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ABSTRACT

Background: The postprandial glucose response (PPGR), contributing to the glycemic variability (GV), is positively associated with cardiovascular
disease risk in people without diabetes, and can thus represent a target for cardiometabolic prevention strategies.

Objectives: The study aimed to distinguish patterns of PPGR after a single nonstandardized meal and to evaluate their relationship with the habitual diet
and the daily glucose profile (DGP) in individuals at high-cardiometabolic risk.

Methods: Baseline 4-d continuous glucose monitoring was performed in 159 adults recruited in the MEDGI-Carb trial. After a nonstandardized breakfast,
parameters of the PPGR were estimated by a mechanistic model: baseline glucose; amplitude—the magnitude of postmeal glucose concentrations;
frequency—the velocity of postmeal glucose oscillations; damping—the rate of postmeal glucose decay. PPGR patterns were identified by cluster
analysis. Differences between clusters and the relationship between PPGR parameters and individual features were explored by one-way analysis of
variance and correlation analysis, respectively.

Results: Two patterns of PPGR emerged. Pattern A had a higher baseline, amplitude, frequency, and damping than B. Individuals in cluster A compared
with B had higher energy (2002 £ 526 compared with 1766 + 455 kcal, P = 0.025), protein (82 £ 22 compared with 72 £ 21 g, P = 0.028), and fat (87
=+ 30 compared with 75 &+ 22 g, P = 0.041), but not carbohydrate habitual intake. Pattern A compared to B associated with a higher average daily glucose
(6.12 &+ 0.50 compared with 5.88 £ 0.62 mmol/L, P = 0.019) and lower GV (11.67 + 3.52 compared with 13.43 £ 3.78%, P = 0.010). Mean daily
glucose correlated directly with baseline (r; = 0.419, P < 0.001) and amplitude (r; = 0.189, P = 0.022) of the PPGR, whereas DGP variability correlated
directly with amplitude (r; = 0.218, P = 0.008), and inversely with frequency (r; = —0.179, P = 0.031) and damping (s = —0.309, P < 0.001).
Conclusions: Two PPGR patterns after a single nonstandardized breakfast were identified in high-cardiometabolic risk individuals. The habitual diet was
associated with the patterns and their dynamic parameters, which, in turn, could predict the individuals’ DGP. Our findings could support the imple-
mentation of dietary strategies targeting the PPGR to ameliorate the cardiometabolic risk profile.

Trial registration number: This study was registered at clinicaltrials.gov as NCT03410719.

Keywords: diet, continuous glucose monitoring, postprandial glucose response, mechanistic model, glucose dynamic, free-living, precision nutrition,
clustering, cardiometabolic risk, CGM metrics, glycemic variability

Abbreviations: CGM, continuous glucose monitoring; CV, coefficient of variation; CVD, cardiovascular diseases; DGP, daily glucose profile; GV, glycemic variability; HBGI,
High Blood Glucose Index; LBGI, Low Blood Glucose Index; MAGE, mean amplitude of glucose excursions; OGTT, oral glucose tolerance test; PPG, postprandial glucose; PPGR,
postprandial glucose response; SD, Standard Deviation; T2D, type 2 diabetes.
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Introduction

The prevalence of cardiometabolic diseases has dramatically risen
globally in the last decades. Diabetes alone has increased by >90%
between 1990 and 2021 and is expected to further increase by around
60% in 2050, resulting in 1.31 billion people living with diabetes [1].
Prediabetes and diabetes are major risk factors for cardiovascular dis-
ease (CVD), the leading cause of death worldwide [2]. Within this
scenario, the need for highly effective preventive strategies targeting
modifiable cardiometabolic risk factors is urgent. Dietary change is one
of the most powerful solutions to improve cardiometabolic health.
Nevertheless, long-term changes of the diet have proven difficult [3].
Dietary interventions are often not adhered to and the response to such
interventions is not consistent in individuals with different phenotypes
[4—6]. This calls for more personalized strategies to improve motiva-
tion and effectiveness.

Postprandial glucose (PPG) has been proposed as a target for
personalized dietary interventions to reduce the risk of cardiometabolic
diseases, because it has been consistently associated with CVD inci-
dence in epidemiological studies, particularly among individuals at
elevated risk [7—11]. Recurring high postmeal glucose excursions have
the potential to induce progressive beta-cell dysfunction and reduced
insulin sensitivity, eventually leading to prediabetes and type 2 diabetes
(T2D) [12]. Targeting PPG can therefore represent an effective strategy
to improve the glycemic variability (GV) and, therefore, contribute to
the cardiometabolic risk reduction [13]. The use of machine learning
algorithms has already been proven successful in driving blood glucose
control strategies tailored to specific characteristics of the study par-
ticipants [14-16].

