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Abstract 
The genomes of mitochondria and chloroplasts contain ribosomal RNA (rRNA) genes, reflecting their ancestry as free-living bacteria. 
These organellar rRNAs are often amplified in microbiome studies of animals and plants. If identified, they can be discarded, merely 
reducing sequencing depth. However, we identify certain high-abundance organeller RNAs not identified by common pipelines, which 
may compromise statistical analysis of microbiome structure and diversity. We quantified this by reanalyzing 7459 samples from seven 
16S rRNA studies, including microbiomes from 927 unique animal genera. We find that under-annotation of cryptic mitochondrial 
and chloroplast reads affects multiple of these large-scale cross-species microbiome comparisons, and varies between host species, 
biasing comparisons. We offer a straightforward solution: supplementing existing taxonomies with diverse organelle rRNA sequences. 
This resolves up to 97% of unique unclassified sequences in some entire studies as mitochondrial (14% averaged across all studies), 
without increasing false positive annotations in mitochondria-free mock communities. Improved annotation decreases the proportion 
of unknown sequences by ≥10-fold in 2262 of 7459 samples (30%), spanning five of seven major studies examined. We recommend 
leveraging organelle sequence diversity to better identify organelle gene sequences in microbiome studies, and provide code, data 
resources and tutorials that implement this approach. 

Keywords: microbiome analysis, animal microbiomes, mitochondrial diversity, amplicon sequencing, mitochondria 

Introduction 
Endosymbiotic theory has amassed considerable evidence that 
the ancestors of all animal mitochondria were free-living alpha-
proteobacteria, while chloroplasts derive from formerly free-
living cyanobacteria. Traces of the evolutionary history of 
mitochondria and chloroplasts as formerly free-living microbes 
can be found in organelle genomes. For example, mitochondria 
encode their own version of the small subunit rRNA gene 
called the 12S rRNA. Such organellar rRNA genes are often 
amplified by the same PCR primers used in 16S rRNA studies of 
the microbiome. For example, 16S rRNA sequencing of human 
esophagus and breast cancer biopsy samples showed high 
proportions of host mitochondrial reads [1]. Similarly, in a study 
of the microbiome of 32 plant species, contamination by plastid 
rRNA genes accounted for ∼20% of reads per species on average, 
but in certain taxonomic groups, that rose as high as 94% [2]. In 
these cases, mitochondria or plastids were correctly annotated by 
taxonomic workflows, and so could be readily removed in silico. 

This reduces sequencing depth—any reads spent sequencing 
chloroplast or mitochondrial rRNAs do not help detect free-living 
microbes—but otherwise poses few challenges for microbiome 
analysis. However, if organelle rRNAs from diverse host taxa 
are not correctly annotated by typical taxonomic annotation 
workflows, there is a risk of incorrect biological conclusions 
unless these cryptic organelle sequences are manually identified 
and removed by investigators. 

Mitochondrial and chloroplast rRNA sequences have in some 
studies been shown to be misclassified by common workflows -
often as “Unclassified” microbes, or bacteria of unknown phylum. 
For example, in a study of black corals [3], typical methods failed 
to taxonomically annotate a 12S mitochondrial OTU representing 
47% of all quality-filtered reads and present in 70% of samples. 
This OTU was only identified by manual review and required addi-
tional analysis to annotate and remove. In other cases, unusually 
high proportions of unassigned sequences suggest misclassifica-
tion of some organelle rRNAs. In a study of the effect of maize
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root exudates on microbiomes, some categories of samples show 
up to 21.3% of sequences labeled as “Unassigned” at the domain 
level, even after putative removal of mitochondrial or chloroplast 
sequences [4]. Similarly, the most influential sequence cluster 
contributing to the similarity of two species of cold-water octoco-
rals in genus Primnoa was an “Unassigned” sequence [5]. In these 
cases, it is essential to ensure that diverse mitochondrial rRNA 
sequences are consistently annotated, so they can be removed 
prior to microbiome analysis. Instances where highly abundant 
organelle sequences are not correctly identified by taxonomic 
annotation tools at best create extra work (e.g. requiring addi-
tional ad hoc workflows to fix incorrect annotations), and at worst 
risk altering biological conclusions about microbiome diversity 
and structure. Because organelle sequences are often very high 
abundance, errors arising from failure to identify and remove 
them may be substantial. 

The problem of organelle sequence removal is made much 
more challenging if multiple types of organelle marker gene 
sequences are present in a study, but each varies in abundance 
between samples (see example with mitochondria; Fig. 1A). In 
such cases, taxonomic annotation workflows that annotate some 
but not all organelle sequences are particularly problematic, as 
they may give investigators a false assurance that all organelle 
sequences have been annotated. For example, mitochondrial 
reads from diverse sources in an animal’s diet may be present 
in animal guts, while diverse microbial eukaryotes (each with 
unique mitochondria) are commonly found on tropical corals. 
Because microbiome data are compositional [6–8], failure to 
remove mitochondrial or chloroplast sequences can distort the 
apparent relative abundance of bacteria and archaea present in 
the samples (Fig. 1B). Worse, biased annotation and removal of 
mitochondrial or chloroplast reads can further distort relative 
abundances if organelle rRNA sequence diversity causes some 
mitochondrial sequences to be annotated while others are 
not (Fig. 1C). A key goal, therefore, is to uniformly identify all 
organelle-derived rRNA sequences, thus preventing these reads 
from biasing downstream analyses (Fig. 1D). If mitochondrial or 
chloroplast contamination is identified and removed in some 
host species, while not identified or removed from other host 
species, there is potential to inflate cross-species microbiome 
differences. 

The issue of organelle sequences confounding 16S rRNA gene 
studies has been addressed by excluding organelle sequences 
using molecular or in silico methods. Several molecular methods 
for exclusion of organelle SSU rRNA gene sequences have been 
developed, including peptide-nucleic-acid (PNA) clamps [2] and  
Crispr-Cas9 cleavage [9]. However, such methods must generally 
be adapted to each host separately based on the host’s mitochon-
drial rDNA sequence, which may make their application chal-
lenging in cross-species surveys such as the Sponge Microbiome 
Project [10] and Global Coral Microbiome Project [11]. Additionally, 
applying such methods adds time and complexity to analyses 
and cannot be applied retroactively to existing studies without re-
amplification and resequencing of the underlying samples. Appli-
cation of different molecular mitochondrial removal protocols 
tailored to specific taxonomic groups may also have difficult to 
quantify effects on the comparability of diverse studies in meta-
analysis. 

An alternative approach is to identify and filter out organelle 
rRNA sequences in silico using standard taxonomy annotation 
pipelines such as the naive-Bayesian RDP classifier [12] and  
alignment-based algorithms such as USEARCH [13] and VSEARCH 
[14,15]. If this process is accurate and unbiased across categories 

of samples, then removal of organelle rRNA sequences reduces 
effective sequencing depth but does not otherwise compromise 
microbiome analysis. Additionally, because in silico methods retain 
organelle rRNA sequences, they allow for separate analysis of 
these sometimes valuable data. For example, when rRNA reads 
deriving from eukaryotic organelles are correctly and consistently 
annotated, they have been used to provide valuable insights 
into eukaryotic components of microbiomes, such as studies 
exploiting plastid rRNA sequences to assess the diversity of 
eukaryotic phytoplankton [16]. Analysis of such “bycatch” from 
eukaryotic organelle in microbiome datasets has even led to 
discoveries of novel and globally distributed clades of eukary-
otes, including important expansions of known apicomplexan 
diversity [17]. 

Application of in silico organelle rRNA identification methods to 
animal microbiomes typically does identify some mitochondrial 
12S rRNA gene sequences. However, the existing literature 
does not establish whether existing workflows annotate all 
mitochondrial 12S rRNA sequences, or if additional mito-
chondrial sequences might be present in samples but under-
annotated. In this manuscript we report widespread, severe, 
and host taxonomy specific underannotation of mitochondrial 
12S rRNA sequences in several animal microbiomes when 
using standard taxonomy resources, and suggest a simple 
improvement that addresses the issue. Popular workflows 
typically identify some of the mitochondrially-derived reads in 
each sample. Surprisingly, however, some of these workflows 
do not necessarily annotate all, or even most mitochondrial 
sequences (similar to Fig. 1C). We demonstrate that this issue 
is taxonomically widespread — it severely affects analyses of the 
microbiome of reef-building corals, and to a lesser extent those 
of marine sponges, ants, birds and mammals. We develop an 
extended set of taxonomic annotations that are supplemented 
with diverse known mitochondrial 12S rRNA gene sequences, 
and demonstrate that this extended taxonomy resolves the 
provenance of the vast majority of “Unassigned” sequences 
in some studies without causing false positive mitochondrial 
annotations. 

