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ABSTRACT

Logical flaws in smart contracts are often exploited, lead-

ing to significant financial losses. Our tool, HighGuard, de-

tects transactions that violate business logic specifications of

smart contracts. HighGuard employs dynamic condition re-

sponse (DCR) graphmodels as formal specifications to verify

contract execution against these models. It is capable of op-

erating in a cross-chain environment for detecting business

logic flaws across different blockchain platforms.We demon-

strate HighGuard’s effectiveness in identifying deviations

from specified behaviors in smart contracts without requir-

ing code instrumentation or incurring additional gas costs.

By using precise specifications in the monitor, HighGuard

achieves detection without false positives. Our evaluation,

involving 54 exploits, confirms HighGuard’s effectiveness

in detecting business logic vulnerabilities.

Our open-source implementation of HighGuard and a

screencast of its usage are available at:

https://github.com/mojtaba-eshghie/HighGuard

https://www.youtube.com/watch?v=sZYVV-slDaY

CCS CONCEPTS

• Software and its engineering → Dynamic analysis;

Software verification;Model checking; Functionality;

Formal software verification; Software testing and de-

bugging; • Security and privacy→ Formal security models.
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1 INTRODUCTION

Smart contracts are computer programs that execute on

blockchain platforms and manage digital assets. Smart con-

tracts operate autonomously according to a predefined set

of rules implemented in high-level programming languages

such as Solidity [4]. They embody complex business pro-

cesses, which in lack of business process-oriented develop-

ment languages may lead to implementations that deviate

from the intended business logic of the contract. Such flaws

enable attackers to exploit the contracts [12].

Popular programming lanaguages for smart contracts,

such as Solidity, lack explicit support for process-oriented

concepts such as roles, action dependencies, and time. This

makes it difficult to design and analyze business logic dir-

ectly in the smart contract. To address this problem, we use

dynamic condition response (DCR) graphs to model smart

contracts and their corresponding business processes [20].

DCR graphs are a well-established declarative business pro-

cess notation that extended with data and time provide a

clear and concise model of the smart contract [26].

We leverage DCR graphs to express the intended design

of a smart contract throughout its development cycle (see

Fig. 1). The formal contract model helps convey the protocol

designers’ intentions to developers (stage one in Fig. 1) and

supports later development and maintenance stages (stages

two and three in Fig. 1).

Business logic flaws in smart contracts account for a

significant portion of the total losses in recent smart con-

tract attacks [12]. Previous research has largely overlooked

business-logic vulnerabilities, focusing instead onwell-known

issues like reentrancy and integer overflow [16, 22]. This is

because the business logic of a smart contract is application-

specific. Identifying business logic flaws requires under-

standing the contract’s intended behavior. These flaws are

not easily recognizable as they deviate from the expected

program behavior and do not follow traditional patterns,

complicating their detection by (esp. static) analysis tools.

To address the gap in detection of business logic exploits,

we introduce HighGuard, a runtime monitoring tool for
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Testing against business logic exploitsFormal & visual modeling using DCR graphs

1. Pre-development 2. Pre-deployment 3. Post-deployement

Coding practices, Manual audits   Static
and dynamic analysis

Monitor transactions

Monitor transaction w.r.t business logic

Natural language
specifications (whitepapers)

Figure 1: Software maintenance ecosystem of smart contracts (bottom blue row: HighGuard’s approach)

Table 1: SotA Smart contract monitoring tools

Tool
Monitor
Placement

Evaluation
Dataset Size

Target
Vulnerabilities

ContractLarva [25] On-chain 1 contract [18] —

Solythesis [27] On-chain 23 contr. [28] —

ContraMaster [3] Instr. EVM 218 contr. [33]
Reentrancy
Exception Disorder
Integer Over/underflow

Dynamit [19] Off-chain 105 tx [21] Reentrancy

SCMon [17] Instr. EVM 1 contract [17] —

Xscope [35] Off-chain
4 cross-chain
bridges [34]

Unrestricted Deposit
Inconsistent Event Parsing
Unauthorized Unlocking

Annotation [30] On-chain 50 contr. [30]
Reentrancy, Type cast,
Tx order non-determinism
Exception disorder

Scribble [6] On-chain — —

Tx Monitors [15] Instr. EVM — —

Forta [1] Off-chain — —

HAL Streams [9] Off-chain — —

OpenZeppelin [10] Off-chain — —

HighGuard Off-chain 54 exploits Business logic flaws

smart contracts. It leverages DCR graph specifications as

oracles to differentiate between intended behavior and in-

teractions that violate a contract’s intended business logic.

DCR graphs have been established as a suitable formalism

to capture the security properties in smart contracts [20].