In a previous study on individuals at high risk for diabetes, we were
able to differentiate PPG responses to a standardized mixed meal which
were associated with different cardiometabolic risk profiles and gut
microbiota composition [17]. The methodology employed was based on
the implementation of a simple mechanistic model of PPG regulation
including only 4 dynamic parameters: baseline (that is, the interstitial
glucose measured immediately before the start of the meal), amplitude
(that is, the magnitude of the glucose concentrations after the meal),
frequency (that is, the velocity of glucose oscillations after the meal),
and the damping (that is, the rate of glucose decay after the meal), and
the identification of clusters that differed in these parameters. However,
it is not known whether it is possible to detect different clusters of PPG
response in a free-living setting, where people consume their
self-chosen, unrestricted habitual diet, and if there are metabolic features
and dietary habits associated with the so-identified PPG response
patterns.

The increasing use of continuous glucose monitoring (CGM) sys-
tems in research among people without diabetes has shown a great
potential in evaluating parameters of the daily glucose profile (DGP)
associated with clinical and metabolic features of the individuals that
may relate to future disease risk. Recently, Keshet et al. have shown in
>7000 individuals without diabetes that some key CGM metrics
significantly correlate with clinical measures, including BMI and total
fat mass, blood lipids, and liver enzymes [18]. Remarkably, each
clinical marker of a metabolic function was correlated with specific
CGM parameters. For example, measures of body composition were
associated with the average daily glucose, whereas indirect measures
related to liver phenotypes were associated with glucose variability.
The possibility to uncover different patterns of PPG response in
free-living conditions, when the meal composition and the general
lifestyle context are not standardized and individuals consume their
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self-chosen habitual diet, would represent an important step forward in
precision nutrition, because it would allow us to test different dietary
strategies and to identify the most appropriate ones to improve the
specific PPG pattern showed by each group of individuals.

The overall aim of the present study was therefore to investigate
whether different patterns of glucose response after a single non-
standardized breakfast meal could be identified using glucose data
collected by CGM at home. Moreover, the study aimed to identify
which individual features and glucose dynamic parameters contribute
to such differential glucose response patterns, and to explore features of
the habitual diet associated with the different postbreakfast glucose
response patterns. Finally, we also aimed to investigate whether the
dynamic parameters of a single glucose response to a nonstandardized
breakfast could be used to predict the magnitude and the variability of
the whole DGP, as measured by CGM.

Methods

Participants

Middle-aged and older adults (30-69 y) from Sweden, Italy, and the
United States at risk of developing T2D recruited for the Mediterranean
Glycemic Index-Carbohydrates (MEDGI-Carb) trial were studied at
baseline in free-living conditions. The MEDGI-Carb was an interna-
tional, multicenter, randomized, controlled, parallel-group, 15-wk trial
including a 3-wk baseline period, followed by 12 wk of controlled
dietary intervention. The trial was registered in the public trial registry
clinicaltrials.gov as NCT03410719 before initiating participant
recruitment. The study protocol was approved by the intuitional review
boards at Purdue University and Federico II University and by the
Swedish Ethical Review Authority. The study was conducted at 3
centers: /) Federico II University, Naples, Italy, 2) Chalmers University
of Technology, Gothenburg, Sweden, and 3) Purdue University, West
Lafayette, IN, United States. It was initiated in January 2018 and
continued through December 2019. All participants (goal of com-
pleters: 60 per center) signed the informed consent form reviewed and
approved by the above-mentioned institutional boards. Detailed de-
scriptions of the trial can be found in previous publications [19,20].

The flowchart of participants included in the present study is shown
in Supplemental Figure 1. All but 1 participant self-reported to be
Caucasian not of Hispanic origin (n = 158, 99%), whereas only 1
declared to be of Hispanic origin; no one was Alaska Native, African
American, Native Hawaiian or Other Pacific Islander. According to the
inclusion criteria of the MEDGI-Carb trial, they all had a waist
circumference >102 cm (males) or >88 cm (females) and 1 additional
trait of the metabolic syndrome, according to the National Cholesterol
Education Program’s Adult Treatment Panel III [21]. The additional
traits could include blood pressure >130/85 mmHg or taking medi-
cation to control high blood pressure; fasting plasma glucose 5.6-7.0
mmol/L; fasting triglycerides 1.7-4.5 mmol/L; HDL < 1.0 mmol/L
(males) or <1.3 mmol/L (females).

Study design

To address our objectives, we analyzed the baseline data available
from the participants to the MEDGI-Carb trial [20]. This dietary trial
aimed to investigate the effects on postprandial glycemia and GV after
adopting a Mediterranean-style healthy dietary pattern with low or high
glycemic index. As above mentioned, it was an international multi-
center randomized, controlled, parallel-group, 15-wk dietary trial,
including a 3-wk baseline period followed by a 12-wk controlled
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dietary intervention in adults at elevated risk of developing T2D. The
major findings are published [17,20,22]. For the present study, only
data collected during the baseline period have been used, when the
study participants were following their habitual diet and the meal
composition and the general lifestyle context were not standardized.

