
Quantifying the breakdown scale of pionless effective field theory

Downloaded from: https://research.chalmers.se, 2025-01-20 18:42 UTC

Citation for the original published paper (version of record):
Ekström, A., Platter, L. (2025). Quantifying the breakdown scale of pionless effective field theory.
Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 860.
http://dx.doi.org/10.1016/j.physletb.2024.139207

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



Contents lists available at ScienceDirect

Physics Letters B

journal homepage: www.elsevier.com/locate/physletb

Letter

Quantifying the breakdown scale of pionless effective field theory

Andreas Ekström a, Lucas Platter b,c, ,∗

a Department of Physics, Chalmers University of Technology, SE-412 96, Göteborg, Sweden
b Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA
c Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

A R T I C L E I N F O A B S T R A C T 

Editor: A. Schwenk We use Bayesian statistics to infer the breakdown scale of pionless effective field theory in its standard power 
counting and with renormalization of observables carried out using the power-divergence subtraction scheme 
and cutoff regularization. We condition our inference on predictions of the total neutron-proton scattering cross 
section up next-to-next-to leading order. We quantify a median breakdown scale of approximately 1.4 𝑚𝜋 . The 
68% degree of belief interval is [0.96,1.69]𝑚𝜋 . This result confirms the canonical expectation that the pion mass 
is a relevant scale in low-energy nuclear physics.

1. Introduction

Effective field theories (EFTs) [1] have emerged as important tools 
in nearly all areas of physics. They facilitate precise and systematic de-

scriptions of observables without requiring a complete understanding 
of an underlying theory by focusing on the relevant degrees of freedom. 
A requirement for the applicability of an EFT is the existence of a suf-

ficiently large separation of scales inherent to the system under study, 
as only then does the ratio of these scales provide a useful expansion 
parameter.

One type of EFT, the short-range EFT [2–4], has found wide ap-

plication in particle, nuclear, and atomic physics. This non-relativistic 
EFT is built solely from contact interactions and is applicable when the 
two-body scattering length, 𝑎, is much larger than the range, 𝑅, of the 
interaction. In atomic physics, short-range EFT has been used to analyze 
three-body recombination in ultra-cold atomic gases and to relate its loss 
features to the Efimov effect [5]. In nuclear physics, it has been applied 
to describe a wide range of low-energy phenomena in the positive- and 
negative-energy spectra of light-mass nuclear systems [6]. Moreover, 
this type of EFT has enabled the calculation of electroweak processes in 
the two- and three-nucleon systems and served as a framework for de-

scribing electroweak processes involving halo nuclei, consisting of a few 
nucleons weakly bound to a tightly bound core [7]. In particle physics, 
contact EFT is a powerful tool to understand the properties of weakly 
bound mesonic molecules like the X(3872) [8].
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Given that EFTs offer a methodical order-by-order approach, they 
were heralded as providing reliable uncertainty estimates. To quantify 
these uncertainties—both from truncating the EFT expansion [9] and 
in parameter estimation [10]—Bayesian methods were developed. Re-

cently, it has been recognized that Bayesian approaches can be used 
to quantify the breakdown scale, 𝑀hi, of an EFT [11]. The breakdown 
scale crucially determines the momentum-scale for which the EFT is 
expected to fail, though it is not always straightforward to quantify. 
Indeed, until we have quantitative knowledge about the properties of 
the underlying theory, low-energy quantum chromodynamics in the 
case of nucleons, 𝑀hi remains an inferred quantity rather than a pre-

cisely defined one. In the case of pionless EFT (the short-range EFT for 
nucleons), the canonical expectation for the breakdown scale is mo-

menta corresponding to the pion mass, 𝑚𝜋 ≈ 138 MeV. This is because 
pion exchange—the longest-range nuclear interaction, as described by 
Yukawa [12]—is omitted from this EFT.

In this work, we use order-by-order predictions of the total neutron-

proton scattering cross section to quantify 𝑀hi and thereby also crit-

ically test the fundamental underpinnings of pionless EFT. During the 
preparation of this manuscript, we became aware of Ref. [13], which 
investigates the breakdown scale of a theory constructed solely from 
contact interactions in the context of nucleon-nucleon scattering. That 
work follows an ordering scheme for subleading interactions which dif-

fers from the approach typically used in pionless EFT. Consequently, its 
results are not directly comparable to our findings. The present work 
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highlights the strength of combining Bayesian methods with an order-

by-order renormalizable EFT to leverage its inferential advantages.

