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A B S T R A C T   

Biorefinery production of fuels and chemicals represents an attractive route for solving current energy crisis, as 
well as reducing green-house gas (GHG) emissions from ships, planes, and long-haul trucks. The current bior-
efinery industry is under transition from the use of food (1G, 1st generation), to the use of biomass (2G, 2nd 
generation). Moreover, the use of atmospheric CO2 (3G, 3rd generation) has caught increased attention as the 
possible next-generation biorefinery. Here we discuss how microorganisms can be engineered for CO2-based 
biorefineries to produce fuels and chemicals. We start through reviewing different metabolic pathways that can 
be recruited for CO2 fixation, followed by different opportunities for CO2 fixation, either through co-con-
sumption with sugars or used as the sole carbon source. Key challenges and future research directions for ad-
vancing 3rd-generation biorefineries are also be discussed.   

1. Introduction 

The rapid increase in green-house gas (GHG) emissions and reliance on 
fossil fuels have spurred the production of renewable alternatives, so as to 
keep the current economy sustainable while reshaping the carbon balance. 
Currently, 81% of the world’s energy consumption and 96 % of organic 
chemicals rely on fossil fuels [1]. However, the reservation of fossil re-
sources is unlikely to meet human’s future requirements. Moreover, the 
atmospheric CO2 concentration, which was maintained at 200–280 ppm in 
the past 4 × 105 years [2], has risen sharply to 421 ppm in the recent 50 
years (https://www.co2.earth/). If the current carbon usage pattern con-
tinues, the CO2 level will increase to 500 ppm by 2050 [3], which will affect 
the ecological system on multiple levels, such as species extinction, in-
creased salinity of ground water, and widespread coastal flooding [4]. The 
mismatch of time courses for fossil fuel regenerations and release of asso-
ciated carbon into the atmosphere is at the basis of this problem. Immediate 
switching from the traditional ‘broken cycle’ economy to a renewable 
economy with 'closed cycle' is therefore highly needed [5]. 

Biofuels can be generated under mild conditions, and thus re-
presents the attractive alternatives for reducing GHG emissions. The 

versatile nature of microorganisms allows the production of a wide 
range of fuels and chemicals from a variety of feedstocks, including 
biomass, biological wastes and a variety of C1 compounds [6]. Selection 
of appropriate feedstocks generally depends on the price, local avail-
ability and environmental impact, whereas these three factors are not 
always aligned with each other. Costs for feedstocks vary by an order of 
magnitude, with the lignocellulosic waste being much cheaper than 
dedicated feedstocks like corn and wheat [7]. Current feedstocks could 
be grouped into three generations (Fig. 1): food-based generation (1G), 
lignocellulose-based generation (2G), and C1 based generation (3G). 

The first 1G biorefinery plant was built in 1940s by the US Army for 
fuel-blending [8], and the main driver for expansion of 1G biorefineries 
was to ensure energy security and reduction of urban air pollution in 
1980s [7]. Today 1G biorefineries account for >  95 % of biofuels on the 
market, including corn starch based biofuels in the US, sugar cane based 
biofuels in Brazil, as well as maize, wheat and rapeseed based biofuels in 
Europe and China [9]. Based on the carbon reduction calculation of the US 
corn ethanol program, even including indirect costs of land uses, corn 
ethanol reduces ∼20–50 % of the CO2-eq per MJ compared with petro-
leum [10]. 2G biorefineries, also called lignocellulosic biorefineries, are 
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mainly using feedstocks derived from fast growing trees and perennial 
grasses [7]. 2G feedstock with its abundance and yearlong availability, has 
attracted much attention. Currently we are in the transition from 1G 
biorefinery to 2G biorefinery, with the first lignocellulosic biofuel plants 
implemented in 2004 [11]. In 2008, the Chinese government has initiated 
programs to grow non-grain biofuel feedstocks like sweet sorghum and 
cassava on saline, barren and waste lands [12]. Many different companies, 
including DuPont, Abengoa and POET, have also started to join the field 
using enzymatic processed lignocelluloses to produce ethanol [13]. How-
ever, except for waste lignocellulosic biomass, 1G and 2G feedstocks are 
continuously concerned, due to their requirements for arable land and 
fresh water, reduction in biodiversity, and release of N2O from fertilized 
soils [7]. 