Continuous glucose monitoring

Each participant wore a CGM device (Medtronic iPro2 Profes-
sional) for 4 d, to obtain 24-h interstitial glucose concentrations with 5-
min intervals. Raw data were entered into the EasyGV platform
(University of Oxford) for calculation of key CGM-derived GV mea-
surements for 3 d (measurements on the first day were excluded to
avoid using data from the calibration period) in individuals without
diabetes [18], namely: mean absolute glucose, SD, mean amplitude of
glucose excursions (MAGE); High Blood Glucose Index (HBGI), and
Low Blood Glucose Index (LBGI). MAGE measures the average
changes of blood glucose (both upwards or downwards) that exceed 1
SD for a 24-h period; HBGI and LBGI are risk indices for predicting
hypoglycemia (LBGI) or hyperglycemia (HGBI) based on the fre-
quency and extent of low (< 6.25 mmol/L) and high (>5.25 mmol/L)
blood glucose readings [23].

Oral glucose tolerance test and insulin sensitivity/secretion
indices

An oral glucose tolerance test (OGTT) was performed to evaluate
each participant’s PPG metabolism in a standardized way. Fasting
venous blood samples were collected from an antecubital vein after 15
min of rest and again 10 min later. Soon after, participants were
instructed to consume a test beverage containing 75 g glucose dis-
solved in water within 5 min. No additional fluids were permitted
during the test. Blood samples were collected at time point (TP) 60 and
TP 120. Glycemia and insulin measurements after OGTT were used to
calculate total AUC for glucose and insulin by the trapezoidal rule.
Additionally, based on the OGTT data, the Matsuda index [24] and the
beta-cell function index [25] were calculated to estimate insulin
sensitivity and secretion, respectively.

Dietary assessment

All participants consumed their habitual unrestricted diet during the
3-wk before the baseline measurements. During this period, they per-
formed simultaneously CGM for 4 d and filled in a dietary record,
reporting all foods and drinks consumed, including dressing, portions
by household measures (cup, spoons, etc.) or weight, and providing as
much details as possible (that is, cooking methods and brands names).
The food records were discussed with registered dietitians to check for
potential missing information. Energy intake and nutrient composition
were calculated based on the available data from the national site-
specific food composition tables.

Postbreakfast glucose response

Raw CGM glucose data collected every 5-min were utilized for the
evaluation of the 4-h glucose response to the breakfast meal consumed
after overnight fasting on the first day of the glucose monitoring after
the calibration period; if on that day the breakfast meal was skipped, the
evaluation was postponed to the following day. The breakfast meal
could contain any type and amount of foods/beverages, because par-
ticipants were studied while following their habitual diet.

Considering that information on the exact time at which breakfast
was consumed was not available, for each participant the start of the
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breakfast meal—that is, TP 0—was identified as the time at which the
lowest glucose value before a glucose peak was recorded in the time-
frame 06:00 to 11:00.

Mechanistic model of glucose regulation and glucose
dynamic parameters

To describe the PPG response dynamics from the breakfast in a
comprehensive form, a parsimonious kinetic model was used [26,27].
Details on the model derivation are described in the Supplemental
Methods. In brief, the model was derived using a system of ordinary
differential equations which has a compact solution under certain as-
sumptions (Equation /)

G(t) = G, + A sin(ot) e 1)

The parameters governing the glucose dynamics after the breakfast
meal were as follows: 7) the interstitial glucose baseline concentration
(Gy), measured immediately before the start of the meal, 2) the sinu-
soidal amplitude (4), representing the amplitude of the glucose con-
centrations after the meal, 3) the sinusoidal frequency (w), describing
the velocity of glucose oscillations after the meal, and 4) the damping
coefficient (o) representing the rate of glucose decay after the meal.

Statistical analyses

The parameters of the kinetic model were estimated using the
nonlinear mixed effects framework [28] incorporated in the Monlix
software (Monolix 2021R2, Lixoft SAS, a Simulations Plus company).
Here, regularization was naturally imposed as parameters can be shared
within the population whereas others are intended to explain individual
variability. Within this framework, we assumed that the individual
parameters were drawn from a mixture of Gaussian distributions,
effectively allowing for the clustering of individuals in terms of post-
prandial dynamic parameters. The clusters were identified as latent
covariates using the Stochastic Approximation of mean Expectation
Maximization (SAEM) algorithm in Monolix [28]. The prior
assumption is an equal sample size per cluster while the algorithm finds
the proportion that accommodates the best fit regardless of imbalance.