Materials and methods 
Workflow code 
Analyses were conducted using Jupyter notebooks, python scripts, 
and shell scripts. Major analysis steps are also illustrated in 
a workflow diagram (See online supplementary material for a 
colour version of this figure, Fig. S1). Unless noted otherwise, 
default parameters were used for each analysis step. The QIIME2 
bioinformatics platform (qiime2-2023.5) was used for microbiome 
analysis, except where noted. The full set of code, along with 
tutorials on using the V4 extended reference taxonomies 
described here are publicly available on GitHub (https://github. 
com/zaneveld/organelle_removal). 

Initial generation of the global coral microbiome 
project dataset 
Coral microbiome DNA sequences were selected from samples 
collected by the Global Coral Microbiome Project (GCMP) as 
described in Pollock et al. [11], but including additional locations 
outside of Australia in Panama, Saudi Arabia, Columbia, Singa-
pore, and La Réunion that were not described in that manuscript. 
Importantly, these samples have been sequenced twice: once 
using Illumina (Illumina, Inc., San Diego, California, USA) MiSeq 
sequencing, and again using the EMP protocol and Illumina
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Figure 1. Conceptual diagram illustrating how taxonomically-biased misannotation of mitochondria can distort apparent relative abundances of 
microbes between animal species. A. a set of 3 coral species with identical microbiomes, each of which has a rod-shaped microbe with a true 
abundance of 33% (1/3 microbes) but with variation in abundance and type of mitochondrial rRNA sequences (light and dark mitochondria). 
B. Analyzing microbiomes without removing mitochondria inflates the relative abundance of the microbe in samples with few mitochondria (3rd 
column). C. Incomplete removal of mitochondrial sequences (dark but not light) distorts relative abundances based on both number and kind of 
mitochondria. D. Perfect filtering of mitochondrial sequences removes mitochondrial abundance as a source of bias in diversity analysis. 

HiSeq sequencing. The samples analysed here were sequenced 
following the EMP protocol, as this was the larger sample set, 
and also used standardized methods applied to diverse study 
systems. 

Briefly, samples were collected from water, sediment, and the 
mucus, tissue, and skeleton of corals from 457 coral colonies, 
then DNA was extracted using the MoBio Powersoil DNA Isolation 
Kit (MoBio Laboratories, Carlsbad, California, USA) and processed 
by the Earth Microbiome Project at the Center for Microbiome 
Innovation (University of California San Diego, San Diego, Cal-
ifornia, USA). PCR was run on the V4 region of the 16S rRNA 
gene using 515f (5’-GTGTGCCAGCMGCCGCGGTAA-3′) and 806r 
(5’-GGACTACHVGGGTWTCTAAT-3′) primers and sequenced using 
Illumina HiSeq with 125 bp paired-end reads. Sequences were 
downloaded from the Earth Microbiome Project via Qiita project 
ID 10895 (specifically prep id 3439). In Qiita, these sequences 
were processed using standard EMP workflows: fastq files were 
demultiplexed using 12 bp Golay codes with the QIIME 1.9.1 
split libraries script (default parameters), trimmed to 100 nt, 
and then subjected to quality control with Deblur 1.1.0 (default 
parameters). The “deblur final table” artifact (ID: 59201, now 
deprecated) was used for initial investigations. 

Initial detection of high numbers of mitochondria 
annotated as "unassigned" in the GCMP dataset 
Many samples in the GCMP dataset were discovered to have 
high proportions of reads which were labeled "Unassigned" by 
the QIIME2 feature-classifier plugin [18], using the classify-
consensus-vsearch method [14] and the Greengenes 13 8 
reference taxonomy. The 1000 highest frequency "Unassigned" 
sequences were queried with blastn against the nt database 
(blast unknowns.py), with the following options: ’-max target seqs 
5’, ’-max hsps 1’, ’-outfmt 6 qseqid sseqid staxids stitle evalue 
bitscore’. 

Study selection 
To determine if under-annotation of mitochondrial reads was 
widespread across multiple studies, we reanalysed the original 
sequences from five additional studies in the Qiita database, cov-
ering sponges [10], diverse vertebrates [19], humans [20], bovine 
milk [21], and ants [22]. These studies were selected to represent 
a range of animal-associated study systems in which we expected 
mitochondrial sequences to be present. Samples from mockro-
biota [15,23–27], a collection of artificially constructed (mock)
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microbial communities which were known to lack mitochondria, 
were used as negative controls. 

Construction of extended SILVA and Greengenes 
databases 
Reads were downloaded and extracted from the Metaxa2 [28] 
custom BLAST database. Mitochondrial reads in this database 
were themselves curated from Mitozoa (version 2.0, release 10) 
[29] and SILVA (release 111) [30]. Chloroplast sequences were 
collected from the Phytoref database [31]. The V4 region of the 
SILVA 138 taxonomy reference was downloaded from the data 
resources page of QIIME2 2021.4 (preprocessed with reSCRIPT). 
The Greengenes 13 8 reference was downloaded from greengenes. 
microbiome.me, imported into QIIME2, and the V4 region was 
selected with the q2-feature-classifier plugin. The V4 region was 
selected due to its use by projects following the Earth Microbiome 
Project protocol, including the GCMP, where the initial investiga-
tion began. 

Mitochondria sequences from the Metaxa2 reference database 
and chloroplast sequences were imported into QIIME2 and sim-
ilarly limited to the V4 region with reSCRIPT. They were then 
inserted into the SILVA and Greengenes databases using the q2-
feature-table plugin. In all cases, taxonomy strings were reformat-
ted to match SILVA or Greengenes conventions, respectively. This 
resulted in new custom databases which we refer to as “extended” 
reference taxonomies (e.g. Greengenes (Extended)). 

Initial data processing and quality control 
While Qiita offers the ability to download fully-processed biom 
tables, the commonly used DADA2 denoising algorithm is not 
incorporated into available processing pipelines. To apply DADA2, 
the raw upstream fastq files of each study were downloaded from 
Qiita and imported into QIIME 22021–4. After demultiplexing (q2-
demux emp-single [32] [33]), sequences from Yatsunenko et al. 
were converted to Phred33 from Phred64 by exporting and reim-
porting into QIIME 2. Each study was separately denoised with 
DADA2 (q2-dada2) and Deblur (q2-deblur). 

Annotation and benchmarking workflow 
Sequences were classified using the QIIME2 feature-classifier 
[18] plugin with the classify-consensus-vsearch [14] and classify-
sklearn [34] methods, with base and extended reference tax-
onomies. Taxa counts were generated with q2-taxa barplot, after 
which mitochondria and chloroplasts were filtered from the fea-
ture tables (q2-feature-table filter-features). Samples in each table 
were rarefied to 1000 sequences, after which samples not present 
in every feature table of each study were discarded to allow for 
direct comparison of composition and diversity across studies and 
methods. This rarefaction depth was based on the study design 
of several of the analysed datasets and was selected to preserve 
sufficient samples for cross-comparison after organelle removal. 

Testing the effects of Deblur’s SortMeRNA 
positive filter step 
We noticed a substantial difference in annotations of “Unknown” 
and “Mitochondria” between denoising algorithms (DADA2 vs 
Deblur) when we explored the effect of supplemented reference 
taxonomies. In QIIME2, the Deblur plugin uses a “positive filter” 
step in which SortMeRNA [35] is used to search sequences against 
a reference 16S rRNA database (Greengenes 13 8 88% OTUs by 
default), discarding any sequences below 65% identity with 50% 
coverage to at least one reference sequence. This filtering step 
is not present when DADA2 is used. We hypothesized that the 

SortMeRNA positive filter—rather than algorithms themselves— 
might be responsible for the differences. We tested this using two 
analyses: first, we ran a version of Deblur in which we disabled 
the SortMeRNA positive filter by inputting reference sequences 
matching each query, causing all sequences to avoid the filter. 
The results of this procedure are labeled “deblur unfiltered”, in 
contrast to the default, positively filtered Deblur results, which we 
refer to as “deblur filtered”. Second, we added a SortMeRNA filter-
ing step after denoising with DADA2, using SortMeRNA 4 outside 
of QIIME2 with parameters identical to the implementation in 
QIIME2 Deblur. This tested whether addition of a positive filtering 
step would be sufficient to bring the levels of mitochondrial rRNA 
exclusion for DADA2 in line with that of Deblur. We call the default 
DADA2 results “dada2 unfiltered”, and those with a SortMeRNA 
positive filter added “dada2 filtered”. Across these four categories 
of results (deblur unfiltered’, deblur filtered, dada2 unfiltered, 
and dada2 filtered), we compared the proportion of unassigned 
reads. 

