), set λd(x) = supn d(xn). By construction,
if (xn) � (yn), then for each n there is m with xn �1 ym , and thus supn d(xn) ≤
supm d(ym). This yields a well defined, order-preserving map λd : �(R) → [0,∞].

Since addition in �(R) is defined componentwise, we see that λd is additive. It
remains to check thatλd preserves supremaof increasing sequences. To do so,we recall
how suprema of increasing sequences are constructed in �(R); see Proposition 2.13.
Given a sequence (xk) in �(R) such that xk � xk+1 for all k, we write xk = (x (k)

n )n

and assume, reindexing if necessary, that x (i)
i+ j �1 x (i+ j)

i+ j for all i, j . Then y = (yn),

where yn := x (n)
n , is the supremum of the sequence (xk)k .

Since x (k)
n = x (k)

n−k+k �1 x (n)
n whenever n ≥ k, we have

sup
k

λd(xk) = sup
k

sup
n

d(x (k)
n ) ≤ sup

n
d(x (n)

n ) = λd(y).

Since the reverse inequality λd(y) ≤ supk λd(xk) is obvious, this shows that λd(y) =
supk λd(xk).

Uniqueness of λd follows from the fact that [(xn)] = supn φ([xn]) for [(xn)] ∈
�(R). ��

4 The Cuntz semigroup of a ring

As motivated in the introduction, in this section we pursue a construction of a semi-
group using countably generated projective modules over a ring R. We first define a
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subsemigroup S(R) of�(R) consisting of certain classes of sequences that will yield a
presentation of a countably generated module. Secondly, we will use a direct approach
building another semigroup CP(R) as equivalence classes of countably generated pro-
jective right R-modules using a relation weaker than isomorphism and related to the
one used in [14].

The main result of the section is that the semigroups S(R) and CP(R) happen to be
isomorphic in complete generality (see Theorem 4.13). The semigroup S(R) is closed
under suprema of increasing sequences, and it is the invariant that best resembles the
Cuntz semigroup for rings. However, it is not obviously an object in the category Cu.
We remedy this by considering the pair (�(R),S(R)), of which the first component
belongs to Cu; see Sect. 5.

4.1 (The semigroup S(R)) Let R be a ring. Let S(R) be the subset of T (R) consisting
of those sequences (xn)n , with xn ∈ M∞(R) for all n ∈ N, such that for every n there
exists yn+1 ∈ M∞(R) with yn+1xn+1xn = xn .

We define S(R) = S(R)/∼, which by construction is a subset of �(R); see Para-
graph 2.11. We call S(R) the Cuntz semigroup of R. Let us check it is a subsemigroup
of �(R). We continue to use the terminology introduced in Sect. 2, and thus given
an element w ∈ S(R), a finite matricial representative of w is any sequence (un)
such that un ∈ Mkn+1×kn (R), where (kn) is a sequence of positive integers, for which
there exists vn+1 ∈ Mkn+1×kn+2(R) such that un = vn+1un+1un for all n, and with
w = [(xn)], where xn is the infinite matrix represented by un for each n ∈ N. There-
fore, for w,w′ ∈ S(R), we let (un) and (u′

n) be finite matricial representatives of
w,w′, respectively, and define w + w′ = [(un ⊕ u′

n)].
That addition is well defined, associative, commutative, and that the class of the

zero sequence is the identity follows as in the arguments in Lemmas 2.6 and 2.12.
The definition of S(R) is admittedly one-sided, and one can define a left version of

the semigroup Sl(R) as the semigroup whose elements are equivalence classes under
∼ of sequences (xn)n in M∞(R) such that

xn = xnxn+1yn+1

for every n ∈ N.
It follows that Sl(R) ∼= S(Rop). However, Sl(R) is not always isomorphic to S(R),

as the example below testifies.

Example 4.2 There exists a ring R such that S(R) � Sl(R).

Proof Let K be a field and let K [x0, x1, . . .] be the free algebra on countably many
variables subject to the (non-commutative) relations xi+1xi = xi , and take the subring
R of polynomials with zero constant term.

Given a monomial p = ∏
i≤ j≤n x

t j
j with ti , tn > 0, we will write st(p) = i and

end(p) = n.
Then, note that given any other monomial q = xsll . . . xsmm with sl , sm > 0, we either

have pq = q if st(p) > st(q) or pq > p in the lexicographic order otherwise. Note
that we always have st(p) ≥ st(pq).



The Cuntz semigroup of a ring Page 17 of 46     6 

Thus, let P = A1 p1 + · · · + An pn ∈ M∞(R) be a non-zero polynomial with
p1, . . . , pn distinct monomials and Ai ∈ M∞(K )\{0} for all i . We may assume that
st(p1) ≥ st(pi ) for each i and that p1 is the smallest monomial in the lexicographic
order among all monomials pi with st(p1) = st(pi ).

Now let Q = B1q1+· · ·+Bmqm ∈ M∞(R) be another polynomialwith q1, . . . , qm
monomials and Bj ∈ M∞(K ). If PQ = P , A1 p1 must be equal to a combination of
the form M1 pi1q j1 +· · ·+Mr pir q jr , where Mk ∈ M∞(K ). In particular, pik q jk = p1
for each k.

However, this would imply

st(p1) ≥ st(pik ) ≥ st(pik q jk ) = st(p1),

and so st(pik ) = st(p1) for all k. This implies p1 = pik q jk > pik ≥ p1, a contradic-
tion. Therefore, we must have P = 0, which shows that Sl(R) = 0.

This is not the case for S(R), since the sequence (x0, x1, x2, . . .) is in S(R). ��
The lemma below shows one of the main properties of S(R): suprema exist for

increasing sequences.

Lemma 4.3 Let R be any ring. Then every increasing sequence in S(R) has a supre-
mum.

Proof Let ([xk])k be an increasing sequence in S(R). Write xk = (x (k)
n )n for each k,

and find y(k)
n+1 ∈ M∞(R) such that x (k)

n = y(k)
n+1x

(k)
n+1x

(k)
n .

Note that ([xk])k also belongs to �(R) and that the order in S(R) and �(R) is the
same. By Proposition 2.13, the sequence ([xk])k has a supremum z = [(zn)] in �(R).
It is enough to check that z ∈ S(R).

To this end, recall from Proposition 2.13 that, after a possible reindexing, one
may assume that x (i)

i+ j �1 x (i+ j)
i+ j for all i, j and then we take zn = x (n)

n . Since

x (n)
n �1 x (n)

n+1 �1 x (n+1)
n+1 , there are an+1, bn+1 such that x (n)

n = an+1x
(n+1)
n+1 bn+1.

Thus

x (n)
n = y(n)

n+1x
(n)
n+1x

(n)
n = y(n)

n+1an+1x
(n+1)
n+1 bn+1x

(n)
n .

If we let un = x (n)
n bn , it follows that un = (y(n)

n+1an+1)un+1un , whence (un) ∈ S(R).
By construction we have z = [(zn)] = [(un)] ∈ S(R), as was to be shown. ��

We now proceed to introduce a semigroup steming directly from the class of
countably generated projective R-modules, although with a new equivalence relation
inspired by the construction in [14].
4.4 (The semigroup CP(R) for a unital ring R) Let R be a unital ring. Let us denote
by CP(R) the class of all countably generated projective right R-modules. The first
natural relation between (countably generated) projective modules is given by iso-
morphism. This yields the semigroup V∗(R) of isomorphism classes of countably
generated projective modules, with addition given by direct sum. This semigroup
has been successfully considered in [23, 25]. Below, we weaken the above relation
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to another relation ∼ compatible with direct sum, thereby constructing an abelian
semigroup CP(R). Thus, in particular, there is a natural surjective semigroup homo-
morphism �R : V∗(R) → CP(R), which will be an isomorphism in some cases, but
not always; see Sect. 6.

Given P, Q ∈ CP(R), we will write P � Q if and only if, for every finitely
generated submodule X of P , there exists a factorization of the inclusion of X in P
by Q, that is, there are module morphisms φ : X → Q and φ : Q → P such that
ψ ◦ φ = idX . Namely, the diagram below is commutative:

X
φ

idX

Q
ψ

P .

We define the partially ordered set CP(R) to be

CP(R) := CP(R)/∼,

where∼ is the antisymmetrization of�. Given an element P in CP(R), wewill denote
its equivalence class by [P]. For modules P, Q ∈ CP(R), we define [P] + [Q] =
[P ⊕ Q].
Lemma 4.5 The relation � is reflexive, transitive, and compatible with the direct sum
of projective modules. Therefore, CP(R) is a commutative semigroup.

Proof That � is reflexive is trivial to verify. Let us show that it s transitive.
To this end, let P1, P2, P3 ∈ CP(R) and assume that P1 � P2 and P2 � P3.

Let X ⊆ P1 be a finitely generated submodule. Then, by definition of �, there is a
commutative diagram

X
φ1

idX

P2
ψ1

P1 .

Note that φ1(X) is a finitely generated submodule of P2. Thus, since P2 � P3, there
is a commutative diagram

φ1(X)
φ2

idφ1(X)

P3
ψ2

P2

Combining both diagrams, we define φ3 = φ2 ◦ φ1 and ψ3 = ψ1 ◦ ψ2 to obtain:

X
φ1

φ3

φ1(X)
φ2

P3
ψ2

ψ3

P2
ψ1

P1 ,

which satisfies ψ3 ◦ φ3 = ψ1 ◦ ψ2 ◦ φ2 ◦ φ1 = ψ1 ◦ idφ1(X) ◦ φ1 = ψ1 ◦ φ1 = idX .
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To show that � is compatible with the direct sum of modules, let P , Q, P ′, Q′ ∈
CP(R) and suppose that P � P ′, Q � Q′. Let X ⊆ P ⊕ Q be a finitely generated
submodule. Then, there exist finitely generated submodules XP ⊆ P and XQ ⊆ Q
such that X ⊆ XP ⊕ XQ . By assumption, we have module maps φ1 : XP → P ′,
ψ1 : P ′ → P , φ2 : XQ → Q′, ψ2 : Q′ → Q, and commutative diagrams

XP
φ1

idXP

P ′ ψ1
P XQ

φ2

idXQ

Q′ ψ2
Q ,

which yields the following commutative diagram

X ⊆ XP ⊕ XQ
φ1⊕φ2

idXP⊕XQ

P ′ ⊕ Q′ ψ1⊕ψ2
P ⊕ Q .