Associations between identified clusters of the postbreakfast
glucose response under free-living conditions and features of the study
participants were investigated using one-way analysis of variance,
where hypothesis tests were considered significant for P values < 0.05.
Correlations between each of the 4 parameters of the PPG dynamics
measured and the clinical and metabolic features of the participants, as
well as the nutrient composition of their habitual diet, were evaluated
by the Spearman correlation analysis. Furthermore, the same analysis
was used to evaluate the relationship between each of the parameters of
the PPG dynamics and CGM metrics of GV.

Results

In total, CGM raw data of 159 participants were used for the
extraction of the postbreakfast glucose response in free-living condi-
tions. Data regarding the habitual diet and the estimated daily CGM
metrics were available for 127 and 147 individuals, respectively. The
characteristics of the total study population and of the subgroups with
different data availability are described in Supplemental Table 1.

Postbreakfast glucose response patterns
The model fitted well to the postbreakfast response identified by
CGM sampling of interstitial glucose at 5-min intervals (R> = 0.89)
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FIGURE 1. (A) Glucose response and model predictions (Equation /) of the glucose response by continuous glucose monitoring (CGM) sampling after
nonstandardized breakfast meals. (B) Individual model fits glucose responses by CGM sampling.
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FIGURE 2. Joint parameter distribution obtained by fitting the model in Equation / to the glucose response by continuous glucose monitoring sampling after
the nonstandardized breakfast meal. The parameter estimation was done using the nonlinear mixed effects framework.

(Figure 1A). Some systematic variance was not captured for larger
values as can be seen in Figure 1B. Specifically, individuals with ID
numbers 105, 118, and 123 did not yield good fits, because the glucose
model (Equation /) fails to account for a largely delayed initial phase of
the glucose rise. Such model inadequacy resulted in a discrepancy
between the predicted and actual glucose dynamic for these subjects.
To account for the inadequate fits of these individuals in the cluster
identification, they were excluded in a parallel analysis, which however

260
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240
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FIGURE 3. Glucose response by continuous glucose monitoring sampling
after nonstandardized breakfast meals color-coded by the clusters, estimated
as latent covariates in the nonlinear mixed effects framework.
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led to similar results (Jaccard similarity index of 0.92). All the model
parameters were estimated within statistical confidence relative SE
<37%, where <50% is considered a certain estimate [29].

Two clusters characterized by a different glucose response pattern
(A and B) after nonstandardized breakfast meals were successfully
identified (Figure 2).

Participants in cluster A generally had higher baseline glucose
concentrations and a greater amplitude of the postbreakfast glucose
response than those in cluster B, together with a higher frequency-
—indicating that the glucose peak appeared earlier. Participants
belonging to cluster A also had a faster rate of glucose disposal, as
indicated by the higher damping parameter. These features were also
evident when investigating the shape of postbreakfast glucose patterns
based on the raw CGM data of the individuals grouped in clusters A
(orange) and B (blue), as shown in Figure 3.

The clusters consisted of ~75% individuals grouped in cluster A and
25% in cluster B. The clustering showed a weak association with the
participants’ country of origin (Chi-square P = 0.046), but redoing
model fitting and clustering analysis per country yielded similar results
(Cohen’s kappa, Italy = 0.65, Sweden = 0.64, United States = 0.5).

Clinical, metabolic and habitual diet features and their
relation to the 2 identified postbreakfast glucose response
clusters

All the parameters—that is, baseline, amplitude, frequency, and
damping—identifying the postbreakfast glucose response dynamics
were significantly higher in cluster A compared with cluster B (all P <
0.005) (Table 1).