2. Pionless EFT

This is a field theoretical formulation of effective range theory [14]. 
It uses a non-relativistic Lagrangian built from contact interactions only

 =𝑁†(𝑖𝜕𝑡 +
∇2

2𝑚
)𝑁 +

∑
𝛼

𝛼 +𝑠𝑑 , (1)

where 𝑁 denotes the nucleon field and 𝛼 = 1𝑆0,
3𝑆1 are the spin-singlet 

(𝑠) and spin-triplet (𝑡) contributions to the 𝑆-wave two-nucleon scatter-

ing channel

𝛼 = −𝐶𝛼0 (𝑁
†𝑃 𝛼𝑖 𝑁)†(𝑁𝑇𝑃𝛼𝑖 𝑁)

+
𝐶𝛼2
8 

[(
𝑁𝑇𝑃𝛼𝑖 𝑁

)† (
𝑁𝑇 ⃖ ⃖⃗∇ 2𝑃 𝛼𝑖 𝑁

)
+ h.c.

]
, (2)

where 𝐶𝛼0 and 𝐶𝛼2 are low-energy coupling constants adjusted to the ef-

fective range parameters [15]. At next-to-next-to-leading order (N2LO), 
an 𝑆- to 𝐷-wave operator is formally required to calculate the scattering 
amplitude, denoted in Eq. (1) as 𝑠𝑑 . However, it does not contribute 
to the total cross section up to N2LO.

We calibrate the coupling constants of this Lagrangian to reproduce 
the effective range parameters determined by the Nijmegen partial wave 
analysis [16,17]. To do this, we expand around the pole in the triplet 
channel

𝑘 cot 𝛿𝑡 = −𝛾𝑡 +
𝜌𝑡
2 
(𝑘2 + 𝛾2𝑡 ) +… , (3)

where 𝑘 is the relative momentum between the two nucleons, 𝛾 =
√
𝑚𝐵𝑑

is the binding momentum associated with the binding energy 𝐵𝑑 of 
the deuteron. In the singlet channel, we expand around the scattering 
threshold

𝑘 cot 𝛿𝑠 = − 1 
𝑎𝑠

+
𝑟𝑠
2 
𝑘2 +… . (4)

Pionless EFT requires a re-summation of the contact operators at leading 
order to reproduce the analytic structure of the 𝑆-matrix that generates 
the low-energy bound state (the deuteron) in the triplet channel and a 
virtual state in the singlet channel. The two-body spin-singlet 𝑡-matrix 𝑡𝑠
containing the effective range parameters is therefore expanded in the 
small length scale 𝑟𝑠

𝑡𝑠(𝑘) =
1 

− 1 
𝑎𝑠

− 𝑖𝑘

[
1 −

𝑟𝑠
2 
𝑘2

1 
− 1 
𝑎𝑠

− 𝑖𝑘

+
⎛⎜⎜⎝
𝑟𝑠
2 
𝑘2

1 
− 1 
𝑎𝑠

− 𝑖𝑘

⎞⎟⎟⎠
2

+…

]
. (5)

A similar expansion is carried out in the triplet channel for the triplet 
t-matrix 𝑡𝑡 where (3) is used. The first term in the expansion in Eq. (5)

is reproduced in the pionless EFT by summing all diagrams that contain 
only vertices arising from the first term in Eq. (2) and calibrating the 
low-energy constant 𝐶

1𝑆0
0 accordingly. The remaining terms are repro-

duced by including the subleading operators in Eq. (2) in perturbation 
theory. In this way, the low-energy constants become functions of the 
parameters in the effective range expansions [15]

𝑎𝑠 = −23.714 fm, 𝑟𝑠 = 2.678 fm, (6)

𝛾−1 = 4.318946 fm, 𝜌𝑡 = 1.765 fm , (7)

and we calculate the total cross section as

𝜎(𝑘) = 4𝜋
(1
4
|𝑡𝑠(𝑘)|2 + 3

4
|𝑡𝑡(𝑘)|2) . (8)

