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Introduction
As with all empirical sciences, nuclear physics oper-

ates in the virtuous cycle of the scientific method: obser-
vations inspire theoretical models; models lead to new 
predictions; predictions are tested in experiments; experi-
ments lead to new observations; and so on. Evaluating 
what we are inferring, and how certain we are of it, is key 
to this process.

These requirements, and a general interest in applying 
novel statistical, mathematical, and computational techniques, 
led to the formation of a dedicated research community enti-
tled “Information and Statistics in Nuclear Experiment and 
Theory (ISNET)” (https://isnet-series.github.io/), which now 
includes more than 300 members. While the community’s in-
terests lean toward nuclear theory, the unifying theme for this 
group is the inference of knowledge from data.

Input from beyond nuclear research has been critical to 
the success of the ISNET workshops. The most important 
contributions have come from statisticians and applied 
mathematicians, many of whom hail from the uncertainty 
quantification (UQ) community.

History
The series of ISNET meetings can be traced to a small 

workshop held at the Institute of Nuclear Physics in Kra-
kow in 2012 to review the quantification of uncertainties in 
theoretical predictions; a response to an editorial in Phys. 
Rev. A [1] that highlighted “…the importance of including 
uncertainty estimates in papers involving theoretical calcu-
lations of physical quantities…”

This was followed by an extension to incorporate UQ 
in phenomenology and inference from experimental re-
sults, with a small workshop in Glasgow in 2013. The 
ISNET workshop series developed thereafter, including 
meetings at the European Centre for Theoretical Studies 
in Nuclear Physics and Related Areas in Trento, Italy; 
the Institute for Nuclear Theory (INT) in Seattle, USA; 
and Gothenburg, Sweden (see Figure 1). We are now ap-

proaching the 10th edition of ISNET at the Jiangwan 
Campus of Fudan University in Shanghai, China (https://
napp.fudan.edu.cn/event/757/), in November 2024.

The first task was to learn how to speak each other’s 
languages. For example, what statisticians call simula-
tions, physicists call models, and whereas θ will trigger 
a statistician to think about a parameter, physicists imag-
ine an angle. For Bayesians, probability represents un-
certainty, and in the context of UQ, Bayesian credibility 
intervals should encompass all of our ignorance. This 
enables not just UQ for model parameters and predic-
tions, but also probabilistic assessment of models them-
selves. Nuclear physicists were more used to frequentist 
confidence intervals. Despite these challenges, it was 
concluded that the different communities could benefit 
each other. A result of this was the compilation of IS-
NET-themed articles in two Journal of Physics G Focus 
issues [2, 3].

Figure 1. Workshop participants, ISNET-7 in Gothenburg, 
Sweden.

https://isnet-series.github.io/
https://napp.fudan.edu.cn/event/757/
https://napp.fudan.edu.cn/event/757/
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Culture Eats Strategy for Breakfast
From the outset, there has been an atmosphere of “there 

are no stupid questions,” and (we hope) this has led to a 
culture where the contributions from colleagues at all stages 
of their careers are welcome. We believe that the ISNET 
community is nonhierarchical, welcoming, and inclusive. It 
was thus a straightforward step to establishing a Code of 
Conduct that requires participants of meetings to adhere to 
respectful and inclusive standards of behavior. This re-
quirement was introduced following the establishment of 
an ISNET "board" (chair 2022–2024 Daniel Phillips, chair 
2024–2026 Andreas Ekström), which now oversees the de-
cisions on meeting locations, provision of information, and 
training materials.

Developing a Toolbox
Many statistical methods used in nuclear physics are 

well known from undergraduate programs, but it is impor-
tant to assess how additional techniques can be deployed. 
For example, parameter estimation and model calibration 
tasks are often performed by minimization of a sum of 
squared residuals (χ 2). But, if it is suspected that the data 
have correlated or non-Gaussian errors or if there is any 
multimodality and so on, new approaches are required. 
A Bayesian approach requires that we both examine the 
structure of the entire likelihood function and combine it 
with a priori information.

Bayesian inference was a key driver for the ISNET com-
munity, following on the heels of its successful deployment 
in fields such as astrophysics and cosmology. A Bayesian 
posterior can rarely be computed analytically, but it can be 
sampled using Markov Chain Monte Carlo (MCMC) meth-
ods (see, e.g., Ref. [4]). One of the first take-home messages 
from ISNET workshops was that these methods, developed 
by physicists in the 1950s, are now computationally straight-
forward and ubiquitous in statistics.

MCMC sampling of the posterior can be computation-
ally expensive, and so the UQ community has for some 
time been using emulators extensively in inference prob-
lems. An emulator is a surrogate function that mimics the 
full calculation (“the simulator”) with minimal cost and 
quantified accuracy; that is, returns a value that is equal to 
that from the simulator, with an error that can then be ac-
counted for in the uncertainty quantification of the overall 
inference.

Gaussian process (GP) [5] emulators were discussed ex-
tensively in early ISNET workshops. GPs are now regarded 
as a component of the machine-learning (ML) suite and are 
one of the key nonparametric approaches to interpolation 

and extrapolation. Recently, eigenvector continuation, a 
model-driven reduced-basis method [6], emerged in the nu-
clear theory community as a very useful technique for devis-
ing fast and accurate emulators.