No significant differences were found between individuals in
clusters A and B for the anthropometric parameters (BMI and waist
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TABLE 1
Glucose dynamic parameters and clinical and metabolic characteristics of the individuals allocated in clusters A and B of the postbreakfast glucose response.
Postbreakfast glucose response cluster A (n = 120) Postbreakfast glucose response cluster B (n = 39) P value
Glucose dynamic parameters
Baseline 100.41 £ 10.20 8291 £+ 12.46 <0.001
Amplitude 93.57 + 58.27 58.84 £ 28.15 <0.001
Frequency 0.019 £ 0.011 0.013 £ 0.007 0.003
Damping 0.014 + 0.009 0.004 + 0.004 <0.001
Clinical and metabolic features
BMI (kg/m?) 30.78 &+ 3.26 30.37 + 2.96 0.484
Waist Circumference (cm) 106.42 + 8.55 105.22 + 8.84 0.449
Fasting glucose (mg/dL) 103.90 + 10.34 104.70 + 10.65 0.703
Fasting insulin (pU/mL) 14.18 £+ 7.80 17.63 £ 10.86 0.032
HbAlc (%) 5.47 £ 0.35 5.47 £ 0.37 0.760
Matsuda index 4.10 = 2.64 3.85+£3.05 0.635
p-cell function index (%) 58.57 £ 26.55 52.69 £ 23.49 0.218
Abbreviations: ANOVA, analysis of variance; HbAlc, glycated hemoglobin.
Data are expressed as mean & SD. P values refer to one-way ANOVA analysis and the results are considered statistically significant for P < 0.05.
TABLE 2
The habitual diet composition of the individuals allocated in clusters A and B of the postbreakfast glucose response.
Composition of the habitual diet Postbreakfast glucose response cluster A (n = 95) Postbreakfast glucose response cluster B (n = 32) P value
Energy (kcal/d) 2002 + 526 1766 + 455 0.025
Protein (g/d) 82 + 22 72 £ 21 0.028
Fat (g/d) 87 £+ 30 75+ 22 0.041
Carbohydrates (g/d) 228 + 66 205 + 60 0.078
Sugars (g/d) 72 £ 37 70 + 31 0.758
Fiber (g/d) 21 £7.1 19 £54 0.217
Glycemic Index 59+ 10 59 + 84 0.933
Alcohol (g/d) 8.6 £11.3 9.6 £ 143 0.709

Abbreviation: ANOVA, analysis of variance.

Data are expressed as mean & SD. P values refer to one-way ANOVA analysis and the results are considered statistically significant for P < 0.05.

circumference) and the global long-term markers of glucose meta-
bolism [that is, glycated hemoglobin (HbAlc)]. Conversely, plasma
concentrations of fasting insulin were higher in cluster B compared
with cluster A (P = 0.032); however, indices of both body insulin
sensitivity (Matsuda) and beta-cell function, did not differ between the
2 clusters (Table 1). Glucose tolerance as well as the insulin levels after
the oral glucose load were not different between the 2 clusters (data not
shown).

As for differences in the habitual diet composition of participants
grouped in the 2 clusters, individuals in cluster A in comparison with
those in cluster B were characterized by a higher daily intake of total
energy (2002 £ 526 compared with 1766 £ 455 kcal, P = 0.025),
protein (82 £ 22 compared with 72 + 21 g, P = 0.028), and fat (87 +
30 compared with 75 £ 22 g, P = 0.041). Total carbohydrate content of
the habitual diet was also higher among people in cluster A, but the
difference did not reach statistical significance (Table 2).

Relationships between the dynamic parameters of the
postbreakfast glucose response, individuals'
characteristics and their habitual diet
Because the participant segregation into the 2 clusters was based on
the combination of 4 glucose dynamic parameters capturing different
aspects of the glucose response to the meal, we further explored the
relationship between each of these parameters and the individuals’
characteristics, as well as the features of their habitual diet (Table 3).
Baseline glucose parameter showed a positive correlation with
fasting blood glucose (ry = 0.178, P = 0.025) and HbAlc (r; = 0.210,
P = 0.009), both representing reliable markers of glucose homeostasis

251

in the short and the long term. Among other individual features,
baseline glucose was the only parameter directly related to the waist
circumference (r; = 0.207, P = 0.009). Finally, baseline glucose was
directly correlated with energy, protein, and fat content of the habitual
diet but not with that of carbohydrates, sugars, and fiber.

No statistically significant relationship emerged between amplitude
with either the composition of the habitual diet or the metabolic
characteristics of the study participants, though a direct correlation of
borderline statistical significance was found with the Matsuda index.

Frequency was correlated with the habitual energy intake (r; =
0.182, P = 0.040), and with carbohydrate (r; = 0.183, P = 0.040) and
sugar (r; = 0.182, P = 0.040) content of the habitual diet.

Damping was the parameter with the highest number of correlations
with the metabolic features of the study participants: it was inversely
correlated with fasting glucose (1, = —0.223, P = 0.005) and insulin
concentrations (s = —0.267, P < 0.001), and directly correlated with
the Matsuda index and the beta-cell function index (r, = 0.304, P <
001 and r; = 0.253, P = 0.001, respectively). Moreover, it was directly
correlated with the energy (7, = 0.212, P = 0.017) and the protein (r; =
0.186, P = 0.037) content of the habitual diet.

CGM-derived metrics of GV for the 2 postbreakfast
glucose response clusters

The 2 clusters of postbreakfast glucose response differed also with
regard to key CGM-derived measures of GV. As shown in Table 4,
cluster A had a higher average interstitial glucose concentration during
a 3-d period of CGM than cluster B (6.12 & 0.50 compared with 5.88 £
0.62 mmol/L, P = 0.019), whereas the coefficient of variation (CV) as
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TABLE 3
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Correlations between the individuals’ clinical and metabolic features, as well as the nutrient composition of their habitual diet, and each dynamic parameter of the

postbreakfast glucose response.

