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Abstract 

Machine learning (ML) systems have enabled the modelling of quantitative structure–property relationships (QSPR) 
and structure-activity relationships (QSAR) using existing experimental data to predict target properties for new 
molecules. These property predictors hold significant potential in accelerating drug discovery by guiding generative 
artificial intelligence (AI) agents to explore desired chemical spaces. However, they often struggle to generalize due 
to the limited scope of the training data. When optimized by generative agents, this limitation can result in the gen-
eration of molecules with artificially high predicted probabilities of satisfying target properties, which subsequently 
fail experimental validation. To address this challenge, we propose an adaptive approach that integrates active learn-
ing (AL) and iterative feedback to refine property predictors, thereby improving the outcomes of their optimization 
by generative AI agents. Our method leverages the Expected Predictive Information Gain (EPIG) criterion to select 
additional molecules for evaluation by an oracle. This process aims to provide the greatest reduction in predic-
tive uncertainty, enabling more accurate model evaluations of subsequently generated molecules. Recognizing 
the impracticality of immediate wet-lab or physics-based experiments due to time and logistical constraints, we pro-
pose leveraging human experts for their cost-effectiveness and domain knowledge to effectively augment property 
predictors, bridging gaps in the limited training data. Empirical evaluations through both simulated and real human-
in-the-loop experiments demonstrate that our approach refines property predictors to better align with oracle 
assessments. Additionally, we observe improved accuracy of predicted properties as well as improved drug-likeness 
among the top-ranking generated molecules. 

Scientific contribution. We present an adaptable framework that integrates AL and human expertise to refine 
property predictors for goal-oriented molecule generation. This approach is robust to noise in human feedback 
and ensures that navigating chemical space with human-refined predictors leverages human insights to identify mol-
ecules that not only satisfy predicted property profiles but also score highly on oracle models. Additionally, it prior-
itizes practical characteristics such as drug-likeness, synthetic accessibility, and a favorable balance between exploring 
diverse chemical space and exploiting similarity to existing training data.

Keywords Goal-oriented molecule generation, Human-in-the-loop, Machine learning, Active learning, Interactive 
algorithms
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Introduction
Drug discovery is a notoriously time-consuming and 
expensive process. The effectiveness of exploring vast 
chemical spaces during the initial phases of the process is 
crucial, as it lays the groundwork for identifying promis-
ing candidate molecules [1]. In recent years, deep neural 
network architectures tailored to generative tasks have 
emerged as promising tools for accelerating early drug 
discovery, reducing time and financial investments [2–5].

While molecule generation can also be performed 
for exploratory purposes (i.e., non goal-oriented), for 
instance, to diversify chemical libraries for virtual screen-
ing [6], early drug discovery often involves generating 
molecules with specific properties such as drug-likeness 
or bioactivity [7–9]. The key to successful goal-oriented 
generation is to derive an accurate and representative 
scoring function that can evaluate molecules for the dif-
ferent desired properties, such that optimizing it results 
in generating desirable molecules. Once a suitable scor-
ing function is established, the problem of generating 
desirable molecules can be framed as a discrete optimiza-
tion problem, which can be effectively tackled using tech-
niques such as reinforcement learning (RL) [10].

Quantitative Structure-Activity Relationship (QSAR) 
models predict the biological activity of chemical com-
pounds based on their chemical structure. QSAR 
models represent a subset of broader quantitative struc-
ture–property relationship (QSPR) approaches, which 
encompass predictions of various molecular properties 
beyond bioactivity. These property predictors are com-
monly integrated into scoring functions to expedite the 
discovery of drug candidates and circumvent challenges 
in directly optimizing wet-lab measurements of target 
properties [11].

For instance, RL was employed to optimize a pre-
trained Recurrent Neural Network (RNN) to generate 
binders for the Dopamine Receptor D2 (DRD2) based 
on QSAR predictions [10]. However, optimizing such 
predictors for molecule generation faces challenges as 
they often struggle to generalize post-deployment due to 
limited training data and evolving distributions during 
optimization [2]. Consequently, generative NNs guided 
by such predictors may yield sub-optimal molecules by 
overly relying on predictions in poorly understood chem-
ical space regions [12, 13]. Our work addresses this par-
ticular challenge.

In the context of model deployment, methods have 
been proposed to monitor the generalization perfor-
mance of property predictors when used for goal-ori-
ented molecule generation [12–14]. A more continuous 
and dynamic approach to enhancing predictor generali-
zation for this purpose involves leveraging active learning 
(AL).

AL is an experimental strategy that involves iterative 
selection of new data with the goal of minimizing the 
number of necessary training data while maximizing the 
gain in predictive accuracy and expanding the applicabil-
ity domain (i.e., the range of chemical space where the 
model can make reliable predictions) [15]. An acquisition 
criterion is usually defined to select which experiments 
would contribute the most to an improved predictive 
accuracy. In the context of goal-oriented generation, AL 
can be used to encourage the generative agent to inten-
tionally produce molecules that are poorly understood 
by the property predictor (e.g., by maximizing predic-
tive uncertainty) which can then undergo experimental 
validation, serving as additional training data to enhance 
model generalization in subsequent generation cycles [2].

Typically, in current drug discovery pipelines, molecules 
that meet a specific target property profile (according to a 
target property predictor) are tested experimentally after 
each cycle [2]. However, immediate experimental labeling 
via wet-lab assays is often infeasible due to the significant 
time and monetary costs associated with synthesizing 
the compounds proposed by the generative model. Con-
sequently, experimental labeling tends to be performed 
in batches rather than continuously. Moreover, previous 
studies have shown that the generated molecules with 
high predicted probability of meeting the target prop-
erty profile often include many false positives according 
to wet-lab assays and in-silico oracles [2, 13]. At this stage, 
the property predictor needs to be refined (or replaced by 
alternative scoring functions), potentially involving manual 
intervention from human experts to acquire additional 
experimental data for training.

Human-in-the-loop (HITL) approaches were recently 
proposed to enhance the molecule generation process by 
allowing human experts to interact and provide feedback. 
For instance, these approaches enable the adaptation of 
scoring functions through RL with human feedback, 
ensuring that the generated molecules align better with 
desired properties [16, 17]. Based on empirical results 
showing the efficacy of a reward model trained on feed-
back from a chemistry expert regarding the optimization 
of DRD2 bioactivity [16], we posit that integrating feed-
back from well-aligned experts is crucial for ensuring 
that QSAR predicted scores which are optimized during 
the molecular generation process align well with the true 
scores of the target property.

In this regard, we propose to involve human experts in 
the AL process, allowing them to re-evaluate (approve or 
refute) predicted scores for newly generated molecules 
and incorporate them as additional training data to refine 
the target property predictor. We apply the Expected 
Predictive Information Gain (EPIG) acquisition strategy 
[18] which allows for prediction-oriented improvement, 
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that is, favoring the acquisition of the most informa-
tive molecules to feed back to the property predictor to 
improve its predictive accuracy within specific regions 
of the chemical space (e.g., top-N ranked molecules). We 
empirically demonstrate the consistency of our HITL-AL 
approach in improving predictor’s generalization with 
respect to the true target function even under noisy and 
uncertain expert feedback. This was shown first through 
simulations using noisy oracles as experts, then through 
interacting with human experts in chemistry using the 
Metis  user interface [19], highlighting the value of 
domain expertise as a proxy for experimental labelling in 
AL settings.

In summary, the contributions of our work are as 
follows:

• We leverage prediction-oriented data acquisition 
during goal-oriented generation processes to iden-
tify informative molecules for property predictors for 
which high predicted scores may not correspond to 
actual experimental outcomes.

• We offer chemistry experts the ability to confirm or 
refute property predictions and specify their confi-
dence level, allowing for cautious predictor refine-
ment.

• We demonstrate the practical application of our 
method through experiments involving different 
chemists, underscoring the importance of formulat-
ing precise questions for effective intervention.

Methods
Goal‑oriented molecule generation
We focus on goal-oriented molecular generation, mean-
ing the design of molecules that satisfy one or multiple 
desired chemical properties, where some are available 
analytically and others are estimated by QSAR or QSPR 
models derived from experimental or simulation data.

While some target chemical properties can be computed 
analytically through first-principles methods (e.g., molecu-
lar weight) or through empirical, rule-based approaches 
(e.g., drug-likeness), most desired properties need to be 
estimated by data-driven QSAR or QSPR models. This can 
be the case for many reasons: (1) some chemical properties, 
such as bioactivity, are too complex to be estimated solely 
from a fixed set of predefined rules; (2) machine learning 
(ML)predictions are much cheaper to obtain compared to 
resource-intensive wet-lab measurements or physics-based 
simulations; or (3) there is a sufficient amount of labelled 
data that can serve as a starting point for faster convergence 
to target chemical spaces. We denote properties modeled 

from data as fθ to distinguish them from properties φ that 
can be computed analytically.

Goal-oriented generation is usually framed as a multi-
objective optimization problem [20] where the aim is to 
maximize a scoring function defined as

where x ∈ R
D is a vector representation of a molecule, 

φj : RD → R and fθk : RD → R are the evaluation func-
tions for the jth and kth desired properties respectively, 
and wj and wk their contributions to the overall objective 
or score, with w in ]0,+∞) . Transformation functions σ 
can be used to map evaluation functions to [0,  1]. The 
choice of these transformations depends on the desired 
property value. For instance, if the desired property value 
lies within a specific range of values [a, b], then σ could 
be a double sigmoid function (Appendix  C) with low 
and high parameters set to a and b respectively. Finally, 
weights w are normalized resulting in an overall score 
within [0, 1], facilitating interpretation; a score closer to 
1 indicates greater suitability with respect to the overall 
objective.

Target property predictor
In this study, we simulate wet-lab experimental labeling 
and operate under the condition that ground truth val-
ues for a given target property k are consistently pro-
vided by an oracle f ⋆(x) . In our simulated environment, 
we have direct access to these oracle values for evaluat-
ing our models, rather than assuming their existence. To 
streamline the molecule generation process, we optimize 
a proxy fθ of the oracle f ⋆ to discover novel molecules.

