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Abstract

Machine learning (ML) systems have enabled the modelling of quantitative structure—property relationships (QSPR)
and structure-activity relationships (QSAR) using existing experimental data to predict target properties for new
molecules. These property predictors hold significant potential in accelerating drug discovery by guiding generative
artificial intelligence (Al) agents to explore desired chemical spaces. However, they often struggle to generalize due
to the limited scope of the training data. When optimized by generative agents, this limitation can result in the gen-
eration of molecules with artificially high predicted probabilities of satisfying target properties, which subsequently
fail experimental validation. To address this challenge, we propose an adaptive approach that integrates active learn-
ing (AL) and iterative feedback to refine property predictors, thereby improving the outcomes of their optimization
by generative Al agents. Our method leverages the Expected Predictive Information Gain (EPIG) criterion to select
additional molecules for evaluation by an oracle. This process aims to provide the greatest reduction in predic-

tive uncertainty, enabling more accurate model evaluations of subsequently generated molecules. Recognizing

the impracticality of immediate wet-lab or physics-based experiments due to time and logistical constraints, we pro-
pose leveraging human experts for their cost-effectiveness and domain knowledge to effectively augment property
predictors, bridging gaps in the limited training data. Empirical evaluations through both simulated and real human-
in-the-loop experiments demonstrate that our approach refines property predictors to better align with oracle
assessments. Additionally, we observe improved accuracy of predicted properties as well as improved drug-likeness
among the top-ranking generated molecules.

Scientific contribution. We present an adaptable framework that integrates AL and human expertise to refine
property predictors for goal-oriented molecule generation. This approach is robust to noise in human feedback

and ensures that navigating chemical space with human-refined predictors leverages human insights to identify mol-
ecules that not only satisfy predicted property profiles but also score highly on oracle models. Additionally, it prior-
itizes practical characteristics such as drug-likeness, synthetic accessibility, and a favorable balance between exploring
diverse chemical space and exploiting similarity to existing training data.
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algorithms
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Introduction

Drug discovery is a notoriously time-consuming and
expensive process. The effectiveness of exploring vast
chemical spaces during the initial phases of the process is
crucial, as it lays the groundwork for identifying promis-
ing candidate molecules [1]. In recent years, deep neural
network architectures tailored to generative tasks have
emerged as promising tools for accelerating early drug
discovery, reducing time and financial investments [2—5].

While molecule generation can also be performed
for exploratory purposes (i.e., non goal-oriented), for
instance, to diversify chemical libraries for virtual screen-
ing [6], early drug discovery often involves generating
molecules with specific properties such as drug-likeness
or bioactivity [7-9]. The key to successful goal-oriented
generation is to derive an accurate and representative
scoring function that can evaluate molecules for the dif-
ferent desired properties, such that optimizing it results
in generating desirable molecules. Once a suitable scor-
ing function is established, the problem of generating
desirable molecules can be framed as a discrete optimiza-
tion problem, which can be effectively tackled using tech-
niques such as reinforcement learning (RL) [10].

Quantitative Structure-Activity Relationship (QSAR)
models predict the biological activity of chemical com-
pounds based on their chemical structure. QSAR
models represent a subset of broader quantitative struc-
ture—property relationship (QSPR) approaches, which
encompass predictions of various molecular properties
beyond bioactivity. These property predictors are com-
monly integrated into scoring functions to expedite the
discovery of drug candidates and circumvent challenges
in directly optimizing wet-lab measurements of target
properties [11].

For instance, RL was employed to optimize a pre-
trained Recurrent Neural Network (RNN) to generate
binders for the Dopamine Receptor D2 (DRD2) based
on QSAR predictions [10]. However, optimizing such
predictors for molecule generation faces challenges as
they often struggle to generalize post-deployment due to
limited training data and evolving distributions during
optimization [2]. Consequently, generative NNs guided
by such predictors may yield sub-optimal molecules by
overly relying on predictions in poorly understood chem-
ical space regions [12, 13]. Our work addresses this par-
ticular challenge.

In the context of model deployment, methods have
been proposed to monitor the generalization perfor-
mance of property predictors when used for goal-ori-
ented molecule generation [12-14]. A more continuous
and dynamic approach to enhancing predictor generali-
zation for this purpose involves leveraging active learning
(AL).
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AL is an experimental strategy that involves iterative
selection of new data with the goal of minimizing the
number of necessary training data while maximizing the
gain in predictive accuracy and expanding the applicabil-
ity domain (ie., the range of chemical space where the
model can make reliable predictions) [15]. An acquisition
criterion is usually defined to select which experiments
would contribute the most to an improved predictive
accuracy. In the context of goal-oriented generation, AL
can be used to encourage the generative agent to inten-
tionally produce molecules that are poorly understood
by the property predictor (e.g., by maximizing predic-
tive uncertainty) which can then undergo experimental
validation, serving as additional training data to enhance
model generalization in subsequent generation cycles [2].

Typically, in current drug discovery pipelines, molecules
that meet a specific target property profile (according to a
target property predictor) are tested experimentally after
each cycle [2]. However, immediate experimental labeling
via wet-lab assays is often infeasible due to the significant
time and monetary costs associated with synthesizing
the compounds proposed by the generative model. Con-
sequently, experimental labeling tends to be performed
in batches rather than continuously. Moreover, previous
studies have shown that the generated molecules with
high predicted probability of meeting the target prop-
erty profile often include many false positives according
to wet-lab assays and in-silico oracles [2, 13]. At this stage,
the property predictor needs to be refined (or replaced by
alternative scoring functions), potentially involving manual
intervention from human experts to acquire additional
experimental data for training.