Baseline Amplitude Frequency Damping
Fasting glucose ry = 0.178P = 0.025 ry = —0.028 ry =-0.017 ry = —0.223
P =0.725 P =0.829 P =0.005
Fasting insulin ry = 0.002 ry =-0.131 ry = —0.002 ry = —0.267
P =0.985 P =0.101 P =0.975 P < 0.001
BMI ry = —0.009 7, = 0.008 ry = —0.002 ry = -0.076
P =0.907 P =0.924 P =0.980 P =0.339
Waist circumference ry = 0.207 ry = —0.059 ry = —0.002 ry = —0.136
P = 0.009 P =0.459 P =0975 P =0.087
HbAlc e =0210 7, = 0.008 7o = 0.037 7o = —0.149
P =0.009 P =0.921 P =0.651 P = 0.065
Matsuda index ry = —0.004 ry = 0.141 ry = —0.027 ry = 0.304
P =0.965 P =0.076 P =0.738 P < 0.001
Beta-cell function index ry =-0.016 re = 0.024 r,=0.114 ry = 0.253
P = 0.840 P =0.761 P =0.152 P =0.001
Energy content of the habitual diet re=0.174 ry = 0.053 ry=0.182 ry=0212
P =0.051 P = 0.555 P = 0.040 P =0.017
Carbohydrate content of the habitual diet ry = 0.075 ry = 0.032 ry, = 0.183 ry = 0.172
P = 0.400 P =0.721 P =0.040 P =0.053
Sugar content of the habitual diet ry = 0.109 ry = —0.006 ry = 0.182 r,=0.114
P =0.221 P =0.951 P =0.040 P =0.202
Fiber content of the habitual diet ry = 0.064 ry = —0.031 re = 0.131 ry=0.152
P =0.476 P =0.727 P =0.141 P =0.088
Protein content of the habitual diet ry=10218 ry = 0.062 ry = 0.083 ry = 0.186
P=0.014 P =0.489 P =0.353 P =0.037
Fat content of the habitual diet ry = 0.202 ry = 0.064 ry = 0.129 ry = 0.156
P =0.023 P =047 P =0.148 P =0.081
Abbreviations: ANOVA, analysis of variance; HbAlc, glycated hemoglobin.
15 Spearman’s coefficient. Results of the Spearman correlation analysis are considered statistically significant for P < 0.05.
TABLE 4
Key CGM-derived metrics of glycemic variability of the individuals allocated in clusters A and B of the postbreakfast glucose response.
CGM metric Postbreakfast glucose response cluster A (n = 109) Postbreakfast glucose response cluster B (n = 38) P value
Mean glucose (mmol/L) 6.12 + 0.50 5.88 £ 0.62 0.019
SD 0.72 £ 0.23 0.80 £ 0.26 0.081
CV (%) 11.67 £+ 3.52 13.43 +£3.78 0.010
LBGI 0.71 £+ 0.64 1.30 £ 0.93 <0.001
HBGI 0.62 + 0.49 0.69 £+ 0.70 0.499
MAGE 1.84 £+ 0.64 1.95 £0.72 0.392

Abbreviations: ANOVA, analysis of variance; CGM, continuous glucose monitoring; CV, coefficient of variation; LBGI/HBGI, Low Blood Glucose Index and

High Blood Glucose Index; MAGE, mean amplitude of glycemic excursions.

Data are expressed as mean &+ SD. P values refer to one-way ANOVA analysis and the results are considered statistically significant for P < 0.05.

well as the risk of low glucose levels (LBGI) was lower (11.67 £ 3.52
compared with 13.43 + 3.78, P = 0.010 and 0.71 + 0.64 compared
with 1.30 + 0.93, P < 0.001, respectively). Therefore, on the overall,
the DGP of people allocated in cluster A was set at higher glucose
values than cluster B, thus accounting for a higher average daily
glucose, but with a lower risk of hypoglycemia and a lower GV.

Correlations between the dynamic parameters of the
postbreakfast glucose response and CGM-derived metrics
of GV

As shown in Table 5, the baseline glucose was directly correlated
with the mean daily glucose and inversely correlated with SD, CV, and
LBGI. The amplitude was directly correlated with all the indices of GV,
except for LBGIL. An inverse correlation was observed for the fre-
quency parameter with SD (r; = —0.179, P = 0.031), and, though
marginal, with CV (r, = -0.146, P = 0.078). The damping was
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inversely correlated with all the metrics of GV but not with the mean
daily glucose.