On the other hand, 3 G biorefineries aim to utilize renewable en-
ergies to convert C1 compounds, including methane, methanol, syngas, 
formic acid, and ultimately atmospheric CO2, to fuels and chemicals  
[5]. Here we will focus on CO2-based biorefineries, and for other 
biorefineries please refer to recent literatures [14,15]. Proof of concept 
studies of CO2 biorefineries has been made in cyanobacteria for pro-
duction of commodity chemicals as well as short and medium chain 
alcohols [16]. Recent works also illustrated that two widely applied 
microbial cell factories were converted from heterotrophs to simi-au-
totrophs, and eventually to full autotrophs capable of growth on CO2  

[17]. However, because of the low energy capture efficiencies, sub- 
optimal CO2 capture and conversion rates, these processes are currently 
not economically viable. Here we review how microorganisms have 
been engineered for CO2 fixation for production of fuels and chemicals, 
including different CO2 utilization models and fixation pathways, and 
end with perspectives on future research directions. 

2. CO2 utilization models 

This section may be divided by subheadings. Assimilation of the very 
stable and low energy configuration of CO2 into cellular carbon demands 
four reducing equivalents and a lot of energy [18]. This demand can be 
obtained through co-consumption of CO2 and sugars, or other energy 
sources such as light, chemicals and electricity, that will require cleverly 
designed catalysts and a global rearrangement of carbon fluxes. 

2.1. Co-consumption of CO2 with sugars 

1 G and 2 G biorefineries have focused on heterotrophic fermenta-
tions to convert plant biomass into the desired product, typically 
ethanol; however, the carbon yields in these processes are far from 
optimal. For example, one third of the carbon is lost to CO2 at pyruvate 
dehydrogenase/decarboxylase and one sixth of the carbon is lost at 6- 
phosphogluconate dehydrogenase. Therefore, a more carbon-efficient 
strategy is desirable, and could be achieved with co-consumption of 1G 
and 2G feedstocks with CO2. More importantly, this could also be 
considered as the proof-of-concept stage for evaluating pathways and 
enzymes that could be used when CO2 serves as the sole carbon source. 

Regarding co-consumption of CO2 with sugars, there are mainly two 
routes developed, either through introduction of efficient heterotrophic 
pathways into naturally occurring autotrophic organisms such as algae 
and cyanobacteria, or through expression of CO2 fixation pathways into 
well studied cell factories such as Escherichia coli and Saccharomyces 
cerevisiae. For example, Lee et al. reported that heterologous expression 
of xylose isomerase and xylulokinase in Synechocystis sp. enhanced keto 
acid production, with half of the carbon derived from xylose and the 
other half from CO2 [19]. Moreover, Gleizer et al. reported the con-
struction of autotrophic E. coli via the Calvin-Benson-Bassham (CBB) 
cycle, with the biomass synthesis solely derived from CO2 and the en-
ergy harvesting solely from formate [20]. Hu et al. integrated a syn-
thetic CO2 fixation pathway (half-Wood–Ljungdahl-formolase, HWLS) 
in E. coli, together with the self-assembled nanoparticles to generate 
light-driven reducing power, and enhanced malate and butyrate pro-
duction approaching to the theoretical yield [21]. Meanwhile, reactions 
in the CBB cycle have also been employed in S. cerevisiae to enhance the 
production of free fatty acids [22]. 

Besides the introduction of carbon fixation pathways to recruit CO2 

released during the biorefinery process, another approach is to in-
troduce carbon conservation pathways to bypass CO2 releasing reac-
tions. For example, two carbon conservation routes between glucose 
and acetyl-CoA were reported, including the reverse glyoxylate shunt 
(rGS) [23] and the non-oxidative glycolysis (NOG) [24], as shown in  
Fig. 2. Qin et al. blocked yeast glycolysis and integrated phosphoketo-
lase from Leuconostoc mesenteroides and phosphotransacetylase from 
Clostridium kluyveri, and improved the production of free fatty acids in 