Human-in-the-loop (HITL) approaches were recently
proposed to enhance the molecule generation process by
allowing human experts to interact and provide feedback.
For instance, these approaches enable the adaptation of
scoring functions through RL with human feedback,
ensuring that the generated molecules align better with
desired properties [16, 17]. Based on empirical results
showing the efficacy of a reward model trained on feed-
back from a chemistry expert regarding the optimization
of DRD2 bioactivity [16], we posit that integrating feed-
back from well-aligned experts is crucial for ensuring
that QSAR predicted scores which are optimized during
the molecular generation process align well with the true
scores of the target property.

In this regard, we propose to involve human experts in
the AL process, allowing them to re-evaluate (approve or
refute) predicted scores for newly generated molecules
and incorporate them as additional training data to refine
the target property predictor. We apply the Expected
Predictive Information Gain (EPIG) acquisition strategy
[18] which allows for prediction-oriented improvement,
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that is, favoring the acquisition of the most informa-
tive molecules to feed back to the property predictor to
improve its predictive accuracy within specific regions
of the chemical space (e.g., top-N ranked molecules). We
empirically demonstrate the consistency of our HITL-AL
approach in improving predictor’s generalization with
respect to the true target function even under noisy and
uncertain expert feedback. This was shown first through
simulations using noisy oracles as experts, then through
interacting with human experts in chemistry using the
Metis user interface [19], highlighting the value of
domain expertise as a proxy for experimental labelling in
AL settings.

In summary, the contributions of our work are as
follows:

+ We leverage prediction-oriented data acquisition
during goal-oriented generation processes to iden-
tify informative molecules for property predictors for
which high predicted scores may not correspond to
actual experimental outcomes.

« We offer chemistry experts the ability to confirm or
refute property predictions and specify their confi-
dence level, allowing for cautious predictor refine-
ment.

+ We demonstrate the practical application of our
method through experiments involving different
chemists, underscoring the importance of formulat-
ing precise questions for effective intervention.

Methods
Goal-oriented molecule generation
We focus on goal-oriented molecular generation, mean-
ing the design of molecules that satisfy one or multiple
desired chemical properties, where some are available
analytically and others are estimated by QSAR or QSPR
models derived from experimental or simulation data.
While some target chemical properties can be computed
analytically through first-principles methods (e.g., molecu-
lar weight) or through empirical, rule-based approaches
(e.g., drug-likeness), most desired properties need to be
estimated by data-driven QSAR or QSPR models. This can
be the case for many reasons: (1) some chemical properties,
such as bioactivity, are too complex to be estimated solely
from a fixed set of predefined rules; (2) machine learning
(ML)predictions are much cheaper to obtain compared to
resource-intensive wet-lab measurements or physics-based
simulations; or (3) there is a sufficient amount of labelled
data that can serve as a starting point for faster convergence
to target chemical spaces. We denote properties modeled
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from data as fy to distinguish them from properties ¢ that
can be computed analytically.

Goal-oriented generation is usually framed as a multi-
objective optimization problem [20] where the aim is to
maximize a scoring function defined as

] K
s) =Y wjoj(¢j(¥) + Y wiok (fo, (%)) (1)
k=1

j=1

where x € RP is a vector representation of a molecule,
¢ RP — R and Jo, : RP — R are the evaluation func-
tions for the j# and k™ desired properties respectively,
and w; and wy their contributions to the overall objective
or score, with w in ]0, 400). Transformation functions o
can be used to map evaluation functions to [0, 1]. The
choice of these transformations depends on the desired
property value. For instance, if the desired property value
lies within a specific range of values [4, b], then ¢ could
be a double sigmoid function (Appendix C) with low
and high parameters set to a and b respectively. Finally,
weights w are normalized resulting in an overall score
within [0, 1], facilitating interpretation; a score closer to
1 indicates greater suitability with respect to the overall
objective.

Target property predictor

In this study, we simulate wet-lab experimental labeling
and operate under the condition that ground truth val-
ues for a given target property k are consistently pro-
vided by an oracle f*(x). In our simulated environment,
we have direct access to these oracle values for evaluat-
ing our models, rather than assuming their existence. To
streamline the molecule generation process, we optimize
a proxy fp of the oracle f* to discover novel molecules.

This proxy is typically derived through supervised
learning from available data Dy = {(x;, yi)}?i)l, where
x; € RP represents a vector of D-dimensional count fin-
gerprints for molecule i, and y; denotes its corresponding
target value provided by the oracle f*(x;). Specifically,
yi = f*(x;) € R for regression tasks, and for classification
1iff*(x;) >4
tasks, y; = 0 otjl:e(rvi/)ise
threshold.

In this work, we employ random forest (RF) models
[21] as property predictors for molecule generation. This
choice stems from their demonstrated robustness to
small perturbations in high-dimensional feature spaces
compared to deep neural networks and linear regres-
sion models [22]. Moreover, RF models have been found
to be hard to outperform by deep models on a variety
of molecular property prediction tasks, thus they are a
robust baseline for our problem [23].

, where § is a predefined
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When deployed for goal-oriented generation, RF pre-
dictions are computed as

B
1
frx) = 2 ;fe (x), @)

where B denotes the number of decision trees in the
forest, 6; represents the learned parameters of the i-th
tree, and @ = {61,...,0p} encompasses all tree param-
eters. For regression tasks, fp,(x) € R denotes the pre-
dicted value by the i-th tree, while for classification tasks,
fo(x) € [0,1] signifies the predicted probability of the
positive class, which is obtained by averaging the discrete
predictions fp,(x) € {0,1} from individual trees in the
ensemble. Further details regarding the training proce-
dure of the RF model can be found in Appendix A.

Optimizing the molecule generator (REINVENT Loop)

We perform molecule generation using REINVENT [10],
an algorithm employing an RNN for SMILES sequence
generation and policy-gradient RL to guide the genera-
tion towards new SMILES that exhibit the desired prop-
erties according to a flexible scoring function, s(x) (Eq. 1),
that can include various scoring components. In this
work, we specifically address the case where s(x) includes
at least one QSAR or QSPR model as a scoring compo-
nent (i.e., K > 0).