��
Remark 4.6 Given a finitely generated projective module F and a countably generated
projective module P , it follows from our definition that F � P if and only if F is
isomorphic to a direct summand of P .

We are now going to show that CP(R) is order-isomorphic to S(R). Instrumental
ingredients in our proof will be the facts, proved in [39, Theorem 2.1] (see also [31,
Lemma 4.1]), that every countably generated projective R-module P over a unital ring
R is isomorphic to a direct limit of the form

Rn0
x0·

Rn1
x1·

. . . P,

for some sequence of positive integers ni , where for each xi ∈ Mni+1×ni (R) there
exists yi+1 ∈ Mni+1×ni+2(R) such that yi+1xi+1xi = xi , and that, conversely, any
such direct limit is always projective. We will give below independent proofs of these
facts, since our arguments offer additional information that will be useful later on.

For any ring R, unital or not, we will denote by FCM(R) the ring of those N × N

matrices A with coefficients in R such that each column of A has only a finite number
of nonzero entries. We refer to FCM(R) as the ring of finite-column matrices over R.
When R is unital this ring can be identified with the ring EndR(R(N)) of R-module
endomorphisms of the free R-module R(N).

Lemma 4.7 Let R be a unital ring, and let P ∈ CP(R). Then P is isomorphic to a
projectivemodule of the form lim−→i

(Rki , Zi ·), where Zi ∈ Mki+1×ki (R
+) for an increas-

ing sequence of positive integers (ki ), and moreover Zi+1Zi =
(

Zi

0(ki+2−ki+1)×ki

)

for all i ∈ N. In particular, P can be written in the form P ∼= lim−→i
(Rni , xi ·) for

some sequence of positive integers ni , where for each xi ∈ Mni+1×ni (R) there exists
yi+1 ∈ Mni+1×ni+2(R) such that yi+1xi+1xi = xi .
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Proof We can assume that P = E(R(N)) for an idempotent E = (ei j ) ∈ FCM(R).
For each n ≥ 1, we identify Rn with Rn × {0} × {0} × · · · in R(N). Take an arbitrary
positive integer k0. Let k1 > k0 be an integer such that ek,l = 0 for all (k, l) such that
k > k1 and l ≤ k0. In particular, one has E(Rk0) ⊆ Rk1 . Proceeding inductively we
may find an increasing sequence of positive integers (ki ) such that ek,l = 0 for all
(k, l) such that k > ki+1 and l < ki . Then we have E(Rki ) ⊆ Rki+1 for all i ∈ N.
Let Zi be the ki+1 × ki upper left corner of E . Thus, we get Zi ∈ Mki+1×ki (R)

and Zi+1Zi =
(

Zi

0(ki+2−ki+1)×ki

)
for all i ∈ N. Moreover P = ⋃∞

i=0 Zi Rki and

P ∼= lim−→(Rki , Zi ·), as claimed. ��
4.8 (Splittings) Let (ni ) be a sequence of positive integers, and let (xi ) be a sequence,
with xi ∈ Mni+1×ni (R), such that there exists yi+1 ∈ Mni+1×ni+2(R) satisfying
yi+1xi+1xi = xi . We show that P := lim−→i

(Rni , xi ·) is a countably generated pro-

jective R-module by exhibiting a concrete splitting of P into R(N).
Let φi : Rni → P be the canonical morphisms into the direct limit, and denote

by Pi ⊆ P the image of φi . Note that Pi is a finitely generated submodule of P ,
with generators z ji := φi (e j ). Setting zi = (z1i , . . . , z

ni
i ), which is a row matrix with

coefficients in P , it follows that P is described by the generators (z ji )i, j , subject to
the relations zi+1xi = zi for all i ∈ N.

Further, note that for every pair j ≥ i + 1 the following diagram is commutative

Rn j

yi+1...y j x j ·x j ·

Rn j+1
yi+1...y j+1x j+1· Rni+1

In particular, for every fixed i the previous diagrams induce a morphism gi : P →
Rni+1 . Restricting to each component, we define g j

i := π j ◦ gi : P → R, for j ∈
{1, . . . , ni+1}, where π j : Rni+1 → R is the projection onto the j-th component.

Lemma 4.9 Following the above notation, a concrete splitting of P into R(N) is given
by the formulas

π : R(N) = Rn1 ⊕ Rn2 ⊕ · · · → P, ι : P → R(N) = Rn1 ⊕ Rn2 ⊕ · · · ,

where

π(a1, a2, . . . ) =
∞∑
i=1

φi (ai ),

ι(x) = (g0(x), g1(x) − x1g0(x), g2(x) − x2g1(x), . . . )

for ai ∈ Rni and x ∈ P. Then one has π ◦ ι = idP . In particular, P is a countably
generated projective right R-module.
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Proof Suppose that x ∈ Pi , and write x = φi (a) for a ∈ Rni . Then we have

φi+1(gi (x)) = φi+1(gi (φi (a))) = φi+1(gi (φi+1(xia)))

= φi+1(yi+1xi+1xia) = φi+1(xia)

= φi (a) = x .

Hence (φi+1 ◦ gi )|Pi = idPi , or equivalently φi+1 ◦ gi ◦ φi = φi . Using this, the
identity π ◦ ι = idP is easily checked. ��
Theorem 4.10 Let R be a unital ring. Then

CP(R) ∼= S(R).

Proof Given a countably generated projective module P , it follows from Lemma 4.7
(see also [31, Lemma 4.1(2)]) that P ∼= lim(Rni , xi ·), where xi ∈ Mni+1×ni (R) are
such that, for each i there exists yi+1 ∈ Mni+1×ni+2(R) such that xi = yi+1xi+1xi .
In particular, the sequence (xi ) determines an element in S(R), through the usual
identification of xi with the matrix diag(xi , 0, 0, . . .) in M∞(R).

We will show that the map [P] �→ [(xi )] defines an isomorphism between CP(R)

and S(R).
First, note that this map is surjective by Lemma 4.9 (see also [31, Lemma 4.1(1)]).

Moreover, it is also additive by how addition is defined in both CP(R) and S(R);
see 4.1, 4.4.

Hence, we will conclude the proof showing that P � Q if and only if (xi ) � (x ′
i ),

where P ∼= lim(Rni , xi ·) and Q ∼= lim(Rn′
i , x ′

i ·) are the corresponding representations
as direct limits.

To prove the forward implication, let P , Q ∈ CP(R) and suppose that P � Q.
Write P = ⋃∞

i=1 Pi and Q = ⋃∞
i=1 Qi as in Paragraph 4.8. Then, given i , there are

module homomorphisms φ : Pi → Q and ψ : Q → P such that the diagram

Pi
φ

idPi

Q
ψ

P

is commutative.
Since Pi is finitely generated, so is φ(Pi ). In particular, φ(Pi ) ⊆ Q j for some j .

By the same reasoning, one has that ψ(Q j+2) ⊆ Pl for some l.
Using the definition of the maps gi , φi from Paragraph 4.8, one gets the following

commutative diagram.
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Rni
φi

xi ·

Pi
φ

Q j Rn′
j

φ′
j

x ′
j ·

Rni+1
φi+1

xi+1·
Pi+1 Q j+1 Rn′

j+1

x ′
j+1·

φ′
j+1

. . .

Rnl
φl

Pl
ψ

Q j+2 Rn′
j+2

φ′
j+2

Now note that, given r ∈ Rni and r ′ ∈ Rn′
j such that q := φφi (r) = φ′

j (r
′), we

have

q = φ′
j (r

′) = φ′
j+1(x

′
j r

′) = φ′
j+1(y

′
j+1x

′
j+1x

′
j r

′)
= φ′

j+1g
′
jφ

′
j+1(x

′
j r

′) = φ′
j+1g

′
j (q) = φ′

j+2x
′
j+1g

′
j (q),

where in the fourth step we have used that g′
jφ

′
j+1 = y′

j+1x
′
j+1.

Thus, one gets that

xl−1 . . . xi (r) = yl xl xl−1 . . . xi (r) = gl−1φl(xl−1 . . . xi (r))

= gl−1φl−1(xl−2 . . . xi (r)) = . . . = gl−1φi (r)

= gl−1ψφφi (r) = gl−1ψ(q) = (gl−1ψφ′
j+2)x

′
j+1(g

′
jφφi )(r).

Since this holds for every r ∈ Rni , we can multiply by yi+1 . . . yl−1 to obtain

xi = (yi+1 . . . yl−1gl−1ψφ′
j+2)x

′
j+1(g

′
jφφi ).

It follows that (xi ) � (x ′
i ), as required.

For the converse, let (xi ) � (x ′
i ). For any fixed i we need to construct a commutative

diagram

Pi
φ

idPi

Q
ψ

Pi .