Fig. 1. Scheme and properties of biorefineries. 
Current biorefineries can be grouped into food- 
based generation (1G), lignocellulose-based 
generation (2G), and CO2 based generation 
(3G). 1 G biorefineries are mainly based on 
consolidated bioprocessing of seeds, grains and 
sugars. 2G biorefineries mainly use feedstocks 
derived from fast growing trees and perennial 
grasses. 1G & 2G biorefineries sometime evoke 
concerns about the competition of land and 
water, as well as the energy-consuming raw 
material processing. On the other hand, 3G 
biorefineries tend to circulate renewable re-
sources and CO2 in a closed-loop. 
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S. cerevisiae [25]. Similarly, Bruinsma et al. integrated phosphoketolase 
and phosphotransacetylase into Pseudomonas putida, and increased the 
production of malonyl-CoA and mevalerate using glycerol or xylose as 
the substrate, respectively [26]. However, it is important to note that a 
significant amount of CO2 still releases into the environment through 
these processes. The lost carbon can be recaptured by Clostridium 
through the Wood–Ljungdahl pathway, to produce formic acid and 
acetic acid, which could be fed back to the above-mentioned hetero-
trophic cell factories as additional carbon sources. To be more specific, 
the stoichiometry converting glucose to FFAs, for example, stearic acid, 
is 7.14 C6H12O6 + 7.84 O2 + 18 NAD+ →C18H36O2 + 18 NADH 
+ 24.84 CO2 + 6.84 H2O, whereas the stoichiometry for FFAs pro-
ductions through co-utilization of glucose and acetic acid is 9 C2H4O2 

+ 3.29 C6H12O6 + 9.79 O2 + 3.9 NAD+ = C18H36O2 + 3.9 NADH 
+ 19.74 CO2 + 15.84 H2O. Furthermore, if we consider all the acetic 
acid is from CO2 fixation through the Wood-Ljungdahl pathway in 
Clostridium, the overall stoichiometry is 3.29 C6H12O6 + 9.79 O2 

+ 72 H+ + 72e- + 3.9 NAD+ = C18H36O2 + 3.9 NADH + 1.74 CO2 

+ 33.84 H2O. Moreover, the overall amount of CO2 released will be 
further reduced if we take into account of the CO2 conservation reac-
tions. 

In addition to reforming microorganisms to achieve biological 
carbon sequestration, cell-free systems for carbon sequestration are also 
gaining popularity as they have the potential to increase the rate of 
carbon sequestration towards physical and chemical limits. Luo et al. 
constructed a cell-free CO2 fixation system comprising a synthetic re-
ductive glyoxylate and pyruvate synthesis (rGPS) cycle and the malyl- 
CoA-glycerate (MCG) pathway [27]. A real-time opto-sensing module 
was designed to control cofactor regeneration. In the future, in vitro 
carbon sequestration systems could potentially be inserted into a sui-
table microorganism. In order to achieve this goal, it is necessary to 

standardize and engineer in vitro carbon fixation pathways, which is the 
vision and direction of synthetic biology. 

2.2. 3G biorefineries 

Depending on the energy assimilation techniques, biological systems 
in 3G biorefineries can be divided into phototrophs, chemoautotrophs 
and microbes that could utilize electricity. The progress of CO2 assim-
ilation by engineered microorganisms in recent years is shown in  
Table 1. 

Photosynthesis utilizes photon energy to convert H2O and CO2 into 
organic compounds. Among different photosynthetic organisms, mi-
croalgae and cyanbacteria have been widely applied to assimilate CO2 

to produce fuels and chemicals, such as oleochemicals [28] and aro-
matics [29]. Taking microalgae as an example, its annual production 
level is reaching 5000 ton of dry algal biomass, which can be further 
converted to fuels and chemicals [30]. Attractive photoautorophs in-
clude but are not limited to photoautotrophs Scenedesmus obliquus that 
has already been commercialized [31] and Rhodobacter sphaerodes that 
could also fix nitrogen [32]. Photosynthesis plays important roles in 
energy generation and carbon fixation, and converts unlimited re-
sources (sunlight, water and CO2) to desired bioproducts. However, 
photosynthesis requires large light-exposure surfaces and is limited by 
energy capture efficiencies [9]. Thus, closed cultures are very costly, 
whereas open-pond cultivations may suffer from contaminations and 
unstable cultivation controls. 