The RNN weights, which we denote as ¥, are first ini-
tialized with those of a pre-trained RNN ¢, on ChEMBL
data [24], then optimized to generate molecules x that
maximize the reward given by the scoring function s(x).
At each optimization step, the scoring function evalu-
ates a batch P composed of P generated molecules, and
the resulting reward is used to tune the RNN weights ¢.
More precisely, this is done through stochastic gradient
descent with respect to a loss function J(P) defined as

P
1
J(P) = " [log py, (xp) — s(xp) — log py (xp)]”

p=1

®3)
that represents the agreement between the pre-trained
RNN log-likelihood logpy,(x,) modulated by the
reward s(x) and the agent log-likelihood logpy (x,)
of the generated molecules in P. The agent log-like-
lihood log py (x,) refers to the probability of generat-
ing a SMILES sequence X, token by token, computed as
log py (xp) = Zz;l log p(x¢ | %¢—1,...,%1), where each x;
is a token in the sequence. The influence of s(x) is con-

trolled by the pre-defined hyperparameter A.
Additionally, at each optimization step, REIN-
VENT stores a set M, of chemically valid and structurally
diverse molecules that have scores above a pre-defined
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threshold value. This memory set is formed via the Diver-
sity Filters functionality in REINVENT , which ensures
that generated molecules are added to different scaffold-
specific buckets if they meet the score threshold. These
filters discourage the generation of similar molecules
once a scaffold-specific bucket reaches capacity.

A generation cycle with REINVENT completes (i.e.,
returning the final set M,) once a pre-defined number of
optimization steps is reached. In a classical setting (i.e.,
without active human intervention), s(x) is assumed to
be static throughout R generation cycles. In our setting,
we describe how s(x) is adapted at every generation cycle
after fine-tuning the property predictor with human
feedback.

This procedure is referred to as the “REINVENT Loop”
in Fig. 1.

Fine-tuning the target property predictor (Active Learning

Loop)

We introduce an AL loop following each generation cycle
where a data acquisition criterion is employed to select
L batches of T predicted high-scoring molecules from
a pool U,, aiming to enhance the property predictor fy
towards a specified objective. For instance, the EPIG
acquisition criterion selects molecules whose observa-
tion by the predictor could reduce its predictive uncer-
tainty at given inputs of interest (Eq. 5). For [ =1,...,L,
each selected batch S; undergoes evaluation by a human
expert to ensure relevance of high-scoring molecules
with respect to the target property. To streamline human
interaction and optimize sample efficiency, a small batch
size T is utilized.

During evaluation, each molecular structure, denoted
as x; within the batch is presented via an interactive GUI
interface. In simulated scenarios, it is routed to a surro-
gate model of the human expert, denoted as fyman. The
expert assesses each structure and provides an agreement
score Ur = fhuman(Xe) € [0, 1] quantifying the extent to
which they agree with its association to a high predicted
score. The label /4; for the evaluated molecule is then
derived from this score u;.

Upon evaluating T molecules, the target property pre-
dictor undergoes fine-tuning by incorporating the newly
acquired data points. Specifically, predictor parameters
are updated to minimize prediction errors with respect
to ground truth labels y; for initial training samples in Dy
and expert-provided labels /; for all newly acquired sam-
ples in D, = {D,_; U §;} as follows

No T
1 1
0= in — » ¢ ), %) + = ¢ h
argmin ;:1 (o (xi), yi) + ;:1 urt(fo (xc), he)

(4)
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REINVENT Loop
Tetep = 1,2, s Nuteps

P ={(xp, fa(xp))}g:l

& 250

Jiuman (X¢)

Feedback

fg Generalization Performance

0.7
0.61

0.51

0.4

0.31 \
—— Mean Prediction fy |

- Mean Error w.rt f

Optimize 0.2~

® Update of 0

1000
Samples from py(x) accross optimization steps

r=12,....R

Fig. 1 HITL-AL for goal oriented molecule generation. The method consists of two interleaved loops. The REINVENT loop (shown in black) describes
the SMILES molecule generator whose parameters ¥ are optimized via stochastic gradient descent for a given number of steps Ngieps to maximize
the likelihood of generating high-scoring molecules by a target property predictor fg. The Active Learning loop (shown in red), starting after the last
step of each REINVENT loop, applies a data acquisition criterion to the property predictor fg and a pool U, of high-scoring molecules generated

via py to select a set of queries Sy = {x[}[T:1 for a human expert (or a model of a human expert f,yman) to evaluate. Expert agreement scores hy

with respect to the property predictions are collected in the form of additional training data S; = {(x;, hr)}sz1 used to fine-tune the predictor
parameters . The entire process can be repeated forr = 1,2,.. ., R rounds, where each round r starts by initializing the SMILES molecule generator
with the optimized parameters ¢ and replacing the property predictor in the REINVENT loss J with the updated one from the previous round r — 1.
As an example, we show on the bottom right of the figure how fg generalization to new samples from py is improving, using Nsteps = 250

andR =4

where u; € [0, 1] are considered as the confidence scores
assigned by the human expert which directly influence
the weighting of each new observed sample during pre-
dictor retraining, with higher expert confidence scores
exerting greater influence.

This sample weighting strategy acknowledges the
uncertainty associated with expert assessments, par-
ticularly when agreement with model predictions is
ambiguous (e.g., u; ~ 0.5). Such inputs provided by
the expert are deemed less reliable and thus have less
impact during predictor retraining. Finally, the updated
predictor replaces the previous one in the scoring func-
tion for subsequent generation cycles.

This procedure is referred to as the “Active Learning
Loop” in Fig. 1.