To mitigate the performance overhead of runtime mon-

itoring (additional gas usage), we execute the monitor off-

chain. Nevertheless, HighGuard is an online monitor, as it

observes the transactions as they are appended to the block-

chain in near real-time.

Thanks to its architecture, HighGuard can support mul-

tiple chain environments and even monitor the business

logic of cross-chain transactions, making it (to our know-

ledge) the first tool that is capable of this.

2 RELATEDWORK

Smart contract analysis tools include static and dynamic

methods. Table 1 summarizes state-of-the-art monitoring

tools.

Static Analysis. Tools like Slither [23], SmartCheck [31],

and Securify [32], identify patterns in code but often produce

false positives due to syntax-level checks [30, 33].

Dynamic Analysis. Dynamic analysis tools vary in their

monitoring approach and target vulnerabilities. Contract-

Larva adds runtime checks based on automaton-based spe-

cifications [18, 25], while Solythesis enforces invariants

through a source-to-source compiler [27, 28]. Shyamasundar’s

framework allows in-code constraints enforced through
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MonitorExecution

Bridge

Exploits

Translate

Observe

Capture

Smart Contract
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Execution

Engine
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REST API
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Figure 2: HighGuard system architecture

safeguards [30]. Scribble generates runtime assertions from

annotations for pre-deployment testing [2]. Capretto et al.

propose transaction monitors validating transaction condi-

tions, requiring new blockchain instructions [15].

Pre-deployment tools like ContraMaster use grey-box

fuzzing to test attack transactions [3, 33]. SCMon logs and

visualizes function-level execution metrics [17].

Post-deployment tools monitor deployed contracts for

malicious traces. Dynamit uses machine learning to clas-

sify transactions, focusing on reentrancy attacks [21]. Forta

employs decentralized detection bots [1, 11]. HAL Streams

filters blockchain data for specific events [9]. OpenZeppelin

Monitors provide alerts for specific events [7, 10].

Chain Interoperability. Centralized bridges enable asset

transfer between blockchains [13, 14, 29]. Xscope identifies

vulnerabilities by pre-executing transaction sequences as a

relayer in cross-chain bridges [35]. Ganguly et al. propose

distributed runtime verification across blockchains [24]. Un-

like these tools, HighGuard supports both pre- and post-

deployment testing and monitoring through its multi-chain

execution ecosystem (stages two and three in Fig. 1). Rather

than using predefined anomalous transaction sequences,

HighGuard relies on the reference DCR model of the con-

tract as themonitoring oracle (Table 1, last row), enabling de-

velopers to apply various contract-specific high-level prop-

erties to the monitor.

3 HIGHGUARD ARCHITECTURE

HighGuard requires two inputs from the user: (1) a DCR

model of the contract, and (2) the mapping of contract func-

tions, events, and transaction(s) to DCR model activities.

Fig. 2 shows HighGuard’s architecture. The system mon-

itors incoming transactions to smart contracts and trans-

lates them to DCR graph activities based on transaction

information. The monitor then sends requests based on the

translated events to the DCR execution engine. The trace of
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Figure 3: CLI Termination output for Escrow contract.

Activity ID Time Violation Simulation

placeInEscrow 10:36:44.580 False 2015264

10:36:45.972 False 2015264

10:36:47.355 True 2015264

 releaseByReceiver

withdrawFromEscrow

Figure 4: Report generated for Escrow contract

executed activities is generated as a report while the mon-

itor is running. If the event is part of a violating trace in the

DCR model, it will return an error code that is logged in the

monitor for further investigation.

HighGuard offers a command line interface to deploy,

run, and report. Fig. 3 shows an example report produced

by executing four exploits against four vulnerable Escrow

contracts. Fig. 4 shows details of a particular exploit.

HighGuard is intended for two types of usage: (1) In a

pre-deployment testing setup (stage two in Fig. 1) through

the execution ecosystem of HighGuard (left side of Fig. 2);

(2) Plugged into blockchain environments such as Ethereum

to monitor contracts post-deployment (stage three in Fig. 1).

HighGuard supports multiple blockchain simulators as

environments that abstract away details of each simulation

platform and expose an API to the monitor for deploying

contracts, executing exploits, and monitoring for violations

from exploits. Two such blockchain simulators, Anvil and

Avalanche, are implemented as environments [5, 8].

HighGuard is capable of monitoring cross-chain trans-

actions as the business logic specified in the DCR model of

the contract is platform-independent [20]. To execute cross-

chain transactions, we implement a bridge that supports

cross-chain transactions between the two aforementioned

environments (left side of Fig. 2).1

4 DCR GRAPH MODELING

DCR graphs contain activities (boxes in Fig. 5) and relations

between activities (arrows in Fig. 5). Smart contracts imple-

ment functionality as functions that affect state variables.