We know that, for every fixed i , there exist j ∈ N, α ∈ Mn′
j×ni+1

(R) and β ∈
Mni+2×n′

j+1
(R) such that xi+1 = βx ′

jα. Thus, one gets the following commutative
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diagram:

Pi Rni
φi

xi ·

Pi+1 Rni+1 α·φi+1

xi+1·

Rn′
j

φ′
j

x ′
j ·

Q j

Pi+2 Rni+2
φi+2

Rn′
j+1

β·
φ′
j+1

Q j+1

Define φ := φ′
jαgi |Pi and ψ = φi+2βg′

j . We have

ψφ = φi+2β(g′
jφ

′
j )αgi |Pi = φi+2βx

′
jαgi |Pi = φi+2xi+1gi |Pi = φi+1gi |Pi = idPi ,

as desired. ��
4.11 (The semigroup CP(R) for non-unital R) Let R be an arbitrary ring, and let
R+ = Z ⊕ R be the unitization of R. Observe that R sits as a two-sided ideal of
R+. We will denote by Mod-R+ the category of unital right R+-modules, and by
AMod-R the category of arbitrary R-modules. Note that we have an isomorphism of
categories AMod-R ∼=Mod-R+ sending an arbitrary R-moduleM to the unique unital
R+-module whose underlying additive group is (M,+) and whose multiplication is
given by x(n, r) = nx + xr for x ∈ M , n ∈ Z and r ∈ R.

Recall that, for a ring R, we denote by FCM(R) the ring of finite-column matri-
ces over R. For an arbitrary ring R, we will denote by CP(R) the class of all
countably generated unital projective right R+-modules P such that P = PR.
The class CP(R) agrees with the previously defined class CP(R) whenever R is
a unital ring. Given such module P , there exists an idempotent E ∈ FCM(R+)

such that E((R+)(N)) ∼= P . Since P = PR, it follows that E ∈ FCM(R) and
E((R+)(N)) = E(R(N)). Conversely, given an idempotent E ∈ FCM(R), the uni-
tal R+-module P = E(R(N)) = E((R+)(N)) is countably generated and projective,
and P = PR. Moreover if Q is also in CP(R), then P ∼= Q if and only if E and
F are Murray-von Neuman equivalent idempotents in FCM(R) (see Paragraph 2.5).
This extends the well-known relation between isomorphism classes of finitely gener-
ated unital projective R+-modules P such that P = PR and idempotent matrices in
M∞(R), see e.g. [22, § 5.1].

Observe that, with the above notation, we have that CP(R) is a subclass of CP(R+).
Moreover CP(R) is closed in CP(R+) under direct summands and countable direct
sums. We consider the relation� inherited from the relation�which we have defined
in CP(R+), that is, for P, Q ∈ CP(R), we set P � Q if and only if P � Q
in CP(R+). We denote by CP(R) the monoid of equivalence classes of objects in
CP(R) with respect to the relation �. Note that CP(R) order-embeds in CP(R+).
We further define V∗(R) as the monoid of isomorphism classes of modules from
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CP(R). As in the case of unital rings, we have a canonical surjective homomorphism
�R : V∗(R) → CP(R).

It is also easily checked that S(R) order-embeds in S(R+). We will show that
the isomorphism ψ : CP(R+) → S(R+), displayed in Theorem 4.10, restricts to an
isomorphism from CP(R) onto S(R).

In order to obtain this result, we find a concrete realization of the idempotent matrix
E ∈ FCM(R) corresponding to a sequence (xi ) in S(R).

Lemma 4.12 Let R be a ring, and let (xi ) ∈ S(R), with xi ∈ Mni+1×ni (R), where
all ni ’s are positive integers. Then the countably generated projective R+-module
P = lim−→i

((R+)ni , xi ·) is isomorphic to a module of the form Q = ⋃
i zi (R

(N)),
where zi ∈ M∞(R) and zi+1zi = zi for all i ∈ N. More precisely, there is a sequence
of positive integers (ki ), with ki+1 > ki for all i ∈ N, such that each zi is represented

by a matrix Zi ∈ Mki+1×ki (R) and Zi+1Zi =
(

Zi

0(ki+2−ki+1)×ki

)
for all i ∈ N, so that

P ∼= lim−→i
((R+)ki , Zi ·).

Proof By Lemma 4.9, one can explicitly compute the idempotent matrix E ∈
End(R(N)) such that E(R(N)) ∼= P , where P ∼= lim((R+)ni , xi ·).

Using the notation of Paragraph 4.8, the splitting found in Lemma 4.9 gives the
idempotent E = ι ◦ π ∈ End(R(N)). For i ≥ 1, the column Ei−1 of E (with respect
to the decomposition (R+)(N) = (R+)n1 ⊕ (R+)n2 ⊕ · · · ), is given by

Ei−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1y2 · · · yi xi
y2y3 · · · yi xi − x1y1y2 · · · yi xi
y3y4 · · · yi xi − x2y2y3 · · · yi xi

...

yi xi − xi−1yi−1yi xi
xi − xi yi xi

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that the i-th column Ei of E has (at most) i + 1 nonzero coefficients. Let
Zi ∈ M(n1+···+ni+2)×(n1+···+ni+1)(R) be the matrix consisting of the upper left (n1 +
· · · + ni+2) × (n1 + · · · + ni+1) corner of E . One has

Zi+1Zi =
(

Zi

0ni+3×(n1+···+ni+1)

)
.

Let zi ∈ M∞(R) be the infinite matrix represented by Zi . Then (zi ) ∈ S(R) and
zi+1zi = zi for all i ≥ 1. Moreover, we have

P ∼= E(R(N)) =
∞⋃
i=0

zi ((R
+)(N)) ∼= lim−→

i

((R+)ki , Zi ·),

where ki = n1 + · · · + ni+1 for all i ≥ 0. ��
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We can now obtain the following result, generalizing Theorem 4.10.

Theorem 4.13 Let R be a ring. Then there is an isomorphism S(R) ∼= CP(R) such
that the following diagram

CP(R)
ψ |CP(R)

S(R)

CP(R+)
ψ

S(R+)

is commutative, where ψ : CP(R+) → S(R+) is the isomorphism defined in Theo-
rem 4.10.

Proof We need to show that the restriction of the map ψ : CP(R+) → S(R+) defined
in the proof of Theorem 4.10 sends CP(R) onto S(R).

Given P ∈ CP(R), we can assume that P = E((R+)(N)) for an idempotent E =
(ei j ) ∈ FCM(R). The procedure given in the proof of Lemma 4.7 gives us an increas-
ing sequence of positive integers (ki ) and a sequence (Zi ), with Zi ∈ Mki+1×ki (R) and

Zi+1Zi =
(

Zi

0(ki+2−ki+1)×ki

)
for all i ∈ N, such that P ∼= lim−→((R+)ki , Zi ·). By the

definition of the map ψ we have that ψ([P]) = [(zi )i ] ∈ S(R), where zi ∈ M∞(R)

are represented by Zi for all i ∈ N. Hence ψ([P]) ∈ S(R), as desired.
Now if w ∈ S(R), it follows from Lemma 4.12 that ψ−1(w) can be represented by

a countably generated unital projective right R+-module of the form P = E(R(N)),
where E ∈ FCM(R). In particular, P = PR, so that P ∈ CP(R), and hence
w = ψ(ψ−1(w)) = ψ([P]) ∈ ψ(CP(R)). This shows that ψ(CP(R)) = S(R),
completing the proof. ��

The following corollary is a useful consequence of the above proof.

Corollary 4.14 Let R be a ring. Then every element in S(R) has a representative of the
form (zi ), where zi ∈ M∞(R) satisfy zi+1zi = zi for all i ∈ N. More precisely there
is a non-decreasing sequence of positive integers (ki ) such that each zi is represented

by a matrix Zi ∈ Mki+1×ki (R) and Zi+1Zi =
(

Zi

0(ki+2−ki+1)×ki

)
for all i ∈ N.

5 The category SCu and the pair SCu(R)

As mentioned above, we will consider in this section the pair (�(R),S(R)) and show
that it sits naturally in a category thatwe termSCu consisting of pairs (S,W )where S is
a Cu-semigroup andW is a subsemigroup closed under suprema of certain sequences.
We also show that the assignment R �→ (�(R),S(R)) is functorial.
5.1 (Weakly increasing sequences) Let S be a Cu-semigroup. A sequence (xn) of
elements in S is said to be weakly increasing if, for every n and for every x � xn ,
there exists m0 such that x � xm whenever m ≥ m0.
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It is evident that every increasing sequence in S is also weakly increasing.We know
that increasing sequences always have suprema in S, and we show below that this is
also the case for weakly increasing sequences. Although the concept of a weakly
increasing sequence may seem somewhat artificial, it will become key to show that
the category SCu introduced in Paragraph 5.4 admits inductive limits, as we prove in
[1].

Lemma 5.2 Let S be a Cu-semigroup. Then, every weakly increasing sequence has a
supremum in S.

Proof We use an argument similar to the proof of Proposition 2.13 (which in turn is
similar to the proof that increasing sequences in a Cu-semigroup have suprema). We
give some details as this will be used again below.

Let (xn) be a weakly increasing sequence in S. Since S is a Cu-semigroup, we may
write each xm as xm = supn x

(m)
n , where (x (m)

n ) is a rapidly increasing sequence. We
construct increasing sequences of positive integers (ni ), (mi ) such that x

(mi )
ni+ j � x (mk )

nk
whenever i + j ≤ k.

To do this, we define the sequence inductively. Let n1 = 0 and m1 = 1. Since
x (m1)
n1+1 = x (1)

1 � x1, there is m2 > 1 such that x (1)
1 � xm2 , and thus there is n2 > 0

with x (1)
1 � x (m2)

n2 . Now, assume that ni ,mi have been constructed for i ≤ k. Since for

each 1 ≤ j ≤ k we have x
(m j )

n1+k−( j−1) � xm j , and the sequence is weakly increasing,

there ismk+1 > mk such that x
(m j )

n1+k−( j−1) � xmk+1 for all j . Thus, there is nk+1 > nk

such that x
(m j )

n1+k−( j−1) � x (mk+1)
nk+1 for all j . This completes the inductive step.

