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a b s t r a c t

This article addresses the obstacle avoidance problem for setpoint stabilization tasks in complex
dynamic 2-D environments that go beyond conventional scenes with isolated convex obstacles.
A combined motion planner and controller is proposed that integrates the favorable convergence
characteristics of closed-form motion planning techniques with the intuitive representation of system
constraints through Model Predictive Control (MPC). The method is analytically proven to accomplish
collision avoidance and convergence under soft conditions. Simulation scenarios using a non-holonomic
unicycle robot is provided to showcase the efficacy of the control scheme.

© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

As autonomous agents, or robots, are increasingly employed in
ynamically changing environments, the need for sensor-based
otion controllers able to react to unforeseen circumstances is
rominent. To achieve successful online navigation in such en-
ironments, a key aspect is to adaptively modify the constraints
mposed by the robot’s surroundings, possibly involving the pres-
nce of moving obstacles. A vast part of the literature in online

obstacle avoidance are based either on closed-loop or optimiza-
tion based control solutions, where specific requirements on the
obstacle shapes are imposed and cases of intersecting obstacles
are ignored. However, closely positioned obstacles are frequently
perceived as intersecting, e.g., when inflation is used to account
for robot radius or safety margins, or in case of perception uncer-
tainties. Breaking the conditions of disjoint obstacles yields local
minima, jeopardizing convergence to the desired goal or path. In
this work we combine the convergence properties of closed-form
Dynamical Systems (DS) and the intuitive encoding of system

✩ This work was supported in part by the Chalmers AI Research Centre
(CHAIR) and AB Volvo through the project AiMCoR and in part by the ELLIIT
Strategic Research Area. The material in this paper was not presented at any
conference. This paper was recommended for publication in revised form by
Associate Editor C.C. Cheah under the direction of Editor Thomas Parisini.
∗ Corresponding author.

E-mail addresses: albinjdahlin@gmail.com (A. Dahlin),
yiannis@control.lth.se (Y. Karayiannidis).
1 Y. Karayiannidis is a member of the ELLIIT Strategic Research Area at Lund
niversity.
https://doi.org/10.1016/j.automatica.2024.112026
0005-1098/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a
constraints for Model Predictive Control (MPC) to propose a holis-
tic control solution with guaranteed convergence also in scenarios
of nontrivial obstacle constellations.

Expressing the desired robot motion in terms of DS is a com-
utationally efficient strategy to generate the subsequent mo-

tion in response to current observations. Specifically, artificial
otential fields (APF) (Khatib, 1985), repelling the robot from

the obstacles, are widely used (Ginesi, Meli, Calanca, Dall’Alba,
Sansonetto, & Fiorini, 2019; Stavridis, Papageorgiou, & Doulgeri,
2017). A well-known drawback of APF is the possible occurrences
of local minimum other than the goal point. To address this
problem, navigation functions (Kumar, Paternain, & Ribeiro, 2022;
Loizou, 2011; Rimon & Koditschek, 1992) and harmonic potential
ields (Connolly, Burns, & Weiss, 1990; Feder & Slotine, 1997)
have emerged. Collision avoidance with (almost) global conver-
gence can also be ensured by modulating some nominal linear
dynamics using a modulation matrix (Huber, Billard, & Slotine,
2019; Huber, Slotine, & Billard, 2022). A repeated assumption in
he aforementioned works enabling the proof of (almost) global
onvergence is the premise of the environment being a disjoint
tar world (DSW), i.e. all obstacles are starshaped and mutually
isjoint.2 However, intersecting obstacles are frequently occur-

ring, e.g., when modeling complex obstacles as a combination of
everal simpler shapes, or when the obstacle regions are padded
o take robot radius or safety margins into account. To handle
ntersecting circular obstacles, Daily and Bevly (2008) proposed
eighted average of harmonic functions, but unwanted local

2 See Section 2.2 for complete definition.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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minima still occurred and the authors recommended to keep the
umber of combined obstacles low. In Dahlin and Karayiannidis

(2023a) we presented a method, here referred to as ModEnv⋆,
hich modifies the robot environment into a DSW. This effec-

tively extends the applicable scenarios where the aforementioned
DS methods achieve convergence properties. The approach was
limited to the case with a robot operating in the full Euclidean
space and no conditions for successful generation of a DSW were
provided. In Dahlin and Karayiannidis (2023b) we presented a
otion control scheme for setpoint stabilization with collision

avoidance consisting of three main components: environment
modification into a DSW, DS-based generation of a receding hori-
zon reference path (RHRP), and an MPC to compute admissible
control inputs to drive the robot along the RHRP. Whereas col-
ision avoidance is ensured, no guarantees for convergence were
provided. Convergence may be inhibited by two situations; (1)
the modified environment is not a DSW such that convergence
guarantees for the DS method are lost, (2) the MPC solution does
ot provide a movement of the robot along the RHRP due to
imited control horizon and robot constraints.

In this work, we expand upon the control scheme introduced
n Dahlin and Karayiannidis (2023b) to enable the derivation
f convergence properties and to facilitate its implementation
ithin confined workspaces. As convergence rely on environment
odification into a DSW, we first derive sufficient conditions to
btain a DSW for ModEnv⋆ (Algorithm 2 in Dahlin and Karayian-
idis (2023a)). Additionally, the method is enhanced to treat also
he case of confined workspaces. In contrast to a pure closed
orm approach, embedding the DS in an MPC scheme allows for
imple adaptation of the robot constraints to find an admissible
nd smooth control input. Compared to other MPC approaches,
ollision avoidance is here achieved by relying on a reference
ath generator, simplifying the formulation of the optimal control
roblem to be independent of workspace complexity. Moreover,
he global convergence is achieved despite the receding horizon
ature of MPC schemes. In all, the main contributions are:

• Extension of ModEnv⋆ to allow for confined workspaces and
derivation of sufficient conditions to successfully obtain a
DSW.
• A control scheme with derivation of sufficient conditions

ensured for collision avoidance and convergence to a goal
point.