History matching [7] is an iterative strategy that uses the 
power of emulators to shed light on computationally expen-
sive simulations that depend on inputs living in high- 
dimensional parameter spaces. It does this by ruling out 
regions of parameter space that do not give acceptable 
matches between the emulator output and observed (i.e., 
historical), data. It thus identifies a “non-implausible re-
gion” of parameter space. History matching is one example 
of several so-called likelihood-free methods that were in-
troduced to nuclear physicists by statisticians at ISNET 
meetings and have since been successfully imported into 
nuclear physics research.

Bayesian model averaging (BMA) [8] is sometimes sug-
gested as the best way to formulate an assessment of model 
uncertainty. However, statisticians at ISNET meetings poi-
nted out the limitations of BMA, and encouraged more gen-
eral approaches, such as stacking [9], or local Bayesian 
model mixing. These strategies generalize the BMA ap-
proach in ways that locally leverage the strengths of differ-
ent models.

Bayesian experimental design (BED) [10] explores a 
utility function that encodes the goal of an experimental 
campaign (e.g., to pin down certain parameters or refine a 
prediction). BED differs from optimal experimental design 
approaches in that it recognizes that there may be multiple 
maxima in the utility function, and that it can guide the se-
quential design of multiple, successive, experiments.

Projects Generated
Beyond Best-Fit Values for Mass-Model Parameters

Density functional theory (DFT) requires sophisticated 
optimization methods to be applied to χ 2-functions involv-
ing heterogeneous nuclear data if optimal DFT parameters 
are to be identified. GP emulators were leveraged, together 
with Bayesian inference and marginalization, to quantify 
and propagate parametric uncertainties in DFT predictions 
of nuclear masses, the two-neutron drip-line, and fission 
barriers; see Figure 2 [11]. The ability of Bayesian methods 
to combine information from multiple models has been 
used in DFT to provide a posterior probability for each nu-
cleus to be stable against neutron emission, enabling proba-
bilistic statements regarding the location of the neutron 
drip-line [12]. Future mass measurements that will yield the 
maximum reduction in uncertainty as to where the drip-line 
is have been identified [13].
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History Matching and a Predictive Theory of Nuclear 
Structure

History matching has come to play a central role in the 
UQ of ab initio predictions of strongly interacting matter. 
Advances in quantum many-body methods and emulator 
technology based on eigenvector continuation [6] have en-
abled extensive exploration of different values for the low-
energy constants entering effective field theory descriptions 
of the nuclear force. Coupled with history matching, this 
has enabled the formulation of likelihood-weighted ensem-
bles of low-energy constants. This was recently used to 
quantify the uncertainty in the ab initio prediction of the 
neutron-skin thickness of 208Pb, which provides a measure 
of the symmetry energy of nuclear matter at saturation den-
sity. The resulting posterior predictive distribution of the 
skin thickness is in mild tension with a recent parity- 
violating electron scattering measurement, but consistent 
with other experimental probes [14]; see Figure 3.

This exemplifies how to link microscopic nuclear 
forces to important properties of complex nuclei. History 
matching was also used to quantify a bivariate posterior 
predictive distribution for the 28O to 24O and 27O to 28O 
energy differences, requiring fine-tuning of nuclear forces 
to reproduce the experimental data [15]. ISNET work-
shops were instrumental in forming the collaboration with 
statistician Ian Vernon (Durham, UK) that developed 
these studies.

Complex Models Refine Inference of Fission Conditions
The average number of prompt (fast) neutrons, ν , emit-

ted from fission has important correlations with the initial 
conditions of fission fragments, which cannot be measured 
directly. To first order, ν  is highly anticorrelated with the 
average total kinetic energy, TKE, of the fission fragments. 
As ν  can be measured much more precisely than TKE, it has 
been proposed that these anticorrelations be used to con-
strain TKE [16]. However, fission models such as CGMF 
[17] and BeoH  [18] show that additional parameters  
can have a secondary impact on ν  that can loosen this  
constraint.

Figure 2. Univariate and bivariate marginal posterior dis-
tribution for the 12-dimensional DFT parameter vector  
of the UNEDF1 parametrization. Figure from Ref. [11];  
reprinted with permission, American Physical Society. 

Figure 3. Ab initio posterior predictive distributions for 
several observables in light- to heavy-mass nuclei. The 
neutron-skin thickness (Rskin) in 208Pb in the bottom pan-
el is on an absolute scale and compared to experimental 
results using electroweak (purple), hadronic (red), elec-
tromagnetic, and gravitational wave (blue) probes. 
 Figure from Ref. [14]. 
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Recent work [19], spurred by interactions at an ISNET 
meeting, constructed a GP emulator of the sophisticated fis-
sion fragment decay code BeoH . This emulator encoded the 
complex relationship between TKE, ν , the fission fragment 
spin distribution, and the average number of emitted γ  rays, 
Nγ. Panel (a) of Figure 4 shows that optimising a parame-
terization that only depends on TKE to ν  reproduces the 
experimental data within wide error bars, because these 
data include dependencies on quantities other than TKE. 
However, when both ν  and Nγ are included in the optimiza-
tion, ν  is much better constrained, as shown in panel (b).