After reindexing the sequence (ni ), we may assume that ni = i , and thus x (mi )
i+ j �

x
(mi+ j )

i+ j whenever i, j ≥ 1. Now, the sequence (x (mk )
k ) is rapidly increasing, since

x (mk )
k � x (mk )

k+1 � x (mk+1)

k+1 , and one may check that its supremum is the supremum of
the weakly increasing sequence. ��
Remark 5.3 Although we will not be using this, it is worth mentioning that weakly
increasing sequences as defined in Paragraph 5.4 are compatible with other properties
in the category Cu. Namely,

(i) Cu-morphisms preserve weakly increasing sequences and their suprema.
(ii) The addition in aCu-semigroup is compatiblewith suprema ofweakly increasing

sequences.

5.4 (The Category SCu) Let S be a Cu-semigroup. We say that a subset H of S is
closed under suprema of weakly increasing sequences if, given any weakly increasing
sequence (xn) in S whose elements are in H , we have that sup xn ∈ H .

We define SCu to be the abstract category whose objects are the pairs (S,W ),
where S ∈ Cu andW is a submonoid of S closed under suprema of weakly increasing
sequences. The morphisms in SCu are f : (S1,W1) → (S2,W2) where f : S1 → S2
is a Cu-morphism such that f (W1) ⊆ W2.

Example 5.5 The following are natural examples in the category SCu.
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(i) Any pair (S,W ) with S ∈ Cu and W a sub-Cu-semigroup of S is an object in
SCu.

(ii) A nonzero Cu-semigroup S is said to be simple if the only ideals of S are {0} and
S (see e.g. [3] for the definition of ideal in a Cu-semigroup). Let S be a simple
Cu-semigroup. Then (S, {0,∞}) is an object in SCu. Note that {0,∞} is not
always a sub-Cu-semigroup of S.

(iii) The pair ([0,∞], N), whereN = N∪{∞}, is an object in SCu. This follows since
everyweakly increasing sequencewith elements inN ⊆ [0,∞] has an increasing
cofinal subsequence. (Here, x � y if and only if x < y, for x ∈ [0,∞] and
y ∈ (0,∞].) However, as we have observed above,N is not a sub-Cu-semigroup
of [0,∞].

Proposition 5.6 Let R be a weakly s-unital ring. Then:

(i) The pair SCu(R) := (�(R),S(R)) is an object in SCu.
(ii) If R′ is another weakly s-unital ring and f : R → R′ is a ring homomorphism,

then f induces a morphism SCu( f ) : (�(R),S(R)) → (�(R′),S(R′)).

Proof (i): By Proposition 2.13, �(R) is a Cu-semigroup, and by construction S(R) is
a subsemigroup of �(R). We thus have to prove that S(R) is closed under suprema of
weakly increasing sequences.

Let ([xm]) be a weakly increasing sequence in �(R) with [xm] ∈ S(R) for all m.
In order to construct the supremum of ([xm]), we follow the argument in Lemma 5.2.
Write xm = (x (m)

n ), and find y(m)
n such that y(m)

n+1x
(m)
n+1x

(m)
n = x (m)

n . Since R is weakly s-

unital, we have that for each m the sequence zm,n = (x (m)
1 , x (m)

2 , . . . , x (m)
n , x (m)

n , . . . )

satisfies that ([zm,n]) is rapidly increasing with supremum [xm] in�(R) (see the proof
of Proposition 2.13).

Arguing as in the proof of Lemma 5.2, we find an increasing sequence (mk) such
that x (mk )

k+1 �1 x (mk+1)

k+1 and sup[xm] = [(x (mk )
k )]. Now, as in Lemma 4.3, since x (mk )

k �1

x (mk+1)

k+1 there are elements ak+1, bk+1 such that x (mk )
k+1 = ak+1x

(mk+1)

k+1 bk+1. Thus

x (mk )
k = y(mk )

k+1 x
(mk )
k+1 x

(mk )
k = y(mk )

k+1 ak+1x
(mk+1)

k+1 bk+1x
(mk )
k .

Therefore, [(xmk
k )] = [(x (mk )

k bk)], and the latter belongs to S(R), as

x (mk )
k bk �1 x (mk+1)

k+1 bk+1 and x (mk )
k bk = (y(mk )

k+1 ak+1)(x
(mk+1)

k+1 bk+1)(x
(mk )
k bk).

(ii): Let R′ be another weakly s-unital ring and let f : R → R′ be a ring homomor-
phism, which we can extend to a homomorphism M∞(R) → M∞(R′) compatible
with �1 and ⊕, also denoted by f .

Thus, we obtain a morphism of positively ordered monoids W(R) → W(R′)
defined byW( f )([x]) = [ f (x)]. By the arguments in [3, Paragraph 5.5.3 and Remark
5.5.6], the assigment Cu( f ) : �(R) → �(R′) defined by Cu( f )([(xn)]) = [( f (xn))]
is a Cu-morphism.
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By definition S(R) is the submonoid of �(R) of elements [(x1, x2, . . .)] such that
for each n, there is yn+1 satisfying yn+1xn+1xn = xn . Thus, one has

f (yn+1) f (xn+1) f (xn) = f (xn)

and, consequently, [( f (x1), f (x2), . . .)] ∈ S(R′). Hence Cu( f )(S(R)) ⊆ S(R′), as
desired. ��

As an immediate consequence, we obtain:

Corollary 5.7 Let Ringsws be the category of weakly s-unital rings and ring homo-
morphisms. The assignment

SCu : Ringsws −→ SCu
R �→ (�(R),S(R))

is a functor.

Remark 5.8 In [1]wewill see that SCu is not always sequentially continuous.However,
�(R) always is, and SCu ends up being continuous in some relevant situations.

6 Compact elements in S(R)

We have shown in Sect. 5 that for any ring R we have that S(R) is a subsemigroup
of �(R). Both semigroups are closed under increasing sequences, and �(R) is a Cu-
semigroup in case R is a weakly s-unital ring. However, the question of whether S(R)

is a Cu-semigroup remains elusive, even in the weakly s-unital case.
In this sectionwe continue our study immersing on theway-below relation inherited

at S(R) from �(R). This helps on characterizing our construction in both the unit-
regular and semilocal rings setting.
6.1 (Algebraic Cu-semigroups and compact elements) Recall from Paragraph 2.3 that
an element x in a Cu-semigroup S is termed compact if x � x . We also say that such a
semigroup S is algebraic if every element is the supremum of an increasing sequence
of compact elements.

If R is a weakly s-unital ring, and if two elements a, b ∈ S(R) satisfy a � b
in �(R), then a � b in S(R). However, it is unclear when the way-below relation
of S(R) agrees with the one in �(R). For example, it is conceivable that the object
(N, {0,∞}) in SCu can be realized as SCu(R) for a weakly s-unital ring R, where
∞ � ∞ in {0,∞} but ∞ �� ∞ in N.

Keeping this type of examples in mind, for a given weakly s-unital ring R, an
element x ∈ S(R) is termed compact if x � x in �(R). Further, we will say that
S(R) is algebraic if every element in S(R) can be expressed as the supremum of an
increasing sequence of compact elements.

Lemma 6.2 Let R be a weakly s-unital ring. If S(R) is algebraic then it is a Cu-
semigroup. Moreover if x � x in S(R), then x � x in �(R). Therefore, the inclusion
S(R) → �(R) is a Cu-morphism.
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Proof The first assertion is clear. Given x � x ∈ S(R), write x = supn xn with
xn � xn ∈ �(R). This implies that there exists m such that x ≤ xm � xm ≤ x and
hence x � x in �(R). ��

This raises the interesting question of characterizing the elements in S(R) that
are compact. To this end, recall that, for elements [(xn)], [(yn)] ∈ �(R), we have
[(xn)] � [(yn)] in �(R) if, and only if, there is n0 such that xn �1 yn0 for all n.

A natural source of compact elements of S(R) comes from the idempotent elements
of M∞(R). Indeed, if e ∈ M∞(R) is idempotent, let us denote by (e) the constant
sequence (in T (R)). We clearly have that [(e)] ∈ S(R) and, for another idempotent
f ∈ M∞(R), it is readily verified that [(e)] ≤ [( f )] if, and only if, e �MvN f .
Although not all compact elements in S(R) come from constant sequences of idem-

potents, we show below that there is always a representative given by a constant
sequence of an almost idempotent element.

Lemma 6.3 Let R be a weakly s-unital ring and let [(xn)] ∈ S(R) be a compact
element. Then, there exists n0 ≥ 1 such that, for every k ≥ 1, one can find elements
s1, . . . , sk in M∞(R) satisfying

xn0 = sk xn0 . . . s1xn0 .

In particular, an element [(xn)] is compact if and only if there exist elements s, z ∈
M∞(R) such that [(xn)n] = [(z)n] and z = sz2.

Proof Since [(xn)] ∈ S(R), there are elements yn such that xn = yn+1xn+1xn for all
n. If [(xn)] � [(xn)], this implies that there exists n0 ≥ 1 such that

xn0+k �1 xn0 for every k ≥ 1.

For any given k, let rk, tk be such that xn0+k = rk xn0 tk . Then, using that

xn0 = (yn0+1 . . . yn0+k)xn0+k . . . xn0+1xn0 ,

we get

xn0 = ((yn0+1 . . . yn0+k)rk)xn0(tkrk−1)xn0(tk−1rk−2) . . . (t1)xn0 .

Thus, ifwe let sk = (yn0+1 . . . yn0+k)rk , sk−1 = tkrk−1, sk−2 = tk−1rk−2, . . . , s1 = t1,
we obtain xn0 = sk xn0 . . . s1xn0 , as desired.