2. Preliminaries

2.1. Notation

Let A = {A1, A2, . . .}, Ai
∈ Rd be a collection of sets. The

union and intersection of A are denoted by A∪ =
⋃

Ai∈A A
i and

A∩ =
⋂

Ai∈A A
i, respectively. If all sets Ai

∈ A are starshaped,
the kernel intersection is denoted by ker∩(A) =

⋂
Ai∈A ker(A

i). For
onvenience, an improper use of the Minkowski sum, ⊕, will be
pplied as follows: A⊕B = {Ai

⊕B}∀Ai∈A, given B ∈ Rd. The closest
distance between two sets, A1 and A2, is denoted by dist(A1, A2).
B(a, b) and B[a, b] are the open and closed balls of radius b
entered at a, respectively. The line segment from point x to point
is denoted by l[x, y]. A robot workspaceW ⊂ R2 and a collection
f obstacles O = {O1,O2, . . .} in R2 are jointly called the robot
nvironment, denoted by E = {W,O}. The corresponding free set
s denoted by F = W \ O .
∪ [

2

2.2. Starshaped sets and star worlds

A set A is starshaped with respect to (w.r.t.) x if for every point
∈ A the line segment l[x, y] is contained by A. The set A is

said to be starshaped if it is starshaped w.r.t. some point, i.e. ∃x
s.t. l[x, y] ⊂ A,∀y ∈ A. The set of all such points is called the
kernel of A and is denoted by ker(A), i.e. ker(A) = {x ∈ A :
l[x, y] ⊂ A,∀y ∈ A}. For any convex set A we have ker(A) = A.
The set A is strictly starshaped w.r.t. x if it is starshaped w.r.t. x
and any ray emanating from x crosses the boundary only once.
We say that A is strictly starshaped if it is strictly starshaped
w.r.t. some point. The starshaped hull of A with specified kernel
K , SHkerK (A), is the smallest starshaped set such that A ⊂ SHkerK (A)
and K ⊂ ker(SHkerK (A)).

The robot environment E = {W,O} is said to be a star world if
ll obstacles are strictly starshaped, and the workspace is strictly
tarshaped or the full Euclidean space. A disjoint star world (DSW)
efers to a star world where all obstacles are mutually disjoint and
here any obstacle which is not fully contained in the workspace
as a kernel point in the exterior of the workspace, as exempli-

fied in Fig. 1(b). For more information on starshaped sets and
star worlds, see Hansen, Herburt, Martini, and Moszyńska (2020)
and Dahlin and Karayiannidis (2023a).

2.3. Obstacle avoidance for dynamical systems in star worlds

Given a star world, E, collision avoidance can be achieved
using a DS approach (Huber et al., 2022) with dynamics:

ṙ = η(r, rg , E) = M(r, E)(rg − r), (1)

where r is the current robot position and rg ∈ F is the goal
osition. M(·) is a modulation matrix used to adjust the attracting
ynamics to rg based on the obstacles tangent spaces. Conver-
ence to rg is guaranteed for a trajectory following (1) from any

initial position, r0 ∈ F , if E is a DSW and no obstacle center point
s contained by the line segment l[r0, rg ]. For more information,
ee Huber et al. (2019, 2022).

3. Problem formulation

Consider an autonomous agent with dynamics
ẋ(t) = f (x(t), u(t))
(t) = h(x(t)),

(2)

where x ∈ X ⊂ Rn is the robot state, p ∈ R2 is the robot
position and u ∈ U ⊂ Rm is the control signal. It is assumed that
there exists a control input such that the robot does not move,
i.e. ∃u′ ∈ U s.t. f (x, u′) = 0, ∀x ∈ X . The robot is operating in a
dynamic environment, E(t) = {W(t),O(t)}, where each dynamic
obstacle is convex and each static obstacle is either convex or a
simple polygon. The workspace is either strictly starshaped or the
full Euclidean plane.

Remark 1. Although O formally contains only polygons and
convex shapes, the formulation allows for more general complex
obstacles as intersections are allowed. In particular, any shape can
be described as a combination of several polygon and/or convex
egions.

The robot body is modeled as a point, assuming that any
obot radius is taken into account by the environment model. The
ollowing assumptions are stated for the environment.

Assumption 2. The workspace does not change such that
he current robot position becomes an exterior point of the
orkspace, i.e., ∃δt > 0, p(t) ∈ W(t) ⇒ p(t) ∈ W(t ′), ∀t ′ ∈

t, t + δt],∀t .



A. Dahlin and Y. Karayiannidis Automatica 173 (2025) 112026

c
c

t

w

c

p

t
g
M
s
w

s
T

K
b
s
i
s
w

d
K

l

i

m

N
W
t
t

M

m
s
a

Assumption 3. The complete shape of each obstacle is known by
the robot as well as the current position and velocity. The velocity
is constant over a sampling interval ∆t .

Assumption 4. The obstacles do not actively move into a region
currently occupied by the robot, such that the implication p(t) ∈
F(t)⇒ p(t) ∈ F(t +∆t) holds.

Allowing a time-varying workspace enables considering also
cases with non-starshaped confined workspaces as exemplified
in Section 6. However, Assumption 2 restricts the workspace
hanges to enable sound motion planning. Assumption 3 suggests
omplete obstacle recognition and that a constant velocity model
is used. Assumption 4 implies that the obstacles are aware of
he robot’s position and are not hostile, thereby preventing any
collisions while the robot remains stationary.

The objective is to find a control policy, u(t) ∈ U , that drives a
robot with dynamics (2) to a specified goal position, pg ∈ R2,
hile avoiding collision in the environment, E(t), i.e., p(t) ∈

F(t),∀t .
In the following sections, we will omit the time notation for

onvenience unless some ambiguity exists.

4. Guaranteed DSW generation

The obstacle avoidance approach laid out in Section 5 is de-
endent on ModEnv⋆, developed in Dahlin and Karayiannidis

(2023a), to generate a DSW. No guarantee for successfully ob-
aining a DSW was however derived, preventing convergence
uarantees to be established for the proposed control scheme.
oreover, the workspace was assumed to be the full Euclidean
pace, ignoring situations where the workspace is bounded. Here,
e extend ModEnv⋆ to address both these issues.
At a high level, ModEnv⋆ divides all obstacles into clusters

of intersecting obstacles, followed by constructing a single star-
haped obstacle for each cluster, cl, that fully encloses the cluster.
his is done using starshaped hull with specified kernel. An

important step is the selection of kernel points, such that nei-
ther robot nor goal position are included in the created obstacle
regions. This is ensured by following Algorithm 3 in Dahlin and
arayiannidis (2023a) for kernel point selection. The selection is
ased on computing a restricted set, S, from where to select the
pecified kernel. Here, in Algorithm 1, we extend this restriction
n two ways: (1) in scenarios with confined workspace, the kernel
election is restricted to the workspace exterior for any cluster
hich is not fully contained in the workspace, if possible (line 2–

3), (2) the kernel selection is restricted to the intersecting kernel
region of the clustered obstacles, if possible (lines 4–5). For more
etails on the full procedure, the reader is referred to Dahlin and
arayiannidis (2023a).