Both loops can be repeated for a given number of
iterations R.

Data acquisition criteria

At the completion of a generation cycle (ie,
Hstep = Niteps), an acquisition criterion is used to select
a molecule x; for the human expert to evaluate. In typi-
cal AL settings, molecules would be selected from a pool
available before training the property predictor. In our
setting, molecules are selected from a pool U, = {x,, }ﬁ\n/[:l
which corresponds to a set of high-scoring molecules
stored in memory M, across all optimization steps from
the completed generation cycle. The acquisition criterion
depends on the property predictor fy. In this study, we
compare the performance of different acquisition criteria
against a random sampling baseline:

+ Expected Predictive Information Gain (EPIG) [18]
measures how much learning about a given data
point (molecule) can improve predictions across
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other unseen data points, drawn from a target input
distribution p,(x,).

An intuitive way to understand EPIG is to think of
it as estimating how much the predictive uncer-
tainty for molecules of interest x, (e.g., the top
1% of high-scoring molecules) will decrease after
receiving human feedback on a specific molecule
x sampled from the generated pool U,. In other
words, EPIG asks “How useful will this molecule be
in reducing uncertainty about future promising mol-
ecules?”. The higher the EPIG score, the more likely
it is that knowing the true evaluation of this mol-
ecule will improve the property predictor ability to
recognize optimal molecules in the future.

Mathematically, EPIG can be formulated as the
expected mutual information between y and
¥, given x and x,, which can be written as an
expected KL divergence between the joint distri-
bution p(y,y. | X,X,.) and the product of marginals

PO 1 X)POx | X0):
EPIG(X) =E,, x,) [ KL, ¥4 | X,X4)

5

12O | PG | X)]] ®

where py | x) =Ey0p)lpWy | x,0)],

PO %) = Epgp [P0 | Xu, 0], and

p(y,y* | X,X*) = /P()’ | X,O)P()/* | Xss G)P(o | Dr) de.

Molecules associated with the T highest EPIG
scores are selected to form a batch ;.

As outlined in Bickford Smith et al. [18], the EPIG
criterion requires defining a conditional predic-
tive distribution p(y | x) for each x € U, and a tar-
get input distribution p,(x,). In the context of RFs,
each decision tree fj, is treated as an individual
parameter value ;. Consequently, each prediction
Jo,(x) can be interpreted as a result of condition-
ing on 6;. This yields a collection of predictions
{fo, (x)}fg:1 conditioned on B parameter values. By
averaging over B, we obtain a conditional predictive
distribution p(y | x), where y represents the target
class label for RF classifiers or the target value for
RF regressors.

To apply EPIG for reducing uncertainty about future
promising molecules, we define the target input dis-
tribution p,.(x,) as the probability density function of
the distribution of top-k molecules associated with
the highest predicted scores in the pool U,
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o (fo(x.)) .
2 qypork @ () el (6)
0

otherwise

DPx (x4) =

where a(fg(x,()) — [0, 1] represents the predicted
score for molecule x,, and the denominator is the
sum of predicted scores over all top-k molecules in
the pool U,. In our experiments, we set the top num-
ber k to 1000.
Greedy corresponds to the predicted score for each
x € U,.

Greedy(x) = o (fy(x)) 7)

where o : fy(x) — [0, 1]

Molecules associated with the T highest predicted
scores are selected.

Uncertainty quantifies the predictor uncertainty for
each x € U,.

Since we are using RF models, we compute uncer-
tainty as the disagreement or variance within
the predictions made by the individual trees if
fox) > R

1 B

UncertaintyRegression(xy) = 3 Z (fgi (x) —f()(x))

i=1
(8)
or as the Shannon entropy [25] in the predicted
probabilities if fp(x) — [0,1]

2
’

UncertaintyClassification(xy)
= —[fo(x) log fy (x) 9)
+(1 — fo(x)) log(1 — fp (x))]

Molecules associated with the T highest predictive
uncertainties are selected.

The key difference between uncertainty sam-
pling and EPIG is that, while uncertainty quantifies
the model’s confusion about a specific prediction (i.e.,
“How unsure am I about this prediction?”), EPIG looks
at the potential information gained from learning
about a data point to improve predictions on other
inputs (i.e., “How much will learning about this mol-
ecule reduce my overall uncertainty?”). In summary,
uncertainty focuses on a single point, while EPIG con-
siders the broader impact of acquiring new informa-
tion across the target dataset.

+ Random. It is used to uniformly randomly sample T

molecules from U,.

The full procedure is summarized in Algorithm 1.
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Algorithm 1 Fine-tuning the target property predictor fp for molecule
generation

Page 7 of 24

Require: pre-trained RNN 1, scoring function s (Equation 1), target property pre-
dictor fg (Equation 2), acquisition criterion (Equation 5, 7, 8 or 9), expert

fhuman
1: Initialize RNN weights 1 < 1),

2: Initialize predictor training data D,—g <« Dy

3: for r — 1 to R do
4: Initialize memory M, «— @&
for step < 1 to Ngteps do

Get batch of generated molecules P = {x,, | x, ~ py (%)},

Store in memory M, «— M, U{x, € P | s(x,) > 0.5}

5

6

7 Update RNN weights ¢ < 9 — aVJ(P) (Equation 3)
8.

9

end for
10: Get pool of generated molecules U, = {X,, | Xp ~ M, }M_,
11: for [ — 1 to L do
12: S; = {x¢}1.; « Acquisition(U,, T, criterion)
13: S {(xt, ht)}?:17 ht = fhuman(Xt)
14: D, —D,_1US, TH+=T
15: Update predictor parameters 8 (Equation 4)
16: end for
17: Replace fg in s

18: end for

Experiments

Our experiments aim to showcase the benefits of inte-
grating human feedback through AL to refine target
property predictors, compared to no predictor refine-
ment (i.e., the predictor remains static throughout R
rounds of the REINVENT loop). The improvement is
measured in terms of error reduction between the pre-
dicted scores and the oracle scores associated with the
generated molecules that the predictor identifies as
promising for satisfying the target property. A diminish-
ing error over R generation cycles indicates an enhanced
predictor generalization to new molecules from REIN-
VENT . This means that molecules identified as promis-
ing by the predictor are also promising according to the
oracle. Consequently, optimizing a target property pre-
dictor that generalizes well outside its training domain
results in generating more molecules that satisfy the tar-
get property.

