
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY  
  

  

  

  

  

  

  

  

  

Assessing and Managing Health Risks in Centralised Drinking Water 

Distribution Networks  
  

  

From Theoretical Models to Practical Implementations  
  

  

VICTOR RAFAEL DE JESUS VIÑAS COS  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Department of Architecture and Civil Engineering 

  
CHALMERS UNIVERSITY OF TECHNOLOGY  

  

Gothenburg, Sweden 2025  

  

  



 

 

  

  

  

  

  

  

Assessing and Managing Health Risks in Centralized Drinking Water Distribution Networks: 

From Theoretical Models to Practical Implementations  

VICTOR R. VIÑAS COS  

ISBN 978-91-8103-160-7  

  

  

© VICTOR R. VIÑAS COS, 2025.  

  

  

Doktorsavhandlingar vid Chalmers tekniska högskola  

Ny serie nr 5618  

ISSN 0346-718X  

 

 

  

Department of Architecture and Civil Engineering  

Chalmers University of Technology  

SE-412 96 Gothenburg  

Sweden  

Telephone + 46 (0)31-772 1000  

  

  

  

  

  

  

  

  

  

  

Cover:  

Schematic of the outbreak case study water distribution networks, and figures showing Pinf 

results and TOPSIS scores. 

 
 

Chalmers digitaltryck  

Gothenburg, Sweden 2025  
  
  



iii 

 

Assessing and Managing Health Risks in Centralized Drinking Water Distribution Networks: From Theoretical Models to 

Practical Implementations   

VICTOR R. VIÑAS COS    

Department of Architecture and Civil Engineering  

Chalmers University of Technology 

 

  

ABSTRACT  

  

In 2010, the United Nations General Assembly recognized access to safe and clean water and 

sanitation as a universal human right, further reinforced by its inclusion in the Global Sustainable 

Development Goals (SDG), specifically SDG 6. Despite significant progress, with 2.1 billion people 

gaining access to safely managed drinking water between 2000 and 2022, the risk of waterborne 

illnesses from contaminated drinking water remains a critical global public health issue. Centralized 

water distribution networks, essential for delivering safe drinking water, are vulnerable to 

contamination due to unforeseen events or operational errors. This thesis aims to establish a 

comprehensive microbial risk management framework for water distribution networks, focusing on 

maintaining the integrity of these systems to prevent contamination and ensure public health. 

 

The research involved a comprehensive literature review to identify key microbial risks in water 

distribution networks. Two primary microbial risk events: (i) cross-connections and backflows, and 

(ii) intrusion, were simulated and evaluated. A fault-tree analysis (FTA) method was developed to 

estimate infection probabilities using national and local data, validated through outbreak simulations. 

Intrusion events were modelled and evaluated for various scenarios, with a stochastic approach 

proposed to estimate infection probabilities. Additionally, water quality analysis and metagenomics 

provided further input data. A risk management approach combining Quantitative Microbial Risk 

Assessment (QMRA) with machine learning and multi-criteria decision analysis (MCDA) was 

introduced to predict pipe failures and support decision-making. 

The research revealed significant findings regarding microbial risks in water distribution networks. 

National and local risk estimates for cross-connection and backflow events showed median daily 

infection risks for Campylobacter, norovirus, and Cryptosporidium ranging from 10⁻⁶ to 10⁻³. 

Surprisingly, the highest risk was observed in endemic cases, likely due to frequent but unreported 

incidents. Local assessments, such as in Gothenburg, indicated lower risks, highlighting the need for 

localized evaluations. 

Simulations of intrusion events demonstrated unacceptable infection risks across all scenarios, with 

Campylobacter posing the highest risk. Stochastic modelling showed lower infection probabilities 

compared to earlier estimates, incorporating multiple pipe failures and variable contamination levels. 

Risk management measures, including improved physical separation and reduced leakage rates, 

significantly lowered infection probabilities. Outbreak case study aligned well with epidemiological 

data, validating the model's prediction. The research underscores the importance of robust microbial 

risk management frameworks to safeguard public health in water distribution networks. 