In particular, if k = 2, set z = xn0s1 and s = s2. Now

z = xn0s1 = (s2xn0s1xn0)s1 = s2z
2 = sz2,

and clearly the constant sequence [(z)n] belongs to S(R). Note that xn0 = s2(xn0s1)xn0
implies xn0 �1 xn0s1 = z, and also that z = sz2 = s(xn0s1)z. Hence z �1 xn0 .
Therefore,

xn0+k �1 xn0 �1 xn0s1 = z �1 xn0 ,
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which implies that [(xn)n] = [(z)n].
Finally, if z ∈ M∞(R) satisfies z = sz2 for some s, then clearly z �1 z and

therefore [(z)] � [(z)]. ��
Remark 6.4 It is reasonable to extend results such as Lemma 6.3 to general rings. To
do this, one may define a transitive relation ≺ on �(R) (or on S(R)) as follows:

[(xn)] ≺ [(yn)] if and only if there is m such that xn �1 ym for all n.

Using the construction of suprema in �(R) (see the proof of Proposition 2.13), it
is easy to verify that ≺ is formally stronger than the way-below relation � on �(R),
and of course it agrees with it in case R is weakly s-unital. Thus, one may term an
element x ∈ S(R) ≺-compact in case x ≺ x .

It is also worth pointing out that the relation ≺ is an auxiliary relation for the usual
order in S(R) (and also �(R)). Following [20, Definition I-1.11] (see also [3, 2.1.1]),
an auxiliary relation is a relation satisfying that 0 ≺ x for any x , that x ≤ y whenever
x ≺ y, and whenever x ≤ y ≺ z ≤ u, we have x ≺ u.

A close inspection of the arguments in Lemma 6.3 reveals that, for any ring R, an
element [(xn)] in S(R) is ≺-compact if and only if [(xn)] = [(z)], where z = sz2 for
some s.

As the example below shows, certain rings have very few ≺-compact elements.

Example 6.5 There exists a ring R such that x ≺ x in S(R) if and only if x = 0.

Proof Let R be the ring in Example 4.2. That is, R is the subring of the free algebra
K [x0, x1, . . .] on infinitely many variables subject to the non-commutative relations
xn+1xn = xn consisting of all polynomials with zero constant term.

We claim that the only compact element of S(R) is 0. To show this, we need some
easily proven facts about R. First of all, observe that the set

B = {xn1i1 · · · xnrir | ni ≥ 1, i1 < · · · < ir , r ≥ 1}

is a K -basis of R. This follows for instance by an immediate application of the Dia-
mond’s Lemma in Ring Theory, see [10], using the reduction system x j xi �→ xi for
j > i .
Hence each element in M∞(R) can be uniquely written as a linear combination∑
p∈B ap p, where ap ∈ M∞(K ). Recall from Example 4.2 the notion of the start

st(p) of a monomial p ∈ B. The numbers st(p) satisfy the following properties, some
of which have been pointed out in Example 4.2:

(i) st(pq) = min{st(p), st(q)},
(ii) If st(p) = st(q) then pq > p and pq > q in the lexicographic order.
(iii) If st(p) > st(q) then pq = q.

Using these properties we now show that the only compact element of S(R) is 0. By
Lemma 6.3, it is enough to show that the equation z = sz2 has no nonzero solutions
in M∞(R). Suppose that z ∈ M∞(R) is a nonzero element such that z = sz2. Let p
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be the unique monomial in B in the support of z such that st(p) is maximum amongst
all monomials in the support of z, and such that p is the smallest monomial in the
support of z amongst all monomials q in the support of z such that st(q) = st(p), with
respect to the lexicographic order. From the identity z = sz2, it follows that there are
two monomials p1, p2 in the support of z, and a monomial q in the support of s such
that

p = qp1 p2.

By (i) we have

st(p) = min{st(q), st(p1), st(p2)}.

It follows that st(p) = st(p1) = st(p2) ≤ st(q). Now by (ii) we have p1 p2 > pi ≥ p
in the lexicographic order, for i = 1, 2, and by (ii),(iii) we have, since st(q) ≥
st(p1 p2),

p = q(p1 p2) ≥ p1 p2 > p,

which is a contradiction.
We remark that the ring R is not weakly s-unital. Indeed, if x0 = r x0s for some

r , s ∈ R, one easily gets a contradiction expressing r and s in terms of the K -basis B.
��

Proposition 6.6 Let R be a unital ring. Then, S(R) is an algebraic Cu-semigroup
whenever every projective module of R is the direct sum of finitely generated modules.

In particular, this is the case for weakly semi-hereditary rings, one-sided principal
ideal rings and R = C(X) for any strongly zero dimensional X.

Proof Following the observations in Paragraph 6.1, we only need to show that every
element in S(R) is the supremum of an increasing sequence of compact elements. For
this, we will use the isomorphism between S(R) and CP(R) proved in Theorem 4.10.

First, note that any finitely generated projective module P has an associated
sequence in S(R) of the form (e, e, e, . . . ), where e = e2 ∈ M∞(R). As we have
observed before, the class of such a sequence is compact in S(R), and thus the class
[P] is compact in CP(R).

Now, let P be a countably generated projective module. From our assumptions
on R, we may write P = ⊕Fi with Fi finitely generated (and projective). We have
F1 � F1 ⊕ F2 � . . ..

This shows that [P] = supn[⊕i≤n Fi ] is the supremum of an increasing sequence
of compact elements in CP(R), as desired.

The remaining statement is a consequence of the results in [31]. ��
Example 6.7 As an example of a ring that does not satisfy the condition in Proposi-
tion 6.6, let R = C[0, 1]. Then R has an indecomposable, countably projective and
pure ideal (which is not finitely generated). See [28, Example 2.12].
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We now do a more in-depth study of the semigroup S(R) when R is a unit-regular
ring (Lemma 6.9) and when R is a semilocal ring (Proposition 6.13). Since S(R) ∼=
CP(R), we use these two pictures interchangeably.
6.8 (Unit-regular rings) Recall that a unital ring R is said to be unit-regular if for each
x ∈ R there is an invertible element u ∈ R such that x = xux . Unit-regular ring are
precisely those unital von Neumann regular rings R such that V(R) is cancellative
([21, Theorem 4.5]).

We first observe that for a unit-regular ring R, the relation P � Q in CP(R) is
determined solely in terms of isomorphisms of all finitely generated submodules of P
with suitable submodules of Q.

Lemma 6.9 Let R be a unit-regular ring and let P, Q be countably generated projec-
tive modules. Then, P � Q if and only if every finitely generated submodule of P is
isomorphic to a submodule of Q.

Proof Given any unital ring R, it follows from Paragraph 4.4 that whenever P � Q,
then every finitely generated submodule of P is isomorphic to a submodule of Q.

Conversely, assume that R is a unit-regular ring, and that every finitely generated
submodule of P is isomorphic to a (finitely generated) submodule of Q. Then P � Q
follows from Paragraph 4.4 and the fact that all finitely generated submodules of Q
are direct summands of Q ([21, Theorem 1.11]). ��

The next example exhibits that the above characterization does not hold in general.

Example 6.10 There exist unital commutative domains R and countably generated
projective modules P and Q such that all finitely generated submodules of P are
isomorphic to submodules of Q but P � Q does not hold.

Proof Let R be a commutative domain with an indecomposable, countably generated
projective module Q, which is not free, and take P = RR . Then obviously R is
isomorphic to a submodule of Q. If there is a commutative diagram

R
φ

idR

Q
ψ

R ,

then Q ∼= R ⊕ Q′ for some projective module Q′, which is impossible since Q is
indecomposable and non-free. ��

For a unit-regular ring, all semigroups already defined turn out to be isomorphic to
either V(R) or S(R).

Proposition 6.11 Let R be a unit-regular ring. Then we have

(i) V(R) = W(R) = WM(R) as ordered monoids, so that the orders defined in
W(R) and WM(R) agree with the algebraic order.

(ii) V∗(R) = CP(R) = S(R) = �W(R) as semigroups. The order � in CP(R) is
given by: P � Q if and only if P is isomorphic to a submodule of Q. We have
that S(R) = CP(R) = �(R) as ordered semigroups.
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Proof (i): This follows from Lemmas 2.6 and 3.3.
(ii): By [7, Theorem 1.4], there is a monoid isomorphism

ϒ : V∗(R) −→ �σ (V(R)).

(We warn the reader that the monoid V∗(R) is denoted by W(R) in [7].) By
(i), one has that V(R) = W(R), so �σ (V(R)) = �σ (W(R)) = �W(R). The
isomorphism ϒ satifies that ϒ(P) is the interval determined by the increasding
sequence {[e1R ⊕ · · · ⊕ en R] : n ≥ 1} in V(R), where P = ⊕

n en R and en are
idempotents of R. Hence ϒ factors as the composition of homomorphisms

V∗(R)
�R−→ CP(R) = S(R)

ιR−→ �W(R),

where �R is the canonical surjective homomorphism, and ιR : S(R) → �W(R)

is the natural inclusion. It follows that both�R and ιR are monoid isomorphisms.
By [7, Proposition 1.5] the order inCP(R) is determined by [P] ≤ [Q] if and only
if P is isomorphic to a submodule of Q. (Observe that this is not the algebraic
order in CP(R).)

��
6.12 (Semilocal rings) Recall that a unital ring R is said to be semilocal if the quotient
R/J (R) is semisimple, i.e. if there exist division rings D1, . . . , Dr such that

R/J (R) ∼= Mn1(D1) × . . . × Mnr (Dr ).

Observe that we have

V∗(R/J (R)) = CP(R/J (R)) = S(R/J (R)) = �W(R/J (R)) = N
r
,

where the order here is the algebraic order, or equivalently, the componentwise order.
The generators are the isomorphism classes of the simple R/J (R)-modules.

MoreoverV∗(R) embeds inV∗(R/J (R)) by Prihoda’s Theorem [33, Theorem2.3].
Note that we also have a surjective homomorphism of ordered monoids

π : W(R) → W(R/J (R)) = V(R/J (R)) = N
r ,

which extends to a surjective homomorphism

π : �W(R) = �σ (W(R)) → �W(R/J (R)) = N
r
.