Testing changes in diversity analysis 
Under-annotation of mitochondrial reads has the potential to 
alter alpha or beta diversity estimates, especially when under-
annotation varies between sample categories (e.g. if different 
host species are being compared). To quantify these effects, 
we took samples from each study (considered separately) and 
compared alpha and beta diversity results when comparing 
the SILVA vs. SILVA (Extended) reference taxonomies. We 
tested all combinations of denoising algorithm (Deblur vs. 
DADA2), classifier (VSEARCH vs. naive Bayes), and filtering 
(presence or absence of a positive SortMeRNA filter). Within 
these datasets, we selected metadata categories per study for 
comparison of alpha and beta diversity. These were anatomy 
(’tissue compartment’) and family-level taxonomy (’family’) 
for Pollock et al., species (“host scientific name”) and sample 
type (“empo3”) for Thomas et al. life stage (“life stage”) and 
environment (“env biome”) for Yatsunenko et al., “season” and 
silo (“silo lot id”) for Kable et al, “genus” and “habitat” for Sanders 
et al., and “class” and “country” for Song et al. QIIME2’s diversity 
plugin was used to calculate effect sizes and P-values for Faith’s 
phylogenetic diversity, observed features, Shannon diversity, 
Simpson’s evenness, unweighted Unifrac, weighted Unifrac, the 
Jaccard index, Aitchison distance, and Bray–Curtis dissimilarity 
across all combinations of previously mentioned variables. 
Comparisons of alpha diversity were calculated with the Kruskal– 
Wallis test, while beta diversity differences were calculated with 
permutational multivariate analysis of variance (PERMANOVA) 
with 999 999 permutations in order to achieve higher precision 
P-values. 

Results 
High proportions of “unassigned” sequences in 
coral microbiomes 
We used a global survey of coral microbiomes as a case study to 
investigate purported systematic errors in taxonomic annotation. 
In theory, common taxonomy annotation pipelines should either 
annotate all mitochondria-derived reads as such, or make clear 
in documentation that they cannot annotate mitochondria. We 
encountered this issue in analyzing data on coral microbiome 
diversity as part of the GCMP. This analysis collected DNA 
samples from phylogenetically diverse corals around the world 
(Supplementary Data Table S1A), and sequenced 16S rRNA gene 
amplicon libraries from them as part of the broader Earth
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Microbiome Project. In preliminary taxonomic analysis using 
QIIME 2 [36], we found that many samples showed extremely high 
proportions of microbes annotated as “Unassigned” at the domain 
level (data not shown but replicated in later analysis; see below 
and Supplementary Data Table S2A), despite other amplicon 
sequences in the dataset being annotated as mitochondrial. 

In principle, these reads of “Unassigned” taxonomy might rep-
resent novel diversity or sequencing artifacts. If these truly rep-
resented novel domain- or phylum- level diversity, that would be 
very surprising, given that such novel diversity has not appeared 
in studies of full-length 16S rRNA sequences from corals [37], 
despite the identification of coral-specific members of several 
known phyla. Additionally, since the standardized sequencing 
methods used in the GCMP were also used in many other studies 
in the broader Earth Microbiome Project, it would be surprising 
if such high proportional abundances of “Unassigned” reads were 
due purely to sequencing artifacts. 

A third explanation, which we regarded as by far the most 
likely one, is that unassigned sequences could represent under-
annotated “cryptic” organelle rRNA sequences that were missed 
by taxonomy annotation, even as other organelle rRNAs were 
successfully annotated. We found that many of these “Unas-
signed” reads had strong BLAST hits to known mitochondrial 
sequences of corals, algae, diatoms and other marine organisms 
(Supplementary Data Table S3), as well as potential contaminants 
(e.g. human mitochondrial rRNA). We used BLAST to confirm 
the identity of the 1000 most abundant sequences in the GCMP 
dataset annotated as “Unassigned” by VSEARCH using SILVA 138 
as the taxonomic reference. Hits to mitochondrial sequences 
comprised 56% (1283/2296) of total top 5 BLAST hits with e-values 
below 10−10. Yet although some reads that showed high sequence 
similarity to mitochondria by BLAST were annotated as “mito-
chondria” by VSEARCH, most were annotated as “Unassigned” 
at the domain level. This discrepancy between readily identified 
mitochondrial sequences and misannotated “cryptic” mitochon-
drial sequences within the same dataset persisted regardless of 
whether the SILVA or Greengenes database was used, despite sub-
stantial sequence similarity of many “Unassigned” sequences to 
known mitochondrial sequences. Therefore, we chose to explore 
the generality of this phenomenon, its effects on microbiome 
analysis, and potential solutions. 

Supplementation of taxonomic references with 
more diverse organelle rRNA sequences resolves 
many unknown sequences as mitochondria. 
If many “Unassigned” rRNA reads do, in fact, represent mitochon-
dria (e.g. rather than sequencing artifacts or novel diversity), we 
should expect that adding reference sequences for known mito-
chondrial rRNAs from diverse hosts should reduce “Unassigned” 
annotations and increase mitochondrial annotations. Conversely, 
there is no reason to expect either sequence artifacts or microbes 
from novel lineages to show any special degree of sequence 
similarity with animal mitochondria. Thus, if either sequencing 
error or taxonomic novelty explained “Unassigned” sequences, 
we should expect little change in sequence annotations when 
improving the diversity of mitochondrial sequences represented 
in reference taxonomies. 

We quantified the number of mitochondrial and chloroplast 
reference sequences found in SILVA version 138 [30,38] and Green-
genes 13 8 [39] (Fig. 2, Supplementary Data Table S4). We then 
collected additional mitochondrial and chloroplast rRNA gene 
sequences from Metaxa2 [28], and generated extended taxonomic 
reference databases by integrating them into either SILVA 138 

Figure 2. Counts of sequences annotated as mitochondria or 
chloroplasts in standard or extended reference taxonomies. SILVA refers 
to the SILVA 138 release; Greengenes to the Greengenes 13 8 release. 
Extended reference databases incorporate the original SILVA or 
Greengenes database supplemented with additional organelle 
sequences from the Metaxa2 database. 

or Greengenes 13 8. This greatly expanded the number of mito-
chondrial and chloroplast sequences in each reference ( Fig. 2). 
The additional sequences increased the number of mitochon-
drial sequences in SILVA from 420 to 3799 (approximately 9-
fold; Fig. 2), and the number in Greengenes 13 8 from 211 to 
3600 (approx. 16-fold). Chloroplast sequence supplementation 
increased Chloroplast rRNA diversity by 2.8-fold in SILVA 138, or 
5-fold for Greengenes 13 8 (Fig. 2). We documented methods for 
applying the extended taxonomic references within the QIIME2 
software package, as well as methods for updating future releases. 

We tested how adding these additional mitochondrial refer-
ence sequences affected mitochondrial annotation when using 
different combinations of denoising algorithm (Deblur [40] or  
DADA2 [23]), base taxonomic references (SILVA [30,38] or Green-
genes [39]), and taxonomic classification methods (VSEARCH [14] 
or naive Bayes [18]). We applied these tests to multiple datasets 
(Supplementary Data Table S2a-e). These included data from the 
human microbiome [20] and milk microbiomes [21], as well as 
multiple cross-species surveys [10,11,19,22] within animal groups 
(including ants [22], marine corals [11], marine sponges [10], and 
other diverse vertebrates [19]). 

Effects of extending reference taxonomies differ 
across studies and animal groups. 
Addition of diverse reference mitochondrial sequences had very 
large effects on analysis of diverse animal groups (Fig. 3) for  
which proportionally few sequenced genomes are available 
(e.g. marine corals and sponges), but little effect in several 
single-species studies of well characterized animal hosts (e.g. in 
human microbiomes). Importantly, when expanding reference 
taxonomies decreased “Unassigned” annotations (Fig. 3A), it 
typically also increased mitochondrial annotations (Fig. 3B), 
consistent with many “Unassigned” reads representing cryptic 
organelle sequences, rather than sequencing artifacts or novel 
diversity. Adding additional chloroplast diversity to taxonomic 
references also modestly increased chloroplast annotations 
(Fig. 3C) in studies that included herbivores (e.g. diverse birds 
and mammals), although these changes were minor compared to 
shifts in mitochondrial sequence annotation. 

Examining differential annotations confirmed that the vast 
majority of reannotations at or above the class level were 
formerly “Unassigned” sequences reassigned as mitochondrial 
(93%) or chloroplast (6.5%) sequences (Fig. 4, Supplementary Data 
Table S5c). The only other trend notable in these reassignments 
was that at finer levels of taxonomic resolution some annotations 
shifted in their specificity (e.g. from species to genus level
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Figure 3. Supplementation of SILVA with diverse mitochondrial sequences resolves many "unassigned" microbes as mitochondria. The y-axis 
shows differences in the apparent relative abundance of unassigned, mitochondrial and chloroplast sequences when 16S rRNA gene sequencing data 
from several studies (x-axis) were re-annotated using a version of SILVA 138 with additional mitochondrial references (methods). A. Difference in the 
proportion of reads that were unassigned (e.g. “unassigned” at domain level). B. Difference in the proportion of reads that were classified as 
mitochondria. C. Difference in the proportion of reads that were classified as chloroplasts. Study labels include the clade studied, author, and number 
of samples. Annotation with the extended reference taxonomy decreased the proportion of unknown sequences by 10-fold or greater in 2262 of 7459 
samples (30%), including representatives from 5 of 7 studies examined (71%), and these decreases were largely matched with proportionate increases 
in mitochondrial annotations. 

identification of some Firmicutes; Supplementary Data Table S5g). 
Notably, independent benchmarks of taxonomic analysis from 
16S rRNA data using mock communities have shown overcon-
fident results below the family level [18], suggesting that small 
shifts towards more conservative annotations in some cases are 
unlikely to obscure useful biological patterns. 