Chemoautotrophs fix CO2 obtaining energies from chemical electron 
donors, such as hydrogen, ammonia, phosphite, sulfur (S, H2S) and 
metal irons [33]. Most of these energies can be obtained from waste 
streams and regenerated by light and electricity. It has been suggested 
that H2, CO and formate are more attractive compared with other 

Fig. 2. Illustrative examples of CO2 conservation pathways. The reverse glyoxylate shunt (rGS) and the non-oxidative glycolysis (NOG) as potential routes to 
conserve carbon for both microbial growth and production. 
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electron donors, because of their low reduction potentials that could 
directly reduce cellular electron carriers [34]. Attractive chemoauto-
trophs include Ralstonia eutropha and Clostridium acetogens. R. eutropha 
is able to oxidize H2 or formate to store carbon in the form of poly-
hydroxyalkanoates (PHAs) in an amount up to 70 % of the dry weight  
[35], or to produce desired chemicals, including diesel-range methyl 
ketones [36], and hydrocarbons [35]. Clostridium species, on the other 
hand, could utilize most biomass-derived carbohydrates as well as 
waste streams and C1 compounds to produce a wide range of products, 
including butanol, 2-oxobutyrate and 3-butanediol [37,38]. Interesting, 
a new species of Citrobacter was found through genome sequencing, 
which could convert CO2 to succinic acid with a production rate of 
7.5 g/L/d [39]. 

Recently, another attractive route has been developed using elec-
tricity to provide energy and reducing equivalents to microbial systems 
for more efficient CO2 assimilation and utilization. This may at the 
same time enable storage of electrically generated energy in terms of 
chemicals with high-energy density. Various value-added products can 
be produced from this route, for example, acetic acid and bioalcohols  
[40]. Depending on the energy assimilation techniques, it can be di-
vided into electron transferring systems that can directly consume 
electrons in a low driving voltage environment, and energy carriers 
transferring systems in which electricity is utilized to generate electron 
carriers and these electron carriers are used to assimilate CO2 and 
support cell growth [41]. Electron transferring systems could support 
electricity-to-product at high energy efficiencies (up to 90 %) [42], 
whereas may suffer with low current density, thus low productivities  
[34]. Generally, anaerobic conditions are more electrosynthesis favor-
able, since without oxygen there are less electrode corrosion, fewer 
safety concerns (especially when using H2 or CO as electron carriers) 
and higher energy conversion efficiency compared with aerobic con-
ditions [43]. 

3. CO2 fixation pathways 

Current identified CO2 fixation pathways can be grouped into the 
following classes, as shown in Fig. 3. Unique features of each class, as 
well as advantages and limitation factors of each CO2 fixation pathway 
are discussed here. For detailed chemistry of each pathway, please refer 
to recent reviews [6,44]. 

(i) The CBB cycle fixes CO2 through the pentose phosphate pathway  
[45]. The CBB cycle is the most widely used carbon fixation pathway in 
autotrophic organisms [46], with its key enzyme RuBisCO being no-
toriously inefficient [47]. Although a series of studies have enhanced 
current understanding for the molecular basis of RuBisCO [48], only 
few active RuBisCO enzymes were reported with limited improvements. 
Antonovsky et al. introduced the CBB cycle in E. coli and developed a 
screening system based on ribulose phosphate kinase (Prk) and ribulose 
1, 5-diphosphate (RuBP) to achieve directed evolution of RubisCo [49]. 
Baumschabl et al. expressed lactic acid and iconic acid synthesis genes 
in autotrophic Komagataella phaffii, and enabled its production of or-
ganic acids through the CBB cycle using only CO2 as the carbon source  
[50]. Moreover, CO2 concentrating mechanisms have been integrated 

in E. coli and Pichia pastoris to increase local CO2 concentrations near 
RuBisCO [17,20]. 