Algorithm 1 Kernel point selection for ModEnv⋆

1: Assign S according to line 1 in Algorithm 3 of Dahlin and
Karayiannidis (2023a)

2: if not cl∪ ⊂ W and S \W ̸ = ∅ then
3: S ← S \W
4: if ∀Oi

∈ cl starshaped and S ∩ ker∩(cl) ̸ = ∅ then
5: S ← S ∩ ker∩(cl)
6: else if S ∩ cl∪ ̸ = ∅ then
7: S ← S ∩ cl∪
8: Lines 4-13 in Algorithm 3 of Dahlin and Karayiannidis (2023a)

To declare a sufficient condition for DSW generation, the fol-
owing definition of a DSW equivalent set is established.

Definition 5 (DSW Equivalent). A star world is DSW equivalent
f the set, Cl, formed by partitioning O into mutually disjoint
clusters of obstacles, satisfies
3

Fig. 1. A DSW equivalent environment (a) and the corresponding DSW environ-
ent (b). The kernels for all non-convex obstacles are shown as dotted regions.

(i) the obstacles in each cluster have intersecting kernels,

ker∩(cl) ̸ = ∅, ∀cl ∈ Cl, (3)

(ii) any cluster which intersects with the workspace exterior
has an intersecting kernel region that to some extent lies
in the workspace exterior,

cl∪ ∩ extW ̸ = ∅ ⇒ ker∩(cl) ∩ extW ̸ = ∅, ∀cl ∈ Cl. (4)

An example of a DSW equivalent scene is shown in Fig. 1(a).
ote that if all obstacles are convex, it holds that ker∩(cl) = cl∩.
ith the adjusted kernel point selection, a sufficient condition

o establish a DSW can be presented as stated in the following
heorem.

Theorem 6 (Guaranteed DSW Generation). Consider a DSW equiv-
alent environment with free space F , a robot position, p ∈ F , and
a goal position, pg ∈ F . The environment, {W,O⋆

}, resulting from
odEnv⋆ with kernel point selection as in Algorithm 1 is a DSW with

O⋆
∪
= O∪.

Proof. See Appendix A.

5. Control scheme

In this section, a control scheme for setpoint stabilization with
obstacle avoidance is proposed. The scheme is divided into four
ain components, as depicted in Fig. 2, where the important
teps are illustrated in Fig. 3. The environment is modified to form
 DSW, E⋆, where any free point has an appropriately selected

minimum clearance, ρ, to the obstacles and workspace boundary
(Section 5.1). This enables generation of a receding horizon refer-
ence path (RHRP), P , based on (1) to ensure collision clearance
and convergence to the goal (Section 5.2). A control sequence,
ū∗, is computed using an MPC which yields a robot movement
along the RHRP within the specified clearance to ensure collision
avoidance (Section 5.3). To provide guaranteed forward motion,
initial movement of the reference is enforced in the MPC formu-
lation. As a consequence, there may be occasions where the MPC
problem is infeasible for non-holonomic robots. To handle this,
a backup control law is formulated (Section 5.4) and a switching
control law is defined (Section 5.5) yielding the control policy, µ,
applied by the controller over the following sampling period. The
complete control scheme is outlined in Section 5.6 where collision
avoidance and convergence properties are also analyzed.
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Fig. 2. Proposed motion control scheme for setpoint stabilization.

Fig. 3. Illustration of the main steps: (a–b) Environment modification, (c) RHRP,
d) MPC.

5.1. Environment modification

First, the obstacle set is adjusted to account for the dynamic
obstacles. Given Assumption 3, O(t + ∆t) can be predicted by
ranslation corresponding to the obstacle velocities. Hence, the
nflated obstacles Ô(t) = {CH({Oi(t),Oi(t + ∆t)}) : Oi

∈ O}
epresent the regions occupied by the obstacles during the time
eriod [t, t + ∆t]. The proposed method relies on generating
he RHRP with a (time-varying) minimum clearance, ρ, to all
bstacles using the DS approach (1). To this end, the clearance

environment Eρ = {Wρ,Oρ
} is defined, where Wρ

= W ⊖
B[0, ρ] and Oρ

= Ô ⊕ B[0, ρ], with corresponding clearance
set Fρ

= Wρ
\ Oρ
∪. As stated in Section 2.3, any star world is

positively invariant for the dynamics (1) and convergence to a
oal position is guaranteed for a DSW. Since Eρ may include both

intersecting and non-starshaped obstacles, it provides none of
the aforementioned guarantees. The objective of the environment
modification is therefore to find a DSW E⋆ = {Wρ,O⋆

} with
corresponding free set F⋆

⊂ Fρ , as well as initial and goal
positions, r0 ∈ F⋆ and rg ∈ F⋆, for the RHRP. A procedure to
specify ρ and to compute E⋆, r0 and rg is given in Algorithm 2
and the steps are elaborated below.

Initial and goal reference position selection (lines 6–8):
4

The initial reference position, r0, is chosen as the point closest
to an input candidate, r+, within the initial reference set P0

=
ρ
∩ B[p, ρ]. In this way, the distance from r0 to any obstacle

nd workspace boundary is greater than ρ, while the distance to
he robot is less than or equal to ρ. As specified in Section 5.5, r+
is appropriately selected along the previously computed RHRP. In
particular, r+ is chosen to stimulate a forward shift of the RHRP
towards the goal, compared to the previous sampling instance.
The reference goal, rg , is chosen as the point in Fρ closest to pg .

Clearance selection (lines 1–5):
To have a valid initial reference position, ρ is set to a strict

ositive value such that P0 is nonempty. This is done by utilizing
he equivalence

p ∈ Cρ ⇔ P0
̸ = ∅, Cρ = Fρ

⊕ B[0, ρ]. (5)

For robot positions p /∈ Cρ̄ , i.e. when the default selection ρ = ρ̄

yields P0
= ∅, the clearance is reduced to ρ = γ dist(∂F, p)

o ensure p ∈ Fρ and thus P0
̸ = ∅ according to (5). This is a

conservative reduction of ρ since larger values could in many
cases be used while still obtaining P0

̸ = ∅. The procedure is
llustrated Fig. 4.