We conducted various experiments, first involving sim-
ulated experts, then human experts providing feedback
on molecules generated by REINVENT and optimized via
RF predictors for specific target properties. Here, we out-
line two distinct use case scenarios: the first one focuses
on optimizing molecules to achieve penalized LogP val-
ues within a defined desired interval, while the second
targets the optimization of molecule bioactivity for a spe-
cific protein receptor, DRD2.

Use case 1: generation of molecules with optimal penalized
LogP values
The aim of this use case is to generate new molecules
with a penalized LogP within [2, 4], indicating sufficient
lipophilicity for good absorption and distribution in the
body. The penalized logP score of a molecule is defined as
its octanol-water partition coefficient minus its synthetic
accessibility (SA) score and number of long cycles [26].
We first train a penalized LogP predictor using a
subet of 250 SMILES extracted from ChEMBL, then
cleaned and filtered following Baltruschat and Czod-
rowski approach [27]. Extended Connectivity Morgan
Fingerprints [28] of radius 3 (ECFP6) and length 20438
were generated using RDKit [29], alongside their associ-
ated LogP values which were calculated using the penal-
ized LogP oracle described in Appendix D. We employed
Scikit-learn [30] to fit a Random Forest Regressor (RFR)
to all 250 ECFP6 vectors, optimizing hyperparameters
(n_estimators=300andmin samples split=2)
to minimize the Mean Squared Error (MSE) across 5
cross-validation folds. The resulting model achieved a
Pearson linear correlation coefficient of 0.72 between
true and predicted LogP values on a holdout test set of
600 SMILES from ChEMBL (Additional file 1: Figure S1).
For the REINVENT loop, we set the number of epochs
Niteps to 250 and we keep the default value of 128 for
batch size P. The hyperparameter A in the REINVENT loss
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function (Eq. 3) is also set to 128 by default. The scoring
function comprises a single component which corre-
sponds to the pre-trained RFR to which a double sigmoid
transformation is applied to map the estimated LogP
values to [0, 1], such that values lying within the desired
range of [2, 4] result in transformed scores close to 1 (i.e.,
high reward scores). This double sigmoid transformation
is illustrated in Appendix C.

For the Active Learning loop, we set the number of
batches L to 5. We tried different query batch sizes
T = {10,20,30} and different data acquisition criteria
(described in subsection 2.4.1) in separate trials. For each
trial experiment, we chose to perform multiple iterations
of batch AL instead of one, because of the advantages
this may provide in terms of user experience and train-
ing efficiency. In fact, asking an expert to evaluate smaller
batches iteratively instead of a larger batch at once may
reduce the burden and prevent potential errors asso-
ciated with fatigue and boredom from repetitiveness.
Furthermore, iterative retraining on smaller batches can
streamline the feedback process, since the expert can
work with a model that becomes increasingly efficient at
selecting the most informative or challenging instances
in next AL iterations. Also, in cases where manipulation
errors may occur (e.g., skipping a query or submitting an
unintended answer), iterative batch active learning can
help recover those. We set the number of rounds R to 4
in all trials.

To facilitate the execution of multiple trial experiments
with various AL batch sizes and acquisition methods,
we simulate an expert providing feedback by defining an
expert surrogate as

Shuman(Xe) = f*(x¢) + €, € ~N(0,0¢) (10)

where f*(x) € R corresponds to the penalized LogP
score oracle. This model assumes that, on average, an
expert would accurately tell if a given query molecule
X is likely to exhibit moderate lipophilicity up to some
normally-distributed noise. For each x;, a noise value is
sampled from a Gaussian distribution with mean 0 and
standard deviation o, to mimic cases where expert eval-
uation may deviate from that of the ground truth. We
consider o, = {1.0,5.0} to evaluate our approach’s sen-
sitivity to varying levels of noise in expert feedback. We
also consider the ideal scenario where queries are directly
evaluated by the oracle (i.e., ¢ = 0).

Use case 2: generation of DRD2 binders

For this use case, we employed two distinct forms of
feedback to refine the property predictor. The first,
as described in Eq. 11, is an in-silico evaluator which
assesses selected batches of molecules based on their
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predicted probabilities of DRD2 bioactivity. It was
used to simulate expert feedback in our experiments.
The second form of feedback involves real human
assessments. Human experts evaluated the molecules
through an interactive interface, providing agree-
ment scores (ranging from 0 to 1) on proposed DRD2
actives, which were subsequently used to fine-tune the
predictor.

Mono-objective optimization. For training the bioac-
tivity predictor, we selected a subset of 240 SMILES from
the ExCAPE database [31] such that they are representa-
tive of only two topological scaffolds. This was done to
mimic usual real-world scenarios where existing experi-
mental datasets are limited in size and diversity, espe-
cially in the early phases of drug discovery projects, and
the aim is to explore the chemical space to identify novel
molecules. ECFP6 vectors of length 2048 were generated
using RDKit. Binary activity labels were obtained from a
DRD2 oracle model described in Appendix D, resulting
in 62 active samples and 178 inactive ones. After per-
forming a 5-fold cross-validation, we fit a Scikit-learn
Random Forest Classifier (RFC) with 200 estimators and
a maximum tree depth of 10 to all 240 samples. Model
performance was measured across different classification
metrics described in Appendix A and reported in Addi-
tional file 1: Table S1.