(ii) The Wood-Ljungdahl pathway [51] and the reductive glycine 
pathway [52] both employ the ATP-free CO2 reduction reactions, and 
are more energy efficient [53]. The downside of these pathways is that 
they both require complex reaction assistants, such as metals, cofactors 
and chaperones [54]. For the Wood-Ljungdahl pathway, different hosts 
differ in the use of reducing powers, energy requirements and coen-
zymes [55]. For example, in the methyl branch of this pathway, me-
thanogens use chemiosmotical energy to reduce ferredoxin rather than 
ATP, whereas acetogens use NADPH rather than ferredoxin, with one 
additional ATP equivalent required [18,56]. Key enzymes of the Wood- 
Ljungdahl pathway are formylmethanofuran dehydrogenase/ formate 
dehydrogenase/ CO dehydrogenase [57]. Among these enzymes, CO 
dehydrogenase is an oxygen-sensitive enzyme, and thus the Wood- 
Ljungdahl pathway could only work under strictly anaerobic condi-
tions. Recently, a new CO dehydrogenase from Desulfovibrio vulgaris was 
found to tolerate oxygen [58]. On the other hand, the reductive glycine 
pathway that shares four reactions with the Wood-Ljungdahl pathway 
(Fig. 3) was originally proposed to be a synthetic pathway for CO2 

fixation [59], and identified as an native pathway in the sulfate-redu-
cing bacterium Desulfovibrio desulfuricans [60]. The glycine cleavage/ 
synthase system (GCS) that catalyzes the generation of glycine from 
5,10-methylene-THF and CO2 is fully reversible, and thus limits the flux 
to support autotrophic cell growth [61]. The implementation of the 
reductive glycine pathway on methanol/ formate and CO2 for produc-
tion of the essential metabolites glycine and serine has already been 
demonstrated in E. coli [62], S. cerevisiae [63], and P. putida [64]. 

(iii) The reductive TCA cycle [65] and the dicarboxylate/ 4-hydro-
xybutyrate (DC/HB) cycle [66] fix CO2 using acetyl-CoA/succinyl-CoA 
cycles. Critical steps in the reductive TCA cycle are catalyzed by ATP- 
citrate lyase and the oxygen sensitive 2-ketoglutarate synthase [46,67]. 
It was generally accepted that citrate synthase drives an irreversible 
reaction to form citrate from oxaloacetate and acetyl-CoA, and thus 
cannot be used for autotrophic growth [68]. Interestingly, two recent 
studies demonstrated that citrate synthases that could catalyze both 
directions naturally exist [68]. Regarding the other key enzyme in the 
reductive TCA cycle, 2-ketoglutarate synthase catalyzes the carbox-
ylation of succinyl-CoA using ferredoxin as the reducing power. The 
structure of this enzyme has been reported to reveal the molecular basis 
of substrate specificity, catalytic bias, and reaction directionality [69], 
providing information to future engineering for more efficient carbon 
fixation. On the other hand, the DC/HB cycle assimilates both CO2 and 
bicarbonate through phosphoenolpyruvate carboxylase. The key en-
zyme in this pathway is the FAD-containing 4-hydroxybutyryl-CoA 
dehydratase that catalyzes 4-hydroxybutyryl-CoA to crotonyl-CoA [67]. 
Recently, the enzyme was investigated in more details with crystal 
structure and site-directed mutagenesis experiments, characterizing its 
molecular basis of oxygen tolerance [70]. Currently, the DC/HB cycle 
has been identified both in anaerobes, such as Desulfurococcales [66], 
and facultative aerobes, such as Pyrolobus [71]. 

(iv) The 3-Hydroxypropionate (3-HPA, Fuchs-Holo) bicycle [72] 
and the 3-hydroxypropionate/ 4-hydroxybutyrate (HP/HB) cycle [73] 

Table 1 
Recent developments in the assimilation of CO2 producing chemicals.        

Strain Substrate Pathway Products Yield Reference  

Pichia pastoris CO2 CBB Itaconic acid 2 g/L [50] 
Citrobacter BD11 CO2 rTCA Succinic acid 7.5 g/L/d [39] 
Cupriavidus 

necator 
Formate and CO2 CBB cycle PHAS 70% of the totalbiomass [85] 

Acetobacterium woodii CO2/H2 Wood–Ljungdahl pathway Acetate 51 g/L [86] 
Pyrococcus furiosus CO2 HP/HB 3-hydroxypropionic acid 0.02 g/L [79] 
Escherichia coli Formate and CO2 Wood–Ljungdahl pathway Glycine and 