Establishment of a DSW (lines 9–12):
To obtain a DSW such that F⋆

⊂ Fρ , r0 ∈ F⋆ and rg ∈ F⋆,
a first attempt is to use an input candidate set of starshaped
obstacles,O+. If this does not satisfy the conditions for F⋆, the ob-
tacles are computed using ModEnv⋆. As specified in Section 5.5,
+ is the previously computed O⋆ under the condition that the

corresponding environment is a DSW.
Convexification (lines 13–15):
To avoid unnecessary ‘‘detours’’ in concave obstacle regions,

see Dahlin and Karayiannidis (2023b), the generated obstacles,
O⋆, are made convex provided that the following conditions are
not violated: (1) r0 and rg remain exterior points of the obstacle,
and (2) the resulting obstacle region does not intersect with any
other obstacle. Due to these conditions, any DSW E⋆ remains a
DSW also after convexification.

In addition to the revised kernel point selection in Algorithm
1, the environment modification is adjusted compared to Dahlin
and Karayiannidis (2023b) in four ways: (1) an initial inflation of
the obstacles corresponding to the obstacle velocity is included
to handle constant velocity models during each sampling period,
rather than constant position, (2) the clearance, ρ, is determined
in a one step check ensuring P0

̸ = ∅ as opposed to using an
iterative approach, (3) the selection of the initial reference point,
r0, is based on an input candidate, r+, rather than the robot
position p, and (4) an input set of starshaped obstacles, O+, is
used if feasible instead of recalculating O⋆. The first adjustment
extends the applicability to scenarios assuming constant velocity
obstacles during the sampling period instead of constant position,
while the second is a pure simplification of the algorithm. The
two last adjustments are instrumental to obtain the convergence
properties derived in Section 5.6. Moreover, attempting to set
O⋆
= O+, i.e. remaining O⋆ constant over sampling instances,

ead to a higher degree of consistency over time for the vector
ield associated with (1), which is utilized for generating the
RHRP. By additionally aiming to initialize the RHRP along the
previously computed RHRP facilitates smoother shifts of the path
between control sampling instances.

5.2. DS-based receding horizon reference path

The RHRP is given as a parameterized regular curve

P =
{
r ∈ R2

: s ∈ [0, L] → r(s)
}

(6)

with L = Twmax. Here, T is the MPC horizon described in Sec-
tion 5.3 and wmax

= max ∥
∂h (x)f (x, u)∥ is the maximum
u∈U,x∈X ∂x 2



A. Dahlin and Y. Karayiannidis Automatica 173 (2025) 112026

w
t

1
1
1

1
1

1

p
p
T

r
t

∥

ε
ρ

s

τ

i

e

p
t

t
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Algorithm 2 Environment modification
Parameters: γ ∈ (0, 1), ρ̄ ∈ R+
Input: W , O, pg , p, r+, O+
Output: Wρ , O⋆, r0, rg , ρ

1: if p ∈ Cρ̄ then
2: ρ ← ρ̄

3: else
4: ρ ← γ dist(∂F, p)
5: {Oρ,Wρ

} ← {O ⊕ B[0, ρ],W ⊖ B[0, ρ]}
6: P0

← Fρ
∩ B[p, ρ]

7: r0 ← argminr0∈P0 ∥r0 − r+∥2
8: rg ← argminrg∈Fρ ∥rg − pg∥2
9: if r0 ∈ F+ and rg ∈ F+ and F+ ⊂ Fρ then
0: O⋆

← O+

1: else
2: Compute O⋆ using ModEnv⋆ with Wρ , Oρ , r0 and rg as

input
3: for Oj

∈ O⋆ do
4: if CH(Oj) ∩

{
r0 ∪ rg ∪

(
O⋆
\ Oj

)
∪

}
= ∅ then

5: Oj
← CH(Oj)

linear speed which can be achieved by the robot. The mapping r
is given by the solution to the ODE
dr(s)
ds
= η̄(r(s), rg , E⋆), r(0) = r0, (7)

where η̄(·) = η(·)
∥η(·)∥2

are the normalized dynamics in (1). As the
ath is initialized in the star world F⋆ and the dynamics are
ositively invariant in any star world, we have P ⊂ F⋆

⊂ Fρ .
hus, the tunnel-region Pρ = P ⊕ B[0, ρ] is in the free set, F .

5.3. Model predictive controller

In Dahlin and Karayiannidis (2023b), an MPC is used to com-
pute a control input driving the robot along the RHRP. Whereas
collision avoidance is proven, local attractors away from the goal
may arise in the workspace depending on control horizon and
robot constraints. To improve attracting behavior towards the
goal and derive convergence conditions, we here introduce an
enforced initial forward motion of the reference position resulting
in the following MPC.

Adhering the path-following MPC framework (Faulwasser &
Findeisen, 2016), the system state and input are augmented with
path coordinate, s ∈ [0, L], and path speed, w ∈ [0, wmax

],
espectively. This embeds the reference trajectory r(s) as part of
he optimization problem. The bounds on path variables ensure
5

valid mapping r(s) for all admissible s and that the reference
moves in forward direction along P with a reference speed,
ṙ∥2 = ∥

dr(s)
ds w∥2, less than or equal to the maximum linear speed

of the robot, wmax. Similar to the tunnel-following MPC (van
Duijkeren, 2019), a constraint is imposed on the tracking error,
(τ ) = ∥r(s(τ )) − h(x̄(τ ))∥2 such that the robot position is in a
-neighborhood of the reference position.3 As standard in the

MPC framework, the control variables are piecewise continuous
over a sampling interval ∆t and are computed over a horizon
T = N∆t , with N ∈ N+. The optimization problem for the MPC
to find the control sequence, {ūi, wi : i ∈ [0, 1, . . . ,N − 1]}, is
proposed as

min
ū,w

∫ T

0
−cww(τ )+ ceε(τ )dτ + J(ū) (8a)

ubject to (8b)

∈ [0, T ] : ̇̄x(τ ) = f (x̄(τ ), ū(τ )), x̄(0) = x(t) (8c)

ṡ(τ ) = w , s(0) = 0, (8d)

x̄(τ ) ∈ X , ū(τ ) ∈ U, (8e)

s(τ ) ∈ [0, L], w(τ ) ∈ [0, wmax
], (8f)

ū(τ ) = ūi, w(τ ) = wi, i =
⌊ τ

∆t

⌋
, (8g)

ε(τ ) ≤ ρ , (8h)

w0 ≥
λρ

∆t
. (8i)

Here, the notation x̄ and ū is used to denote the internal variables
of the controller and distinguish them from the real system
variables. The scalars cw > 0, ce > 0 and λ ∈ (0, 1) are tuning
parameters, and J(ū) is a regularization term for the control
nput which can be tailored for the robot at hand, if desired. To
ensure that the upper and lower bound on w0 do not conflict,
the relationship λρ̄ ≤ wmax∆t must be satisfied. The inclusion of
nforced initial forward motion of the reference position (8i) is

key when deriving the convergence properties in Section 5.6.