Discussion

We found it possible to fit a simple mechanistic model of glucose
dynamics to the PPG response measured by CGM after a single non-
standardized breakfast consumed in free-living conditions in in-
dividuals without diabetes, and we were able to identify 2 different
patterns of PPG response. In particular, in indivuduals grouped in
cluster A compared with those in cluster B, the pattern was charac-
terized by significantly higher values of all parameters—that is, base-
line, amplitude, frequency, and damping identifying the glucose
dynamics after food ingestion. This means that people in cluster A,
besides having higher glucose values in the post-absorptive phase,
were also characterized by a higher and earlier glucose response after a
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TABLE 5
Correlations of the dynamic parameters of the postbreakfast glucose response with key CGM-derived metrics of glycemic variability.
Mean SD (6\% MAGE LBGI HBGI
Baseline e = 0.419 re = —0.192 re = —0.326 7y = —0.154 7y = —0.593 7y = —0.023
P < 0.001 P =0.020 P <0.001 P =0.063 P <0.001 P =0.785
Amplitude ry = 0.189 ry = 0.287 rg = 0218 ry = 0.299 ry =—0.109 ry = 0.324
P =0.022 P < 0.001 P =0.008 P < 0.001 P =0.188 P < 0.001
Frequency r, = —0.060 r, =-0.179 ry = —0.146 ry =—0.143 ry = —0.044 ry =—0.135
P =0.469 P =10.031 P =0.078 P =0.085 P =0.5% P =0.105
Damping 7y = —0.070 re = —0.294 7y = —0.309 7y = —0.244 e =—-0216 7 =-0215
P =0.403 P <0.001 P <0.001 P =0.003 P =0.009 P =0.009

Abbreviations: CGM, continuous glucose monitoring; CV, coefficient of variation; LBGI/HBGI, Low Blood Glucose Index and High Blood Glucose Index;

MAGE, mean amplitude of glycemic excursions.

15 Spearman’s coefficient. Results of the Spearman correlation analysis are considered statistically significant for P <0.05.

nonstandardized breakfast, followed by a faster decay of the glucose
levels.

Interestingly, individuals with 2 different postbreakfast glucose
response patterns did not show any significant differences in terms of
clinical and metabolic features, except for lower fasting insulin levels
in the study participants allocated in cluster A. In contrast, the dietary
habits of the individuals grouped in the 2 clusters were different. In
fact, individuals in cluster A were characterized by a higher energy
intake, largely attributable to dietary protein and fat, but also to dietary
carbohydrates, although this difference was only of borderline statis-
tical significance. This suggests that, regardless of the metabolic and
clinical characteristics, in individuals without diabetes, a habitual diet
enriched in energy and in macronutrients (and not just in carbohy-
drates) can induce a postmeal glucose response that is sharp, quick, and
rapidly reverting to baseline glucose values. This is in line with the
significant direct correlation found between the frequency parameter of
the PPG dynamic—referring to the velocity of the PPG response—and
dietary energy, carbohydrate, and sugar intake. Further, this is sup-
ported by the direct correlations between the energy as well as the
protein and fat content of the habitual diet with the baseline glucose
concentration, and the direct correlations of the energy and protein
content with the damping values. Conversely, no significant correla-
tions were observed between habitual diet features and the amplitude of
the postbreakfast glucose response.

So far, the available knowledge about the impact of the habitual diet
composition on the PPG response in individuals without diabetes is
limited [30]. Furthermore, most of the available studies did not use a
direct measurement of the PPG values and utilized the 2-h glucose
levels after an OGTT as a proxy for the PPG response [14,15]. How-
ever, the relationship between the habitual diet and the PPG response
has been given attention in recent studies exploring the variability of
the PPG response in large samples of individuals without diabetes. In
the PREDICT-1 study, the habitual diet measured by a food frequency
questionnaire was only weakly associated with the PPG responses
measured as iIAUC 0-2 h [15]. Conversely, in another recent study by
Reik et al. the habitual carbohydrate intake was negatively associated
with glucose iIAUC 0—4 h among healthy adults, possibly as a result of
adaptive mechanisms occurring when the carbohydrate stimulation of
the regulatory system is frequent [31].

As for the metabolic features of the participants, the fasting insulin
levels—usually considered a marker of insulin resistance—were lower
in those grouping in cluster A. This suggests that participants in this
group could be characterized by a lower insulin resistance, which, in
turn, might have amplified the effects of the postbreakfast insulin
response on the glucose dynamic, particularly inducing a quicker return
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of the glucose values to baseline. This interpretation is supported by the
significant direct correlation of the damping parameter—a marker of
the rapidity of blood glucose disposal after the meal—with the Matsuda
index and the beta-cell function index, markers of insulin sensitivity
(the reverse of insulin resistance) and insulin secretion, respectively.
However, it is of note that the beta-cell function index was calculated
using only the fasting, 1-h and 2-h glucose values during the OGTT,
without including the 30-min evaluation, as desirable.