We use the same settings as for the previous use case.
The only difference is in the scoring function which com-
prises the pre-trained RFC predicting the probability of
a given generated molecule to be active against DRD2.
No transformation is applied in this case since predicted
class probabilities always fall within the REINVENT score
range of [0, 1].

We define the simulated expert for this use case as

€ ~N(0,0¢)
(11)
where f*(x;) € [0,1] corresponds to the predicted
positive class probability from the DRD2 oracle and
g:R —[0,1] is a clipping function ensuring that the
transformed oracle score remains within the range [0, 1]
after introducing the normally-distributed noise term e.
This approach assumes that, on average, an expert
in DRD2 can generalize better to unseen molecules in
the sense that their assessment would be better aligned
with the true probability of DRD2 bioactivity. The noise
term is added to the oracle score to simulate more
realistic scenarios where an expert deviates or fails to
perceive the true probability of DRD2 bioactivity for a
given molecule. We consider o, = {0.15, 0.3} as reason-
ably noisy experts, and o, = {0.5,0.7} as more extreme
noise levels, as well as the ideal scenario where queries
are directly evaluated using the oracle (i.e., € = 0).

fhuman(xt) :g(f*(xt) + 6) S [0, 1])
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Multi-objective  optimization. This  experiment
describes more commonly encountered scenarios in drug
discovery projects, where multiple objectives might be
optimized simultaneously. We consider the task of gener-
ating molecules that are not only potential DRD2 binders
but also tailored for high drug-likeness and minimal hERG
bioactivity (i.e., minimizing the risk of hERG channel acti-
vation and subsequent arrhythmia [32]).

We then use J = 2 additional objectives in the scoring
function (Eq. 1). DRD2 and hERG bioactivity objectives
are assigned equal weights (wp = 1and w; = 1), while the
drug-likeness objective, quantified via the Quantitative
Estimation of Drug-likeness (QED) score, is assigned a
weight of wp = 0.5.

The QED score is determined using the RDKit imple-
mentation [33], and the hERG bioactivity score is a
probability value given by an oracle (described in Appen-
dix D), to which a probability flipping transformation is
applied, ensuring that molecules with lower hERG bio-
activity probabilities get higher reward scores. The hERG
bioactivity objective here was considered among the non-
data-driven descriptors since our focus in this experi-
ment is not to fine-tune it. We leave the fine-tuning of
multi-task target property predictors for future work.
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For the first iteration of the REINVENT loop, we set
Niteps to 1200 so that the generator goes through a suf-
ficient number of optimization steps to achieve a high
balanced score between the three objectives, and there-
fore generate a representative initial pool U, for the first
iteration of the Active Learning loop. We set 4 to 180 in
the REINVENT loss function to accelerate convergence
to high reward scores from the multi-objective scoring
function. Nseps was then reduced to 250 with the pur-
pose of fine-tuning the generation process after observ-
ing expert feedback.

In the Active Learning loop, U, is defined as the set of
generated molecules with DRD2 bioactivity scores higher
than 0.5. The simulated expert, as described in the mono-
objective setting, provides a score representing their
agreement level with the proposed molecules predicted
as promising DRD2 binders.

Compatrison with other approaches and different
configurations

Considering the mono-objective generation setting,
we evaluate how well our approach behaves compared
to other strategies and configurations applied to the

83 Explanation

Similar Actives

We are interested in the design of an new binder for the Dopamine receptor D2. We have
identified two key properties:

* DRD2 Activity

LN * hERG Activity

DRD2 Activity: 87.65%
hERG Activity: 5.58%

How strongly do you agree with this molecule being predicted as a DRD2 binder?

IS 50

( i J ( - J

Compound: 1/10

Unrated Mol.

Fig. 2 Metis GUIdisplaying molecules generated based on a DRD2 predictor, a hERG predictor and QED that were selected based on EPIG
acquisition criterion for updating the DRD2 predictor
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generator or the property predictor before or during the
generation process. These configurations include:

« Initializing REINVENT with a generative agent pre-
trained on the initial training set of the property pre-
dictor.

+ Optimizing Tanimoto fingerprint similarity [34]
between generated molecules and known molecules
from the initial training set.

« Applying post-hoc calibration through the Platt Scal-
ing method [35] to the property predictor before
using it in REINVENT . Platt Scaling involves fitting
a logistic regression model to a classifier’s raw scores,
transforming them into calibrated probabilities using
a sigmoid function.

Platt Scaling can only be applied to binary classification
models, therefore we apply it to the DRD2 bioactivity use
case only.

Moreover, we assess the impact of lower and higher
human feedback frequency by setting the number of opti-
mization steps in the REINVENT Loop Njteps to 150, 500
and 1000 in separate trials.

EPIG Uncertainty

—
Q
~—
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Human experiments

Finally, we validate our approach in a real-world, multi-
objective molecule generation scenario where a chemis-
try expert interacts with the property predictor through
the Metis GUI [19].

This experimental design mirrors our previous multi-
objective generation setting focused on generating DRD2
actives with high QED and low hERG bioactivity. How-
ever, instead of relying on simulated expert feedback, we
collect real feedback through the GUI that displays mol-
ecules selected through batch AL alongside their associ-
ated DRD2 predicted bioactivities.