Now we characterize the equivalence relation ∼ on CP(R) using the notion of
dimension in the case of semilocal rings ([33]). Recall that we define dim(P) =
(x1, . . . , xr ) ∈ N

r
, where (x1, . . . , xr ) is the image of [P] under the map V∗(R) →

N
r
. Further, given two countably generated projective right R-modules P, Q, we say

that dim(P) ≤ dim(Q) if the corresponding tuples compare componentwise. In this
case, there exists a split R/J (R)-monomorphism P/P J (R) → Q/QJ (R).
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Using the remarks above, we can easily characterize the order relation in CP(R) in
the case of a semilocal ring:

Proposition 6.13 Let R be a semilocal ring and let P, Q be two countably generated
right R-modules. The following are equivalent:

(i) P � Q
(iii) dim(P) ≤ dim(Q) (component-wise)
(iii) P is isomorphic to a pure submodule of Q.

Proof (i) �⇒ (ii): Let x = (x1, . . . , xr ) ∈ N
r such that x ≤ dim(P). Let

ιR : CP(R) → �W(R) be the canonical inclusion. Then ιR([P]) ⊆ ιR([Q]) (as
elements in �σ (W(R))). Take z ∈ W(R) such that z ∈ ιR([P]) and π(z) = x.
Then z ∈ ιR([Q]), which means that π(z) ≤ π(ιR[Q]) = π([Q]) = dim(Q). It
follows that dim(P) ≤ dim(Q).

(ii) �⇒ (iii): Assume that dim(P) ≤ dim(Q). Then, one can construct a split
monomorphism r̄ : P/P J (R) → Q/QJ (R). Let s̄ : Q/QJ (R) → P/P J (R)

be such that s̄r̄ = idP/P J (R).
Since P, Q are projective, r̄ can be lifted to r : P → Q and, since r̄ is a
pure monomorphism, we obtain from [18, Proposition 6.1] that r is also a pure
monomorphism, hence P is isomorphic to a pure submodule of Q.

(iii) �⇒ (i): See [28, Exercise §4.41].
��

Corollary 6.14 Let P, Q be two countably generated projective right modules over a
unital semilocal ring R. Then, P ∼ Q if and only if P ∼= Q. That is, CP(R) ∼= V∗(R)

as semigroups.

Corollary 6.15 Let R be a unital semilocal ring. Then, CP(R) can be embedded into
N
r
as a partially ordered monoid.

7 C∗-algebras

Let A be a C∗-algebra. In this section we explore the relationship between the Cuntz
semigroupCu(A) of A and the semigroup S(A).We show inTheorem7.6 that Cu(A) is
a retract of S(A), in the sense that there is anorderedmonoidmorphismCu(A) → S(A)

that preserves suprema, compact containment, and has a left inverse that preserves
suprema.

Remark 7.1 Given f , g ∈ C([0,∞)) such that supp( f ) = (ε,∞) and supp(g) =
(ε′,∞) with ε′ < ε, there exists r ∈ C([0,∞)) such that f (t) = r(t)g(t) f (t) for
each t ∈ [0,∞). In particular, we have f �1 g. In general, if supp( f ) ⊆ supp(g),
then f � g (see, e.g. [8, Proposition 2.5])

7.2 (Dense subsemigroups) Let S be a Cu-semigroup.Wewill say that a subsemigroup
H of S is a dense subsemigroup provided that whenever x � y in S there exists s ∈ H
such that x ≤ s ≤ y.

For example, if S is algebraic, then the subsemigroup Sc, consisting of the compact
elements in S, is a dense subsemigroup.
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Lemma 7.3 Let S be a Cu-semigroup, T a positively ordered monoid where suprema
of increasing sequences exist and are compatible with addition. Let H ⊆ S be a
dense submonoid. Then, for any ordered monoid morphism ϕ : H → T that preserves
suprema of increasing sequences with supremum in H, there exists an ordered monoid
morphism φ : S → T that preserves suprema of increasing sequences and φ|H = ϕ.

Proof Given any s ∈ S, write s = sup sn where (sn) is a rapidly increasing sequence
of elements in S. Since by assumption H is dense in S, there is for each n an element
s′
n ∈ H such that sn ≤ s′

n ≤ sn+1. Thus we may assume that sn ∈ H for all n. Define
φ(s) := supn ϕ(sn).

If (tn) is another rapidly increasing sequence of elements in H such that sup sn ≤
sup tn , then for any n, there is m with sn ≤ tm , whence supn ϕ(sn) ≤ supn ϕ(tn). This
implies that φ is well-defined and order-perserving. To see that φ preserves addition,
let s, t ∈ S and write s = supn sn , t = supn tn , for rapidly increasing sequences (sn)
and (tn) in H . Thus, using our assumption on T , we get

φ(s + t) = sup
n

(ϕ(sn) + ϕ(tn)) = sup
n

ϕ(sn) + sup
n

ϕ(tn) = φ(s) + φ(t),

and therefore φ is an ordered monoid morphism.
Further, note that for every h ∈ H , we canwrite h = supn hn for a rapidly increasing

sequence (hn) of elements in H . Since ϕ preserves the supremum of such sequences,
we have φ(h) = supn ϕ(hn) = ϕ(h), and thus φ|H = ϕ.

To see that φ preserves suprema, fix s ∈ S and let (tn) be an increasing sequence
in S with supremum s. Choose (sn) to be a rapidly increasing sequence of elements
in H with supremum s. Since φ is order-preserving, we have that supn φ(tn) ≤ φ(s).
Also, for every n, there is m with sn ≤ tm . Using that φ|H = ϕ and that φ is order-
preserving, we obtain ϕ(sn) = φ(sn) ≤ φ(tm) ≤ supk φ(tk), which implies that
φ(s) ≤ supk φ(tk) as required. ��

7.4 (Retracts) Let S be a Cu-semigroup, and let T be a positively ordered semi-
group admitting suprema of increasing sequences, which are compatiblewith addition.
Adapting the definition introduced in [36, Definition 3.14], we shall say that S is a
retract of T if there exist ordered monoid morphisms ϕ : S → T and φ : T → S such
that

(i) ϕ preserves suprema and compact containment.
(ii) φ preserves suprema.
(iii) φϕ = idS .

Given ε > 0, we shall denote by fε ∈ C([0,∞)) the continuous function that is 0
on [0, ε), linear on [ε, 2ε], and 1 elsewhere. Notice that, for each positive element a
in a C∗-algebra A, the element fε(a) has a unit in A, namely fε/2(a) fε(a) = fε(a).

Lemma 7.5 Let A be a C∗-algebra and let a, b ∈ M∞(A)+ be such that a � b in
A ⊗ K. Put εn = 1/2n. Then, for any n, there is m such that fεn (a) �1 fεm (b).
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Proof Since a � b in A ⊗ K, given n ∈ N, there exist δn > 0 and rn ∈ A ⊗ K such
that

(a − εn+1)+ = rn(b − δn)+r∗
n

(see, for instance [8, Proposition 2.17]). As a, (b − δn)+ ∈ M∞(A), we can take
rn ∈ M∞(A) as well. Since δn > 0, there exists m such that fεm (b) is a unit for
(b− δn)+. Using this observation at the third step and Remark 7.1 at the first step, one
gets

fεn (a) �1 (a − εn+1)+ = rn(b − δn)+ fεm (b)r∗
n �1 fεm (b).

��
Theorem 7.6 Let A be a C∗-algebra. Then Cu(A) is a retract of S(A).

Proof Let H = {x ∈ Cu(A) : x = [a] for some a ∈ M∞(A)+}, which is a dense
subsemigroup of Cu(A). We will apply Lemma 7.3 to H . To this end we need to con-
struct a positively ordered monoid morphism ϕ0 : H → S(A) that preserves suprema
of increasing sequences.

Let x ∈ H , and let a ∈ M∞(A)+ be such that x = [a]. For every n ≥ 1, put
εn = 1/2n and fεn as in Lemma 7.5. The elements of the sequence ( fεn (a)) are
pairwise commuting and, as observed before, fεn+1(a) fεn (a) = fεn (a) for all n. Thus
fεn (a) �1 fεn+1(a) for all n, and so ( fεn (a))n ∈ S(M∞(A)).
Define ϕ0 : H → S(A) by ϕ0([a]) = [( fεn (a))n]. To see that ϕ0 is well defined and

order-preserving, let b ∈ M∞(A)+ be such that a � b in A ⊗ K. By Lemma 7.5, for
each n there ismwith fεn (a) �1 fεm (b), which implies that [( fεn (a))n] ≤ [( fεn (b))n].

It is easy to verify that ϕ0 is additive, and thus it is a positively ordered monoid mor-
phism. In order to extend ϕ0 to a positively ordered monoid morphism ϕ : Cu(A) →
S(A) that preserves suprema of increasing sequences, we apply Lemma 7.3. Thus,
we only need to prove that the map ϕ0 : H → S(A) preserves suprema of increasing
sequences with supremum in H .

To this end, let (an)n, a ∈ M∞(A)+ be such that ([an])n is increasing and [a] =
supn[an] in Cu(A). Since ϕ0 is order-preserving, we already have supn ϕ0([an]) ≤
ϕ0([a]). To show the converse inequality, note that for every n ≥ 1 one has [(a −
εn+1)+] � [a] and, consequently, (a−εn+1)+ � ai for some i . By Lemma 7.5, there
ism such that fεn+2((a−εn+1)+) �1 fεm (ai ). Let gεn (t) = (t−εn)+. By Remark 7.1,
we have fεn �1 fεn+2 ◦ gεn+1 . Thus,

fεn (a) �1 fεn+2((a − εn+1)+) �1 fεm (ai ).

This shows that ϕ0([a]) ≤ supn ϕ0([an]), as every element in ( fεn (a))n is�1-bounded
by an element in ( fεm (ai ))m for some i . Therefore, ϕ0([a]) = supn ϕ0([an]), as was
to be shown, and we have an extension ϕ : Cu(A) → S(A) that preserves suprema of
increasing sequences.