This proxy is typically derived through supervised 
learning from available data D0 = {(xi, yi)}N0

i=1 , where 
xi ∈ R

D represents a vector of D-dimensional count fin-
gerprints for molecule i , and yi denotes its corresponding 
target value provided by the oracle f ⋆(xi) . Specifically, 
yi = f ⋆(xi) ∈ R for regression tasks, and for classification 

tasks, yi =
{

1 if f ⋆(xi) > δ

0 otherwise
 , where δ is a predefined 

threshold.
In this work, we employ random forest (RF) models 

[21] as property predictors for molecule generation. This 
choice stems from their demonstrated robustness to 
small perturbations in high-dimensional feature spaces 
compared to deep neural networks and linear regres-
sion models [22]. Moreover, RF models have been found 
to be hard to outperform by deep models on a variety 
of molecular property prediction tasks, thus they are a 
robust baseline for our problem [23].

(1)s(x) =
J

∑

j=1

wjσj
(

φj(x)
)

+
K
∑

k=1

wkσk
(

fθk (x)
)
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When deployed for goal-oriented generation, RF pre-
dictions are computed as

where B denotes the number of decision trees in the 
forest, θi represents the learned parameters of the i-th 
tree, and θ = {θ1, . . . , θB} encompasses all tree param-
eters. For regression tasks, fθi(x) ∈ R denotes the pre-
dicted value by the i-th tree, while for classification tasks, 
fθ (x) ∈ [0, 1] signifies the predicted probability of the 
positive class, which is obtained by averaging the discrete 
predictions fθi(x) ∈ {0, 1} from individual trees in the 
ensemble. Further details regarding the training proce-
dure of the RF model can be found in Appendix A.

Optimizing the molecule generator (REINVENT Loop)
We perform molecule generation using REINVENT [10], 
an algorithm employing an RNN for SMILES sequence 
generation and policy-gradient RL to guide the genera-
tion towards new SMILES that exhibit the desired prop-
erties according to a flexible scoring function, s(x) (Eq. 1), 
that can include various scoring components. In this 
work, we specifically address the case where s(x) includes 
at least one QSAR or QSPR model as a scoring compo-
nent (i.e., K > 0).

The RNN weights, which we denote as ψ , are first ini-
tialized with those of a pre-trained RNN ψ0 on ChEMBL 
data [24], then optimized to generate molecules x that 
maximize the reward given by the scoring function s(x) . 
At each optimization step, the scoring function evalu-
ates a batch P composed of P generated molecules, and 
the resulting reward is used to tune the RNN weights ψ . 
More precisely, this is done through stochastic gradient 
descent with respect to a loss function J (P) defined as

that represents the agreement between the pre-trained 
RNN log-likelihood log pψ0

(xp) modulated by the 
reward s(x) and the agent log-likelihood log pψ (xp) 
of the generated molecules in P . The agent log-like-
lihood log pψ (xp) refers to the probability of generat-
ing a SMILES sequence xp token by token, computed as 
log pψ (xp) =

∑T
t=1 log p(xt | xt−1, . . . , x1) , where each xt 

is a token in the sequence. The influence of s(x) is con-
trolled by the pre-defined hyperparameter �.

Additionally, at each optimization step, REIN-
VENT stores a set Mr of chemically valid and structurally 
diverse molecules that have scores above a pre-defined 

(2)fθ (x) =
1

B

B
∑

i=1

fθi(x),

(3)

J (P) = 1

P

P
∑

p=1

[

log pψ0
(xp)− �s(xp)− log pψ (xp)

]2

threshold value. This memory set is formed via the Diver-
sity Filters functionality in REINVENT  , which ensures 
that generated molecules are added to different scaffold-
specific buckets if they meet the score threshold. These 
filters discourage the generation of similar molecules 
once a scaffold-specific bucket reaches capacity.

A generation cycle with REINVENT  completes (i.e., 
returning the final set Mr ) once a pre-defined number of 
optimization steps is reached. In a classical setting (i.e., 
without active human intervention), s(x) is assumed to 
be static throughout R generation cycles. In our setting, 
we describe how s(x) is adapted at every generation cycle 
after fine-tuning the property predictor with human 
feedback.

This procedure is referred to as the “REINVENT Loop” 
in Fig. 1.

Fine‑tuning the target property predictor (Active Learning 
Loop)
We introduce an AL loop following each generation cycle 
where a data acquisition criterion is employed to select 
L batches of T predicted high-scoring molecules from 
a pool Ur , aiming to enhance the property predictor fθ 
towards a specified objective. For instance, the EPIG 
acquisition criterion selects molecules whose observa-
tion by the predictor could reduce its predictive uncer-
tainty at given inputs of interest (Eq. 5). For l = 1, . . . , L , 
each selected batch Sl undergoes evaluation by a human 
expert to ensure relevance of high-scoring molecules 
with respect to the target property. To streamline human 
interaction and optimize sample efficiency, a small batch 
size T is utilized.

During evaluation, each molecular structure, denoted 
as xt within the batch is presented via an interactive GUI 
interface. In simulated scenarios, it is routed to a surro-
gate model of the human expert, denoted as fhuman . The 
expert assesses each structure and provides an agreement 
score ut = fhuman(xt) ∈ [0, 1] quantifying the extent to 
which they agree with its association to a high predicted 
score. The label ht for the evaluated molecule is then 
derived from this score ut.

Upon evaluating T molecules, the target property pre-
dictor undergoes fine-tuning by incorporating the newly 
acquired data points. Specifically, predictor parameters θ 
are updated to minimize prediction errors with respect 
to ground truth labels yi for initial training samples in D0 
and expert-provided labels ht for all newly acquired sam-
ples in Dr = {Dr−1 ∪ Sl} as follows

(4)

θ = argmin
θ

1

N0

N0
∑

i=1

ℓ(fθ (xi), yi)+
1

T

T
∑

t=1

utℓ(fθ (xt), ht)
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where ut ∈ [0, 1] are considered as the confidence scores 
assigned by the human expert which directly influence 
the weighting of each new observed sample during pre-
dictor retraining, with higher expert confidence scores 
exerting greater influence.

This sample weighting strategy acknowledges the 
uncertainty associated with expert assessments, par-
ticularly when agreement with model predictions is 
ambiguous (e.g., ut ≈ 0.5 ). Such inputs provided by 
the expert are deemed less reliable and thus have less 
impact during predictor retraining. Finally, the updated 
predictor replaces the previous one in the scoring func-
tion for subsequent generation cycles.

This procedure is referred to as the “Active Learning 
Loop” in Fig. 1.

Both loops can be repeated for a given number of 
iterations R.

Data acquisition criteria
At the completion of a generation cycle (i.e., 
nstep = Nsteps ), an acquisition criterion is used to select 
a molecule xt for the human expert to evaluate. In typi-
cal AL settings, molecules would be selected from a pool 
available before training the property predictor. In our 
setting, molecules are selected from a pool Ur = {xm}Mm=1 
which corresponds to a set of high-scoring molecules 
stored in memory Mr across all optimization steps from 
the completed generation cycle. The acquisition criterion 
depends on the property predictor fθ . In this study, we 
compare the performance of different acquisition criteria 
against a random sampling baseline:

• Expected Predictive Information Gain (EPIG) [18] 
measures how much learning about a given data 
point (molecule) can improve predictions across 

 Loss

SMILES
Generator

REINVENT Loop

Active Learning Loop

Acquisition
Criterion

Update

Optimize

Feedback

Sample 
Batch

Score

and

Generalization Performance

Loss

   QSAR          
 Predictor

Store in
Memory

Fig. 1 HITL-AL for goal oriented molecule generation. The method consists of two interleaved loops. The REINVENT loop (shown in black) describes 
the SMILES molecule generator whose parameters ψ are optimized via stochastic gradient descent for a given number of steps Nsteps to maximize 
the likelihood of generating high-scoring molecules by a target property predictor fθ . The Active Learning loop (shown in red), starting after the last 
step of each REINVENT loop, applies a data acquisition criterion to the property predictor fθ and a pool Ur of high-scoring molecules generated 
via pψ to select a set of queries Sl = {xt}Tt=1 for a human expert (or a model of a human expert fhuman ) to evaluate. Expert agreement scores ht 
with respect to the property predictions are collected in the form of additional training data Sl = {(xt , ht)}Tt=1 used to fine-tune the predictor 
parameters θ . The entire process can be repeated for r = 1, 2, . . . , R rounds, where each round r starts by initializing the SMILES molecule generator 
with the optimized parameters ψ and replacing the property predictor in the REINVENT loss J with the updated one from the previous round r − 1 . 
As an example, we show on the bottom right of the figure how fθ generalization to new samples from pψ is improving, using Nsteps = 250 
and R = 4
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other unseen data points, drawn from a target input 
distribution p⋆(x⋆).

 An intuitive way to understand EPIG is to think of 
it as estimating how much the predictive uncer-
tainty for molecules of interest x⋆ (e.g., the top 
1% of high-scoring molecules) will decrease after 
receiving human feedback on a specific molecule 
x sampled from the generated pool Ur . In other 
words, EPIG asks “How useful will this molecule be 
in reducing uncertainty about future promising mol-
ecules?”. The higher the EPIG score, the more likely 
it is that knowing the true evaluation of this mol-
ecule will improve the property predictor ability to 
recognize optimal molecules in the future.

 Mathematically, EPIG can be formulated as the 
expected mutual information between y and 
y⋆ given x and x⋆ , which can be written as an 
expected KL divergence between the joint distri-
bution p(y, y⋆ | x, x⋆) and the product of marginals 
p(y | x)p(y⋆ | x⋆) : 

 where p(y | x) = Ep(θ |Dr )[p(y | x, θ)] , 
p(y⋆ | x⋆) = Ep(θ |Dr )[p(y⋆ | x⋆, θ)] , and 
p(y, y⋆ | x, x⋆) =

∫

p(y | x, θ)p(y⋆ | x⋆, θ)p(θ | Dr) dθ.

 Molecules associated with the T highest EPIG 
scores are selected to form a batch Sl.

 As outlined in Bickford Smith et al. [18], the EPIG 
criterion requires defining a conditional predic-
tive distribution p(y | x) for each x ∈ Ur and a tar-
get input distribution p⋆(x⋆) . In the context of RFs, 
each decision tree fθi is treated as an individual 
parameter value θi . Consequently, each prediction 
fθi(x) can be interpreted as a result of condition-
ing on θi . This yields a collection of predictions 
{fθi(x)}Bi=1 conditioned on B parameter values. By 
averaging over B, we obtain a conditional predictive 
distribution p(y | x) , where y represents the target 
class label for RF classifiers or the target value for 
RF regressors.