5.4. Stabilizing backup controller

It can be shown that the MPC problem (8) without constraint
(8i) is feasible at all times by following the proof of Theorem
1 in Dahlin and Karayiannidis (2023b). With the constraint (8i),
existence of solution is however no longer guaranteed. Consider
for instance the example with a non-holonomic robot in Fig. 5
where the robot position is outside the region B[r(λρ), ρ]. De-
ending on robot constraints, forcing an initial displacement such
hat s(∆t) = λρ may lead to ε(∆t) > ρ, violating constraint (8h).
To handle these cases, a fallback strategy is here presented.

Let K ⊂ X × R2
→ U be a family of control laws such that

any κ ∈ K:

• renders the closed-loop error dynamics ė asymptotically
stable in the origin, for the error e(t) = p(t)− r0 given r0,
• does not allow the error to exceed its initial value, i.e., ∥e(t)∥2
≤ ∥e(t0)∥2, ∀t ≥ t0.

We will refer to any κ ∈ K as a stabilizing backup controller (SBC).

Unicycle example: Obviously, the SBC needs to be designed for
he robot at hand, but an example is here presented for a unicycle
robot kinematic model

f (x, u) =

[
v cosψ
v sinψ
ω

]
, h(x) =

[
px
py

]
, (9)

3 In contrast to van Duijkeren (2019) we apply strict, and not soft, constraints
on the tracking error. This can be done and still ensure existence of solution
from the design of the reference path. In particular, since r(0) ∈ P0

⊂ B[p, ρ].
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Fig. 5. The initial part of P (green line) is depicted alongside r0 (blue
quare) and r(λρ) (red square) with corresponding regions B[r0, ρ] (blue) and
B[r(λρ), ρ] (red). If the robot constraints prohibit movement to achieve p(∆t) ∈
B[r(λρ), ρ], no solution to (8) exists. (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of this
rticle.)

where x = [px, py, ψ]T are the Cartesian position and orientation
f the robot, and u = [v ω]T are the linear and angular velocities.
he controller

κ(x, r0) =
[
v

ω

]
=

[
−k1 (ex cosψ + ey sinψ)

k2eψ

]
, (10)

with eψ = (atan2(ey, ex)− ψ + π), k1 > 0 and k2 > 0 then
atisfies the conditions for being an SBC given U = R2. This can
e derived using Barbalat’s lemma with the positive semi-definite
unction V = eT e which has a negative semi-definite derivative,
̇ = −k1 (ex cosψ + ey sinψ)2, under control law (10) (Siciliano,
Sciavicco, Villani, & Oriolo, 2008). To handle saturated controllers
s well, upper bounds for k1 and k2 can be found to ensure
κ(x, r0) ∈ U by utilizing the fact r0 ∈ B[p, ρ] ⊂ B[p, ρ̄] and
hus ∥e∥2 ≤ ρ̄. Consider U = [vmin, vmax

] × [−ωmax, ωmax
] with

min < 0 < vmax and ωmax > 0. We have |v| ≤ k1 (|ex| + |ey|) ≤
k1∥e∥2 ≤ 2k1ρ̄, and the upper bound k1 ≤ min(−vmin,vmax)

2ρ̄ yields
v ∈ [vmin, vmax

]. Assuming eψ is evolving such that eψ ∈ (−π , π ],
e have |ω| ≤ k2π and the upper bound k2 ≤ ωmax

π
yields

∈ [−ωmax, ωmax
].

5.5. Switching control law

The control law µ is updated at a sampling interval ∆t , such
hat it is constant over each period t ∈ [tk, tk+1) with tk = k∆t ,
∈ N. The control law switches between two modes depending
n feasibility of (8) and if the RHRP has converged to the goal or
ot. The two modes are

MPC MODE : r0 ̸ = pg and (8) is feasible
SBC MODE : otherwise,

(11)

and the switching control law is given as

µ(·) =
{
ū∗0, MPC MODE,
κ(·, r0), SBC MODE,

(12)

where ū∗0 is derived from the optimal solution of (8). The control
nput is hence constant over a sampling interval when MPC
ODE is active while the feedback controller κ is applied with

0 as setpoint when SBC MODE is active. The update laws for the
nternal control variables r+ and O+ are given as

r+ =
{
r(w∗0∆t), MPC MODE,
r0, SBC MODE,

(13)

+
=

{
O⋆, E⋆ is a DSW
∅, otherwise,

(14)

where w∗0 is derived from the optimal solution of (8). The initial
reference candidate is specified along the RHRP, P . When in MPC
6

MODE, a solution to the MPC problem exists and r+ is chosen
s the 1-step predicted reference position of the MPC solution.
his encourages forward shift of the RHRP at the next sampling
nstance, while ensuring r+ to stay in a ρ-neighborhood of the
obot due to (8h). When in SBC MODE, the control target is to
ealign the robot configuration to enable MPC feasibility at future
ampling instances, and the next initial reference candidate is
hosen as the current initial reference, suggesting no forward
hift of the RHRP.

5.6. Motion control scheme

The complete control scheme for setpoint stabilization is out-
lined in Algorithm 3. Although no information about the environ-
ent is used in the MPC formulation nor for the SBC, collision
voidance is achieved as stated below by Theorem 7. This is

obtained by ensuring a close tracking (with error less than ρ) of
he path which is at least at a distance ρ from any obstacle and
orkspace boundary.