The calculation of the scattering amplitude includes loop diagrams that 
are power-divergent. Therefore, a regularization scheme has to be em-

ployed before renormalization to the physical parameters in Eq. (6). The 
so-called power-divergence subtraction (pds) scheme [4] is a regulariza-

tion approach that replaces any power divergence with a single power 
of the renormalization scale 𝜇. After renormalization in the pds scheme, 
the on-shell two-nucleon 𝑡-matrix reproduces the effective range expan-

sion up the order of the EFT expansion exactly, i.e., it does not exhibit 
any residual regulator dependence. Alternatively, the loop integrals can 
employ a hard momentum space cutoff Λ. When this is done, the ampli-

tude will display residual regulator dependence that is one order higher 
than the one considered. In this work, we primarily use pds regular-

ization, but we also explore the effects of cutoff regularization on our 
inferences.1

3. Inferring the breakdown scale

Having established the theoretical framework for pionless EFT, we 
now turn to the application of Bayesian inference to quantify the break-

down scale 𝑀hi. We express the 𝑛-th order EFT prediction of the total 
cross 𝜎 section, at relative on-shell momentum 𝑘, as a series expansion, 
i.e., we formally write

𝜎(𝑛)(𝑘) = 𝜎ref(𝑘)
𝑛 ∑
𝑖=0 
𝑐𝑖(𝑘)[𝑄(𝑘)]𝑖 . (9)

The expected systematicity of pionless EFT manifests in the dimension-

less ratio 𝑄(𝑘) = 𝑓 (𝑘)∕𝑀hi and an expectation of natural values for the 
EFT expansion coefficients 𝑐𝑖. We assume a functional form 𝑓 (𝑘) that 
smoothly interpolates over the soft scale ∼ 1∕𝑎𝑡, where 𝑎𝑡 = 5.42 fm, as

𝑓 (𝑘; 𝑟) =
𝑘𝑟 + (1∕𝑎𝑡)𝑟

𝑘𝑟−1 + (1∕𝑎𝑡)𝑟−1
, 𝑟 = 6 (10)

This function is roughly constant for 𝑘𝑎𝑡 < 1 and smoothly matches to a 
linearly increasing function 𝑘∕𝑀hi. In accordance with our expectation 
of naturally sized expansion coefficients 𝑐𝑖, i.e., 𝑐𝑖 ≈(1), we employ a 
normally distributed prior density2

𝑐𝑖|𝑐2 iid∼  (0, 𝑐2) (11)

𝑐2|naturalness ∼ 𝜒−2(𝜈0 = 2, 𝜏20 = 1), (12)

with a hyperprior for the variance 𝑐2 following an inverse 𝜒2 distribu-

tion with degrees of freedom 𝜈0 = 2 and scale parameter 𝜏0 = 1, equiva-

lent to an inverse gamma distribution (𝑎0 = 1, 𝑏0 = 1), see Fig. 1. For 
this choice of prior we have ℙ(𝑐2 ∈ [1∕3,3]) ≈ 0.67, i.e. a majority of 
the probability for the variance remains natural.

All dimensionful factors are collected in a reference scale 𝜎ref which 
renders the expansion coefficients 𝑐𝑖 dimensionless. Our statistical anal-

ysis will be conditioned on leading order (LO, 𝑛 = 0), next-to-leading 
order (NLO 𝑛 = 1), and next-to-next-to-leading order (N2LO, 𝑛 = 2) pre-

dictions for the total cross section at a finite number of momenta 𝑘. 
Information about the breakdown scale flows through the momentum-

dependent order-by-order differences of predictions 𝜎(𝑗) and 𝜎(𝑗−1) via 
the corresponding expansion coefficients

𝑐𝑗 (𝑘) =
𝜎(𝑗)(𝑘) − 𝜎(𝑗−1)(𝑘)
𝜎ref[𝑄(𝑘)]𝑗

. (13)

We utilize the leading-order pionless EFT prediction as the reference 
scale and therefore have that 𝑐0 = 1. A collection of order-by-order pre-

dictions at 𝐾 different momenta is denoted by a boldface symbol; 𝝈. Up 
to N2LO, we can extract 𝑁 = 2 informative coefficients 𝑐1(𝑘) and 𝑐2(𝑘)

1 See the supplemental material for more information on regularization and 
renormalization with a hard momentum space cutoff.