 To apply EPIG for reducing uncertainty about future 
promising molecules, we define the target input dis-
tribution p⋆(x⋆) as the probability density function of 
the distribution of top-k molecules associated with 
the highest predicted scores in the pool Ur : 

(5)
EPIG(x) =Ep⋆(x⋆)

[

KL[p(y, y⋆ | x, x⋆)

|| p(y | x)p(y⋆ | x⋆)]
]

 where σ
(

fθ (x⋆)
)

→ [0, 1] represents the predicted 
score for molecule x⋆ , and the denominator is the 
sum of predicted scores over all top-k molecules in 
the pool Ur . In our experiments, we set the top num-
ber k to 1000.

• Greedy corresponds to the predicted score for each 
x ∈ Ur . 

 where σ : fθ (x) → [0, 1].
 Molecules associated with the T highest predicted 

scores are selected.
• Uncertainty quantifies the predictor uncertainty for 

each x ∈ Ur.
 Since we are using RF models, we compute uncer-

tainty as the disagreement or variance within 
the predictions made by the individual trees if 
fθ (x) → R

 or as the Shannon entropy [25] in the predicted 
probabilities if fθ (x) → [0, 1]

 Molecules associated with the T highest predictive 
uncertainties are selected.

 The key difference between uncertainty sam-
pling and EPIG is that, while uncertainty quantifies 
the model’s confusion about a specific prediction (i.e., 
“How unsure am I about this prediction?”), EPIG looks 
at the potential information gained from learning 
about a data point to improve predictions on other 
inputs (i.e., “How much will learning about this mol-
ecule reduce my overall uncertainty?”). In summary, 
uncertainty focuses on a single point, while EPIG con-
siders the broader impact of acquiring new informa-
tion across the target dataset.

• Random. It is used to uniformly randomly sample T 
molecules from Ur.

The full procedure is summarized in Algorithm 1.

(6)p⋆(x⋆) =







σ(fθ (x⋆))
�

x∈U top k
r

σ(fθ (x))
if x⋆ ∈ Ur

0 otherwise

(7)Greedy(x) = σ
(

fθ (x)
)

(8)

UncertaintyRegression(xt ) =
1

B

B
∑

i=1

(

fθi (x)− f̄θ (x)
)2

,

(9)
UncertaintyClassification(xt)

= −[fθ (x) log fθ (x)

+(1− fθ (x)) log(1− fθ (x))]
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Algorithm 1 Fine-tuning the target property predictor fθ for molecule 
generation

Experiments
Our experiments aim to showcase the benefits of inte-
grating human feedback through AL to refine target 
property predictors, compared to no predictor refine-
ment (i.e., the predictor remains static throughout R 
rounds of the REINVENT loop). The improvement is 
measured in terms of error reduction between the pre-
dicted scores and the oracle scores associated with the 
generated molecules that the predictor identifies as 
promising for satisfying the target property. A diminish-
ing error over R generation cycles indicates an enhanced 
predictor generalization to new molecules from REIN-
VENT  . This means that molecules identified as promis-
ing by the predictor are also promising according to the 
oracle. Consequently, optimizing a target property pre-
dictor that generalizes well outside its training domain 
results in generating more molecules that satisfy the tar-
get property.

We conducted various experiments, first involving sim-
ulated experts, then human experts providing feedback 
on molecules generated by REINVENT and optimized via 
RF predictors for specific target properties. Here, we out-
line two distinct use case scenarios: the first one focuses 
on optimizing molecules to achieve penalized LogP val-
ues within a defined desired interval, while the second 
targets the optimization of molecule bioactivity for a spe-
cific protein receptor, DRD2.

Require: pre-trained RNN ψ0, scoring function s (Equation 1), target property pre-
dictor fθ (Equation 2), acquisition criterion (Equation 5, 7, 8 or 9), expert
fhuman

1: Initialize RNN weights ψ ← ψ0
2: Initialize predictor training data Dr=0 ← D0
3: for r ← 1 to R do
4: Initialize memory Mr ← ∅
5: for step ← 1 to Nsteps do
6: Get batch of generated molecules P = {xp | xp ∼ pψ(x)}Pp=1
7: Update RNN weights ψ ← ψ − α∇ψJ(P) (Equation 3)
8: Store in memory Mr ← Mr ∪ {xp ∈ P | s(xp) > 0.5}
9: end for

10: Get pool of generated molecules Ur = {xm | xm ∼ Mr}Mm=1
11: for l ← 1 to L do
12: Sl = {xt}Tt=1 ← Acquisition(Ur, T, criterion)
13: Sl ← {(xt, ht)}Tt=1, ht = fhuman(xt)
14: Dr ← Dr−1 ∪ Sl, T += T
15: Update predictor parameters θ (Equation 4)
16: end for
17: Replace fθ in s
18: end for

Use case 1: generation of molecules with optimal penalized 
LogP values
The aim of this use case is to generate new molecules 
with a penalized LogP within [2, 4], indicating sufficient 
lipophilicity for good absorption and distribution in the 
body. The penalized logP score of a molecule is defined as 
its octanol-water partition coefficient minus its synthetic 
accessibility (SA) score and number of long cycles [26].

We first train a penalized LogP predictor using a 
subet of 250 SMILES extracted from ChEMBL, then 
cleaned and filtered following Baltruschat and Czod-
rowski approach [27]. Extended Connectivity Morgan 
Fingerprints [28] of radius 3 (ECFP6) and length 2048 
were generated using RDKit [29], alongside their associ-
ated LogP values which were calculated using the penal-
ized LogP oracle described in Appendix D. We employed 
Scikit-learn [30] to fit a Random Forest Regressor (RFR) 
to all 250 ECFP6 vectors, optimizing hyperparameters 
(n_estimators=300 and min_samples_split=2) 
to minimize the Mean Squared Error (MSE) across 5 
cross-validation folds. The resulting model achieved a 
Pearson linear correlation coefficient of 0.72 between 
true and predicted LogP values on a holdout test set of 
600 SMILES from ChEMBL (Additional file 1: Figure S1).

For the REINVENT loop, we set the number of epochs 
Nsteps to 250 and we keep the default value of 128 for 
batch size P. The hyperparameter � in the REINVENT loss 
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function (Eq. 3) is also set to 128 by default. The scoring 
function comprises a single component which corre-
sponds to the pre-trained RFR to which a double sigmoid 
transformation is applied to map the estimated LogP 
values to [0, 1], such that values lying within the desired 
range of [2, 4] result in transformed scores close to 1 (i.e., 
high reward scores). This double sigmoid transformation 
is illustrated in Appendix C.

For the Active Learning loop, we set the number of 
batches L to 5. We tried different query batch sizes 
T = {10, 20, 30} and different data acquisition criteria 
(described in subsection 2.4.1) in separate trials. For each 
trial experiment, we chose to perform multiple iterations 
of batch AL instead of one, because of the advantages 
this may provide in terms of user experience and train-
ing efficiency. In fact, asking an expert to evaluate smaller 
batches iteratively instead of a larger batch at once may 
reduce the burden and prevent potential errors asso-
ciated with fatigue and boredom from repetitiveness. 
Furthermore, iterative retraining on smaller batches can 
streamline the feedback process, since the expert can 
work with a model that becomes increasingly efficient at 
selecting the most informative or challenging instances 
in next AL iterations. Also, in cases where manipulation 
errors may occur (e.g., skipping a query or submitting an 
unintended answer), iterative batch active learning can 
help recover those. We set the number of rounds R to 4 
in all trials.

To facilitate the execution of multiple trial experiments 
with various AL batch sizes and acquisition methods, 
we simulate an expert providing feedback by defining an 
expert surrogate as

where f ⋆(x) ∈ R corresponds to the penalized LogP 
score oracle. This model assumes that, on average, an 
expert would accurately tell if a given query molecule 
xt is likely to exhibit moderate lipophilicity up to some 
normally-distributed noise. For each xt , a noise value is 
sampled from a Gaussian distribution with mean 0 and 
standard deviation σǫ to mimic cases where expert eval-
uation may deviate from that of the ground truth. We 
consider σǫ = {1.0, 5.0} to evaluate our approach’s sen-
sitivity to varying levels of noise in expert feedback. We 
also consider the ideal scenario where queries are directly 
evaluated by the oracle (i.e., ǫ = 0).

Use case 2: generation of DRD2 binders
For this use case, we employed two distinct forms of 
feedback to refine the property predictor. The first, 
as described in Eq.  11, is an in-silico evaluator which 
assesses selected batches of molecules based on their 

(10)fhuman(xt) = f ⋆(xt)+ ǫ, ǫ ∼ N (0, σǫ)

predicted probabilities of DRD2 bioactivity. It was 
used to simulate expert feedback in our experiments. 
The second form of feedback involves real human 
assessments. Human experts evaluated the molecules 
through an interactive interface, providing agree-
ment scores (ranging from 0 to 1) on proposed DRD2 
actives, which were subsequently used to fine-tune the 
predictor.

Mono-objective optimization. For training the bioac-
tivity predictor, we selected a subset of 240 SMILES from 
the ExCAPE database [31] such that they are representa-
tive of only two topological scaffolds. This was done to 
mimic usual real-world scenarios where existing experi-
mental datasets are limited in size and diversity, espe-
cially in the early phases of drug discovery projects, and 
the aim is to explore the chemical space to identify novel 
molecules. ECFP6 vectors of length 2048 were generated 
using RDKit. Binary activity labels were obtained from a 
DRD2 oracle model described in Appendix  D, resulting 
in 62 active samples and 178 inactive ones. After per-
forming a 5-fold cross-validation, we fit a Scikit-learn 
Random Forest Classifier (RFC) with 200 estimators and 
a maximum tree depth of 10 to all 240 samples. Model 
performance was measured across different classification 
metrics described in Appendix A and reported in Addi-
tional file 1: Table S1.

We use the same settings as for the previous use case. 
The only difference is in the scoring function which com-
prises the pre-trained RFC predicting the probability of 
a given generated molecule to be active against DRD2. 
No transformation is applied in this case since predicted 
class probabilities always fall within the REINVENT score 
range of [0, 1].

We define the simulated expert for this use case as

where f ⋆(xt) ∈ [0, 1] corresponds to the predicted 
positive class probability from the DRD2 oracle and 
g : R → [0, 1] is a clipping function ensuring that the 
transformed oracle score remains within the range [0, 1] 
after introducing the normally-distributed noise term ǫ.