A positive filter against known 16S rRNA 
sequences also prevents mitochondrial 
contamination. 
The default Deblur pipeline implemented in QIIME 2 includes 
a “positive filtering” step that excludes sequences below a 65% 
sequence identity threshold and 50% coverage threshold with the
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Figure 4. Taxonomic reclassification using the extended SILVA 
taxonomy. Sankey diagram traces show the changes in sequence 
classification between base (left) and extended (right) SILVA 138 
taxonomy at the domain (or organelle) level, weighted by total sequence 
frequency across all studies (Supplementary Data Table S5). Wider bars 
indicate reclassification of either many ASVs or a smaller number of 
ASVs with high frequencies. The most common alterations were of 
unassigned sequences reassigned to mitochondria (∼5.2 million out of 
5.6 million total altered annotations, 93.1%), followed by unassigned 
reads being reassigned to chloroplast (∼360 000 / 5.6 million 
annotations, 6.5%). No unassigned sequences were reannotated as 
non-organelle bacteria, archaea, or Eukaryota. 

Greengenes 88% OTU reference taxonomy. We tested the effects 
of this step by either disabling the filter in Deblur or adding it to 
DADA2 ( Fig. 5). We find that this positive filtering step explains 
most differences between Deblur and DADA2, and eliminates 
many cryptic mitochondrial reads (Supplementary Information). 
However, even with a positive filter, the extended taxonomies 
seem to influence mitochondrial annotations in some samples. 
For example, even with a positive filter, extended taxonomies 
detected additional cryptic mitochondrial reads and reduced the 
number of samples with high levels of Unclassified sequences 
in the Song et al. dataset of diverse vertebrate microbiomes (see 
rightmost columns in Fig. 5F). 

Extended mitochondrial reference taxonomies 
do not promote false positive annotations. 
A potential concern about expanding reference taxonomies with 
extra mitochondrial sequences (some of which are lower in 
quality than average for Greengenes or SILVA) is that it might 
lead to false positive annotations of mitochondrial taxonomy. 
We used two approaches to test for this. First, we annotated 
the taxonomy of microbial communities of known composition 
(mock communities [15,23–27]) using either standard or extended 
taxonomies. Since these mock communities were constructed 
without mitochondria, we treated any mitochondrial annotations 
as false positives. However, the extended taxonomies did not 
increase mitochondrial annotations in these mock communities 
(Fig. 3B). 

We further used shuffled sequences to test the potential 
that extended taxonomies could increase false positives in 
which sequencing artifacts were mis-annotated as mitochondria 
(Supplementary Information, Fig. S2). While the naive Bayes 
classifier could detect even shuffled mitochondria (presumably 
based on mononucleotide frequencies), with VSEARCH no false 
positive mitochondrial annotations were identified in shuffled 
sequences (Supplementary Data Table S6). 

Under-annotation of mitochondrial reads can 
influence alpha and beta-diversity. 
Contamination by organelle rRNAs has the potential to distort 
alpha and beta diversity comparisons. To investigate this, we 
reran select alpha and beta diversity analyses for each study after 
using different mitochondrial removal methods and compared 
the results (Fig. 6). We compared alpha and beta diversity against 
two relevant categorical factors per study (e.g. host taxonomy in 
corals, sponges, and ants; class of vertebrate; milk storage silo; 
Supplementary Data Table S7). These specific categories were 
chosen based on the reported results of each study. The results 
indicate that most differences in comparisons of alpha and beta 
diversity are more subtle than for taxonomic analysis. We com-
pared differences across categorical variables in each study using 
four alpha diversity metrics (Faith’s phylogenetic diversity, Fig. 6A; 
observed features, Fig. 6B; Shannon diversity, Fig. 6C; Simpson’s 
evenness measure E, Fig. 6D) and five beta diversity measures 
(Unweighted UniFrac distance, Fig. 6E; Weighted UniFrac distance, 
Fig. 6F; Jaccard distance, Fig. 6G; Bray–Curtis dissimilarity, Fig. 6H; 
Aitchison distance, Fig. 6I). Reassuringly, in these large datasets, 
overall differences in estimated effect size attributable to cryp-
tic organelle sequences were modest, ranging from 0.85-fold to 
1.09-fold. Generally these changes in effect size were greater for 
qualitative, presence-absence based beta diversity measures (e.g. 
Jaccard distance) than for quantitative ones (Weighted UniFrac or 
Bray-Curtis). 

In several cases changes in effect size and p-value were suffi-
cient to result in crossing the significance threshold of the test 
(Fig. 6; Supplementary Data Tables S7a-d), potentially affecting 
biological conclusions. Across all comparisons, the mean absolute 
shift in p-values by annotation was 0.006, with more compar-
isons shifted downward in p-value when the extended taxon-
omy was used. When we separately reran PERMANOVA analysis 
(1000 permutations per test, 100 replicates per analysis) for beta 
diversity tests on the GCMP dataset, we found that improvements 
in p-values from more correct annotation and removal of mito-
chondrial rRNAs in several cases markedly exceeded replicate-
to-replicate variation in PERMANOVA scores. Broadly, the effects 
of mitochondrial removal on these tests varied greatly across 
samples and comparisons, likely based on the abundance of mito-
chondria in the samples and how well mitochondrial rRNAs from 
particular hosts matched database examples - but in cases where 
it does matter (e.g. because cryptic mitochondrial sequences are 
present), these choices can affect biological conclusions. Thus, 
while critical for accurately showing microbial taxonomy or for 
separate analysis of all mitochondrial sequences, identification 
and removal of mitochondrially-derived reads can also somewhat 
improve the ability to detect biologically interesting trends in 
host-associated microbiomes. 

Compositional data analysis methods are 
resistant to under-annotation of mitochondrial 
reads. 
Compositional Data Analysis (CoDA) tools like Analysis of Com-
position of Microbiomes with Bias Correction (ANCOM-BC) inher-
ently account for the compositional nature of microbiome sam-
ples. Because these compositional tools work with log-ratios of 
microbes, they should not be affected by retention or removal of 
mitochondria (Methods and Results in Supplementary Informa-
tion). We confirm that choice of mitochondrial removal method 
does not affect ANCOM-BC results for non-mitochondrial ASVs 
(Supplementary Information). Similarly, differences in Aitchison
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Figure 5. Positive filtering against known 16S rRNA gene diversity removes many cryptic mitochondrial reads. To determine the cause of the 
substantial difference in “unassigned” annotations when using different denoising methods, such as Deblur and DADA2, we separately investigated 
the methods and the SortMeRNA positive filter generally applied to the QIIME2 implementation of Deblur. Using the filter severely reduced differences 
in the proportion of unassigned sequences across denoising methods and base vs. extended SILVA reference taxonomies, relative to the unfiltered 
(unshaded) samples (excepting D. human gut samples from Yatsunenko et al. in which samples were extremely well-characterized). A. Bovine milk 
samples from Kable et al. B. Coral samples from Pollock et al. C. Marine sponge samples from Thomas et al. D. Human gut samples from Yatsunenko 
et al. E. Ant gut samples from Sanders et al. F. Diverse vertebrate samples (all classes) from Song et al. 

distances (Euclidean distances of unrarefied data transformed 
with a centered log-ratio) between feature tables filtered with 
extended or base taxonomic references were minimal compared 
to other beta-diversity measures ( Fig. 6I, Supplementary Data 
Table 7a, Supplementary Information). 

Discussion 
Microbiome studies have become vital tools in medicine, ecology 
and evolution. However, best practices for many aspects of marker 
gene studies of microbiomes continue to develop. In this study 
we focus on the effects of different methods for annotation of 
organelle rRNA sequences, and their potential to influence bio-
logical conclusions. 

Cryptic mitochondria bias microbiome analysis. 
In comparing samples that contain different mitochondrial 
sequences (including many cross-species comparisons), we find 

that differences in the accuracy with which mitochondrial reads 
are identified by taxonomic annotation pipelines can impact 
apparent microbial relative abundances, as well as community 
properties like alpha and beta diversity. 