Serine 
- [87]    
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assimilate bicarbonates rather than CO2 into the acetyl-CoA/ succinyl- 
CoA cycles. The 3HPA bicycle and the HP/HB cycle both have high 
energy costs. Their survival during evolution is possibly because they 
can tolerate oxygen and can assimilate bicarbonate [6], which is im-
portant as the intracellular concentration of bicarbonate is much higher 
than that of CO2 [74]. It is also interesting that the first part of both 
pathways are quite alike (Fig. 3), even though they evolved in-
dependently in Chloroflexaceae and archaea, suggesting the importance 
of these biotin-dependent carboxylase reactions during chemoevolution  
[18]. Key enzymes in the 3-HPA bicycle are propionyl-CoA synthase 
and malonyl-CoA reductase [75,76]. Propionyl-CoA synthase is a fusion 
enzyme that can catalyze three steps in the 3-HPA bicycle from 3-hy-
droxypropionate to propionyl-CoA. Structural analysis of propionyl- 
CoA synthase has identified its multicatalytic reaction chamber and 
active sites, and increased its carboxylation yield for CO2 fixation [77]. 
Similarly, malonyl-CoA reductase also catalyzes multi-reactions, and 
this feature has been used to construct efficient cell factory for 3-hy-
droxypropionic acid [78]. The key enzyme in the HP/HB cycle is 4- 
hydroxybutytyl-CoA dehydratase [67], and few study characterizing or 
engineering this enzyme of the HP/HB cycle has been reported. Reac-
tions in the HP/HB cycle have been expressed in the hyperthermophilic 
Pyrococcus furiosus to incorporate CO2 for the production of 3-hydro-
xypropionic acid [79]. This study also showed a significant advance-
ment in development of the complete HP/HB cycle that can reduce CO2 

to acetyl-CoA. So far, heterologous expression of neither the 3-HPA 
bicycle nor the HP/HB cycle yielded autotrophic growth. 

In addition to the mentioned natrual pathways, there are many 
synthetic pathways that play a significant role in the process of CO2 

fixation. Some synthetic metabolic pathways are shown in Fig. 4. Using 
a hybrid chemical-biological pathway, researchers achieved a ground-
breaking feat by synthesizing starch from CO2 and hydrogen in a cell- 
free system [80]. Using a "building block" approach, they constructed 
an artificial starch anabolic pathway (ASAP) consisting of 11 core re-
actions. By calculating pathways, assembling modules, and optimizing 
three bottleneck-related enzymes through protein engineering, they 
achieved the conversion of 22 nanomolar CO2 to starch within 1 min 
under the catalysis of a total catalyst per milligram, which is about 8.5 
times higher than the starch synthesis rate in corn. In addition, many 
semiconductor materials with excellent biocompatibility have been 
developed to provide strong reducing power to drive carbon seques-
tration pathways of microorganisms [41]. For example, non-metal-ni-
trogen-doped carbon nanosheets can be used as catalysts for hydrogen 
evolution reaction, promoting R. eutropha to convert CO2 into poly-β- 
hydroxybutyrate, as shown in Fig. 4b [81]. 

Recently, another synthetic pathway called the crotonyl-CoA/ 
ethylmalonyl-CoA/ hydroxybutyryl-CoA (CETCH) cycle has been re-
ported for CO2 fixation, and exhibited high CO2 fixation efficiency and 
low energy cost in vitro [82]. However, since this pathway has not yet 
been demonstrated in vivo, we will not discuss this pathway in much 
detail. Among currently identified pathways, the 3-HPA bicycle can 
only be found in photosynthetic organisms, the CBB cycle could be 
found mostly in photosynthetic organisms but also in chemosynthetic 
organisms (e.g. the proteobacterium R. eutropha [46]), and the 
Wood-Ljungdahl pathway, the reductive TCA cycle, the DC/HB cycle 
and the HP/HB cycle could only be found in chemosynthetic organisms. 
It is remarkable that most chemoautotrophic pathways employ acetyl- 
CoA/succinyl-CoA cycles (i.e., the reductive TCA cycle, the DC/HB 
cycle, the HP/HB cycle, and the 3HPA cycle). One issue regarding 