2 The statistics notation 𝑥 ∼ ⋅ is shorthand for “𝑥 is distributed as …”. The 
abbreviation iid stands for independent and identically distributed.
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Fig. 1. Inverse-𝜒2 prior for the variance of the normally distributed prior we 
place on the EFT expansion coefficients 𝑐𝑖 defined in Eq. (9).

at momenta (𝑘1, 𝑘2,… , 𝑘𝐾 ). Using Bayes’ rule, we express the posterior 
probability for 𝑀hi, given 𝝈 and additional assumptions 𝐼 , specified 
above and below, as

𝑝(𝑀hi|𝝈, 𝐼) ∝ 𝑝(𝝈|𝑀hi, 𝐼)𝑝(𝑀hi|𝐼). (14)

To avoid overly correlated samples, which would contradict our iid as-

sumption for the expansion coefficients, we computed cross sections at 
𝐾 = 3 different laboratory scattering energies (10, 40, and 70 MeV) 
corresponding to relative momenta 𝑘 = (68.5,137.0,181.2) MeV [18]. 
Below we analyze the robustness of our inference with respect to this 
choice of scattering energies.

The iid assumption enables a factorization of the data likelihood

𝑝(𝝈|𝑀hi, 𝐼) =
𝐾∏
𝑖=1 
𝑝(𝝈𝑖|𝑀hi, 𝐼). (15)

Following Melendez et al. [11] we can make a variable transformation 
and express the data likelihood at each momentum 𝑘𝑖 as a joint distri-

bution for the corresponding expansion coefficients. Moreover, having 
placed a (conjugate) inverse-𝜒2 prior (with hyperparameters 𝜈0 = 2, and 
𝜏0 = 1) on the expansion coefficients yields a closed form expression for 
𝑝(𝝈|𝑀hi, 𝐼). We thus have

𝑝(𝑀hi|𝝈, 𝐼) ∝ 𝑝(𝑀hi|𝐼) 𝐾∏
𝑖=1 

(
𝜏
𝜈𝑖
𝑖

∏
𝑛∈[1,2]

𝑄(𝑘𝑖)𝑛
)−1

, (16)

where 𝜏𝑖 and 𝜈𝑖 are given by

𝜈𝑖 = 𝜈0 + 𝑛𝑐, (17)

and

𝜈𝑖𝜏
2
𝑖 = 𝜈0𝜏

2
0 + 𝑐1(𝑘𝑖)

2 + 𝑐2(𝑘𝑖)2, (18)

and 𝑛𝑐 = 2 is the number of order-by-order differences 𝑐1(𝑘𝑖) and 𝑐2(𝑘𝑖)
for each of the 𝐾 momenta. The last step before we can evaluate the 
posterior for the breakdown scale is to express our prior 𝑝(𝑀hi|𝐼). To 
begin with, we adopt scale-invariant log-uniform distribution across a 
rather large interval of possible values 𝑀hi ∈ (𝑚𝜋∕40,40𝑚𝜋).

4. Results

We find posteriors at NLO and N2LO for the breakdown scale 𝑀hi as 
shown in Fig. 2. The N2LO posterior is slightly more precise, as expected. 
Indeed, the NLO posterior is conditioned on less data as the inverse-

Fig. 2. Posteriors for the breakdown scale 𝑀hi in pionless EFT. Thick and thin 
horizontal bars indicate 68% and 95% (highest posterior density) DoB intervals, 
respectively. The 68% (95%) DoB intervals are [61,216] MeV ([23,363] MeV) 
and [133,233] MeV ([96,303] MeV) at NLO and N2LO, respectively. The median 
values (white dots) for 𝑀hi are 154 and 189 MeV at NLO and N2LO, respectively.

product over the orders in Eq. (16) is truncated at 𝑛 = 1, which also 
modifies Eqs. (17)-(18) by 𝑛𝑐 = 1 and 𝑐2(𝑘𝑖) = 0 for all 𝑘𝑖.