This approach assumes that, on average, an expert 
in DRD2 can generalize better to unseen molecules in 
the sense that their assessment would be better aligned 
with the true probability of DRD2 bioactivity. The noise 
term is added to the oracle score to simulate more 
realistic scenarios where an expert deviates or fails to 
perceive the true probability of DRD2 bioactivity for a 
given molecule. We consider σǫ = {0.15, 0.3} as reason-
ably noisy experts, and σǫ = {0.5, 0.7} as more extreme 
noise levels, as well as the ideal scenario where queries 
are directly evaluated using the oracle (i.e., ǫ = 0).

(11)
fhuman(xt) = g

(

f ⋆(xt)+ ǫ
)

∈ [0, 1], ǫ ∼ N (0, σǫ)
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Multi-objective optimization. This experiment 
describes more commonly encountered scenarios in drug 
discovery projects, where multiple objectives might be 
optimized simultaneously. We consider the task of gener-
ating molecules that are not only potential DRD2 binders 
but also tailored for high drug-likeness and minimal hERG 
bioactivity (i.e., minimizing the risk of hERG channel acti-
vation and subsequent arrhythmia [32]).

We then use J = 2 additional objectives in the scoring 
function (Eq. 1). DRD2 and hERG bioactivity objectives 
are assigned equal weights ( w0 = 1 and w1 = 1 ), while the 
drug-likeness objective, quantified via the Quantitative 
Estimation of Drug-likeness (QED) score, is assigned a 
weight of w2 = 0.5.

The QED score is determined using the RDKit imple-
mentation [33], and the hERG bioactivity score is a 
probability value given by an oracle (described in Appen-
dix D), to which a probability flipping transformation is 
applied, ensuring that molecules with lower hERG bio-
activity probabilities get higher reward scores. The hERG 
bioactivity objective here was considered among the non-
data-driven descriptors since our focus in this experi-
ment is not to fine-tune it. We leave the fine-tuning of 
multi-task target property predictors for future work.

For the first iteration of the REINVENT loop, we set 
Nsteps to 1200 so that the generator goes through a suf-
ficient number of optimization steps to achieve a high 
balanced score between the three objectives, and there-
fore generate a representative initial pool Ur for the first 
iteration of the Active Learning loop. We set � to 180 in 
the REINVENT  loss function to accelerate convergence 
to high reward scores from the multi-objective scoring 
function. Nsteps was then reduced to 250 with the pur-
pose of fine-tuning the generation process after observ-
ing expert feedback.

In the Active Learning loop, Ur is defined as the set of 
generated molecules with DRD2 bioactivity scores higher 
than 0.5. The simulated expert, as described in the mono-
objective setting, provides a score representing their 
agreement level with the proposed molecules predicted 
as promising DRD2 binders.

Comparison with other approaches and different 
configurations
Considering the mono-objective generation setting, 
we evaluate how well our approach behaves compared 
to other strategies and configurations applied to the 

Fig. 2 Metis GUI displaying molecules generated based on a DRD2 predictor, a hERG predictor and QED that were selected based on EPIG 
acquisition criterion for updating the DRD2 predictor
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generator or the property predictor before or during the 
generation process. These configurations include:

• Initializing REINVENT  with a generative agent pre-
trained on the initial training set of the property pre-
dictor.

• Optimizing Tanimoto fingerprint similarity [34] 
between generated molecules and known molecules 
from the initial training set.

• Applying post-hoc calibration through the Platt Scal-
ing method [35] to the property predictor before 
using it in REINVENT  . Platt Scaling involves fitting 
a logistic regression model to a classifier’s raw scores, 
transforming them into calibrated probabilities using 
a sigmoid function.

Platt Scaling can only be applied to binary classification 
models, therefore we apply it to the DRD2 bioactivity use 
case only.

Moreover, we assess the impact of lower and higher 
human feedback frequency by setting the number of opti-
mization steps in the REINVENT Loop Nsteps to 150, 500 
and 1000 in separate trials.

Human experiments
Finally, we validate our approach in a real-world, multi-
objective molecule generation scenario where a chemis-
try expert interacts with the property predictor through 
the Metis GUI [19].

This experimental design mirrors our previous multi-
objective generation setting focused on generating DRD2 
actives with high QED and low hERG bioactivity. How-
ever, instead of relying on simulated expert feedback, we 
collect real feedback through the GUI that displays mol-
ecules selected through batch AL alongside their associ-
ated DRD2 predicted bioactivities.

As shown in Fig. 2, the queried expert can answer how 
strongly they agree with a given selected molecule being 
predicted as DRD2 active using a slider ranging from 0 
(strongly disagree) to 100% (strongly agree). The slider 
value initializes at 50% , allowing the expert to maintain 
this value if they have no specific opinion about a given 
molecule. For instance, if the slider is positioned at 40% 
by the expert, then the label ht given to the queried mole-
cule is 0 since the slider value is lower than the threshold 
of 50% , while the confidence score ut = 100− 40 = 60% , 
reflecting how much the expert was confident in their 
disagreement with the QSAR model prediction.

Fig. 3 Generalization performance of the penalized LogP predictor to molecules generated at each step of the process. a Mean oracle score 
of molecules generated by optimizing the oracle itself (i.e., best-case scenario) and the fine-tuned LogP predictor. b MAE between predicted 
and oracle LogP values. For both metrics, we report the means and standard deviations across 10 different replicates of each experimental run. The 
start of the Active Learning loop at each round is illustrated by a star. The noise in simulated expert feedback increases from left to right



Page 11 of 24Nahal et al. Journal of Cheminformatics          (2024) 16:138  

For each experiment, we started with the initial gen-
erative agent optimized in the previous experiment for 
1200 steps then performed a total of 3 rounds, with 
L = 5 batch AL iterations, using EPIG as acquisition 
criterion and a batch size T of 10 molecules.

We used Metis  features to help the expert in pro-
viding more informed assessments about the selected 
molecules. These features include visual explanations of 
DRD2 bioactivity predictions, highlighting molecular 
fragments based on their positive and negative atomic 
contributions to bioactivity (Additional file  1: Figure 
S2), and a similarity search algorithm based on MACCS 
keys that selects the most similar active molecules from 
the initial training set of the DRD2 predictor (Addi-
tional file 1: Figure S3). All GUI settings used for these 
experiments, including which additional features were 
displayed on the Metis  interface to support chemist 
feedback, are provided in Additional file 1: Listing S1.

In the subsequent section, we present results derived 
from three distinct human experiments, each involving 
a different expert in fine-tuning a DRD2 bioactivity pre-
dictor within the multi-objective generation scenario 
described above. The two first experts are experienced 
in generative chemistry and interact regularly with syn-
thetic chemists to suggest useful solutions and adapt 
the generative tools to their needs. The third expert is 

more experienced in medicinal chemistry. All are co-
authors of the manuscript.

Results and discussion
Simulated experiments
Use case 1: generation of molecules with optimal penalized 
LogP values
We initiated our investigation by assessing the efficacy 
of our approach under various acquisition strategies-
random, uncertainty, greedy, and EPIG-while querying 
a simulated expert. This expert’s reliability was mod-
eled with three noise levels: noise-free ( ǫ = 0 ), moderate 
noise ( σǫ = 1.0 ) and high noise ( σǫ = 5.0 ). Our findings 
indicate that integrating AL to update the penalized LogP 
predictor contributes to the progressive alignment of 
penalized LogP estimates with oracle values over time 
(i.e., reduction of the MAE, figure 3), resulting in the gen-
eration of molecules that are more likely to achieve the 
desired target (in this case, a penalized LogP within 2 and 
4) according to the oracle (Fig. 4). Notably, these positive 
outcomes persist even in the presence of increased levels 
of noise in the simulated expert feedback, underscoring 
the robustness of our AL approach to unreliable inputs 
that may occur in real-world scenarios.

Our comparison of the four acquisition strategies 
revealed similar performance for EPIG, uncertainty 
and greedy sampling in improving the generalizability 

Fig. 4 EPIG-guided active learning improves the generation of molecules with desired penalized LogP values according to the oracle compared 
to the “No Feedback” baseline. This improvement is visible in the concentration of points within the green rectangular target area and the increasing 
linear correlation between oracle and predicted LogP values. The plot shows the predicted LogP values better aligning with the oracle values 
over the course of the generation runs. We report these values for all generated molecules with a transformed predicted LogP score above 0.5. 
The generation runs with AL updates using EPIG as the acquisition criterion and noisy simulated experts are shown in red, while the “No Feedback” 
baseline is shown in gray
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of the LogP predictor in terms of significantly reduc-
ing the MAE between estimated and oracle values, with 
greater performance than a random sampling baseline 
and a slightly higher performance when using model 
uncertainty as a criterion for data acquisition, followed 
by EPIG. To statistically validate these findings, we con-
ducted an ANOVA test, which indicated significant dif-
ferences across the acquisition strategies (F-statistic = 
16.63, p-value < 1× 10−10 ). Further pairwise compari-
sons using Tukey HSD test revealed several significant 
differences between the strategies. Specifically, EPIG, 
uncertainty, and greedy sampling methods significantly 
outperformed the “No Feedback” baseline in terms of 
mean LogP predictor accuracy, with p-values < 5× 10−4 . 
EPIG also significantly improved performance over ran-
dom sampling (p-value = 2× 10−4 ), while no significant 
differences were observed between EPIG, uncertainty, 
and greedy sampling themselves. These statistical analy-
ses confirm that the choice of acquisition strategy has a 
substantial impact on the improvement of the model 
accuracy, with EPIG and model uncertainty criteria 
showing the most promise.

Additional performance metrics, provided by the 
benchmarking platform MOSES [36] and described in 
Appendix E, for the final selection (i.e., resulting from the 
final optimization step) of high-scoring molecules stored 
in memory are summarized in Table 2. We can observe 
that expert inputs do not significantly deteriorate the 
internal diversity of final molecular sets in comparison 
with the “No Feedback” baseline. Our results also dem-
onstrate that both EPIG and random sampling signifi-
cantly improve the exploitation-exploration trade-off, 
which can be observed by a maintained internal diversity 
score and an increased similarity between the generated 
molecules and those present in the initial training set 
when comparing with the “No Feedback” baseline. More-
over, based on the similarity metrics measured between 
the sets of generated molecules and the expert queries 
that were selected using each acquisition criterion, EPIG 
appears to identify the additional training molecules 
which are the most informative for improving the gen-
eralizability of predictions for the current most promis-
ing designs. Moreover, using AL with expert feedback to 
refine the LogP predictor leads to the generation of more 
synthetically accessible molecules in comparison with 
the “No Feedback” baseline and the random sampling 
strategy.