Next, to prove that ϕ preserves the way-below relation, take first [a], [b] ∈ Cu(A)

with a, b ∈ M∞(A)+ and suppose that [a] � [b] in Cu(A). Then there is ε > 0 such
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that a � (b − ε)+. Since again by Remark 7.1, we have fεm ◦ gε �1 fε for each m,
another usage of Lemma 7.5 implies that, for each n ≥ 1, there is m ≥ 1 such that

fεn (a) �1 fεm ((b − ε)+) �1 fε(b),

and therefore ϕ0([a]) = [( fεn (a))n] � [( fεm (b))m] = ϕ0([b]). If now a, b ∈ (A ⊗
K)+ satisfy [a] � [b] in Cu(A), then as before there is ε > 0 such that a � (b− ε)+.
Note that there is bε ∈ M∞(A)+ such that (b− ε)+ ∼ bε, and since [bε] � [b2ε], we
have

ϕ([a]) ≤ ϕ([(b − ε)+]) = ϕ0([bε]) � ϕ0([b2ε]) ≤ ϕ([b]).

To finish the proof, we have to construct an ordered monoid morphism φ : S(A) →
Cu(A) that preserves suprema of increasing sequences and is a left inverse for ϕ. To do
this, let (an)n ∈ S(M∞(A)). By Lemma 2.10, the sequence (a∗

nan)n is �-increasing
and we can consider [a] = supn[a∗

nan] in Cu(A).
Define φ : S(A) → Cu(A) by φ([(an)n]) = supn[a∗

nan]. Let [(an)], [(bn)] ∈ S(A)

be such that [(an)n] ≤ [(bn)n] in S(A). Then, for each n, there ism such that an �1 bm .
Again by Lemma 2.10, this implies that a∗

nan � b∗
mbm . Therefore, if we put [a] =

supn[a∗
nan] and [b] = supn[b∗

nbn] in Cu(A), we obtain that [a] ≤ [b]. This shows that
φ is well defined and order-preserving. It is easy to verify that φ is also additive, hence
a positively ordered monoid morphism.

Now, given an increasing sequence ([(ai,n)i ])n in S(A), there is a subsequence (ni )
of the natural numbers and elements ri ∈ A such that supn[(ai,n)i ] = [(ai,ni ri )i ] (see
Lemma 4.3). Let [an] = φ((ai,n)i ). We have, for each i ,

r∗
i a

∗
i,ni ai,ni ri � a∗

i,ni ai,ni � ani ,

and thus [r∗
i a

∗
i,ni

ai,ni ri ] ≤ [ani ] ≤ supn[an]. Therefore

φ(sup
n

[(ai,n)i ]) = φ([(ai,ni ri )i ]) = sup
i

[r∗
i a

∗
i,ni ai,ni ri ] ≤ sup

n
[an] = sup

n
φ([(ai,n)i ]).

Since φ is order-preserving we always have supn φ([(ai,n)i ]) ≤ φ(supn[(ai,n)i ]), and
thus φ(supn[(ai,n)i ]) = supn φ([(ai,n)i ], as required.

By construction, φ is a left-inverse for ϕ0 = ϕ|H . By definition of ϕ and since φ

preserves suprema of increasing sequences, it follows that φ is a left-inverse for ϕ. ��
7.7 (Hilbert C∗-modules) For a C∗-algebra A, we consider the class CH(A) of
countably generated Hilbert A-modules, see for instance [29] for definitions and back-
ground. Let HA be the Hilbert A-module consisting of sequences (an) of elements in A
such that

∑∞
n=1 a

∗
nan is norm-converging in A. Note that HA is the Hilbert A-module

completion of the A-module A(N). By Kasparov’s Theorem (see e.g. [29, Theorem
1.4.2]) each countably generated Hilbert A-module is isometrically isomorphic to a
complemented A-submodule of HA.

Denote by K(X) the C∗-algebra of compact operators on a Hilbert A-module X .
If X ⊆ Y are Hilbert A-modules, we say that X is compactly contained in Y if there
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exists a self-adjoint compact operator θ ∈ K(Y ) such that θ |X = idX . Given Hilbert
A-modules X and Y , we say that X is Cuntz subequivalent to Y , written X � Y , if
each Hilbert submodule X0 of X which is compactly contained in X is isometrically
isomorphic to a Hilbert module Y0 which is compactly contained in Y . We say that X
and Y are Cuntz equivalent, written X ∼ Y , if X � Y and Y � X . The semigroup
CH(A) is then the semigroup of Cuntz equivalence classes of countably generated
Hilbert A-modules, endowed with the operation induced by the direct sum of Hilbert
A-modules.

It was shown in [14] that there is an isomorphism Cu(A) ∼= CH(A) in the category
Cu. This isomorphism sends the class of a positive element a in A ⊗ K to a(HA),
where we use the isomorphism A ⊗ K ∼= K(HA), see e.g. [8, Proposition 3.15(iii)].

Let A be a C∗-algebra. Then we have, on the one hand, an isomorphism
γc : Cu(A) ∼= CH(A), and on the other hand an isomorphism γa : S(A) ∼= CP(A)

by Theorem 4.13, where CP(A) is built from the category CP(A) of countably gen-
erated projective unital right A+-modules P such that P = PA, see Paragraph 4.11.

Hence there is a unique morphism φ̃ : CP(A) → CH(A) making commutative the
following diagram:

Cu(A)
γc

CH(A)

S(A)
γa

φ

CP(A)

φ̃

namely φ̃ = γc ◦ φ ◦ γ −1
a .

Proposition 7.8 Let P be an object in CP(A), and let xn ∈ M∞(A) be a sequence
such that xn+1xn = xn for each n ≥ 1 and P ∼= Q := ⋃∞

i=1 xn A
(N). We then have

φ̃([P]) = φ̃([Q]) = [Q],

where Q is the Hilbert A-module obtained by taking the closure of Q in HA.

Proof We first observe that a sequence (xn) as in the statement always exists by Corol-
lary 4.14. Given such a sequence (xn), we have xnHA ⊆ xn+1HA and in particular
xnHA ⊆ xn+1HA, so that by [8, Proposition 4.12] we have

sup
n

[xnHA] = [∪∞
n=1xnHA]

in CH(A). On the other hand, by [8, Lemma 4.10], we have

x∗
n xnHA ∼= xnx∗

n HA = xnHA
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for all n ≥ 1. Therefore we get γc([x∗
n xn]) = [xnHA]. Using that γc preserves suprema

of increasing sequences, we have

γc ◦ φ ◦ γ −1
a ([Q]) = γc ◦ φ([(xn)]) = γc(sup

n
[x∗

n xn]) = sup
n

γc([x∗
n xn])

= sup
n

[xnHA] = [∪∞
n=1xnHA] = [Q],

as desired. ��

8 Nearly simple domains

In this sectionwe study nearly simple domains, a class of ringswhere one can explicitly
compute the monoid W(R); see Paragraph 8.1.

As we will prove in Proposition 8.3, the Jacobson radical J of any nearly simple
domain R is alwaysweakly s-unital, although it is not s-unital in general. The invariants
�(J ) and S(J ) are computed in Theorem 8.4 and Remark 8.6 respectively.
8.1 (Uniserial domains and nearly simple domains) Recall that a module over a ring
R is uniserial if its submodules are totally ordered by inclusion, and that the ring R is
said to be right uniserial if it is uniserial as a right module over itself.

One defines left uniserial rings analoguously, and says that R is uniserial if it is
both right and left uniserial. Uniserial rings will be assumed to be unital throughout
the section.

Note that any right uniserial domain R is a local ring. That is, R has a unique
maximal left ideal. The reader is referred to [16] for a thorough exposition.

Let R be a uniserial domain. We will say that R is a nearly simple domain if R is
not simple and the only two-sided ideals of R are {0}, J (R) and R.

Given elements r , s in a unital, uniserial ring R, it is well-known that Rr R = RsR
if and only if there exist units u, v ∈ R such that r = usv; see [34, Lemma 4.2].

In particular, if R is a nearly simple domain, this implies that J := J (R) is a 1-
simple ring, that is, for each r , s ∈ J\{0} there exist a, b ∈ J such that r = asb (see
[13], where the concept of an n-simple ring is introduced for unital rings, for every
n ≥ 1). Indeed, applying [34, Lemma 4.2] to r , s3, we obtain units u, v ∈ R such that

r = us3v = (us)s(sv).

The elements a := us and b := vs are in J and satisfy the desired equality.
As shown in [5, Theorem 2.10], every regular square matrix over an exchange sepa-

rative ring can be diagonalized by using row and column elementary transformations.
Since local rings are separative exchange rings, this applies in particular to any unise-
rial ring. We will see in Lemma 8.2 below that all square matrices over a uniserial ring
are equivalent to diagonal matrices. This will allow us to compute W(R) for a nearly
simple domain R in Theorem 8.4. Note that there exist artinian local commutative
rings R such that some 2 × 2 matrices over R are not diagonalizable (see [5, Remark
2.12]).
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Let us denote by En(R) the set of n × n elementary matrices.

Lemma 8.2 Let R be a uniserial ring. Then, for each square matrix A ∈ Mn(R) there
exist elementary matrices U , V ∈ En(R) such that U AV is diagonal.

Proof We proceed by induction on n and note that the case n = 1 is trivial.
Thus, let n > 1 be fixed and assume that we have proven the result for every k × k

matrix with k ≤ n − 1.
Take A ∈ Mn(R). If A has an invertible entry, we can move such entry to the

position (1, 1) by means of elementary transformations. Further, since this entry is
now invertible, there exist elementary matricesU , V such that the product A′ = U AV
satisfies A′(1, i) = A′(i, 1) = 0 for all i > 1. The desired result now follows by
induction.