Algorithm 3 Setpoint control scheme
Parameters: ρ̄ ∈ R+, γ ∈ (0, 1), ∆t ∈ R+, N ∈ N+, λ ∈ (0, 1),

cw ∈ R+, ce ∈ R+, κ ∈ K
Input: E, pg , x
Output: µ(·)
Init: r+ ← p, O+ ← ∅

1: Compute E⋆, r0, rg , ρ using Algorithm 2
2: Compute P according to (6)-(7)
3: Run solver for (8)
4: Update r+ and O+ according to (13)-(14)
5: Determine µ as in (12)

Theorem 7 (Collision Avoidance). The trajectory for a robot with
dynamics (2) and initial position p(t0) ∈ F(t0) following the motion
control scheme in Algorithm 3 is collision-free, i.e. p(t) ∈ F(t),∀t ≥
t0, if Assumptions 2–4 hold.

Proof. See Appendix B.
While convergence properties cannot be stated for generic

cenarios with dynamic obstacles (consider the case with itera-
ively opening and closing of two separated gaps in a room), it
an be stated under the following assumptions.

Assumption 8. There exists a time instance after which the
environment is static, i.e. ∃ks ∈ N \ ∞ s.t. E(t) = Es =
Ws,Os},∀t ≥ tks .

Assumption 9. The workspace boundary and all obstacles
after time tks are at least at a distance ρ̄ from the goal, i.e.
dist(pg , {∂Ws,Os}) ≥ ρ̄.

Without loss of generality, we will in the following assume
ks = 0. Note that Assumptions 2–4 and Assumption 8 trivially
hold for a static scene and Assumption 9 can easily be obtained by
djustment of ρ̄ if pg ∈ Fs. The proposed control scheme provides

convergence from the set Cρ̄s = Cρ̄(t0) given by (5) as stated by
the following proposition.

Proposition 10 (Convergence to Goal by Successful DSW Genera-
tion). The trajectory for a robot with dynamics (2) following the
motion control scheme in Algorithm 3 converges to pg from any
position p(t0) ∈ Cρ̄s if E⋆(t0) is a DSW and Assumptions 2–4 and
8–9 hold.

Proof. See Appendix C.
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Table 1
ontrol parameters.
ρ̄ γ N λ cw ce R R∆

0.2 0.9 6 0.5 1 1
(
0.1 0
0 0.1

) (
0.1 0
0 0

)

The convergence in Proposition 10 is dependent on a success-
ful environment modification at time t0. However, Theorem 6 can
e used to declare an a priori sufficient condition for convergence
s stated below.

Theorem 11 (Convergence to Goal). The trajectory for a robot with
ynamics (2) following the motion control scheme in Algorithm 3

converges to pg from any position p(t0) ∈ Cρ̄s if E ρ̄s is DSW equivalent
and Assumptions 2–4 and 8–9 hold.

Proof. Since p(t0) ∈ Cρ̄(t0), Algorithm 2 yields ρ = ρ̄. Then
Eρ(t0) = E ρ̄s is DSW equivalent. By design we have r0(t0) ∈
ρ(t0) and rg (t0) ∈ Fρ(t0). From Theorem 6 it can then be
oncluded that E⋆(t0) is a DSW and convergence to pg follows
rom Proposition 10.

The positions from where convergence is not guaranteed, F \
ρ̄
s , appear in the neighborhood of obstacle intersections and in
he neighborhood of concave obstacle vertices as seen in Figs. 4
and 6.

6. Results

Three simulation scenarios are carried out to illustrate the
performance of the proposed control scheme. A unicycle robot
described by (9) and input constraints U = [−0.1, 1] × [−1, 1] is
considered in all cases. The Runge–Kutta method (RK4) is applied
for integration of the system evolution which is updated at a
frequency of 100 Hz. Function approximation of the RHRP using
a sixth-degree polynomial and RHRP buffering are applied as
described in Dahlin and Karayiannidis (2023b). The regularization
erm is defined to smoothen the trajectory as J(ū) =

∑N−1
i=0 (ūi −

ud)TR(ūi − ud) + (ūi − ūi−1)Ti R∆(ūi − ūi−1), with ud
= [wmax 0]T

being the desired control input and ū−1 being the previously
applied control input. The control sampling period is ∆t = 0.2
and the state integration in the MPC is performed using RK4. The
SBC is defined as in (10) with k1 = 0.15, k2 = 0.3 ensuring
(x, r) ∈ U, ∀x ∈ X ,∀r ∈ R2. All numerical values for the control
arameters are stated in Table 1.4
To illustrate the convergence properties derived in Section 5.6,

wo static scenes as shown in Fig. 6 are considered.5 The robot is
initialized at different positions p(t0) ∈ F with horizontal orien-
ation, ψ(t0) = 0, for all cases. In Fig. 6(a), the environment form
 DSW equivalent F ρ̄

s and convergence can be concluded a priori
rom any position p(t0) ∈ Cρ̄s by Theorem 11 which is confirmed
by the simulation results. The environment in Fig. 6(b) is not
SW equivalent. However, E⋆(t0) is a DSW for all given initial

positions and convergence to pg from any p(t0) ∈ Cρ̄s follows from
Proposition 10 which is also confirmed by the simulations. The
robot is also initialized at one position in the set F \ Cρ̄s from
where Proposition 10 provides no convergence guarantee (lower
eft). Nonetheless, the robot converges to pg , indicating stronger
onvergence than is theoretically proved. Note that the shape of
he obstacles O⋆ depends on the robot position, and E⋆ is thus
different for each case as illustrated in Fig. 6(c)–6(d).

4 The code for the implementation can be found at https://github.com/
albindgit/star_navigation. The code is aimed to showcase the applicability of
he proposed method, without focusing on computational performance.
5 Further examples can be found in Dahlin (2023), including also an extension

of the method for path-following control.
7

Fig. 6. (a–b) A static set of obstacles O (gray), and the set F \ Cρ̄s (red) from
where convergence cannot be stated by Proposition 10. Traveled path (dashed
black lines) to a goal position pg (green star) is shown from different initial
positions p(t0) (black dots), all with horizontal initial orientation ψ(t0) = 0.
c–d) The starshaped obstacles O⋆ (blue) are formed to obtain a starshaped
nclosing of the obstacles while remaining the robot position (black triangle) an
xterior point. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

As suggested in Huber et al. (2022), also non-starshaped
workspaces can be treated by dividing the workspace into several
ordered subregions with corresponding local dynamics generated
by a high-level planner. In Fig. 7, a concave workspace is divided
into four intersecting rectangles, each assigned with a goal point
that guides the robot towards the next subregion (final goal
position for the last subregion). The subregions are activated
as current workspace in a consecutive manner when the robot
enters the region interior. The robot is here additionally simulated
to be subject to additive input disturbance, randomly sampled
from a normal distribution N (0, 0.12) in both dimensions. The
original environment contains four moving circular obstacles and
one static polygon. At time 12.5s, the robot enters on the right
side of the polygon obstacle. As the closest circular obstacle
moves towards the polygon, the gap between the polygon and the
workspace boundary is reduced and finally closing at time 13.6s.
At this point, the RHRP drastically changes to circumvent the
polygon on the left side. Due to the limited rotational velocity and
reverse speed of the robot, the enforced initial forward reference
motion (8i) is conflicting with the tracking error constraint (8h)
and the MPC problem is infeasible. During the time period t ∈
[13.6, 15.2], the SBC is applied and the robot realigns with the
HRP, enabling feasibility of (8) at t = 15.2s and afterwards.