Comparison with  other approaches and  different con-
figurations Comparison with other approaches to 
improve model predictions. Our approach was rigor-

ously compared with several baselines to assess its effec-
tiveness. One baseline involved constraining the molecule 
generator to remain close to the training set, ensuring 
generated molecules were similar to known examples. 
Another baseline used transfer learning to pre-train the 
molecule generator using the initial training set of the pre-
dictor, enhancing the generator’s focus on relevant chemi-
cal space from the start of the generation process. Among 
these approaches, constraining the generator with respect 
to training set similarity led to the lowest MAE between 
predicted and oracle values (Additional file 1: Figure S6). 
While this strategy resulted in lower MAEs, it imposed 
strong limitations on the type of chemistry that could be 
explored. Moreover, pre-training the molecule generator 
significantly improved the LogP predictor generalizability 
in comparison with the “No Feedback” baseline, as well 
as AL using EPIG, resulting in a lower MAE at the start 
of the molecule generation process, which increased as 
the process continued. Notably, when using EPIG for AL, 
the MAE progressively reduced, eventually matching the 
MAE achieved by the pre-trained generator.

Impact of the number of human queries. The num-
ber of human queries significantly impacts AL results, 
particularly when employing random sampling. With 
a lower number of selected queries, the performance 
of random sampling was suboptimal. As the number of 
human queries increased, the AL results using random 
sampling improved, highlighting the need of some acqui-
sition strategies for larger query budgets. Even when 
using the lowest query budget T = 10 , the AL approach 
results in improved predictor generalization performance 
over time (Additional file 1: Figure S4).

Optimal frequency of human queries. The frequency 
of querying humans for feedback is another crucial fac-
tor influencing the performance of our AL approach. We 
tested different human querying frequencies (every 150, 
250, 500 and 1000 generator optimization steps). Results 
are illustrated in Additional file 1: Figure S5. For updating 
regression models such as the LogP predictor, querying 
every 150 steps was found to be suboptimal, suggesting 
that the generator might not have adequate time to adapt 
from the feedback and converge to more optimal chemi-
cal spaces. Conversely, querying every 500 or 1000 steps 
may result in increasing the MAE between oracle and 
predicted values, indicating that less frequent updates 
can cause the predictor to not generalize well anymore 
to new explored regions of the chemical space. Through 
experimentation, querying every 250 steps emerged as 
the most optimal frequency. This balanced approach 
provided the model with sufficient time to integrate 
feedback and update its predictions effectively, ensuring 
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better alignment with oracle values and improved overall 
generalization.

Use case 2: generation of DRD2 binders
Mono-objective setting We follow the same procedure to 
investigate the results from the generation of DRD2 bio-
active molecules based on the DRD2 bioactivity predictor. 
We observe that, in comparison with the “No Feedback” 
baseline, all acquisition strategies resulted in improved 
alignment between predicted and oracle DRD2 values 
(measured in terms of MAE between predicted and oracle 
probabilities of being DRD2 active) even under the pres-
ence of increasingly noisy feedback (Fig. 5).

Among these strategies, uncertainty sampling emerges 
as the best performing one in terms of MAE reduction, 
outperforming EPIG, greedy, and random sampling 
strategies. Statistical analysis using the Tukey HSD test 
indicated significant differences between the “No Feed-
back” baseline and all acquisition strategies (ANOVA, 
F(3, 36) = 19.87, p-value < 1.85× 10−12 ). Specifically, 
all acquisition methods significantly improved MAE 
compared to the baseline ( p-value < 0.001 ), with uncer-
tainty sampling showing the most substantial improve-
ment. However, no significant difference was observed 
between uncertainty sampling and EPIG (mean differ-
ence = −0.1094, p-value = 0.0723 ), suggesting similar 

Fig. 5 Generalization performance of the DRD2 bioactivity predictor to molecules generated at each step of the process. a Mean oracle 
score of molecules generated by optimizing the oracle itself (i.e., best-case scenario) and the fine-tuned DRD2 bioactivity predictor. b MAE 
between predicted and oracle DRD2 bioactivity scores. For both metrics, we report the means and standard deviations across 10 different replicates 
of each experimental run. The start of the Active Learning loop at each round is illustrated by a star. The noise in simulated expert feedback 
increases from left to right
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effectiveness in enhancing the DRD2 bioactivity predic-
tor’s generalizability. The comparison between EPIG and 
greedy sampling yielded a mean difference of 0.0524 with 
a p-value of 0.717 , indicating no statistically significant 
difference. Similarly, the comparison between EPIG and 
random sampling methods resulted in a mean difference 
of −0.0062 with a p-value of 0.9999 , indicating no statisti-
cally significant difference.

The observed rise in the MAE between AL steps can 
be attributed to the fact that, after each update, the prop-
erty predictor is again deployed to explore new regions 
of the chemical space, where prediction errors may 
become more likely. Following each AL step, the predic-
tor receives expert feedback in the form of new training 
data points, which expands its knowledge of the cur-
rent chemical space and reduces prediction errors (as 
reflected by the sharp dips in MAE). However, as the pro-
cess progresses through subsequent REINVENT steps, 
the predictor increasingly ventures outside of its training 
distribution, leading to a gradual rise in MAE.

Additionally, the molecules generated under EPIG 
score highly for QED and are more synthetically accessi-
ble, as evidenced by a lower SA score compared to other 
acquisition strategies (Table  3). The underlying mecha-
nism for why EPIG might result in molecules with higher 
synthetic accessibility and drug-likeness could be linked 
to both the nature of EPIG’s sampling strategy and the 
feedback given to the selected molecules via EPIG.

On the one hand, since EPIG aims to reduce predictive 
uncertainty in the most promising molecules, it might be 
inherently biased towards regions of the chemical space 
that are well-understood and well-represented in the 
training data. These regions are likely to contain mol-
ecules that are not only bioactive but also synthetically 
accessible and drug-like. On the other hand, the feedback 
provided by the noisy oracles on the selected molecules 
might implicitly consider factors like synthetic accessibil-
ity and drug-likeness in their evaluations. This feedback 
loop could gradually steer the model towards favoring 
molecules that score well on these practical metrics, even 
if they are not directly part of the initial scoring function. 
This could stem from the fact that the updated QSAR 
model might now use features related to drug-likeness 
and synthetic accessibility to predict bioactivity. Thus, 
when EPIG selects molecules to reduce uncertainty in 
bioactivity predictions, it might inadvertently select mol-
ecules with favorable synthetic accessibility and drug-
likeness due to these underlying correlations.

Despite uncertainty sampling resulting in higher per-
formance on the MAE metric, EPIG’s advantages in 
producing more drug-like and synthetically feasible mol-
ecules make it a compelling choice. These factors are cru-
cial for real human-in-the-loop experiments, where the 
goal is not only to predict DRD2 bioactivity accurately 
but also to discover drug-like candidates which are easy 
to synthesize. EPIG also appears robust to increased 

Fig. 6 EPIG-guided active learning improves the generation of molecules with high probabilities of DRD2 bioactivity according to the oracle 
compared to the “No Feedback” baseline. We report the oracle vs predicted activity probabilities for all generated molecules with a predicted 
activity above 0.5. The generation runs where AL updates using simulated expert models with different noise levels were used are shown in red, 
while the “No Feedback” baseline is shown in gray
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noise when simulating expert feedback, allowing for 
more efficient search for molecules with higher probabil-
ities of being DRD2 active (Fig. 6). Therefore, we choose 
EPIG as the acquisition function for human experiments 
to improve the generalizability of the DRD2 predictor, 
leveraging its balanced performance across multiple crit-
ical metrics.

Multi-objective setting In our exploration of multi-
objective molecule generation, particularly targeting 
DRD2 bioactives with inactivity against hERG and high 
drug-likeness (QED), our focus was still on updating the 
DRD2 bioactivity predictor through AL. In this multi-
objective setting, EPIG and random sampling under highly 
noisy feedback emerged as the most effective strategies in 
terms of improving the generalizability of the DRD2 bio-
activity predictor and aligning its outputs with the ora-
cle values, showcasing greater robustness and reliability 
(Fig. 7). ANOVA analysis indicated significant differences 
among acquisition strategies concerning their effective-
ness in reducing the MAE for predicting DRD2 bioac-
tivity ( F(3, 36) = 13.49 , p-value 8.40× 10−10 ). Post-hoc 
Tukey’s HSD tests revealed that EPIG (mean difference 
= −0.1101, p-value < 0.001 ), Greedy (mean difference 

= −0.0656, p-value = 0.008), Random (mean difference 
= −0.1311, p-value < 0.001 ), and Uncertainty sampling 
(mean difference = −0.0642, p-value = 0.010) significantly 
improved MAE compared to the baseline. Among pair-
wise comparisons between acquisition strategies, only 
Greedy vs. Random (mean difference = −0.0655, p-value 
= 0.008) and Random vs. Uncertainty (mean difference 
= 0.0669, p-value = 0.006) showed statistically signifi-
cant differences. No significant differences were observed 
between EPIG and Greedy (p-value = 0.154), EPIG and 
Random (p-value = 0.815), EPIG and Uncertainty (p-value 
= 0.132), or Greedy and Uncertainty (p-value = 1.0).

However, the improvement in terms of drug-likeness 
(QED) and synthetic accessibility is less notable and not 
statistically significant in comparison with the “No Feed-
back” baseline, at the exception of the greedy sampling 
strategy which results in significantly higher mean QED 
score (Table 4). Maintaining a sufficient level of internal 
diversity as well as drug-likeness and synthetic accessibil-
ity within generated molecules is crucial in multi-objec-
tive optimization settings where the balance between 
generating DRD2 actives and useful molecules simulta-
neously is essential. EPIG also showed potential in bal-
ancing exploration (i.e., diversity of generated molecules) 

Fig. 7 Generalization performance of the DRD2 bioactivity predictor to molecules generated at each step of the process (using a multi-objective 
scoring function). a Mean oracle score of molecules generated by optimizing the oracle itself (i.e., best-case scenario) and the fine-tuned DRD2 
bioactivity predictor. b MAE between predicted and oracle DRD2 bioactivity scores. For both metrics, we report the means and standard deviations 
across 10 different replicates of each experimental run. The start of the Active Learning loop at each round is illustrated by a star. The noise 
in simulated expert feedback increases from left to right
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and exploitation (i.e., similarity between generated and 
training molecules), as well as a good ability to retrieve 
the most informative additional training molecules to 
update the model, which is evidenced by the similarity 
metrics between generated molecules and the selected 
queries to be evaluated by the expert. Based on the 
simulated experiment results, we use EPIG as the data 
acquisition method of choice for the following human 
experiments.