In cases where only a single mitochondrial sequence is present 
in each sample, it may be easy to detect if mitochondrial 
annotation has failed, because no reads will be annotated as 
mitochondrial. Investigators could then take ad hoc steps to 
remove mitochondrially-derived sequences. However, there are 
several mechanisms by which multiple types of mitochondrially-
derived sequences may be present in 16S rRNA gene samples. For 
example, if the tissues of dietary, parasitic, or epiphytic organisms 
are co-mingled with the focal organism in samples, it can result 
in diverse mitochondria that must be annotated. Additionally, 
some animals and many plants show considerable heteroplasmy 
[41] in which mitochondrial genome sequence varies within the 
same individual. Levels of intra-individual sequence divergence 
between mitochondria can be substantial (e.g. up to 23%
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Figure 6. Change in effect size and significance between base and extended taxonomy references. Changes in taxonomic classification and filtering 
can affect both the effect size and significance of Kruskal-Wallis and PERMANOVA tests comparing alpha (A, Faith’s phylogenetic diversity; B, count of 
observed features; C, Shannon diversity index; D, Simpson’s evenness) and beta diversity (E, unweighted UniFrac; F, weighted UniFrac; G, Jaccard 
index; H, bray–Curtis dissimilarity, I, Aitchison distance) across metadata categories. Arrow plots show the effect of using the extended taxonomy on 
study-specific tests (see Supplementary Data Table S7 for a list of metadata categories tested and statistical results). Alpha diversity p-values are 
capped at 10−6 for clarity of visualization, while beta diversity p-values are limited by the PERMANOVA permutations (10 [6]). The dashed line 
represents p = 0.05. Multiple comparisons may necessitate adjusting this cutoff. 

divergence reported in lobster mitochondrial 12S rRNAs [ 42]). 
Transposition of mitochondrial DNA to the nucleus, which is 
common (e.g. in humans [43]) can generate nuclear mitochondrial 
sequences (NUMTs). These are known to confound eDNA studies, 
and may also be amplified in 16S rRNA gene studies. 

If any of these mechanisms are in operation, it is possible 
to annotate some but not all mitochondrially-derived sequences, 
offering researchers a false sense of confidence that all sequences 

have been correctly identified. In light of the results presented 
in this manuscript, it appears common for one or more 
of these mechanisms to create situations where only some 
mitochondrially-derived sequences in a 16S rRNA are correctly 
annotated. The approaches described here provide additional 
security against distortions due to cryptic mitochondrially-
derived sequences when any of these common situations 
occur.
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Mitochondrial removal method interacts with 
study design to potentially alter biological 
conclusions. 
In large datasets, the answers to biological questions often do not 
depend on the method used to remove mitochondria. However, we 
have identified 25 instances where use of our extended reference 
taxonomy resulted in altered biological conclusions. Specifically, 
when compared to the base references, 7 nominally significant 
results were revealed to be not significant at α = 0.05, and 18 
nominally not significant results were revealed to be significant 
(Supplementary Data Table S7b, S7c). These examples include 
whether coral mucus, tissue and skeleton have distinct microbial 
communities as assessed by the Jaccard index; whether coral 
families differ in richness as assessed by Faith’s Phylogenetic 
diversity; whether milk storage silos significantly differ in Shan-
non diversity or Simpson’s evenness of their milk microbiome 
communities; and whether vertebrate classes (i.e. Mammalia vs. 
Reptilia) differ in gut microbiome evenness (Simpson’s evenness). 

Alterations in biological conclusions based on mitochondrial 
removal method are most likely to occur in studies with few 
replicates and/or small effect sizes (e.g. when apparent p-values 
are close to 0.05). However, because of the need to adjust for 
multiple comparisons, small changes to any nominally significant 
p-value may nevertheless alter conclusions, depending on the 
experimental and analytical design of the study. We identify 53 
cases in which the change in p-values between mitochondrial 
annotation methods was greater than ±0.05; these shifts in p-
values may alter putative significance depending on the number 
of comparisons and method of multiple comparison correction. 
Finally, as many studies emphasize effect sizes and their 95% 
confidence intervals rather than significance per se, we also 
examined how mitochondrial annotation method impacted effect 
sizes. On average, the annotation method did not substantially 
change effect sizes (mean fold-change in effect size 0.998). How-
ever, we identify 5 cases where effect sizes changed by 2-fold or 
more, all of which were comparisons involving whether Peruvian 
ants differed in gut microbiome richness or evenness by habitat 
(Supplementary Data Table S6d). 

We note that in order to standardize this analysis we ran each 
study through a common pipeline, so a difference in our analysis 
does not necessarily mean that the study conclusions themselves 
are suspect. For example, in several cases Deblur pipelines were 
used that resolve these issues, but our benchmarks warn that 
issues could have been encountered if, for example, DADA2 with 
neither additional filtering steps nor an extended mitochondrial 
reference taxonomy had been used. 

Effect of primer choice on mitochondrial removal. 
We limited our analysis to the V4 hypervariable region of the 16S 
rRNA gene used in the EMP. However, many microbiome studies 
use more or different regions, which may offer more information 
to discriminate between bacterial and mitochondrial sequence 
data. In a study examining the utility of PNA clamps, Lundberg 
et al. (2013) show that commonly used primers overlap the 16S 
rRNA gene of both mitochondria and free-living bacteria, yet how 
closely those gene sequences mirror each other depends on the 
specific hypervariable region [44]. In particular, V1-V2 and V7-V8 
appear to have less overlap than V4 and may offer more discrim-
inatory power. Deissová et al. (2023) further demonstrated that 
roughly 70% of sequences amplified with V4 primers applied to 
human biopsy samples were off-target, host-derived reads. When 
they instead used a modified set of 68F-338R (V1-V2M) primers, 

the proportion of off-target reads was reduced to nearly zero 
[45]. One benefit of the bioinformatic approach identified here is 
that amplification of off-target sequences can be addressed in-
silico, including retrospectively to standardized meta-analyses of 
already-collected microbiome data. 

Present benefits and future opportunities for 
improved mitochondrial annotations. 
Cross-species microbiome comparisons, such as the GCMP, the 
Sponge Microbiome Project, and Song et al., often must iden-
tify many host species in the field during sample collection. In 
cases where this is challenging, correctly annotated mitochon-
drial sequences may offer clues. For example, the mitochondrial 
reads in the 16S rRNA gene amplicon data of the GCMP conflicted 
with the initial field identifications of several coral samples by 
divers. The identification of the coral species was subsequently 
revised based on the combined evidence provided by this molec-
ular data and reexamination of sample photographs [11]. 

Laboratories may also be able to use analysis of mitochondrial 
sequences to detect and identify sources of contamination. For 
example, both human and bird mitochondrial sequences were 
detected in a small number of GCMP samples when unknown 
sequences were queried with BLAST (Supplementary Data 
Table S3), suggesting some samples that might be contaminated 
with non-host DNA during sampling or sequencing, and could be 
excluded from analysis. 

Recommendations 
Our results suggest several actionable steps that can be taken 
for cross-species microbiome comparisons. First, researchers 
should be aware that high proportions of unknown sequences 
may be attributable (among other causes) to cryptic organelle 
rRNA sequences, both of the host organism, and any dietary 
or symbiotic eukaryotes. Second, by supplementing standard 
reference taxonomies with diverse mitochondrial sequences, as 
described here, researchers can in many cases greatly improve 
annotation of cryptic organelle sequences. Third, if such additions 
are not used, a positive filter against known rRNA sequences can 
remove divergent organelle sequences (as well as the sequencing 
artifacts that such positive filters were designed to exclude). 
Fourth, users of online repositories of marker gene data, including 
Qiita [46], should take care to check whether either a positive filter 
or an extended reference taxonomy has been applied. Fifth, cross-
species comparisons of microbiome diversity should carefully 
implement all of these precautions, since the relative abundance 
of cryptic mitochondrial reads can vary across species. Sixth, 
using CoDA methods to detect differentially abundant taxa or 
changes in beta-diversity can avoid distortions to effect size and 
significance in the face of contamination by organelle rDNA. 
Finally, curators of taxonomic reference databases should take 
special efforts to include diverse mitochondrial and chloroplast 
sequences, as well as nuclear sequences derived from them 
(i.e. NUMTs homologous to mitochondrial rRNA genes) and 
recognize that diversity in these organelle sequences can be 
just as important as diversity within bacterial groups for correct 
annotation of amplicon data. 

Conclusion 
We provide a simple method and supporting tutorials to sup-
plement the commonly-used SILVA database with diverse mito-
chondrial sequences, and show that doing so improves annotation 
of cryptic mitochondrial reads, which in turn can yield more
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accurate biological conclusions. Consistent mitochondrial anno-
tations will both help prevent bias in microbiome analyses, and 
can also provide important contextual information about studies, 
such as the presence of contamination from non-target samples. 

Acknowledgements 
The authors would like to acknowledge Daniel McDonald, 
Nicholas Bokulich, and Justin Shaffer for useful discussions. 