7. Conclusion

This article proposed a motion control scheme for robots op-
erating in a workspace containing a collection of dynamic, pos-
sibly intersecting, obstacles. The method combines environment
modification into a scene of disjoint obstacles with a dynamical
systems formulation to generate a receding horizon path. A novel

https://github.com/albindgit/star_navigation
https://github.com/albindgit/star_navigation
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Fig. 7. The robot navigates in a non-starshaped workspace divided into several
ubregions with corresponding goal points (yellow stars) to the final goal. The
ctive clearance workspace Wρ (t) (blue dashed line), starshaped obstacles O⋆(t)

(blue), and active goal point (blue star) depends on the robot position. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

MPC formulation was proposed to enforce forward motion along
the path within an obstacle-clearance zone, which in combi-
nation with a stabilizing backup controller allowed for formal
derivations of collision avoidance and convergence properties.

The proposed method relies on momentary observations of the
environment. In scenarios where predictions of obstacle move-
ments are available, it would be valuable to adapt the predictive
controller to leverage these. In case of uncertainties, the theo-
retical guarantees provided by the theorems do not hold even
hough preliminary simulation studies have demonstrated a cer-
tain degree of robustness. One development direction involves
integrating uncertainties and disturbances into the robot model
to enable a robust controller. This can be accomplished using
methods such as tube-based MPC (Mayne, Kerrigan, van Wyk,

 Falugi, 2011), corridor MPC (Roque, Cortez, Lindemann, & Di-
marogonas, 2022), or by utilizing the FaSTrack framework (Chen
t al., 2021).

Appendix A. Proof of Theorem 6

Given the cluster set, Cl, at the start of an iteration of Al-
gorithm 2 of Dahlin and Karayiannidis (2023a), it follows from
8

Property 4b and 4d of Dahlin and Karayiannidis (2023a) that for
he generated starshaped obstacles set at that iteration, O⋆, it
olds for any i ∈ [1, . . . , |Cl|] that K i

⊂ ker∩(cli) ⇒ O⋆,i
=

HkerK i (cli) = cli
∪
. The kernel selection Algorithm 1 computes K i

⊂

S i with S i = ker∩(cli) if cl∪ ⊂ W and S i = ker∩(cli)\W if cl∪ ̸ ⊂ W ,
given that S i is nonempty for these selections. At first iteration
in Algorithm 2 of Dahlin and Karayiannidis (2023a) we have
Cl = O and ker∩(cli) = ker(Oi). Since the environment is DSW
equivalent, the set S i specified above is nonempty. Specifically,
ker(Oi) is nonempty since Oi is starshaped and ker(Oi) \ W is
nonempty for any obstacle Oi

̸ ⊂ W due to condition (4). Thus,
K i
⊂ ker∩(cli) and O⋆,i

= Oi, i ∈ [1, . . . , |Cl|]. As a consequence,
Cl = Cl⋆ after the assignment in line 13. By construction, Cl⋆
consists of mutually disjoint connected subsets of O⋆ and Cl
thus consists of mutually disjoint connected subsets of O. If the
environment is a DSW, it follows that Cl = O and the algorithm
returns the DSW. Otherwise, Cl satisfies (3) and (4) since the envi-
ronment is DSW equivalent and the division of a set into mutually
disjoint connected subsets is unique. Hence, S i specified above is
nonempty. Thus, K i

⊂ ker∩(cli) and O⋆,i
= cli

∪
, i ∈ [1, . . . , |Cl|].

Hence, O⋆ is a mutually disjoint subset of O with O⋆
∪
= O∪, and

|O⋆
| = |Cl| such that the algorithm terminates. Since all regions

in O⋆ are starshaped by construction, and where any clustered
obstacle satisfies (4) the environment {W,O⋆

} is a DSW.

Appendix B. Proof of Theorem 7

From Assumptions 2–4 it follows that p(t) ∈ F̂(tk), ∀t ∈
(tk, tk+1] ⇒ p(t) ∈ F(t), ∀t ∈ (tk, tk+1], where F̂ = W \ Ô∪. Since
p(t0) ∈ F(t0), it suffices to show that p(t) ∈ F̂(tk), ∀t ∈ (tk, tk+1]
iven p(tk) ∈ F̂(tk) at any sampling instance, tk. Consider first the
ase where the controller is in MPC MODE at time tk and thus
(t) = ū∗0(tk), ∀t ∈ [tk, tk+1). Then ∥p(t + τ ) − rk(w∗k,0τ )∥2 ≤
(tk),∀τ ∈ [0,∆t] from (2) and (8c)–(8h). Here rk(·) ∈ P(tk)

is the RHRP-mapping at time instance tk and w∗k,0 is the initial
path speed of the optimal solution to (8). Thus, p(t) ∈ Pρ(tk) ⊂
ˆ (tk), ∀t ∈ (tk, tk+1]. If the controller instead is in SBC MODE,
the SBC is applied, u(t) = κ(x(t), r0(tk)), ∀t ∈ [tk, tk+1). Since
r0(tk) − p(tk)∥2 ≤ ρ(tk) by definition of r0, it follows from
he definition of SBC that ∥r0(tk) − p(t)∥ ≤ ∥r0(tk) − p(tk)∥2 ≤
(tk),∀t ∈ (tk, tk+1]. That is p(t) ∈ B[r0(tk), ρ(tk)] ⊂ Pρ(tk) ⊂
ˆ (tk), ∀t ∈ (tk, tk+1].