A major finding of our study is the association between the patterns
of the postbreakfast glucose response in free-living conditions and the
features of the DGP as estimated by the CGM. In fact, the study par-
ticipants with pattern A showed a higher average daily glucose, but a
lower risk of hypoglycemia and a lower daily glucose variability as
compared with people grouping in cluster B. All parameters of the
postbreakfast glucose dynamics evaluated by our model contributed to
this difference within the DGPs. Indeed, as expected, the average daily
glucose concentrations measured by the CGM were significantly
correlated with the baseline glucose values and with the amplitude of
the postbreakfast glucose responses as assessed by the glucose dynamic
model. In other words, the average daily glucose can be predicted by
both the fasting glucose values and the magnitude of the glucose
response after a nonstandardized breakfast as measured by CGM.
Moreover, all parameters of the daily glucose variability measured by
the CGM—namely the SD of the daily glucose values, the CV, and the
mean amplitude of the glucose excursions—were directly correlated
with the amplitude of the postbreakfast glucose response (all statisti-
cally significant) and inversely correlated with the baseline (statistically
significant for SD and CV), the frequency (statistically significant for
SD), and the damping (always statistically significant) as measured by
our glucose dynamic model. This indicates that the daily glucose
variability increases with the magnitude of the glucose response after a
single nonstandardized breakfast, whereas it decreases according to the
rapidity of the PPG peak and of its disappearance, as indicated,
respectively, by the frequency and the damping parameter of our model
of glucose dynamic. In other words, the daily glucose variability is
higher when the postmeal glucose response is high, delayed, and
prolonged over time. This suggests that the parameters of the glucose
response to a single nonstandardized meal evaluated by CGM in free-
living conditions could predict the features and the trend of the overall
DGP of people without diabetes in the following days. This may have
important implications for the extended use of CGM data to predict the
individuals’ DGPs by evaluating the glucose response to a single meal,
thus tailoring dietary strategies to improve the glucose metabolism in
the perspective of a reduction of the cardiometabolic risk. In this re-
gard, appropriate intervention studies should follow to test the effects
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of specific dietary strategies on the dynamic parameters of the glucose
responses so identified; it would be worthwhile, for instance, to see
how pattern B of glucose response would look like if the dietary fiber
intake was improved.

Strengths of this study are the accurate assessment of the habitual
diet of the study population, as well as the evaluation of the glucose
response to a nonstandardized breakfast consumed in the context of the
habitual lifestyle. Moreover, an important aspect of the methodology
here adopted is the continuous measurement of the glucose levels both
after the breakfast meal and during the following 3 d.

The study also has some limitations that should be acknowl-
edged. First, the mechanistic model of glucose regulation assumes a
linear relationship between glucose and insulin secretion; this
feature, although oversimplifying to some extent the contribution of
other mechanisms involved, such as the role of incretin hormones
and glucagon, makes it more suitable to be used in a setting where
insulin measurements cannot be performed, as during CGM
executed at home. Second, although the parameters of the reduced
model have no one-to-one correspondence to specific body func-
tions, they provide a reliable characterization of the PPG response.
Third, the limited number of participants did not allow to perform
subgroup analyses like, for instance, that for recruitment site or for
sex; this study should therefore be regarded as a pilot one,
requiring confirmation through further research. Fourth, given their
suitability for enrolment in the MEDGI-Carb trial [20], the partic-
ipants included in the present study were nondiabetic and charac-
terized by a somewhat similar metabolic profile; this could have
reduced the chance of finding associations between patterns of PPG
response and metabolic impairments.

In conclusion, this study has clearly demonstrated that 2 different
patterns of glucose response after a single nonstandardized breakfast
meal could be identified using glucose data collected by CGM, in in-
dividuals at high-cardiometabolic risk without diabetes, under free-
living conditions—that is, following their habitual lifestyle and di-
etary habits. These 2 patterns were associated with different energy and
nutrient composition of the habitual diet and with different fasting
insulin values of the study participants, usually considered as markers
of insulin sensitivity. In addition, this study showed that the different
dynamic parameters of the postbreakfast glucose response could be
used to predict the magnitude and the variability of the daily glucose
profile measured by CGM over the following days.

It seems therefore worthwhile to apply the methodology here
described to large population groups with an adequate follow-up, to
evaluate the long-term association of the individuals’ dynamic pa-
rameters here identified with the cardiometabolic risk. If confirmed in
future studies with an appropriate design (for example, a replicate
crossover), these findings could advance the implementation of
personalized nutritional strategies targeting specific features of the PPG
response (for example, magnitude, velocity of the glucose rise and
decay, etc.), with the aim of improving the daily glucose profile, thus
contributing to the prevention of diabetes and CVDs.
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