The inferred breakdown scale is consistent with the canonical scale 
separation that pionless EFT is predicated on. We find median values 
for 𝑀hi at 1.1𝑚𝜋 and 1.4𝑚𝜋 at NLO and N2LO, respectively. Moreover, 
the order-by-order estimates of 𝑀hi are consistent with each other as 
the NLO and N2LO posteriors overlap within the 68% degree of belief 
(dob) intervals. This is the main result of our work. 

Our results are largely robust with respect to physically motivated 
variations of our prior assumptions. Modifying the prior for the EFT 
expansion parameters such that ℙ(𝑐2 ≤ 1) = 0.62 by setting 𝜈0 = 1 and 
𝜏0 = 1∕2, the posterior for 𝑀hi is also shifted to somewhat lower values, 
and at N2LO we find a 68% DoB interval [80,179] MeV and median 
𝑀hi = 𝑚𝜋 . The NLO distribution sits at slightly lower values, as in the 
previous case. Regarding the soft-scale function 𝑓 (𝑘; 𝑟) in Eq. (10), for 
𝑟 > 6 the resulting inference barely changes at all, as expected from the 
functional form of 𝑓 (𝑘; 𝑟). However, for 𝑟 = 1 we find median values of 
the breakdown scale at 𝑚𝜋 for both NLO and N2LO. Using a uniform 
distribution for the prior 𝑝(𝑀hi|𝐼) across the interval [𝑚𝜋∕2,2𝑚𝜋], we 
find median values 𝑀hi = 1.5𝑚𝜋 at both NLO and N2LO, with other 
characteristics of the distributions remaining largely unchanged. The 
median values for the breakdown scale are also robust with respect to 
the choice of scattering momenta at which we compute cross sections. 
Conditioning the inference on another choice of relative momenta, e.g., 
𝑘 = 10,80,150 MeV only serves to push the median breakdown scale up 
to 𝑀hi = 1.5𝑚𝜋 and 1.7𝑚𝜋 at NLO and N2LO, respectively. However, 
increasing the number of momentum values 𝐾 can lead to artificially 
narrow posteriors, informed by correlated data, which violate the iid 
assumption underpinning our likelihood.

We inspect the pionless EFT predictions for the total cross section 
and quantify the corresponding truncation error up to N2LO, assum-

ing 𝑀hi = 1.4 𝑚𝜋 and the prior in Eqs. (11)-(12). The results are shown 
in Fig. 3. There is a clear trend of order-by-order improvement, and a 
rather good reproduction of experimental data up to 𝑘 = 50(100) MeV 
for NLO(N2LO). As a representative example, we also show the cor-

responding 𝑐1(𝑘) and 𝑐2(𝑘) EFT expansion coefficients in Fig. 4. The 
resulting expansion coefficients are of natural size, in agreement with 
our expectations. The resulting EFT truncation error is also reasonable, 
and we quantify this using a consistency plot, see Fig. 5. The proce-

dure for computing a consistency plot of this kind is outlined in detail 
in Ref. [21]. In brief, we compare the coverage of the NLO truncation 
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Fig. 3. Pionless EFT predictions for the total cross section at NLO and N2LO 
including 68% DoB intervals. Loop diagrams are regularized using pds, the cou-

pling constants are calibrated to reproduce the effective range expansion, and 
we employ 𝑀hi = 1.4𝑚𝜋 . Experimental cross section data is from the Granada 
database [19,20].

Fig. 4. EFT expansion coefficients 𝑐1 and 𝑐2 as extracted from the order-by-order 
predictions in Fig. 3.

error with the N2LO prediction, and we do so at 15 equally spaced lab 
scattering energies up to 75 MeV. The resulting NLO coverage is within 
the sampling error, assumed to follow a binomial distribution. For lower 
(higher) DoBs the NLO truncation error can be considered too small 
(large). This result is a further indication of a self-consistent and robust 
statistical analysis.

We carried out the same analysis for pionless EFT with cutoff regu-

larization. We find that the inferred breakdown scale of 1.4𝑚𝜋 at NNLO 
is robust for regularization cutoff values ≳ 1.5 fm−1, while the NLO re-

sults show somewhat stronger variation with the cutoff. For lower values 
of the cutoff, the median value of the breakdown scale increases.