Appendix C. Proof of Proposition 10

For ease of notation, let ρk = ρ(tk). The proof is given in
ive steps. In the first two steps, we show that the environment
odification is static after k = 0 in the sense that ρk = ρ̄ ,∀k ≥ 0

and F⋆
k = F⋆

0 ,∀k ≥ 0. In step 3 we show that the initial reference
point r0k is following the parameterized regular curve Γ̂ = { ̂γ ∈

R2
: θ̂ ∈ [0,∞)→ γ̂ (θ̂ )} given by

dγ̂ (θ̂ )

dθ̂
= ν̄(γ̂ (θ̂ ), pg ,O⋆

0), γ̂ (0) = r+0 , (C.1)

Specifically, we show r0k = γ̂ (θ̂k),∀k ≥ 0 given the virtual path
coordinate θ̂ with θ̂0 = 0 and dynamics

θ̂k+1 =

{
θ̂k + w

∗

k,0∆t, MPC MODE
θ̂k, SBC MODE.

(C.2)

In step 4 we show that r0k converges to pg in finite time, and in
step 5 it is shown that this implies convergence of p to pg .

Step 1 (ρk = ρ̄ , ∀k ≥ 0): Assume ρk = ρ̄. From the proof of
Theorem 7 we have pk+1 ∈ Pρk ⊂ F ρ̄

k ⊕ B[0, ρ̄]. Since Ok+1 = Ok,
it follows that pk+1 ∈ F ρ̄

k+1 ⊕ B[0, ρ̄] = Cρ̄k+1. Hence, Algorithm
2 yields ρk+1 = ρ̄. Since p0 ∈ Cρ̄0 and therefore ρ0 = ρ̄, we can
conclude that ρ = ρ̄ , ∀k ≥ 0.
k
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Step 2 (F⋆
k = F⋆

0 , ∀k ≥ 0): Since ρk = ρ̄ , ∀k ≥ 0 it
ollows that F⋆

k ⊂ Fρ

k+1, ∀k ≥ 0. Given F⋆
k is a DSW, it follows

rom (14) and Algorithm 2 that F⋆
k+1 = F⋆

k if r0k+1 ∈ F⋆
k and

g
k+1 ∈ F⋆

k . From the proof of Theorem 7 and from (13) we have
pk+1 ∈ B[rk(w∗k,0∆t), ρ̄] = B[r+k , ρ̄] when in MPC MODE and
k+1 ∈ B[r0k , ρ̄] = B[r+k , ρ̄] when in SBC MODE. Since r+k ∈ Pk ⊂

Fρ

k+1 by definition, it follows that r+k ∈ P0
k+1 and hence r0k+1 = r+k .

Then, r0k+1 ∈ Pk ⊂ F⋆
k . The reference goal is given by rgk+1 =

arg minrg∈Fρ
k+1
∥rg − pg∥2 = arg minrg∈Fρ

k
∥rg − pg∥2 = rgk ∈ F⋆

k .
hus, F⋆

k being a DSW implies F⋆
k+1 = F⋆

k , ∀k ≥ 0. Since F⋆
0 is a

SW, it follows that F⋆
k = F⋆

0 , ∀k ≥ 0.
Step 3

(
r0k = γ̂

(
θ̂k

)
,∀k ≥ 0

)
: Assume r0k = γ̂ (θ̂k) and hence

k(s) = γ̂ (θ̂k + s). From Step 2 we have r0k+1 = r+k . When
in SBC MODE, r0k+1 = r0k = γ̂ (θ̂k) = γ̂ (θ̂k+1). When in MPC
MODE, r0k+1 = rk(w∗k,0∆t) = γ̂ (θ̂k + w∗k,0∆t) = γ̂ (θ̂k+1). Thus,
r0k = γ̂ (θ̂k)⇒ r0k+1 = γ̂ (θ̂k+1). Now, r00 = r+0 = γ̂ (0) = γ̂ (θ̂0) and
we can conclude r0k = γ̂ (θ̂k),∀k ≥ 0.

Step 4 (∃j < ∞ s.t. r0k = pg ,∀k ≥ j): Let θ̂ g be the arc length
f Γ̂ such that γ̂ (θ̂ ) = pg ∀θ̂ ≥ θ̂ g . Such a θ̂ g exists due to the

converging properties of (7) in a DSW. Let K =
⌈
θ̂g

λρ̄

⌉
. If at time

step k the controller has been in MPC MODE at K previous time
iterations, it follows from (8i) and (C.2) that θ̂k ≥ Kλρ̄ ≥ θ̂ g . Now
assume θ̂k < θ̂ g ∀k. A solution to (8) can then be found at most
K − 1 times, i.e. there exists a k′ <∞ where (8) is infeasible for
ny k ≥ k′. Then r0k = r0k′ ,Pk = Pk′ ,∀k ≥ k′ and the SBC is applied
rom this time instance, u(t) = κ(x(t), r0k′ ),∀t ≥ tk′ . Define
α = maxs∈[0,λρ̄] ∥r0k′ − rk′ (s)∥2. Due to the normalized dynamics
(6) we have α ≤ λρ̄ < ρ̄. Since limt→∞ p(t) = r0k′ according to
he definition of the SBC, there exists a finite k′′ < ∞, s.t. pk′′ ∈
B[r0k′ , ρ̄ − α] due to the continuity of the solution. Now consider
the solution for (8) w0 =

λρ̄

∆t , wi = 0,∀i > 0 and ūi = u′,∀i with
(x, u′) = 0, ∀x. This is a feasible solution at time instance k′′
ince ε(τ ) ≤ maxs∈[0,λρ̄] ∥pk′′ − rk′ (s)∥2 ≤ ρ̄ , ∀τ ∈ [0, T ]. This is
 contradiction to the conclusion that (8) is infeasible for k ≥ k′
nd no such k′ exists. Thus, ∃k < ∞ s.t. θ̂k ≥ θ̂ g . Since w∗k,0 > 0,
e have θ̂k+1 ≥ θ̂k,∀k and thus ∃j < ∞ s.t. θ̂k ≥ θ̂ g ,∀k ≥ j.
hen, from Step 3 and the definition of θ̂g , it follows that ∃j <
s.t. r0k = pg ,∀k ≥ j.
Step 5 (limt→∞ p(t) = pg ): From step 4 we have that there

exists some time instance j where r0k = pg , ∀k ≥ j. At this point,
the controller enters SBC MODE. Since the SBC renders asymptot-
ically stable closed-loop error dynamics, it can be concluded that
limt→∞ p(t) = pg .
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