 

Keywords: hydraulic modelling, gastrointestinal illness, water distribution network, quantitative 

microbial risk assessment (QMRA), health risk 
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1 Introduction 
In 2010, the United Nations General Assembly adopted a resolution (A/RES/64/292) which 

recognised access to safe and clean water and sanitation as a universal human right. This commitment 

was further reinforced by its inclusion in the Global Sustainable Development Goals (SDG), 

specifically SDG 6 “Clean water and sanitation”. According to the (WHO, 2022), water is considered 

safe when it “[…] does not represent any significant risk to health over a lifetime of consumption, 

including different sensitivities that may occur between life stages.” Between 2000 and 2022, access 

to safely managed drinking water was gained by 2.1 billion people (WHO/UNICEF JMP, 2023). In 

the same period, the number of people lacking at least basic drinking water services decreased from 

1.2 billion to 703 million. Of those who gained access to safely managed drinking water services, 

two-thirds (1.4 billion) resided in urban areas. Despite these advances, the risk of waterborne illnesses 

connected to contaminated drinking water remains a significant global public health concern. It is 

estimated that more than 500,000 diarrhoeal deaths occur annually as a result of microbial 

contamination of drinking water. A significant proportion of these fatalities are among children.  

In urban areas across the globe, centralized systems are commonly utilized to deliver safe drinking 

water to billions of consumers. A fundamental aspect of any centralized system is the water 

distribution network, which is responsible for conveying water from the drinking water treatment 

plant or an appropriate water source to the consumers’ taps. The distribution network is composed of 

several components, including pipes, valves, storage reservoirs, and pumps (WHO, 2022). These 

components function collectively to maintain water quality and ensure an adequate supply of water to 

consumers. However, these components are susceptible to unforeseen events or operational errors. 

Such incidents may result in the contamination of the drinking water. Furthermore, due to the location 

of the distribution network at the end of the supply chain, incidents are less likely to be detected and 

remediated in a timely manner (Risebro et al., 2007). Consequently, it is of the utmost importance to 

maintain the integrity of the network to prevent contamination of the treated water delivered to 

consumers.  

The integrity of the distribution network is categorised into three components: physical, hydraulic, 

and water quality (National Research Council, 2006). The first of these, physical integrity, refers to 

the ability of the distribution system to act as a physical barrier against external contamination. This 

can be compromised if, for instance, there are cross-connections with non-potable water pipes or 

cracks in the pipes. Secondly, hydraulic integrity is the capacity of the system to maintain adequate 

flow, pressure, and water age. It is possible that certain events, such as pump shutdown and main 

breaks, may result in a reduction in pressure and flow, thereby compromising the hydraulic integrity 

of the system. A contamination event can only occur when both the physical and the hydraulic 

integrity of the system are compromised (Ercumen et al., 2014). Finally, water quality integrity 

concerns the biochemical processes occurring within the pipes that can result in a deterioration of the 

drinking water quality. A deterioration in water quality can result in contamination or increase the 

likelihood of contamination occurring. An example of a breach in water quality integrity is the 

complete decay of the disinfectant residual.  

Waterborne disease outbreaks represent extreme consequences of contamination in the distribution 

network. Waterborne outbreaks are defined as “an incident in which two or more epidemiologically 

linked persons experience a similar illness after exposure to the same water source and epidemiologic 

evidence implicates the water as the likely source of the illness” (WHO, 2022). In Sweden, 

approximately 34% of the outbreaks with known causes are associated with the distribution network 

(Malm et al., 2010). This proportion is similar to the European Union level, where 31% of the 

outbreaks were caused by distribution network deficiencies (Risebro et al., 2007). Gastrointestinal 

illness (GI) is the most common illness associated to waterborne outbreaks (Messner et al., 2006). 
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There are different tools available to evaluate the (microbial) health risks associated to distribution 

networks. One method is through epidemiological studies, which are commonly performed during 

outbreak investigations. Their purpose is to determine the extent of the outbreak (how many were 

affected/infected) and identify both the causative agent of the disease and the events that led to the 

presence of the agent in the drinking water supply (Institute of Medicine, 2000). In the last three 

decades, randomised control trials (RCTs) and epidemiological studies have also been used to 

estimate the risk of disease at an endemic level. While outbreaks can be seen as extreme cases, the 

endemic level of disease is a sort of baseline level of disease in a population. Results for these studies 

have been mixed; some studies have found an increased risk of illness from drinking tap water while 

other authors have not found any association (Colford et al., 2005; Hellard et al., 2001; Malm et al., 

2013; Nygård et al., 2007; Payment et al., 1991; Payment et al., 1997). However, there is mounting 

evidence that malfunctioning distribution networks, as well as specific system deficiencies (i.e., pipe 

breaks, water outages and inadequate residual disinfectant), increase the risk of endemic GI (Ercumen 

et al., 2014). 