Comparison with  other approaches and  different con-
figurations Comparison with other approaches to 
improve model predictions. For the DRD2 bioactiv-
ity use case, we compare our approach against the same 
baselines. Additionally, we include a third baseline which 
corresponds to the generative agent optimizing the DRD2 
bioactivity predictor calibrated beforehand using the Platt 
Scaling method. Our approach outperformed all three 
baselines in terms of reducing the MAE between pre-

Fig. 8 Evolution of the MAE between predicted and oracle DRD2 bioactivity scores during a multi-objective molecule generation run with (in 
red) and without (in gray) chemist intervention. EPIG was used for query selection. MAEs were computed on the top 500 high-scoring molecules 
across the three generation objectives

Fig. 9 a Chemist intervention using EPIG significantly improves the alignment between predicted and oracle DRD2 bioactivity scores (in 
red) compared to no intervention (in gray). To compare the impact of real chemist intervention versus the oracle (as described in Eq. 11), we 
also report the DRD2 bioactivity scores obtained through optimizing the fine-tuned predictor (in blue). EPIG was used for selecting the queries 
for both chemists and the oracle. b Percentage agreement of chemist assessments with DRD2 bioactivity predictions (solid orange line) and their 
confidence scores (dashed orange line) across the top 500 high-scoring molecules from the multi-objective generation run
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dicted and oracle DRD2 activities for the generated mol-
ecules (Additional file 1: Figure S9).

Impact of number of human queries. Similar to the 
LogP use case, all data acquisition strategies result in 
improved predictor generalization performance over 
time even when using the lowest query budget T = 10 
(Additional file 1: Figure S7).

Optimal frequency of human queries. A similar gen-
eralization performance (i.e., reduction of MAE between 
predicted and oracle DRD2 bioactivity probabilities) was 
observed when querying the expert at different frequen-
cies during the molecule generation process (every 150, 
250, 500 and 1000 generator optimization steps). Results 
are illustrated in Additional file 1: Figure S8.

Human experiments
Finally, we present the results derived from engaging with 
three distinct chemists, who were tasked with indicating 
their level of agreement, expressed through an interac-
tive slider, regarding the potential DRD2 bioactivity of a 
given generated molecule. Each chemist was requested 
to provide this assessment for a total of 50 molecules 
during each interaction round. To enhance chemist 

decision-making, we additionally provided them with 
images depicting the most similar active molecules to 
each newly generated molecule that are already present 
in the initial training set of the DRD2 predictor.

Across all three chemists, we observe an enhanced 
alignment between the mean predicted DRD2 bioactiv-
ity score and mean oracle score for the generated mol-
ecules throughout the process (Fig. 8). This indicates that 
incorporating chemist feedback on DRD2 predictions 
and updating the generative agent leads to exploring dif-
ferent regions of the chemical space where molecules 
are more likely to be bioactive according to the oracle 
(Additional file 1: Figure S10). This improved alignment 
is noted in comparison to scenarios where no feedback is 
solicited to update the DRD2 predictor, revealing a more 
pronounced gap between the predicted and oracle DRD2 
bioactivities, and therefore the production of less optimal 
molecules.

Regarding the enrichment of the top-scoring molecules 
in true positives, two out of the three chemist experi-
ments resulted in improved enrichment compared to 
the “No Feedback” baseline (Fig.  9a). The most notable 
improvement was observed when interacting with chem-
ist 3. Both the mean oracle score of the generated mole-
cules and the percentage of agreement with the predicted 
DRD2 bioactivities have increased as a result of updating 
the predictor based on chemist 3 feedback, suggesting 
that the general knowledge of this chemist about DRD2 
bioactivity better aligns with the true likelihood of DRD2 
bioactivity (Fig. 9b). Consequently, inferring well-aligned 
feedback from chemist 3 leads to an improved under-
standing of the structure-activity relationship by the 
updated DRD2 predictor which in turn improves the task 
of designing new active candidates for DRD2.

We also investigated how each chemist experienced 
this exercise after its completion. While the goal of 
acquiring feedback was to calibrate the DRD2 bioactiv-
ity predictor and obtain molecules that are more likely to 
be active, chemists 1 and 2 had a different understand-
ing. Chemist 1, who had never worked with the DRD2 
target before and lacked specific knowledge about the 
structure-activity relationship, understood the instruc-
tions to assess how much they liked the molecule as a 
lead. Consequently, they aimed to select molecules that 
were synthesisable, stable, and with reasonable lipophi-
licity to maximize the chances of them being made and 
tested in a project. Similarly, chemist 2, who was also 
unfamiliar with the DRD2 dataset and binding site, did 
not fully grasp the intended focus on assessing the valid-
ity of the DRD2 bioactivity predictions. We noticed 
that this misunderstanding stemmed from the question 
displayed through the GUI during these HITL experi-
ments, which was “How much would you prioritize 

Table 1 Metrics calculated on the top 500 high-scoring molecules 
obtained from a multi-objective molecule generation where 
DRD2 bioactivity, hERG inactivity, and QED were optimized 
simultaneously (†Total Oracle score combines both DRD2 
bioactivity and hERG inactivity oracles, as well as the QED score via 
Eq. 1. RO3 MolLogP is a lead-like filter which corresponds to the 
percentage of molecules that satisfy the condition MolLogP < 3)

Values that significantly differ from the "No Feedback" baseline (ANOVA p-value 
< 0.01) are marked with the superscript **. Values in bold correspond to the 
most performant methods in comparison with the "No Feedback" baseline

Metric (mean) No feedback With feedback on DRD2 
bioactivity

Chemist 1 Chemist 2 Chemist 3

DRD2 Predicted 
score

0.93 0.80 ** 0.81 ** 0.84 **

DRD2 Oracle 
score ↑

0.50 0.55 0.49 0.74 **

Mean Absolute 
Error ↓

0.42 0.25 ** 0.32 ** 0.10 **

QED score ↑ 0.57 0.61 ** 0.58 0.71 **
hERG inactivity 
score ↑

0.91 0.88 0.90 0.82

Total Oracle 

 score†↑
0.68 0.69 0.67 0.77 **

Internal Diversity ↑ 0.47 0.41 0.45 0.44

RO3 MolLogP ↑ 0.70 0.54 ** 0.79 ** 0.66

SA score ↓ 3.04 2.75 ** 2.82 ** 3.08

Novelty ↑ 1.0 1.0 1.0 1.0

Uniqueness ↑ 1.0 1.0 1.0 1 .0
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this molecule as a DRD2 binder?”. This question did not 
clearly convey the emphasis on validating the DRD2 bio-
activity predictions. For the third HITL experiment, we 
reformulated the question to “How strongly do you agree 
with this molecule being predicted as a DRD2 binder?” 
(Fig. 2) to better align with the goal of obtaining feedback 
on the predictor’s accuracy. Chemist 3 focused on known 
DRD2 actives to judge the plausibility of new proposed 
actives and also considered drug-likeness criteria. Unlike 
chemists 1 and 2, chemist 3 acknowledged a clear under-
standing of the goal, which explains why the third human 
experiment successfully led to the desired outcome. This 
highlights the importance of carefully designing user 
studies to enhance the efficiency of HITL approaches. 
Overall, all chemists found the interface easy to use and 
had a positive experience.

Furthermore, we investigated the enhancement of 
other metrics before and after querying the chemists. 
Table  1 displays the results for no feedback, as well as 
feedback from chemists 1 to 3 across different metrics 
from MOSES.

Overall, the inclusion of HITL-AL leads to a nota-
ble improvement in the outcomes of molecule genera-
tion across a various range of metrics. In comparison 
to when no chemist feedback is queried, the generated 
high-scoring molecules exhibit a significantly higher 
likelihood of being active against the target protein, 
as observed in interactions with chemist 3 (ANOVA 
p-value: 2.10−146 < 0.05 ). Additionally, molecules show 

improved properties, including better SA (the lower the 
SA score the easier to synthesize a molecule), as evi-
denced in interactions with chemists 1 (ANOVA p-value: 
9.10−91 < 0.05 ) and 2 (ANOVA p-value: 5.10−56 < 0.05 ), 
who focused their feedback on prioritizing mol-
ecules based on their SA, as well as higher QED, as a 
result of interacting with chemist 3 (ANOVA p-value: 
4.10−94 < 0.05 ). Notably, enabling HITL-AL with differ-
ent chemists during a goal-oriented molecule generation 
process leads to a better alignment between predicted 
and oracle scores for the top generated molecules (repre-
sented by lower mean absolute errors, ANOVA p-values 
of 5.10−156 , 7.10−70 and 1.10−250 from interacting with 
each chemist respectively). An interesting future direc-
tion would be to use an ensemble of predictive models 
updated from different chemists to score the generated 
molecules. Additionally, it does not compromise the final 
novelty and uniqueness of the generated molecules. The 
observed decrease in internal diversity compared to no 
feedback is not deemed significant (ANOVA p-values of 
0.22, 0.98 and 0.81 from interacting with each chemist 
respectively). These results underscore the importance 
of incorporating informed chemist feedback to augment 
ML predictions when used to guide molecule generation 
processes, ensuring more grounded predictions and lead-
ing to more meaningful and practical generation results.