5. Summary

In this work, we inferred a median value 𝑀hi ≈ 1.4 𝑚𝜋 for the break-

down scale of pionless EFT in pds regularization. Our statistical analysis 
is conditioned on order-by-order predictions for the total cross section 
up to N2LO. Our analysis is robust with respect to variations of our as-

sumptions: natural expansion coefficients, iid cross section predictions, 

Fig. 5. Consistency plot for 15 NLO predictions at equally spaced lab scattering 
energies up to 75 MeV and varying DoB between 0% and 100%. The shaded 
bands represent 68% and 95% confidence intervals for the success rates.

and a log-uniform prior for 𝑀hi. This result agrees with the canonical 
assumption that the pion sets the breakdown scale for an EFT that in-

tegrates out this mass scale in the nuclear interaction. However, it can 
also be considered somewhat large considering the pion cut at 𝑚𝜋∕2 ex-

plicitly present in the 𝑆-wave projected one-pion exchange potential, 
see, e.g., Ref. [22] for one of many works relating the effective range 
expansion and its convergence radius to the pion cut. Therefore, fur-

ther study of the breakdown scale at higher orders of the pionless EFT is 
warranted but will come at the cost of additional LECs. For instance, at 
third order—one order beyond what was considered here—the 𝑆-wave 
shape parameter and the 𝑃 -wave scattering length enter the calculation 
of the total cross section. An operator leading to 𝑆 to 𝐷 wave mixing 
enters the calculation of the total cross section at the fourth order. How-

ever, this would also enable meaningful predictions of spin-polarized 
cross sections. Extension to pionless EFT analyses of neutron-deuteron 
scattering, where the renormalization of 3-nucleon observables up to 
N2LO is well understood and experimental data is abundant, should be 
straightforward.

The recent analysis by Bub et al. [13] examines a theory employing 
Weinberg power counting for the nuclear interaction while neglecting 
pion exchange contributions. As such, this approach consists solely of 
contact interactions, which superficially resembles pionless EFT. How-

ever, the underlying structure is markedly different. At order (𝑝∕𝑀hi)4
in their expansion scheme, with different scalings of the expansion pa-

rameter, Bub et al. consider a total of 26 low-energy constants and fit 
these to nucleon-nucleon scattering data. This has to be compared to 
the 6 low-energy constants used in our work, which are fitted to 4 ex-

perimental parameters. Bub et al. [13] infer, among many other model 
parameters, a posterior probability for the breakdown scale, obtaining 
typically 𝑀hi < 0.65𝑚𝜋 , which is significantly lower than those in our 
analysis and expectations based on the excluded pion degree of free-

dom. They interpret this discrepancy as an indication of the importance 
of employing a consistent EFT power counting scheme and highlight the 
utility of a Bayesian approach for testing underlying assumptions.

Future work should address the inference sensitivity to calibrating 
the low-energy constants to cross-section data instead of the effective 
range parameters. The effective range parameters depend on the choice 
for the expansion of 𝑘 cot 𝛿 shown Eqs. (3) and (4). Direct calibration of 
the LECs to experimental data might deviate from these expansions and 
potentially influence the order-by-order improvement of EFT predic-

tions. It would also be interesting to marginalize over such parametric 
uncertainties, as well as the uncertainty in 𝑀hi [13].
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As these developments in Bayesian parameter estimation and uncer-

tainty quantification continue, they will not only enhance uncertainty 
quantification of pionless EFT calculations but also facilitate Bayesian 
model mixing of pionless EFT and pionful EFT [7,23,24]. Mixture EFTs, 
combining the strengths of both EFTs, might improve the inferences con-

ditioned on these respective EFTs. This could, e.g., prove useful in cases 
like proton-proton fusion, where a unified and improved uncertainty es-

timate for the driving reaction rate in the Sun is desirable [25]. Finally, 
we remark that the approach we have used here can also be extended to 
the other areas where short-range EFT has been applied, provided some 
experimental data are available for model calibration. For example, in-

ferring the breakdown scale of halo EFT would provide new insights 
into the physics of weakly bound nuclear systems.
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