Another way to analyse and assess the risks in the distribution network is using computational 

models. Computational fluid dynamics (CFD) models have been developed to simulate contamination 

events and transport inside distribution systems (Mansour-Rezaei & Naser, 2013; Mora-Rodríguez et 

al., 2014). Quantitative microbial risk assessment (QMRA) models have been used in conjunction 

with hydraulic models to quantify the consequences of different microbial risks (Blokker et al., 2018; 

Jamal et al., 2020; Teunis et al., 2010b; Yang et al., 2011). Most of these models have important 

limitations that restrict their use, e.g., uncertainties in the input data, assumptions made about the 

conditions in the distribution network, e.g. turbulent flow, instantaneous mixing, and so on (Besner et 

al., 2011). However, they are useful for evaluating measures that can be implemented to manage the 

specific risks addressed in the model.  

1.1 Research objectives 

The primary objective of the research in this thesis is to establish a comprehensive microbial risk 

management framework for water distribution networks. This involves: 

• Conducting an extensive literature review to understand the current state-of-the-art in 

microbial risks associated with water distribution networks. 

• Developing a theoretical model for assessing and managing health risks in the distribution 

network, with a focus on cross-connection risks. 

• Identifying potential input data for the Quantitative Microbial Risk Assessment (QMRA) 

model from the literature and real-world data. 

• Developing a methodology for assessing the health risk of specific events, such as pipe breaks 

and intermittent water supply, in the distribution network. 

• Validating and improving the developed models and methodologies using stochastic 

simulations and water quality samples. 

1.2 Research questions and scope 

The research will address the following questions: 

RQ1. What are the current methodologies and tools for evaluating microbial risks in water 

distribution networks? 

RQ2. How can these methodologies be improved to provide a more accurate and 

comprehensive assessment of health risks in water distribution systems? 

RQ3. What are the most influential factors affecting the risk of infection in water distribution 

networks? 
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RQ4. How can the developed models and methodologies be integrated into a comprehensive 

microbial risk management framework for water distribution networks? 

The scope of the research includes centralized drinking water distribution networks and focuses on 

microbial risks and their impact on health. 

1.3 Research approach and limitations 

The overarching aim of this thesis is to establish the groundwork for a microbial risk management 

framework, with a specific focus on the water distribution network. The management framework 

would be based on QMRA modelling, which is known to have some important knowledge gaps, e.g., 

uncertain input data, lack of system-specific information, among others (Besner et al., 2011). There 

have been previous attempts at overcoming some of these limitations (Islam et al., 2015; Kirmeyer et 

al., 2014; McInnis, 2004), however to this day they remain incomplete. This thesis is a first attempt at 

identifying missing links between the work already done and what needs to be addressed in the future 

to successfully develop a comprehensive framework. 

1.4 Thesis structure 

The thesis is structured as follows: 

• Chapter 1: Introduction - Provides an overview of the research objectives, questions, 

approach, and structure. 

• Chapter 2: Background - Presents a brief history of drinking water distribution networks, 

modern distribution networks, drinking water distribution modelling, standard operating 

procedures to preserve integrity, evidence for problems (RCTs & observational studies), and 

risk and QMRA framework. 

• Chapter 3: Materials and Methods - Describes the prestudy, study sites, contamination 

likelihood, contamination load, contamination transport, dose-response and risk estimates, 

water sampling and risk reduction measures. 

• Chapter 4: Results and Discussion - Presents the results of the research and discusses their 

implications. 

• Chapter 5: Conclusions - Summarizes the findings of the research and discusses possibilities 

for future work. 

The chapters are organized according to the phases of the research process, with each chapter 

contributing to the overarching objective of developing a comprehensive microbial risk management 

framework for water distribution networks. The five papers that form part of the thesis are integrated 

into the relevant sections of the thesis. Paper I serves to establish the basis for the literature review 

and to provide input data for the QMRA models. Paper II makes a contribution to the development of 

a conceptual model for the assessment of the probability of a cross-connection and backflow event. In 

addition, it employs a waterborne outbreak case study for the purpose of validating the results. Paper 

III presents a methodology for assessing intrusion risks in the distribution network. Paper IV offers 

an improvement of the developed intrusion model in Paper III, incorporating uncertainties and 

stochastic factors. Paper V introduces the use of machine learning-based probability estimations for 

pipe failures and decision support through multi-criteria decision analysis, with the objective of 

implementing risk-reducing measures within the risk management framework. An overview of the 

papers and the workflow for each can be found in 3 Materials and methods.
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2 Background 
“And I wish to give an account of the other kinds of waters, namely, of such as are 

wholesome and such as are unwholesome, and what bad and what good effects may be 

derived from water; for water contributes much towards health.” (Hippocrates Part 7) 

Important concepts for understanding the main contents of the thesis are introduced in this chapter. 

The focus is on the water distribution network and the microbial risks associated with it, in addition to 

introducing important concepts in epidemiology and the QMRA framework. 