Thus, it remains to consider the case A ∈ Mn(J ), where we will show by induction
on k that there exist elementary matrices Uk, Vk ∈ En(R) such that the product

Bk = Uk AVk

satisfies Bk(i, j) = 0 for every pair (i, j) such that i ≤ k and i �= j . That is, Bk is of
the form

Bk =

⎛
⎜⎜⎜⎜⎜⎝

Bk(1, 1) 0
. . . 0

0 Bk(k, k)

Ck

⎞
⎟⎟⎟⎟⎟⎠

for some matrix Ck .
If k = 1, use that R is uniserial to find i ≥ 1 such that A(1, j)R ⊆ A(1, i)R for

every j . Using elementary transformations, we may assume that i = 1. This shows
that A can be transformed into a matrix B1 satisfying the required conditions.

Now fix k < n and assume that we have proven the result for every k′ ≤ k. In
particular, we can find Uk, Vk ∈ Ek(R) such that Uk AVk = Bk .

Then, for every i ≤ k, we either have that RBk(k+1, i) ⊆ RBk(i, i) or RBk(i, i) ⊆
RBk(k + 1, i). Performing elementary row operations, we may assume that Bk(k +
1, i) = 0 whenever RBk(k + 1, i) ⊆ RBk(i, i).

Let k′ be such that Bk(k + 1, i)R ⊆ Bk(k + 1, k′)R for every i . We may assume
that Bk(k + 1, k′) �= 0, since we are done otherwise.

If k′ ≥ k + 1, we can perform elementary column operations in order to get
k′ = k + 1. Using once again column operations, we obtain a matrix of the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Bk(1, 1) 0
. . . 0

Bk(k, k)
0 Bk(k + 1, k + 1)

Ck+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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for some Ck+1, as desired.
Finally, assume that k′ ≤ k. Since Bk(k + 1, k′) �= 0, we have

RBk(k
′, k′) ⊆ RBk(k + 1, k′).

Let B ′ be the matrix resulting from adding a multiple of the (k + 1)-th row to the
k′-th row in such a way that B ′(k′, k′) = 0.

Performing elementary column operations, we obtain yet another matrix B ′′ with
B ′′(k + 1, i) = 0 for every i �= k′.

Swapping the k′-th rowwith the (k+1)-th row,wefindamatrix B ′
k with B

′
k(i, j) = 0

for every (i, j) such that i ≤ k and i �= j . Further, B ′
k has at least one more zero than

Bk in the (k + 1)-th row. Proceeding by induction, we get matrices Uk+1, Vk+1 and
Bk+1 with the desired properties. This finishes the inductive argument.

Since Bn is a diagonal matrix, the matrices U := Un and V := Vn satisfy the
required conditions. This finishes the proof. ��

Let (M,≤) be a partially ordered monoid, and let I be a submonoid of M . Recall
that I is said to be an o-ideal of M if I is hereditary for ≤, that is, if whenever x ≤ y
with y ∈ I we have x ∈ I .

Proposition 8.3 Let R be a nearly simple domain. Then J (R) is a weakly s-unital
ring, and there is an order-embedding of W(J (R)) into an o-ideal of W(R).

Proof Set J := J (R) and take A ∈ Mn(J ) for some n ≥ 1. We have to show that
there exist matrices X ,Y ∈ Mn(J ) such that A = X AY . By Lemma 8.2 there exist
elementary matricesU , V ∈ En(R) such thatU AV = D, where D is diagonal matrix
in Mn(R). Note that, since all the entries of A belong to J , we have D ∈ Mn(J ).

Further, we know from Paragraph 8.1 that J is a 1-simple ring. Thus, we can find
diagonal matrices Z , T ∈ Mn(J ) satisfying D = ZDT . This implies

A = U−1DV−1 = U−1ZDTV−1 = (U−1ZU )A(VT V−1)

and, consequently, the matrices X := U−1ZU and Y := VT V−1 are in Mn(J ) and
satisfy A = X AY , as desired.

It follows from Paragraph 2.5 that we can form the semigroup W(J ), which is a
positively ordered monoid.

The inclusion map J → R induces a positively ordered monoid-morphism
W(J ) → W(R). To see that it is an order-embedding, let A, B ∈ Mn(J ) and assume
that A �1 B in Mn(R). Let P, Q ∈ Mn(R) be such that A = PBQ. Using the first
part of the proposition, we obtain elements X ,Y ∈ Mn(J ) such that A = X AY , and
hence A = (X P)B(QY ).

This shows that A �1 B in Mn(J ) and, therefore, that the map W(J ) → W(R) is
an order-embedding.

Identifying W(J ) with its image, it is readily checked that W(J ) is an o-ideal of
W(R). ��
Theorem 8.4 Let R be a nearly simple domain, and let J be its Jacobson radical.
Then,
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(i) W(J ) ∼= N, with its usual order.
(ii) W(R) ∼= N × N, with the order

(r ′, s′) ≤ (r , s) : ⇐⇒ r ′ + s′ ≤ r + s and r ′ ≤ r .

Proof Take A ∈ Mn(R). Using Lemma 8.2, we find invertible matrices U , V and a
diagonal matrix D ∈ Mn(R) such that U AV = D. We may assume that D is of the
form

D = diag(d1, . . . , dr , dr+1, . . . , dr+s, 0, . . . , 0)

for some d1, . . . , dr ∈ R\J and dr+1, . . . , dr+s ∈ J\{0}. Let

ψ : M∞(R) → N × N

be the map defined by ψ(A) := (r , s).
To see that ψ(A) does not depend on the choice of U and V , set

C := R/dr+1R ⊕ . . . ⊕ R/dr+s R ⊕ Rn−r−s

and consider the commutative diagram

Rn A

V ∼=

Rn

U ∼=

Rn/ARn

∼=

0

Rn D
Rn C 0

Choosing a ∈ J\{0}, we have C ∼= (R/aR)s ⊕ Rn−r−s (by [34, Lemma 4.2]).
Thus, for any choice of invertible matrices U ′, V ′ and diagonal matrix D′ such that
D′ = U ′AV ′ with ranks (r ′, s′), one gets

(R/aR)s ⊕ Rn−r−s ∼= (R/aR)s
′ ⊕ Rn−r ′−s′ .

At this point we can use Puninski’s Theorem [16, Theorem 9.19] asserting that every
finitely presented right module M over a uniserial ring is the direct sum of cyclic
uniserial modules, and any two decompositions of M as direct sums of cyclic modules
are isomorphic. Using this result we immediately deduce that s = s′ and n − r − s =
n − r ′ − s′, and thus r = r ′.

Next we show that A �1 B implies ψ(A) ≤ ψ(B), where recall that

(r ′, s′) ≤ (r , s) : ⇐⇒ r ′ + s′ ≤ r + s and r ′ ≤ r .

Thus, let A, B be such that A �1 B, and write ψ(A) = (rA, sA) and ψ(B) =
(rB, sB). We may assume that A, B ∈ Mn(R), and that there are matrices X ,Y ∈
Mn(R) such that A = XBY .
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Let π be the quotient map R → R/J . We have

π(A) = π(X)π(B)π(Y ) in Mn(R/J )

and, therefore,

rA = rankR/J (π(A)) ≤ rankR/J (π(B)) = rB .

Let us now prove that ψ(BY ) ≤ ψ(B) for all B,Y ∈ Mn(R). Following the
notation above, we write ψ(B) = (rB, sB) and ψ(BY ) = (rBY , sBY ).

The previous argument shows that rBY ≤ rB , so it remains to check that

rBY + sBY ≤ rB + sB .

Since Rn/BRn is a quotient of Rn/(BY )Rn , we obtain a surjective module homo-
morphism

(R/aR)sBY ⊕ Rn−rBY−sBY −→ Rn−rB−sB ,

where a ∈ J\{0}. Using that Rn−rB−sB is free, we find a right R-module M such that

(R/aR)sBY ⊕ Rn−rBY−sBY ∼= Rn−rB−sB ⊕ M .

By Puninski’s Theorem [16, Theorem 9.19] we have that n−rBY −sBY ≥ n−rB −sB .
Thus, we get rBY + sBY ≤ rB + sB , as desired.

Note that, by symmetry, we have ψ(XB) ≤ ψ(B) for all X , B ∈ Mn(R). Conse-
quently, one gets ψ(A) ≤ ψ(B) whenever A �1 B.

Conversely, it is also easy to see (by looking at their associated diagonal matrices)
that A �1 B whenever ψ(A) ≤ ψ(B).

Thus, ψ induces an order-isomorphism fromW(R) to N × N with the stated order.
This shows (ii).

To see (i), note that the image ofW(J ) through this order-isomorphism corresponds
to 0× N ∼= N. The induced order in this submonoid corresponds to the usual order. ��
Remark 8.5 Let R be a nearly simple domain, and let J be its Jacobson radical. Then,
V (J ) = 0 and W(J ) = N by Theorem 8.4.

Thus, any element x ∈ W(J ) satisfies that, whenever x ≤ y, there exists c with
x + c = y. However, there are no nonzero elements in V(J ).

In connection with Lemma 2.8, the above shows that elements x ∈ W(R) which
can be complemented to each element y ∈ W(R) such that x ≤ y do not necessarily
belong to the image of V(R).

Remark 8.6 It follows from Theorem 8.4 above that, if R is a nearly simple domain,
the monoid �W(J ) associated to its Jacobson radical J = J (R) is indistinguishable
from �W(D) with D a division ring; see Paragraph 2.16.
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However, note that every sequence (xn) defining an element in S(J ) induces a
countably generated projective module P over R such that P = P J (R). Thus, we
have P = 0. This shows that S(J ) ∼= 0.

On the other hand, S(D) ∼= N for any division ring. Consequently, S(R) distin-
guishes these two families of rings.
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