As shown in Fig. 2, the queried expert can answer how
strongly they agree with a given selected molecule being
predicted as DRD2 active using a slider ranging from 0
(strongly disagree) to 100% (strongly agree). The slider
value initializes at 50%, allowing the expert to maintain
this value if they have no specific opinion about a given
molecule. For instance, if the slider is positioned at 40%
by the expert, then the label /; given to the queried mole-
cule is O since the slider value is lower than the threshold
of 50%, while the confidence score u; = 100 — 40 = 60%,
reflecting how much the expert was confident in their
disagreement with the QSAR model prediction.
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Fig. 3 Generalization performance of the penalized LogP predictor to molecules generated at each step of the process. a Mean oracle score

of molecules generated by optimizing the oracle itself (i.e, best-case scenario) and the fine-tuned LogP predictor. b MAE between predicted

and oracle LogP values. For both metrics, we report the means and standard deviations across 10 different replicates of each experimental run. The
start of the Active Learning loop at each round is illustrated by a star. The noise in simulated expert feedback increases from left to right
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Fig. 4 EPIG-guided active learning improves the generation of molecules with desired penalized LogP values according to the oracle compared

to the “No Feedback” baseline. This improvement is visible in the concentration of points within the green rectangular target area and the increasing
linear correlation between oracle and predicted LogP values. The plot shows the predicted LogP values better aligning with the oracle values

over the course of the generation runs. We report these values for all generated molecules with a transformed predicted LogP score above 0.5.

The generation runs with AL updates using EPIG as the acquisition criterion and noisy simulated experts are shown in red, while the “No Feedback”

baseline is shown in gray

For each experiment, we started with the initial gen-
erative agent optimized in the previous experiment for
1200 steps then performed a total of 3 rounds, with
L =5 batch AL iterations, using EPIG as acquisition
criterion and a batch size T of 10 molecules.

We used Metis features to help the expert in pro-
viding more informed assessments about the selected
molecules. These features include visual explanations of
DRD2 bioactivity predictions, highlighting molecular
fragments based on their positive and negative atomic
contributions to bioactivity (Additional file 1: Figure
S2), and a similarity search algorithm based on MACCS
keys that selects the most similar active molecules from
the initial training set of the DRD2 predictor (Addi-
tional file 1: Figure S3). All GUI settings used for these
experiments, including which additional features were
displayed on the Metis interface to support chemist
feedback, are provided in Additional file 1: Listing S1.

In the subsequent section, we present results derived
from three distinct human experiments, each involving
a different expert in fine-tuning a DRD2 bioactivity pre-
dictor within the multi-objective generation scenario
described above. The two first experts are experienced
in generative chemistry and interact regularly with syn-
thetic chemists to suggest useful solutions and adapt
the generative tools to their needs. The third expert is

more experienced in medicinal chemistry. All are co-
authors of the manuscript.

Results and discussion
Simulated experiments
Use case 1: generation of molecules with optimal penalized
LogP values
We initiated our investigation by assessing the efficacy
of our approach under various acquisition strategies-
random, uncertainty, greedy, and EPIG-while querying
a simulated expert. This expert’s reliability was mod-
eled with three noise levels: noise-free (¢ = 0), moderate
noise (o = 1.0) and high noise (o = 5.0). Our findings
indicate that integrating AL to update the penalized LogP
predictor contributes to the progressive alignment of
penalized LogP estimates with oracle values over time
(i-e., reduction of the MAE, figure 3), resulting in the gen-
eration of molecules that are more likely to achieve the
desired target (in this case, a penalized LogP within 2 and
4) according to the oracle (Fig. 4). Notably, these positive
outcomes persist even in the presence of increased levels
of noise in the simulated expert feedback, underscoring
the robustness of our AL approach to unreliable inputs
that may occur in real-world scenarios.

Our comparison of the four acquisition strategies
revealed similar performance for EPIG, uncertainty
and greedy sampling in improving the generalizability



Nahal et al. Journal of Cheminformatics (2024) 16:138

of the LogP predictor in terms of significantly reduc-
ing the MAE between estimated and oracle values, with
greater performance than a random sampling baseline
and a slightly higher performance when using model
uncertainty as a criterion for data acquisition, followed
by EPIG. To statistically validate these findings, we con-
ducted an ANOVA test, which indicated significant dif-
ferences across the acquisition strategies (F-statistic =
16.63, p-value < 1 x 10719). Further pairwise compari-
sons using Tukey HSD test revealed several significant
differences between the strategies. Specifically, EPIG,
uncertainty, and greedy sampling methods significantly
outperformed the “No Feedback” baseline in terms of
mean LogP predictor accuracy, with p-values < 5 x 107%.
EPIG also significantly improved performance over ran-
dom sampling (p-value = 2 x 10~%), while no significant
differences were observed between EPIG, uncertainty,
and greedy sampling themselves. These statistical analy-
ses confirm that the choice of acquisition strategy has a
substantial impact on the improvement of the model
accuracy, with EPIG and model uncertainty criteria
showing the most promise.

Additional performance metrics, provided by the
benchmarking platform MOSES [36] and described in
Appendix E, for the final selection (i.e., resulting from the
final optimization step) of high-scoring molecules stored
in memory are summarized in Table 2. We can observe
that expert inputs do not significantly deteriorate the
internal diversity of final molecular sets in comparison
with the “No Feedback” baseline. Our results also dem-
onstrate that both EPIG and random sampling signifi-
cantly improve the exploitation-exploration trade-off,
which can be observed by a maintained internal diversity
score and an increased similarity between the generated
molecules and those present in the initial training set
when comparing with the “No Feedback” baseline. More-
over, based on the similarity metrics measured between
the sets of generated molecules and the expert queries
that were selected using each acquisition criterion, EPIG
appears to identify the additional training molecules
which are the most informative for improving the gen-
eralizability of predictions for the current most promis-
ing designs. Moreover, using AL with expert feedback to
refine the LogP predictor leads to the generation of more
synthetically accessible molecules in comparison with
the “No Feedback” baseline and the random sampling
strategy.