Author contributions 
Bioinformatic processing and sequence data management, sta-
tistical analysis, figure production, writing: D.S., J.Z. Conceptual 
input and manuscript editing: All authors. Data contributions: 
T.B., J.P.G., J.B.P., J.Z. 

Supplementary material 
Supplementary material is available at ISME Communications 
online. 

Conflicts of interest 
The authors declare no competing interests. 

Funding 
This work was supported by a National Science Foundation IOS 
CAREER award (#1942647) to J.Z and National Science Foundation 
IOS (#1655682) to J.P.G. 

Data availability 
The 16S rRNA datasets analysed in the current study are publicly 
available in QIITA (qiita.ucsd.edu) under the following artifact 
ids: 2457, 2979, 3198, 3532, 3533, 3534, 3536, 3537, 3538, 31543, 
54385, 54434, 54503, 54504, 54587, 55205, 56221, 82947. Mock 
communities analysed in the current study are available on 
GitHub, https://github.com/caporaso-lab/mockrobiota/blob/b7 
a161a5f3648be789cde9b88159438cde9689d9/inventory.tsv (ids 
12–16 and 18–22). The extended taxonomies generated in this 
project are available in the Zenodo repository, https://doi. 
org/10.5281/zenodo.10251912. Project code and tutorials are 
available on GitHub, https://github.com/zaneveld/organelle_ 
removal. 

References 
1. Walker SP, Barrett M, Hogan G et al. Non-specific amplifi-

cation of human DNA is a major challenge for 16S rRNA 
gene sequence analysis. Sci Rep 2020;10:16356. https://doi. 
org/10.1038/s41598-020-73403-7 

2. Fitzpatrick CR, Lu-Irving P, Copeland J et al. Chloroplast 
sequence variation and the efficacy of peptide nucleic acids for 
blocking host amplification in plant microbiome studies. Micro-
biome 2018;6:1–10. https://doi.org/10.1186/s40168-018-0534-0 

3. van de Water JAJM, Coppari M, Enrichetti F et al. Local condi-
tions influence the prokaryotic communities associated with 
the mesophotic black coral Antipathella subpinnata. Front Microbiol 
2020;11:11. https://doi.org/10.3389/fmicb.2020.537813 

4. Lopes LD, Wang P, Futrell SL et al. Sugars and jasmonic acid con-
centration in root exudates affect maize rhizosphere bacterial 

communities. Appl Environ Microbiol 2022;88:e00971–22. https:// 
doi.org/10.1128/aem.00971-22 

5. Goldsmith DB, Kellogg CA, Morrison CL et al. Comparison of 
microbiomes of cold-water corals Primnoa pacifica and Prim-
noa resedaeformis, with possible link between microbiome com-
position and host genotype. Sci Rep 2018;8:12383. https://doi. 
org/10.1038/s41598-018-30901-z 

6. Weiss S, Xu ZZ, Peddada S et al. Normalization and micro-
bial differential abundance strategies depend upon data 
characteristics. Microbiome 2017;5:27. https://doi.org/10.1186/ 
s40168-017-0237-y 

7. McMurdie PJ, Holmes S. Waste not, want not: why rar-
efying microbiome data is inadmissible. PLoS Comput Biol 
2014;10:e1003531. https://doi.org/10.1371/journal.pcbi.1003531 

8. Gloor GB, Macklaim JM, Pawlowsky-Glahn V et al. Microbiome 
datasets are compositional: and this is not optional. Front Micro-
biol 2017;8:2224. https://doi.org/10.3389/fmicb.2017.02224 

9. Song L, Xie K. Engineering CRISPR/Cas9 to mitigate abun-
dant host contamination for 16S rRNA gene-based ampli-
con sequencing. Microbiome 2020;8:1–15. https://doi.org/10.1186/ 
s40168-020-00859-0 

10. Thomas T, Moitinho-Silva L, Lurgi M et al. Diversity, structure 
and convergent evolution of the global sponge microbiome. Nat 
Commun 2016;7:11870. https://doi.org/10.1038/ncomms11870 

11. Pollock FJ, McMinds R, Smith S et al. Coral-associated bacte-
ria demonstrate phylosymbiosis and cophylogeny. Nat Commun 
2018;9:1–13. https://doi.org/10.1038/s41467-018-07275-x 

12. Wang Q, Garrity GM, Tiedje JM et al. Naïve Bayesian classifier 
for rapid assignment of rRNA sequences into the new bacte-
rial taxonomy. Appl Environ Microbiol 2007;73:5261–7. https://doi. 
org/10.1128/AEM.00062-07 

13. Edgar RC, Haas BJ, Clemente JC et al. UCHIME improves sen-
sitivity and speed of chimera detection. Bioinformatics 2011;27: 
2194–200. https://doi.org/10.1093/bioinformatics/btr381 

14. Rognes T, Flouri T, Nichols B et al. VSEARCH: a versatile open 
source tool for metagenomics. PeerJ 2016;4:e2584. https://doi. 
org/10.7717/peerj.2584 

15. Bokulich NA, Rideout JR, Mercurio WG et al. Mockrobiota: 
a public resource for microbiome bioinformatics bench-
marking. mSystems 2016;1:e00062-16. https://doi.org/10.1128/ 
mSystems.00062-16 

16. Yeh Y-C, Fuhrman JA. Effects of phytoplankton, viral communi-
ties, and warming on free-living and particle-associated marine 
prokaryotic community structure. Nat Commun 2022;13:7905. 
https://doi.org/10.1038/s41467-022-35551-4 

17. Rohwer F, Seguritan V, Azam F et al. Diversity and distribution 
of coral-associated bacteria. Mar Ecol Prog Ser 2002;243:1–10. 
https://doi.org/10.3354/meps243001 

18. Bokulich NA, Kaehler BD, Rideout JR et al. Optimizing taxonomic 
classification of marker-gene amplicon sequences with QIIME 
2’s q2-feature-classifier plugin. Microbiome 2018;6:1–17. https:// 
doi.org/10.1186/s40168-018-0470-z 

19. Song SJ, Sanders JG, Delsuc F et al. Comparative analyses 
of vertebrate gut microbiomes reveal convergence between 
birds and bats. MBio 2020;11:e02901–19. https://doi.org/10.1128/ 
mBio.02901-19 

20. Yatsunenko T, Rey FE, Manary MJ et al. Human gut microbiome 
viewed across age and geography. Nature 2012;486:222–7. https:// 
doi.org/10.1038/nature11053 

21. Kable ME, Srisengfa Y, Laird M et al. The core and seasonal 
microbiota of raw bovine milk in tanker trucks and the impact 
of transfer to a milk processing facility. MBio 2016;7:e00836–16. 
https://doi.org/10.1128/mBio.00836-16