succinyl-CoA involved pathways might be its heat-lability, which may 
result in a trapped accumulation of succinate and CoA [18]. One 
common issue with these carbon sequestration pathways is their re-
lative length. In general, the more steps a biochemical pathway takes, 
the less efficient it tends to be overall. To address this problem, Xiao 
et al. designed a minimal artificial carbon sequestration cycle based on 
thermodynamic and kinetic calculations of biochemical reactions [83]. 
This cycle, called the POAP cycle, consists of only four steps catalyzed 
by pyruvate carboxylase, oxaloacetate acetyl hydrolase, acetic acid-CoA 
ligase, and pyruvate synthase. The two steps catalyzed by pyruvate 
synthase and pyruvate carboxylase in the four-step cycle are carbon 
fixation reactions. Each POAP cycle converts two molecules of CO2 to 
one molecule of oxalic acid, consuming two molecules of ATP and one 
molecule of reducing power. In another work, Zeng et al. has developed 
a way, named ICE-CAP pathway, to co-utilize CO2 and other high-en-
ergy C1 compounds (such as methanol or formaldehyde) without the 
need to add ATP and cofactors such as NAD(P)H [84]. This pathway 
achieves efficient synthesis of glycine, serine, and pyruvate using me-
thanol and CO2. Notably, the product concentration can reach levels of 
g/L. The work also shows the great potential of combining biocatalysis 
and chemical catalysis. 

4. Commercial attempts of CO2-based biorefineries 

Several companies have joined forces to develop CO2 utilization 
techniques. For example, Phycal and Algenol are marketing their algae 
based technologies to produce algae oil and ethanol from sunlight, CO2 

and saltwater [88]. LanzaTech has reported commercially production of 
ethanol from steel mill flue gas using Clostridium autoethanogenum, with 
full scale production plants under construction in China and Belgium  
[37]. Recently, LanzaTech described a breakthrough in developing a 
process that enables the conversion of CO2 into acetone and iso-
propanol at an industrial pilot scale [89]. However, the development of 
CO2 biorefineries has lagged far behind traditional bioprocesses, so that 
it is currently hard to justify what production volumes or productivities 
would be needed to be competitive with 1G and 2G biorefineries, and 
deep understanding and optimization of each step of this process is 
required, including the identification of efficient catalysts, judicious 
pathways, host species and operation models. There are several natural 
CO2 fixation pathways identified that might be worth to investigate in 
the future. 

A crucial factor limiting the advancement of the CO2-based bior-
efinery is the high cost for research and development. The issue is often 
referred to as the “valley of death”. The carbon CO2 is + 4 valence, 
requiring significant energy and reducing power to be converted into 
biomass or corresponding products [90]. This factor contributes to a 
significant portion of the entire research and development cost asso-
ciated with carbon fixation. Therefore, reducing the energy expenditure 
required to fix CO2 is the key to reduce research and development costs  
[6]. Currently, public supports on biorefineries largely depend on the 
petroleum price. This fluctuating funding environment is starving small 
bioscience companies, particularly through the toughest part of re-
search development. Thus, current biotech companies still focus on 
productions of value-added products. For example, Sapphire Energy has 
been concentrating on omega-3 oils [6]. Overall, political-driven en-
vironmental incentives on CO2 and waste treatment for production of 
energy-dense liquid fuels might overcome the economic challenges  
[91]. Government should initiate diversified funding opportunities and 

Fig. 3. Natural carbon fixation pathway. a, The CBB cycle, which can direct reduce and fix CO2. It is a universal carbon fixation pathway in nature. This cycle is 
closely related to the pentose phosphate pathway. b, The reductive glycine pathway, which could co-utilize CO2 and formate to synthesize glycine. c, The reductive 
TCA cycle, which fixes two moles of CO2 by reversing the oxidative TCA cycle. d, The 3-HPA cycle, which assimilates two moles of bicarbonate via acetyl-CoA/ 
propionyl-CoA carboxylase. e, The Wood-Ljungdahl pathway, which can direct reduce and fix CO2 in acetogens. f, The HP/HB cycle, which assimilates two moles of 
bicarbonate via acetyl-CoA/propionyl-CoA carboxylase. g, The DC/HB cycle, which fixes one mole of CO2 via pyruvate synthase and one mole of bicarbonate via PEP 
carboxylase. The seven CO2 fixation pathways above mentioned are linked to the central carbon metabolic pathway through glyceraldehyde 3-phosphate, pyruvate 
and acetyl-CoA. 
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Fig. 4. Synthetic carbon fixation pathway. a, The ASAP passway, which convert CO2 to starch. (The dotted line represents a multi-step reaction). b, The artificial 
hybrid system for producing PHB from CO2. (The dotted line represents a multi-step reaction). c, The CETCH cycle. This cycle is a synthetic CO2 fixation pathway 
verified in vitro. d, The POPA cycle, a minimal artificial carbon sequestration cycle. e, The ICE-CAP pathway, which operates without the need to add ATP and 
cofactors such as NAD(P)H. 
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provide revenue support to evaluate a variety of renewable energy 
sources for eventual benefits and risks without prejudices [92]. 