Quantitative and Rigorous Inference in Heavy Ion Physics
Since the turn of the century, the Relativistic Heavy Ion 

Collider (RHIC) has produced data of unprecedented quality 
and precision by colliding particles from protons and deuter-
ons to gold and uranium. In response to this, the sophistica-
tion and accuracy of modeling took an enormous leap. 
Roughly 15 years ago, the accuracy of the theoretical models 
was sufficient to make qualitative statements that a novel 
form of matter, a strongly interacting quark–gluon plasma, 
had been created in RHIC’s collisions. However, one could 
not infer properties such as the speed of sound or the viscos-
ity of this new form of matter with meaningful uncertainties.

Because each observable was known to depend on mul-
tiple model inputs, and because each model input affected 
multiple observables, the data needed to be analyzed more 
globally. Emulators replaced expensive simulators, en-
abling the exploration of high-dimensional model-parame-
ter spaces, and showing that much of the data could be un-
derstood in terms of a few principal components, thereby 
performing a data reduction on the vast RHIC data set.

ISNET meetings helped refine the emulator-based anal-
ysis by the Models and Data Analysis Initiative (MADAI) 
Collaboration to demonstrate rigorous constraints on the 

equation of state and the viscosity [20], as illustrated in  
Figure 5. The modeling of these collisions has now entered 
a precision era, with the Jet Energy-loss Tomography with 
a Statistically and Computationally Advanced Program En-
velope (JETSCAPE)  Collaboration producing the constraints 
on the bulk and shear viscosity of the quark–gluon fluid 
shown in Figure 6 [21].

Figure 4. The average number of emitted neutrons, ν , plus uncertainties without (a) and with (b) additional constraints 
imposed when using a GP emulator.

Figure 5. Sample equations of state from the Bayesian 
posterior compared to those of the prior from Ref. 20.

Figure 6. Bulk and shear viscosities as constrained by 
JETSCAPE.
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Bayesian Experimental Design
Proton polarizabilities are fundamental parameters of 

quantum chromodynamics that measure the ability of electric 
and magnetic fields to induce different multipole moments. 
They can be extracted from Compton scattering data. The 
principles of BED were implemented in an assessment of the 
best kinematics for the extraction of proton polarizabilities 
from data in Ref. [22], where a utility function was defined 
that equated to the log of the reduction in the hypervolume in 
polarizability-space. Crucially, the assessment employed a 
discrepancy model, developed by the Bayesian Uncertainty 
Quantification: Errors in Your EFT (BUQEYE) Collabora-
tion [23], that used GPs to account for the error induced 
when effective field theory computations are truncated at a 
particular order. Without this theoretical error included in the 
BED calculation, larger energies are preferred, but the inter-
pretation of the data is subject to larger model errors there. 

The results of this study are summarized in Figure 7. They 
suggest it is best to focus on proton Compton scattering ex-
periments at, or just below, the pion threshold.

Strike up the BAND
The Bayesian Analysis of Nuclear Dynamics (BAND) 

Collaboration was funded in 2020 by the National Science 
Foundation’s Office of Advanced Cyberinfrastructure to 
create and curate software tools that make ISNET-initiated 
insights like the ones described in this article available to 
the larger nuclear physics community. BAND includes nu-
clear physicists, applied mathematicians, and statisticians, 
many of whom are veterans of the ISNET series. Its overall 
mission is discussed in Ref. [24]. The collaboration is 
building a set of software tools that enable emulation, in-
cluding GP emulation, Bayesian model mixing, and BED. 
BAND conducts regular “BAND camps” during which 
 attendees—who are mainly, but not exclusively, graduate 
students and postdocs—go through various examples of 
 applications and learn how to use the software tools (Figure 8). 
The tools, examples, and BAND camp materials can be found 
at http://bandframework.github.io.

Future
ISNET began 12 years ago. Since then, UQ has gone from 

fringe to mainstream in nuclear theory, Bayesian methods find 
increasing application in both experiment and theory, and ML 
has become part of the nuclear physics toolkit. There are now 
multiple meetings every year that seek to leverage these meth-
ods to make progress on particular nuclear physics problems. 
In this landscape, ISNET continues to play a key role by pro-
viding an arena for statisticians and physicists to meet and 
have transdisciplinary conversation regarding better ways to 

Figure 7. The expected utility UKL of proton Compton scattering differential cross-section measurements conducted at a par-
ticular kinematic point. The four panels in the top row do not account for effective field theory (EFT) truncation errors when 
assessing the information extracted, whereas the bottom row does include the EFT uncertainty in the computation of UKL. For full 
details, see Ref. [22].

Figure 8. A BAND camp was held in conjunction with IS-
NET-9 at Washington University in St. Louis.

http://bandframework.github.io
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make efficient and reliable use of the information content of 
nuclear physicists’ very expensive experiments and huge com-
putations. Please get in touch: you can sign up to join the IS-
NET community at the website https://isnet-series.github.io.
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