Table 2 Metrics calculated for the final selections of high-scoring molecules according to the LogP predictor (Score > 0.5)

For all metrics, we report the mean and standard deviation across 10 different replicates of each experimental run. Up and down arrows indicate the expected 
direction of improvement for each metric. One-sided ANOVA tests were applied for statistical significance assessments, and performance significance with respect to 
the “No Feedback” baseline is marked with * (if p-value < 0.05 ) or ** (if p-value < 0.01)

Metric values in bold correspond to the most performant methods

Metric No Feedback Feedback ( T = 10)

EPIG ( σǫ = 5.0) Uncertainty ( σǫ = 5.0) Greedy ( σǫ = 5.0) Random ( σǫ = 5.0)

Number of molecules 124.44 ± 1.34 125.38 ± 1.58 126.22 ± 1.40 125.89 ± 1.52 124.78 ± 1.62

MAE Oracle-Pred. ↓ 2.15 ± 0.24 1.35 ± 0.16 ** 1.29 ± 0.21 ** 1.42 ± 0.19 ** 1.91 ± 0.50

Internal Diversity ↑ 0.85 ± 0.01 0.84 ± 0.01 0.84 ± 0.01 * 0.84 ± 0.01 0.85 ± 0.01
SA ↓ 3.12 ± 0.15 2.80 ± 0.12 ** 2.78 ± 0.15 ** 2.83 ± 0.06 ** 3.04 ± 0.16

QED ↑ 0.52 ± 0.03 0.45 ± 0.03 ** 0.44 ± 0.03 ** 0.46 ± 0.04 ** 0.51 ± 0.05

Novelty ↑ 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

Uniqueness ↑ 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

Frag Gen-Train ↑ 0.70 ± 0.05 0.85 ± 0.05 ** 0.88 ± 0.03 ** 0.88 ± 0.04 ** 0.86 ± 0.04 **

SNN Gen-Train ↑ 0.23 ± 0.01 0.26 ± 0.01 ** 0.27 ± 0.01 ** 0.26 ± 0.01 ** 0.25 ± 0.01 **

FCD Gen-Train ↓ 35.64 ± 1.31 30.07 ± 1.07 ** 30.88 ± 1.69 ** 31.81 ± 1.07 ** 32.30 ± 1.62 **

Frag Gen-Queries ↑ - 0.96 ± 0.02 0.95 ± 0.02 0.94 ± 0.02 0.92 ± 0.03

SNN Gen-Queries ↑ - 0.27 ± 0.01 0.27 ± 0.02 0.26 ± 0.00 0.25 ± 0.01

FCD Gen-Queries ↓ - 27.12 ± 1.03 27.45 ± 0.87 27.23 ± 1.07 26.47 ± 1.37
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Conclusion
In this study, we have introduced an innovative approach 
that leverages human–machine collaboration in the 
form of HITL-AL to fine-tune property predictors for 
molecule generation, thereby enhancing their generaliz-
ability and alignment with real-world applications. This 

methodology proves especially valuable in scenarios 
where limited labeled data is available for building gener-
alizable proxies for molecule generation, and where pre-
training the molecule generator or optimizing training 
data similarity might unduly constrain the diversity and 
creativity of the generated molecules.

Table 3 Metrics calculated for the final selections of high-scoring molecules according to the DRD2 bioactivity predictor ( > 0.5 ), 
mono-objective optimization

For all metrics, we report the mean and standard deviation across 10 different replicates of each experimental run. Up and down arrows indicate respectively 
whether each performance metric is expected to increase or decrease. One-sided ANOVA tests were applied for statistical significance assessments, and performance 
significance with respect to the “No Feedback” baseline is marked with * (if p-value < 0.05 ) or ** (if p-value < 0.01)

Metric values in bold correspond to the most performant methods

Metric No Feedback Feedback ( T = 10)

EPIG ( σǫ = 0.3) Uncertainty ( σǫ = 0.3) Greedy ( σǫ = 0.3) Random ( σǫ = 0.3)

Number of molecules 121.00 ± 1.41 97.63 ± 6.04 88.00 ± 12.39 85.11 ± 22.53 98.43 ± 11.13

MAE Oracle-Pred. ↓ 0.61± 0.02 0.23± 0.05 ** 0.14 ± 0.05 ** 0.31± 0.04 ** 0.15± 0.04 **
Internal Diversity ↑ 0.70± 0.01 0.60± 0.03 ** 0.60± 0.03 ** 0.65 ± 0.06 * 0.57± 0.02 **
SA ↓ 3.36 ± 0.09 3.58± 0.44 3.63± 0.31 * 3.63± 0.34 * 3.91± 0.57 *

QED ↑ 0.41± 0.03 0.60 ± 0.08 ** 0.54± 0.10 ** 0.51± 0.08 ** 0.50± 0.06 **
Novelty ↑ 1.0 ±0.0 1.0 ±0.0 1.0 ±0.0 1.0 ±0.0 1.0 ±0.0

Uniqueness ↑ 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

Frag Gen-Train ↑ 0.95 ±0.01 0.90± 0.10 0.85± 0.20 0.64± 0.21 ** 0.90± 0.18

SNN Gen-Train ↑ 0.41± 0.01 0.49± 0.02 ** 0.52± 0.02 ** 0.46± 0.05 * 0.52 ± 0.03 **
FCD Gen-Train ↓ 39.23 ± 2.03 37.17± 3.34 36.19± 3.85 40.96± 5.46 38.46± 3.97

Frag Gen-Queries ↑ - 0.97 ± 0.10 0.91± 0.12 0.67± 0.17 0.97 ± 0.05
SNN Gen-Queries ↑ - 0.54 ± 0.03 0.50± 0.01 0.49± 0.07 0.54 ± 0.02
FCD Gen-Queries ↓ - 11.99± 2.61 14.80± 4.90 23.77± 12.06 10.25 ± 1.59

Table 4 Metrics calculated for the final selections of high-scoring molecules according to the DRD2 bioactivity predictor ( > 0.5 ), 
multi-objective optimization

For all metrics, we report the mean and standard deviation across 10 different replicates of each experimental run. One-sided ANOVA tests were applied for statistical 
significance assessments, and performance significance with respect to the “No Feedback” baseline is marked with * (if p-value < 0.05 ) or ** (if p-value < 0.01)

Metric values in bold correspond to the most performant methods

Metric No Feedback Feedback ( T = 10)

EPIG ( σǫ = 0.3) Uncertainty ( σǫ = 0.3) Greedy ( σǫ = 0.3) Random ( σǫ = 0.3)

Number of molecules 104.11 ± 7.72 65.75 ± 17.23 63.14 ± 20.52 77.56 ± 15.37 88.11 ± 22.54

MAE Oracle-Pred. ↓ 0.42± 0.01 0.19 ± 0.03 ** 0.21 ± 0.05 ** 0.25± 0.02 ** 0.19 ± 0.01 **
Internal Diversity ↑ 0.62± 0.01 0.60± 0.01 ** 0.59± 0.02 ** 0.62 ± 0.01 0.58± 0.02 **
SA ↓ 3.26± 0.07 3.28± 0.08 3.30± 0.12 3.23 ± 0.08 3.26± 0.11

QED ↑ 0.61± 0.02 0.64 ± 0.05 0.63± 0.05 0.67 ± 0.03 ** 0.61± 0.03

Novelty ↑ 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

Uniqueness ↑ 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

Frag Gen-Train ↑ 0.92± 0.02 0.96 ± 0.02 ** 0.96 ± 0.01 ** 0.92± 0.02 0.90± 0.18

SNN Gen-Train ↑ 0.47± 0.01 0.50± 0.01 ** 0.51± 0.02 ** 0.48± 0.02 0.54 ± 0.02 **
FCD Gen-Train ↓ 40.53 ± 1.39 39.17± 1.85 38.86± 2.26 40.33± 1.47 38.46 ± 3.97
Frag Gen-Queries ↑ - 0.97 ± 0.01 0.96± 0.02 0.91± 0.02 0.97 ± 0.05
SNN Gen-Queries ↑ - 0.52 ± 0.02 0.45± 0.01 0.48± 0.01 0.47± 0.01

FCD Gen-Queries ↓ - 15.86 ± 2.00 17.42± 2.27 29.46± 3.77 32.33± 3.91
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Our proposed approach is particularly relevant in con-
texts such as exploring novel protein receptors, where 
existing experimental data may be scarce, yet the need 
for finding new and potentially impactful ideas is press-
ing. By integrating expert evaluations into the molecule 
generation process, we not only enhance the predictive 
capabilities of our proxy models but also ensure that the 
generated molecules are more meaningful and better 
aligned with the complexities of real-world scenarios.

A critical component of our approach is the use of an 
oracle evaluator, and in real-world applications, human 
experts may need to act as this oracle. The number of 
cycles of HITL-AL required for effective model refine-
ment depends on several factors, including the quality 
of the initial dataset and the expertise of the evaluators. 
High-quality ground-truth data and feedback can signifi-
cantly reduce the number of cycles needed. Additionally, 
setting clear convergence criteria, such as monitoring the 
stabilization of expert feedback patterns, or the reduction 
of prediction errors on an external validation set, can also 
help determine when to stop the AL process. Based on 
our findings, a range of 3 to 5 AL cycles often serves as 
a reasonable starting point, but the exact number should 
be tailored to the specific project requirements.

In summary, our methodology bridges the gap between 
generative AI for chemistry and human intuition. By 
incorporating expert evaluation feedback alongside 
existing experimental data, we create a closed-loop sys-
tem wherein generative models continuously refine their 
predictions in response to real-world feedback, fostering 
greater trust in the final outcomes. As the field advances 
towards closed-loop discovery platforms, there is a grow-
ing trend of integrating automated iterative systems that 
cycle through hypothesis generation, experimentation 
and analysis. These platforms leverage AI to continu-
ously generate and test new ideas, then refine models 
based on insights gained from the analysis. Our approach 
represents a significant step forward in combining the 
strengths of generative AI and human expertise, paving 
the way for more robust processes that better serve real-
world applications.

However, it is crucial to acknowledge the inherent 
limitations of our method to provide a more compre-
hensive understanding of the scope and applicability of 
our approach in real-world settings. The effectiveness of 
our approach relies heavily on the availability and exper-
tise of human collaborators, introducing the potential 
for subjectivity and variability in feedback interpreta-
tion. Balancing these diverse perspectives while ensur-
ing consistency in feedback poses a significant challenge 
that warrants careful consideration. In this work, we 
addressed this by downweighting uncertain human 
inputs during the fine-tuning of property predictors. 

Furthermore, the integration of human feedback into the 
generation process introduces computational complexi-
ties and overhead, potentially impacting scalability and 
efficiency, particularly in large-scale drug discovery pro-
jects. Ethical considerations surrounding data privacy, 
transparency, and bias mitigation are also paramount 
to ensure the responsible and equitable utilization of 
technology. Future work could focus on scaling up the 
approach to include multiple experts or automated agents 
in the loop, allowing for parallelized feedback cycles and 
improved scalability in high-throughput settings.