There are still many challenges in promoting the commercial appli-
cation of CO2-based biorefineries. The primary obstacles include the low 
carbon fixation rate and high energy requirements due to the low cata-
lytic rate of carboxylase and the energy/carbon loss that occurs during 
the conversion of CO2 into the cellular carbon metabolism center, which 
necessitates a significant amount of ATP [24]. Fortunately, advance-
ments in biotechnology, especially synthetic biology, have led to the 
emergence of a number of technologies that can promote the develop-
ment of CO2-based biorefineris. For example, metabolic engineering 
strategies can be used to optimize the adaptation of carbon sequestration 
pathways to host’s endogenous carbon and energy metabolism, including 
regulating the expression of enzymes related to carbon sequestration 
pathway [93] and enhancing the uptake and utilization of C1 substrate 
by chassis strains through laboratory adaptive evolution [20]. In addi-
tion, synthetic biology can be used to design and modify carbon se-
quester elements. Recently, the discovery of new enzymes such as PEP 
carboxylase [44] and crotonyl-CoA carboxylase [94], as well as in-
vestigations into the assembly and fine regulation mechanism of Ru-
BisCO, can improve the catalytic performance of carbon capture enzymes  
[48]. Co-culture technology also serves as a powerful driving force for 
the development of the CO2-based biorefinery. Studies have found that 
co-culture of E. coli and Cupriavidus necator can realize the conversion of 
CO2 into sucrose, PHA and lipomacteric oligosaccharides [95]. Co-cul-
ture technology can not only effectively improve the efficiency of carbon 
fixation, but also enables the production of a more diversified products. 
Furthermore, the multi-disciplinary intersection has also injected more 
vitality into the development of the CO2-based biorefinery, such as 
photobacterial coupling technology [96], electric bacterial coupling 
technology [97], AI-assisted protein design [98] and metal electrode 
materials capable of producing hydrogen negative ions [99]. 

5. Conclusions 

For such a long time, the world is in a one-way fossil fuel diminution 
with little attention to waste reutilization and CO2 fixation. Recent 
public concerns and research efforts have been devoted to shifting this 
situation to a more resource-conserving and environmentally friendly 
society. Specially, the recent CO2-based bioeconomy proposed to cir-
culate resources in a closed cycle to create a resource independent fu-
ture [5]. However, the implementation of this technology still requires 
substantial research investment, because of the following limitations: 
(i) Many efficient CO2 fixation hosts are either non-model organisms 
lacking tools for analysis of their physiology and for engineering their 
metabolism, or they grow slowly and require special cultivation con-
ditions [35]. (ii) Most efficient CO2 fixation hosts can only produce low 
amount of simple chemicals, such as formic acid, acetic acid, methanol. 
(iii) For all CO2-based bioproduction processes, both the theoretical and 
practical yields are still far from industrial applications. 

Microbial resources are abundant, and researchers could focus their 
efforts on discovering more carbon-sequestration microbes and devel-
oping additional carbon-using autotrophic strains to address the above 
problems. Exploring the potential of microorganisms in deep-sea hy-
drothermal vents for carbon fixation could be significant [100]. 
Genome sequencing represents a viable method for identifying new 
carbon-using strains, while CRISPR/Cas technology could greatly fa-
cilitate the genetic modification of model and non-model organism, 
expanding the range the organisms that can be genetically engineered 
with precision [101]. These technologies could be used to create more 
efficient strains for CO2-based biorefineries. 
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