D
ow

nloaded from
 https://academ

ic.oup.com
/ism

ecom
m

un/article/4/1/ycae114/7771861 by guest on 29 D
ecem

ber 2024

https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae114#supplementary-data
qiita.ucsd.edu
qiita.ucsd.edu
qiita.ucsd.edu
https://github.com/caporaso-lab/mockrobiota/blob/b7a161a5f3648be789cde9b88159438cde9689d9/inventory.tsv
https://github.com/caporaso-lab/mockrobiota/blob/b7a161a5f3648be789cde9b88159438cde9689d9/inventory.tsv
https://github.com/caporaso-lab/mockrobiota/blob/b7a161a5f3648be789cde9b88159438cde9689d9/inventory.tsv
https://github.com/caporaso-lab/mockrobiota/blob/b7a161a5f3648be789cde9b88159438cde9689d9/inventory.tsv
https://github.com/caporaso-lab/mockrobiota/blob/b7a161a5f3648be789cde9b88159438cde9689d9/inventory.tsv
https://github.com/caporaso-lab/mockrobiota/blob/b7a161a5f3648be789cde9b88159438cde9689d9/inventory.tsv
https://github.com/caporaso-lab/mockrobiota/blob/b7a161a5f3648be789cde9b88159438cde9689d9/inventory.tsv
https://github.com/caporaso-lab/mockrobiota/blob/b7a161a5f3648be789cde9b88159438cde9689d9/inventory.tsv
https://github.com/caporaso-lab/mockrobiota/blob/b7a161a5f3648be789cde9b88159438cde9689d9/inventory.tsv
https://github.com/caporaso-lab/mockrobiota/blob/b7a161a5f3648be789cde9b88159438cde9689d9/inventory.tsv
https://github.com/caporaso-lab/mockrobiota/blob/b7a161a5f3648be789cde9b88159438cde9689d9/inventory.tsv
https://github.com/caporaso-lab/mockrobiota/blob/b7a161a5f3648be789cde9b88159438cde9689d9/inventory.tsv
https://github.com/caporaso-lab/mockrobiota/blob/b7a161a5f3648be789cde9b88159438cde9689d9/inventory.tsv
https://github.com/caporaso-lab/mockrobiota/blob/b7a161a5f3648be789cde9b88159438cde9689d9/inventory.tsv
https://github.com/caporaso-lab/mockrobiota/blob/b7a161a5f3648be789cde9b88159438cde9689d9/inventory.tsv
https://github.com/caporaso-lab/mockrobiota/blob/b7a161a5f3648be789cde9b88159438cde9689d9/inventory.tsv
https://github.com/caporaso-lab/mockrobiota/blob/b7a161a5f3648be789cde9b88159438cde9689d9/inventory.tsv
https://github.com/caporaso-lab/mockrobiota/blob/b7a161a5f3648be789cde9b88159438cde9689d9/inventory.tsv
https://doi.org/10.5281/zenodo.10251912
https://doi.org/10.5281/zenodo.10251912
https://doi.org/10.5281/zenodo.10251912
https://doi.org/10.5281/zenodo.10251912
https://github.com/zaneveld/organelle_removal.
https://github.com/zaneveld/organelle_removal.
https://github.com/zaneveld/organelle_removal.
https://github.com/zaneveld/organelle_removal.
https://github.com/zaneveld/organelle_removal.
https://github.com/zaneveld/organelle_removal.
https://doi.org/10.1038/s41598-020-73403-7
https://doi.org/10.1038/s41598-020-73403-7
https://doi.org/10.1038/s41598-020-73403-7
https://doi.org/10.1038/s41598-020-73403-7
https://doi.org/10.1186/s40168-018-0534-0
https://doi.org/10.1186/s40168-018-0534-0
https://doi.org/10.1186/s40168-018-0534-0
https://doi.org/10.1186/s40168-018-0534-0
https://doi.org/10.3389/fmicb.2020.537813
https://doi.org/10.3389/fmicb.2020.537813
https://doi.org/10.3389/fmicb.2020.537813
https://doi.org/10.3389/fmicb.2020.537813
https://doi.org/10.1128/aem.00971-22
https://doi.org/10.1128/aem.00971-22
https://doi.org/10.1128/aem.00971-22
https://doi.org/10.1128/aem.00971-22
https://doi.org/10.1038/s41598-018-30901-z
https://doi.org/10.1038/s41598-018-30901-z
https://doi.org/10.1038/s41598-018-30901-z
https://doi.org/10.1038/s41598-018-30901-z
https://doi.org/10.1038/s41598-018-30901-z
https://doi.org/10.1186/s40168-017-0237-y
https://doi.org/10.1186/s40168-017-0237-y
https://doi.org/10.1186/s40168-017-0237-y
https://doi.org/10.1186/s40168-017-0237-y
https://doi.org/10.1186/s40168-017-0237-y
https://doi.org/10.1371/journal.pcbi.1003531
https://doi.org/10.1371/journal.pcbi.1003531
https://doi.org/10.1371/journal.pcbi.1003531
https://doi.org/10.1371/journal.pcbi.1003531
https://doi.org/10.1371/journal.pcbi.1003531
https://doi.org/10.3389/fmicb.2017.02224
https://doi.org/10.3389/fmicb.2017.02224
https://doi.org/10.3389/fmicb.2017.02224
https://doi.org/10.3389/fmicb.2017.02224
https://doi.org/10.1186/s40168-020-00859-0
https://doi.org/10.1186/s40168-020-00859-0
https://doi.org/10.1186/s40168-020-00859-0
https://doi.org/10.1186/s40168-020-00859-0
https://doi.org/10.1038/ncomms11870
https://doi.org/10.1038/ncomms11870
https://doi.org/10.1038/ncomms11870
https://doi.org/10.1038/ncomms11870
https://doi.org/10.1038/s41467-018-07275-x
https://doi.org/10.1038/s41467-018-07275-x
https://doi.org/10.1038/s41467-018-07275-x
https://doi.org/10.1038/s41467-018-07275-x
https://doi.org/10.1038/s41467-018-07275-x
https://doi.org/10.1128/AEM.00062-07
https://doi.org/10.1128/AEM.00062-07
https://doi.org/10.1128/AEM.00062-07
https://doi.org/10.1128/AEM.00062-07
https://doi.org/10.1093/bioinformatics/btr381
https://doi.org/10.1093/bioinformatics/btr381
https://doi.org/10.1093/bioinformatics/btr381
https://doi.org/10.1093/bioinformatics/btr381
https://doi.org/10.1093/bioinformatics/btr381
https://doi.org/10.7717/peerj.2584
https://doi.org/10.7717/peerj.2584
https://doi.org/10.7717/peerj.2584
https://doi.org/10.7717/peerj.2584
https://doi.org/10.1128/mSystems.00062-16
https://doi.org/10.1128/mSystems.00062-16
https://doi.org/10.1128/mSystems.00062-16
https://doi.org/10.1128/mSystems.00062-16
https://doi.org/10.1038/s41467-022-35551-4
https://doi.org/10.1038/s41467-022-35551-4
https://doi.org/10.1038/s41467-022-35551-4
https://doi.org/10.1038/s41467-022-35551-4
https://doi.org/10.3354/meps243001
https://doi.org/10.3354/meps243001
https://doi.org/10.3354/meps243001
https://doi.org/10.3354/meps243001
https://doi.org/10.1186/s40168-018-0470-z
https://doi.org/10.1186/s40168-018-0470-z
https://doi.org/10.1186/s40168-018-0470-z
https://doi.org/10.1186/s40168-018-0470-z
https://doi.org/10.1186/s40168-018-0470-z
https://doi.org/10.1128/mBio.02901-19
https://doi.org/10.1128/mBio.02901-19
https://doi.org/10.1128/mBio.02901-19
https://doi.org/10.1128/mBio.02901-19
https://doi.org/10.1038/nature11053
https://doi.org/10.1038/nature11053
https://doi.org/10.1038/nature11053
https://doi.org/10.1038/nature11053
https://doi.org/10.1128/mBio.00836-16
https://doi.org/10.1128/mBio.00836-16
https://doi.org/10.1128/mBio.00836-16
https://doi.org/10.1128/mBio.00836-16


12 | Sonett et al.

22. Sanders JG, Łukasik P, Frederickson ME et al. Dramatic differ-
ences in gut bacterial densities correlate with diet and habitat 
in rainforest ants. Integr Comp Biol 2017;57:705–22. https://doi. 
org/10.1093/icb/icx088 

23. Callahan BJ, McMurdie PJ, Rosen MJ et al. DADA2: high-resolution 
sample inference from Illumina amplicon data. Nat Methods 
2016;13:581–3. https://doi.org/10.1038/nmeth.3869 

24. Kozich JJ, Westcott SL, Baxter NT et al. Development of a dual-
index sequencing strategy and curation pipeline for analyz-
ing amplicon sequence data on the MiSeq Illumina sequenc-
ing platform. Appl Environ Microbiol 2013;79:5112–20. https://doi. 
org/10.1128/AEM.01043-13 

25. Schirmer M, Ijaz UZ, D’Amore R et al. Insight into biases 
and sequencing errors for amplicon sequencing with the Illu-
mina MiSeq platform. Nucleic Acids Res 2015;43:e37. https://doi. 
org/10.1093/nar/gku1341 

26. Tourlousse DM, Yoshiike S, Ohashi A et al. Synthetic spike-
in standards for high-throughput 16S rRNA gene amplicon 
sequencing. Nucleic Acids Res 2017;45:e23. https://doi.org/10. 
1093/nar/gkw984 

27. Gohl DM, Vangay P, Garbe J et al. Systematic improvement 
of amplicon marker gene methods for increased accuracy in 
microbiome studies. Nat Biotechnol 2016;34:942–9. https://doi. 
org/10.1038/nbt.3601 

28. Bengtsson-Palme J, Hartmann M, Eriksson KM et al. metaxa2: 
improved identification and taxonomic classification of small 
and large subunit rRNA in metagenomic data. Mol Ecol Resour 
2015;15:1403–14. https://doi.org/10.1111/1755-0998.12399 

29. Lupi R, Meo PD d, Picardi E et al. MitoZoa: a curated mitochon-
drial genome database of metazoans for comparative genomics 
studies. Mitochondrion 2010;10:192–9. https://doi.org/10.1016/j. 
mito.2010.01.004 

30. Yilmaz P, Parfrey LW, Yarza P et al. The SILVA and “all-species 
living tree project (LTP)” taxonomic frameworks. Nucleic Acids Res 
2014;42:D643–8. https://doi.org/10.1093/nar/gkt1209 

31. Decelle J, Romac S, Stern RF et al. PhytoREF: a reference database 
of the plastidial 16S rRNA gene of photosynthetic eukaryotes 
with curated taxonomy. Mol Ecol Resour 2015;15:1435–45. https:// 
doi.org/10.1111/1755-0998.12401 

32. Hamady M, Walker JJ, Harris JK et al. Error-correcting barcoded 
primers for pyrosequencing hundreds of samples in multiplex. 
Nat Methods 2008;5:235–7. https://doi.org/10.1038/nmeth.1184 

33. Hamady M, Knight R. Microbial community profiling for 
human microbiome projects: tools, techniques, and challenges. 
Genome Res 2009;19:1141–52. https://doi.org/10.1101/gr.085464. 
108 

34. Pedregosa F, Varoquaux G, Gramfort A et al. Scikit-learn: 
machine learning in python. J Mach Learn Res 2011;12:2825–30. 