Appendix A Training the random forest models

In Eq.  2, the set of parameters θ represent the number 
of nodes, the decision features and their corresponding 
threshold values used by each decision tree when mak-
ing a decision about a new input. These parameters are 
determined during the RF training process, and depend 
on the training data Dround and the loss criterion being 
optimized.

During training, bootstrap sampling is used which 
involves creating multiple subsets of training data by 
randomly drawing data points with replacement from 
the original dataset Dround . Each tree in the RF is then 
trained on one of these bootstrap samples. The use of 
sample weights wi and ut during bootstrapping allows 
certain data points to be sampled with a higher prob-
ability than others. During the tree (re-)building pro-
cess, when selecting new data points for each node split, 
the algorithm can consider the sample weights assigned 
during bootstrapping to ensure that the decision trees 
are constructed with attention to the importance of 
each data point based on its weight. By assigning lower 
weights to uncertain expert labels, the RF can give less 
emphasis to those newly introduced data points during 
model updates.

The loss criterion being optimized also plays a crucial 
role during model updates. In the binary classification 
case, the Gini impurity of tree nodes is used to guide the 
tree (re-)building process. It is defined as:

where y ∈ {0, 1} is the class label and p(y | node) is the 
proportion of samples associated with class label y among 
all samples in the node.

This criterion is used to guide the construction of deci-
sion trees during the training process of a RF. When 
splitting a node into two child nodes, the Gini impurity 
is used to evaluate the quality of the split. The Gini impu-
rity for a split is a weighted average of the Gini impurity 

(A1)Gini(node) = 1−
∑

y∈{0,1}
p(y | node)2
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of the child nodes, where the weights are proportional to 
the number of samples in each child node. For a binary 
split on feature d at threshold t, the Gini impurity is cal-
culated as:

Here, Nleft and Nright are the number of samples in the 
left and right child nodes after the split, respectively. 
Ntotal is the total number of samples in the current node. 
Gini(left) and Gini(right) are the Gini impurities of the 
left and right child nodes, respectively.

In the regression case, the mean squared error (MSE) 
is commonly used as the criterion to measure the qual-
ity of a split in decision trees. The MSE for a given node 
is defined as:

where N is the total number of samples in the current 
node, yi represents the target value for the ith data point 
in the node, and ȳnode = 1

N

∑N
i=1 yi represents the mean 

of all target values in the node.
For a given split that divides the current node into 

two child nodes, the total MSE reduction MSEreduction 
is calculated as the difference between the MSE of the 
parent node and the weighted sum of the MSEs of the 
child nodes:

The algorithm selects the split that maximizes the MSE 
reduction at each node. This way, it aims to find splits 
that minimize the variance of target values within each 
node, leading to a tree that provides an overall good fit to 
the target values in the dataset.

Appendix B Predictive performance metrics
Pearson correlation coefficient: measures the propor-
tion of variance in the dependent variable that is pre-
dictable from the independent variables used in a 
regression model.

where yi and ŷi are the true and predicted values for the 
ith observation, and ȳ and ¯̂y their respective means.

(A2)
Ginisplit(d, t) =

Nleft

N
Gini(left)+

Nright

N
Gini(right)

(A3)MSE(node) = 1

N

N
∑

i=1

(

yi − ȳnode
)2

(A4)
MSEreduction = MSE(node)−

(

Nleft

N
MSE(left)+

Nright

N
MSE(right)

)

(B5)ρ =
∑N

i=1(yi − ȳ)(ŷi − ¯̂y)
√

∑N
i=1(yi − ȳ)2

∑N
i=1(ŷi − ¯̂y)2

Mean Absolute Error (MAE): average absolute differ-
ences between predicted and true values, providing a 
measure of prediction accuracy.

Receiver Operating Characteristic - Area Under the 
Curve (ROC AUC): measures a classifier’s ability to dis-
tinguish between positive and negative classes across dif-
ferent probability thresholds.

(B6)MAE = 1

N

N
∑

i=1

∣

∣yi − ŷi
∣

∣

Precision-Recall Area Under the Curve (PR AUC): meas-
ures a classifier’s ability to balance precision and recall 
across different probability thresholds.

Matthews Correlation Coefficient (MCC): measures the 
quality of binary classifications, considering true posi-
tives (TP), true negatives (TN), false positives (FP) and 
false negatives (FN).

(B7)ROC AUC =
∫ 1

0
TPR(FPR−1(t)) dt

(B8)PR AUC =
∫ 1

0
Precision(Recall−1(t)) dt

(B9)

MCC = TP× TN− FP× FN√
(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

Fig. 10 Double sigmoid transformation function used in use-case 1 
experiment to map predicted LogP values to [0, 1] scores
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Appendix C The double sigmoid function
The double sigmoid function is defined as

where θσ = {α1,α2, LOW ,HIGH} . Parameters LOW and 
HIGH define the target interval for x ∈ R and which are 
set to 2 and 4 respectively for the purpose of generating 
molecules with LogP in [2, 4]. Parameters α1 and α2 con-
trol the steepness of the rising and descending edge of the 
double sigmoid, respectively. Both are set to 10. Figure 10 
illustrates this function and one realization at x = 2.5.

Appendix D oracles
Penalized LogP oracle: Following Gómez-Bombarelli 
et al. [26], we use the octanol-water partition coefficient 
(LogP), as implemented in RDKit, minus the synthetic 
accessibility score [37] and the number of long cycles. 
This results in a penalized LogP that we use as an oracle 
which calculation is provided by the TDC benchmarking 
python package [38].

DRD2 bioactivity oracle: We use a RFC that consists 
of 300 estimators and a maximum depth of 20, trained 
using Scikit-learn on DRD2 bioactivity data retrieved 
from the ExCAPE database [31]. This dataset holds 
DRD2 bioactivity measures (pIC50) from PubChem [39] 
and ChEMBL [24]. Binary bioactivity labels were gener-
ated by setting a cutoff value of pIC50 at 7.3, such as mol-
ecules with pIC50 above the cutoff are labelled as active. 
As the DRD2 dataset initially contained too many active 
compounds, we sampled additional random molecules 
from ChEMBL, which we considered as additional inac-
tive compounds. Only molecules from ChEMBL that had 
a molecular weight below 800 and a similarity between 
0.1 and 0.5 to any molecules in the original DRD2 data-
set set were considered. Molecules were sampled until we 
had reached a percentage of actives below 1%. The data-
set was split into training and test sets using a scaffold 
split. Training samples were weighted to create a class 
balance (class_weight=”balanced”). Model per-
formance on the test set is reported in Additional file 1: 
Table S1. The predicted positive class probabilities by this 
model are used as ground truth values.

hERG bioactivity oracle: We use a RFC consisting of 
300 estimators and a maximum depth of 20, trained 
using Scikit-learn on hERG bioactivity data retrieved 
from ExCAPE where bioactivities are measured in terms 
of pIC50. Molecules with a pIC50 > 5.0 were labelled as 
active, and the remaining were labelled as inactive. Ran-
domly sampled inactive molecules were removed from 

(C10)

σ(x, θσ ) =
10α1x

10α1x + 10α1LOW
− 10α2x

10α2x + 10α2HIGH
,

the dataset to ensure that 10% of the training set are active 
molecules. The dataset was split into training and test sets 
using a scaffold splitting strategy. To ensure a better bal-
ance between sampling from both active and inactive 
classes during the training process, all training samples 
were weighted based on their labels. This strategy is akin 
to the class_weight=”balanced” parameter imple-
mentated in Scikit-learn, where it automatically adjusts the 
weights inversely proportional to class frequencies in the 
input data. The predicted positive class probabilities by this 
model are used as ground truth values.

Appendix E Molecule generation metrics
The following metrics are provided by the benchmarking 
platform MOSES [36] and were used to assess the quality, 
diversity and novelty of generated molecules.

Quantitative Estimation of Drug-likeness (QED): a score 
within [0,  1] estimating how likely a molecule is a viable 
candidate for a drug. QED is meant to capture the abstract 
notion of esthetics in medicinal chemistry [33].

Synthetic Accessibility score (SA): based on a combina-
tion of molecular fragments contributions [37], it estimates 
how hard (10) or easy (1) it is to synthesize a given mol-
ecule, so the lower the SA score the better.

Fragment similarity (Frag): compares distributions of 
BRICS fragments [40], denoted as F, between a generated 
molecular set G and a reference molecular set R. The met-
ric is defined as a cosine similarity and its limits are [0, 1]. If 
molecules in both sets have similar fragments, the metric is 
large. If some fragments are over- or underrepresented in 
the generated set, the metric will be lower.

Similarity to a nearest neighbor (SNN): computes aver-
age Tanimoto similarity between fingerprints of a mol-
ecule from the generated set G and its nearest neighbor 
molecule in the reference set R. The metric is limited by 
[0, 1]. If generated molecules are far from the manifold of 
the reference set, the similarity to the nearest neighbor 
will be low. In MOSES, Tanimoto similarity is based on 
standard Morgan ECFP with radius 2 and 1024 bits com-
puted using RDKit.

Fréchet ChemNet Distance (FCD) [41] : calculated using 
activations of the penultimate layer of a deep neural net-
work, ChemNet, trained to predict biological activities 
of drugs. These activations are calculated for canonical 

(E11)Frag(G,R) =
∑

f ∈F [cf (G)cf (R)]
√

∑

f ∈F c
2
f (G)

√

∑

f ∈F c
2
f (R)

(E12)

SNN(G,R) = 1

|G|
∑

mG∈G
maxmR∈R Tanimoto(mG ,mR)
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SMILES representations and capture both chemical and 
biological properties of the molecules. The lower FCD 
the better, and it cannot be negative.

where µG and µR are mean vectors and �G and �R are 
covariance matrices of activations for molecules from 
sets G and R respectively.

Internal Diversity  (IntDivp) [42] : assesses the chemi-
cal diversity within a generated molecular set G. A higher 
value of this metric corresponds to higher diversity in the 
generated set. The metric is limited by [0, 1]. We mainly 
consider IntDiv1(G) in this work.

Novelty: fraction of the generated molecules that are not 
present in the training set.

Uniqueness: fraction of the generated molecules that 
are unique. This metric checks that the model does not 
collapse to producing only a few typical molecules.
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