Comparison with other approaches and different con-
figurations Comparison with other approaches to
improve model predictions. Our approach was rigor-
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ously compared with several baselines to assess its effec-
tiveness. One baseline involved constraining the molecule
generator to remain close to the training set, ensuring
generated molecules were similar to known examples.
Another baseline used transfer learning to pre-train the
molecule generator using the initial training set of the pre-
dictor, enhancing the generator’s focus on relevant chemi-
cal space from the start of the generation process. Among
these approaches, constraining the generator with respect
to training set similarity led to the lowest MAE between
predicted and oracle values (Additional file 1: Figure S6).
While this strategy resulted in lower MAEs, it imposed
strong limitations on the type of chemistry that could be
explored. Moreover, pre-training the molecule generator
significantly improved the LogP predictor generalizability
in comparison with the “No Feedback” baseline, as well
as AL using EPIG, resulting in a lower MAE at the start
of the molecule generation process, which increased as
the process continued. Notably, when using EPIG for AL,
the MAE progressively reduced, eventually matching the
MAE achieved by the pre-trained generator.

Impact of the number of human queries. The num-
ber of human queries significantly impacts AL results,
particularly when employing random sampling. With
a lower number of selected queries, the performance
of random sampling was suboptimal. As the number of
human queries increased, the AL results using random
sampling improved, highlighting the need of some acqui-
sition strategies for larger query budgets. Even when
using the lowest query budget T = 10, the AL approach
results in improved predictor generalization performance
over time (Additional file 1: Figure S4).

Optimal frequency of human queries. The frequency
of querying humans for feedback is another crucial fac-
tor influencing the performance of our AL approach. We
tested different human querying frequencies (every 150,
250, 500 and 1000 generator optimization steps). Results
are illustrated in Additional file 1: Figure S5. For updating
regression models such as the LogP predictor, querying
every 150 steps was found to be suboptimal, suggesting
that the generator might not have adequate time to adapt
from the feedback and converge to more optimal chemi-
cal spaces. Conversely, querying every 500 or 1000 steps
may result in increasing the MAE between oracle and
predicted values, indicating that less frequent updates
can cause the predictor to not generalize well anymore
to new explored regions of the chemical space. Through
experimentation, querying every 250 steps emerged as
the most optimal frequency. This balanced approach
provided the model with sufficient time to integrate
feedback and update its predictions effectively, ensuring
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Fig. 5 Generalization performance of the DRD2 bioactivity predictor to molecules generated at each step of the process. a Mean oracle

score of molecules generated by optimizing the oracle itself (i.e., best-case scenario) and the fine-tuned DRD2 bioactivity predictor. b MAE

between predicted and oracle DRD2 bioactivity scores. For both metrics, we report the means and standard deviations across 10 different replicates
of each experimental run. The start of the Active Learning loop at each round is illustrated by a star. The noise in simulated expert feedback

increases from left to right

better alignment with oracle values and improved overall
generalization.

Use case 2: generation of DRD2 binders

Mono-objective setting We follow the same procedure to
investigate the results from the generation of DRD2 bio-
active molecules based on the DRD2 bioactivity predictor.
We observe that, in comparison with the “No Feedback”
baseline, all acquisition strategies resulted in improved
alignment between predicted and oracle DRD2 values
(measured in terms of MAE between predicted and oracle
probabilities of being DRD2 active) even under the pres-
ence of increasingly noisy feedback (Fig. 5).

Among these strategies, uncertainty sampling emerges
as the best performing one in terms of MAE reduction,
outperforming EPIG, greedy, and random sampling
strategies. Statistical analysis using the Tukey HSD test
indicated significant differences between the “No Feed-
back” baseline and all acquisition strategies (ANOVA,
F(3,36) = 19.87, p-value < 1.85 x 107!2).  Specifically,
all acquisition methods significantly improved MAE
compared to the baseline (p-value < 0.001), with uncer-
tainty sampling showing the most substantial improve-
ment. However, no significant difference was observed
between uncertainty sampling and EPIG (mean differ-
ence = —0.1094, p-value = 0.0723), suggesting similar
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Fig. 6 EPIG-guided active learning improves the generation of molecules with high probabilities of DRD2 bioactivity according to the oracle
compared to the “No Feedback” baseline. We report the oracle vs predicted activity probabilities for all generated molecules with a predicted
activity above 0.5. The generation runs where AL updates using simulated expert models with different noise levels were used are shown in red,

while the “No Feedback”baseline is shown in gray

effectiveness in enhancing the DRD2 bioactivity predic-
tor’s generalizability. The comparison between EPIG and
greedy sampling yielded a mean difference of 0.0524 with
a p-value of 0.717, indicating no statistically significant
difference. Similarly, the comparison between EPIG and
random sampling methods resulted in a mean difference
of —0.0062 with a p-value of 0.9999, indicating no statisti-
cally significant difference.

The observed rise in the MAE between AL steps can
be attributed to the fact that, after each update, the prop-
erty predictor is again deployed to explore new regions
of the chemical space, where prediction errors may
become more likely. Following each AL step, the predic-
tor receives expert feedback in the form of new training
data points, which expands its knowledge of the cur-
rent chemical space and reduces prediction errors (as
reflected by the sharp dips in MAE). However, as the pro-
cess progresses through subsequent REINVENT steps,
the predictor increasingly ventures outside of its training
distribution, leading to a gradual rise in MAE.

Additionally, the molecules generated under EPIG
score highly for QED and are more synthetically accessi-
ble, as evidenced by a lower SA score compared to other
acquisition strategies (Table 3). The underlying mecha-
nism for why EPIG might result in molecules with higher
synthetic accessibility and drug-likeness could be linked
to both the nature of EPIG’s sampling strategy and the
feedback given to the selected molecules via EPIG.

On the one hand, since EPIG aims to reduce predictive
uncertainty in the most promising molecules, it might be
inherently biased towards regions of the chemical space
that are well-understood and well-represented in the
training data. These regions are likely to contain mol-
ecules that are not only bioactive but also synthetically
accessible 