35. Kopylova E, Noé L, Touzet H. SortMeRNA: fast and accurate filter-
ing of ribosomal RNAs in metatranscriptomic data. Bioinformatics 
2012;28:3211–7. https://doi.org/10.1093/bioinformatics/bts611 

36. Bolyen E, Rideout JR, Dillon MR et al. QIIME 2: reproducible, 
interactive, scalable, and extensible microbiome data science. 
PeerJ Prepr 2018;6:e27295v1. 

37. Huggett MJ, Apprill A. Coral microbiome database: integra-
tion of sequences reveals high diversity and relatedness of 
coral-associated microbes. Environ Microbiol Rep 2019;11:372–85. 
https://doi.org/10.1111/1758-2229.12686 

38. Glöckner FO, Yilmaz P, Quast C et al. 25 years of serving 
the community with ribosomal RNA gene reference databases 
and tools. J Biotechnol 2017;261:169–76. https://doi.org/10.1016/j. 
jbiotec.2017.06.1198 

39. DeSantis TZ, Hugenholtz P, Larsen N et al. Greengenes, a 
chimera-checked 16S rRNA gene database and workbench com-
patible with ARB. Appl Environ Microbiol 2006;72:5069–72. https:// 
doi.org/10.1128/AEM.03006-05 

40. Amir A, McDonald D, Navas-Molina JA et al. Deblur rapidly 
resolves single-nucleotide community sequence patterns. 
mSystems 2017;2:e00191–16. https://doi.org/10.1128/mSystems. 
00191-16 

41. Pazoki S, Rahimian H, Struck TH. Genetic diversity and popu-
lation structure of three Hydroides species (Sedentaria, Serpuli-
dae) in the Persian Gulf and gulf of Oman, with the possible indi-
cation of heteroplasmy. Syst Biodivers 2021;19:993–1011. https:// 
doi.org/10.1080/14772000.2021.1965668 

42. Chow S, Yanagimoto T, Takeyama H. Detection of heteroplasmy 
and nuclear mitochondrial pseudogenes in the Japanese spiny 
lobster Panulirus japonicus. Sci Rep 2021;11:21780. https://doi. 
org/10.1038/s41598-021-01346-8 

43. Wei W, Schon KR, Elgar G et al. Nuclear-embedded mitochondrial 
DNA sequences in 66,083 human genomes. Nature 2022;611: 
105–14. https://doi.org/10.1038/s41586-022-05288-7 

44. Lundberg DS, Yourstone S, Mieczkowski P et al. Practical inno-
vations for high-throughput amplicon sequencing. Nat Methods 
2013;10:999–1002. https://doi.org/10.1038/nmeth.2634 

45. Deissová T, Zapletalová M, Kunovský L et al. 16S rRNA gene 
primer choice impacts off-target amplification in human gas-
trointestinal tract biopsies and microbiome profiling. Sci Rep 
2023;13:12577. https://doi.org/10.1038/s41598-023-39575-8 

46. Gonzalez A, Navas-Molina JA, Kosciolek T et al. Qiita: rapid, web-
enabled microbiome meta-analysis. Nat Methods 2018;15:796–8. 
https://doi.org/10.1038/s41592-018-0141-9 

© The Author(s) 2024. Published by Oxford University Press on behalf of the International Society for Microbial Ecology. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/ 
by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 
ISME Communications, 2024, 4(1), ycae114 
https://doi.org/10.1093/ismeco/ycae114 
Original Article

D
ow

nloaded from
 https://academ

ic.oup.com
/ism

ecom
m

un/article/4/1/ycae114/7771861 by guest on 29 D
ecem

ber 2024

https://doi.org/10.1093/icb/icx088
https://doi.org/10.1093/icb/icx088
https://doi.org/10.1093/icb/icx088
https://doi.org/10.1093/icb/icx088
https://doi.org/10.1093/icb/icx088
https://doi.org/10.1038/nmeth.3869
https://doi.org/10.1038/nmeth.3869
https://doi.org/10.1038/nmeth.3869
https://doi.org/10.1038/nmeth.3869
https://doi.org/10.1128/AEM.01043-13
https://doi.org/10.1128/AEM.01043-13
https://doi.org/10.1128/AEM.01043-13
https://doi.org/10.1128/AEM.01043-13
https://doi.org/10.1093/nar/gku1341
https://doi.org/10.1093/nar/gku1341
https://doi.org/10.1093/nar/gku1341
https://doi.org/10.1093/nar/gku1341
https://doi.org/10.1093/nar/gku1341
https://doi.org/10.1093/nar/gkw984
https://doi.org/10.1038/nbt.3601
https://doi.org/10.1038/nbt.3601
https://doi.org/10.1038/nbt.3601
https://doi.org/10.1038/nbt.3601
https://doi.org/10.1111/1755-0998.12399
https://doi.org/10.1111/1755-0998.12399
https://doi.org/10.1111/1755-0998.12399
https://doi.org/10.1016/j.mito.2010.01.004
https://doi.org/10.1016/j.mito.2010.01.004
https://doi.org/10.1016/j.mito.2010.01.004
https://doi.org/10.1016/j.mito.2010.01.004
https://doi.org/10.1016/j.mito.2010.01.004
https://doi.org/10.1093/nar/gkt1209
https://doi.org/10.1093/nar/gkt1209
https://doi.org/10.1093/nar/gkt1209
https://doi.org/10.1093/nar/gkt1209
https://doi.org/10.1093/nar/gkt1209
https://doi.org/10.1111/1755-0998.12401
https://doi.org/10.1111/1755-0998.12401
https://doi.org/10.1111/1755-0998.12401
https://doi.org/10.1038/nmeth.1184
https://doi.org/10.1038/nmeth.1184
https://doi.org/10.1038/nmeth.1184
https://doi.org/10.1038/nmeth.1184
https://doi.org/10.1101/gr.085464.108
https://doi.org/10.1093/bioinformatics/bts611
https://doi.org/10.1093/bioinformatics/bts611
https://doi.org/10.1093/bioinformatics/bts611
https://doi.org/10.1093/bioinformatics/bts611
https://doi.org/10.1093/bioinformatics/bts611
https://doi.org/10.1111/1758-2229.12686
https://doi.org/10.1111/1758-2229.12686
https://doi.org/10.1111/1758-2229.12686
https://doi.org/10.1016/j.jbiotec.2017.06.1198
https://doi.org/10.1016/j.jbiotec.2017.06.1198
https://doi.org/10.1016/j.jbiotec.2017.06.1198
https://doi.org/10.1016/j.jbiotec.2017.06.1198
https://doi.org/10.1016/j.jbiotec.2017.06.1198
https://doi.org/10.1128/AEM.03006-05
https://doi.org/10.1128/AEM.03006-05
https://doi.org/10.1128/AEM.03006-05
https://doi.org/10.1128/AEM.03006-05
https://doi.org/10.1128/mSystems.00191-16
https://doi.org/10.1080/14772000.2021.1965668
https://doi.org/10.1080/14772000.2021.1965668
https://doi.org/10.1080/14772000.2021.1965668
https://doi.org/10.1038/s41598-021-01346-8
https://doi.org/10.1038/s41598-021-01346-8
https://doi.org/10.1038/s41598-021-01346-8
https://doi.org/10.1038/s41598-021-01346-8
https://doi.org/10.1038/s41586-022-05288-7
https://doi.org/10.1038/s41586-022-05288-7
https://doi.org/10.1038/s41586-022-05288-7
https://doi.org/10.1038/s41586-022-05288-7
https://doi.org/10.1038/nmeth.2634
https://doi.org/10.1038/nmeth.2634
https://doi.org/10.1038/nmeth.2634
https://doi.org/10.1038/nmeth.2634
https://doi.org/10.1038/s41598-023-39575-8
https://doi.org/10.1038/s41598-023-39575-8
https://doi.org/10.1038/s41598-023-39575-8
https://doi.org/10.1038/s41598-023-39575-8
https://doi.org/10.1038/s41592-018-0141-9
https://doi.org/10.1038/s41592-018-0141-9
https://doi.org/10.1038/s41592-018-0141-9
https://doi.org/10.1038/s41592-018-0141-9
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/ismeco/ycae114

	 Organelles in the ointment: improved detection of cryptic mitochondrial reads resolves many unknown sequences in cross-species microbiome analyses
	Introduction
	Materials and methods
	Results
	Discussion
	Conclusion
	Acknowledgements
	Author contributions
	Supplementary material
	Conflicts of interest
	Funding
	Data availability