To model the semantics of contracts in DCR graphs, we

represent publicly callable functions of a contract as activit-

ies in the DCR graph. The condition checks (require state-

ments in Solidity) that preserve invariants in the contract

are mapped to the relations in DCR graphs. A function’s

requirement in the form of require(predicate) in Solidity is

translated to a guarded inclusion (→+) or exclusion (→%)

relation [26] in the DCR graph with predicate written as a

guard on top of the relation in the model.

1https://github.com/mojtaba-eshghie/HighGuard/tree/main/CI/envs/

bridge-decentralized

releaseByReceiver

receiver

placeInEscrow

sender
withdrawFrom

Escrow

releaseBySender

sender+
receiver

+
+

%% %

%

Figure 5: DCR model of the Escrow contract.

A DCR graph activity is enabled if it is included (drawn

with solid border, e. g., placeInEscrow in Fig. 5). Time con-

straints are represented as DCR response (•→) relations

with deadlines; inter-action dependencies can be modeled as

milestones (→�) that govern when actions are enabled [26].

Finally, Solidity roles are directly mapped to roles in DCR

models (sender and receiver in Fig. 5), ensuring that each

event is executed only by the permitted actors.

5 EVALUATING HIGHGUARD

The DCR models can be designed and simulated in the

dcrgraphs.net online tool and then executed via a REST

API.2 During runtime, a sequence of one or more transac-

tions in the smart contract are translated to one activity

execution in the DCR model depending on the mapping

given to HighGuard for each contract.

Single-Chain Evaluation. We modeled five contracts us-

ing DCR graphs, including the example in Fig. 5. Variants of

each contract were deployed with business logic vulnerabil-

ities injected into their Solidity source code, such as altered

equations in functions and removed require statements. One

author reviewed these vulnerabilities to exclude traditional

types like reentrancy, focusing instead on deviations from

the contract’s business specifications.3 We evaluated High-

Guard’s ability to detect malicious transactions by running

exploits 4 targeting these vulnerabilities using HighGuard’s

ecosystem (Fig. 2). In total, 52 pairs of vulnerable contract

variants and their exploits were tested. Table 2 shows the de-

tection results: HighGuard flagged all exploits with no false

positives or false negatives. This experiment was conducted

in the Anvil environment (Fig. 2).

Cross-Chain Evaluation. We modeled a cross-chain de-

centralized exchange (DEX) with four contracts: a vault, a

token, a price oracle, and a router contract on each of Eth-

ereum and Avalanche blockchains. As mentioned earlier,

the execution ecosystem uses our own centralized bridge for

pre-deployment testing purposes (Fig. 2). Our cross-chain

DEX contract can exchange tokens between two blockchains

using the exchange rate updated by the price oracle con-

tract. We instrumented the implementations of the vault and

router contracts to inject two vulnerabilities related to cross-

chain transaction expiration times and double-payouts. We

ran manually-written exploits5 targeting the mentioned

vulnerabilities which resulted in loss of tokens in victim

2The online tool and API can be used freely for academic use.
3https://github.com/mojtaba-eshghie/HighGuard/tree/main/contracts/src/synthesized
4https://github.com/mojtaba-eshghie/HighGuard/tree/main/CI/exploits/synthesized
5https://github.com/mojtaba-eshghie/HighGuard/tree/main/CI/tests
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Table 2: Single-chain evaluation results

Contract Exploits FP FN

Governance 15 0 0

Escrow 2 0 0

MultiStageAuction 13 0 0

PrizeDistribution 7 0 0

ProductOrder 15 0 0

Total 52 0 0

contracts. These two exploits were successfully detected by

HighGuard with no false positives or false negatives.

Resource Usage. Since the off-chain monitor placement

does not affect contracts under observation, there is no

on-chain performance overhead. The monitor application,

written in NodeJS, runs on a server with memory usage

under 1GB. In a pre-deployment testing setup, HighGuard

also provides the smart contract execution platform, with

resource usage depending on the testing environment. In

the Anvil environment, it uses less than 10MB of RAM and

1% CPU on a MacBook with an Intel i7 2.30GHz processor.

6 CONCLUSION

We present HighGuard, a tool for detecting business logic

flaws in smart contracts. HighGuard takes the DCRmodel of

a contract’s business logic as the reference to check the trans-

actions against it, pre- or post-deployment of the contract.

It operates off-chain and does not require any code instru-

mentation. We successfully demonstrated HighGuard’s cap-

ability of detecting malicious transactions in single-chain

and cross-chain setups by evaluating it against 54 smart

contract exploits.
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