2.1 Brief history of drinking water distribution network 

The evolution of water supply systems is a testament to human ingenuity and environmental 

understanding. From the Bronze Age civilizations of the Sumerians and Akkadians in Mesopotamia 

and the Minoans in Crete to the Roman Empire, advanced water distribution systems were developed 

(De Feo et al., 2013; Mays et al., 2013; Mays et al., 2007). These systems utilized canals connected to 

rivers, rainwater harvesting systems, wells, aqueducts, and underground cisterns. 

For example, the Minoan palace of Knossos featured a network of terracotta piping located beneath 

the floors, which facilitated the distribution of water (De Feo et al., 2013). Similar terracotta pipes 

were discovered in other Minoan sites, including Tylissos, Gournia, and Vathypetro. The Minoan 

architectural style incorporated flat rooftops, light wells, and open courts that served as catch basins to 

collect rainwater, which then flowed to storage areas or cisterns.  

The Hellenic world witnessed the evolution of underground aqueducts due to the continuous wars 

between ancient cities (Maliva & Missimer, 2012). These aqueducts were constructed in a 

subterranean manner and were composed of tubes or channels made of stone slabs or terracotta. 

Inverted siphons, pipes that operated under pressure, were commonly used to cross deep valleys. One 

of the most famous aqueducts from this period is the tunnel of Eupalinos on Samos Island, the first 

deep tunnel in history that was dug from two openings with the two lines of construction meeting near 

the middle (Mays, 2008).  

The Roman Empire made extensive use of cisterns, with Pompeii being a notable example (Mays et 

al., 2013). The city’s water distribution system was an intricate network of lead and terracotta pipes, 

aqueducts, and cisterns, collectively demonstrating the advanced engineering capabilities of the time. 

After the decline of the Roman Empire, water supply systems experienced fundamental changes. 

Medieval cities in Western Europe, as well as castles and monasteries, had their own wells, fountains, 

or cisterns (Mays et al., 2013). The eastern part of the empire retained the relevant Roman 

construction tradition, implemented mostly on the watering system of Constantinople and other major 

centres of the eastern Mediterranean.  

In the Americas, the city of Xochicalco in central Mexico, which became one of the great 

Mesoamerican cities in the late classic period (ca. 650–900 AD), had no rivers or streams or wells to 

obtain water, so rainwater harvesting was the source of water (Mays et al., 2013).  

In conclusion, the history of water supply systems in antiquity shows a progression from simple wells 

and cisterns to complex networks of underground aqueducts and pipes. These systems were adapted 

and improved upon by successive civilizations, demonstrating the importance of water management in 

the development of urban centres (Mays et al., 2007).  
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2.2 Modern distribution networks 

Modern distribution networks are made up of many components: pipes, valves, pumps, reservoirs, 

hydrants and other appurtenances that connect the drinking water supply to consumers' taps (National 

Research Council, 2006; WHO, 2014). The presence or absence of a particular component is strongly 

influenced by the area that the distribution network is intended to serve. For example, the layout of the 

network will depend on existing roads and streets, existing and planned land use, and where water 

demand is concentrated (WHO, 2014). 

The distribution network can be configured in three ways: branch, grid and combined (see Figure 1). 

The branch system, similar to the branches of a tree, has smaller pipes branching off from larger ones 

across the service area (National Research Council, 2006). The main advantage of this system is its 

lower capital cost compared to the grid system. However, it has a significant disadvantage: in the 

event of a failure, all downstream consumers would be affected, as the water can only follow one path 

to the consumers. This configuration is common in rural areas and small settlements. The grid system, 

on the other hand, creates loops throughout the service area, allowing water to follow two or more 

paths to consumers. This redundancy minimises the number of consumers affected if neighbourhoods 

need to be isolated (Svenskt Vatten, 2020). However, it is more expensive due to the increased system 

length resulting from the loops. This configuration is typical in large, densely populated areas.  

In practice, most large distribution networks are a combination of loops and branches (Svenskt 

Vatten, 2020). The denser, central parts of a city are likely to have loops, while peripheral 

neighbourhoods are often served by a single branch. As mentioned above, the choice of system is 

primarily influenced by local topography, street layout and the type of community to be served. 

       

Figure 1. Schematic branch, grid and combined network configurations in which the distribution network can be structured.  

2.3 WDN modelling 

Hydraulic models serve as the foundation for the modelling of drinking water distribution networks 

(WDN). These mathematical representations of fluid flow systems are designed to emulate the 

behaviour of an existing system or predict conditions in a proposed system. They are capable of 

simulating the dynamic behaviour of WDNs, accounting for variations in water demand throughout 

the day and changes in operating conditions. The advent of personal computing power and the 

development of enhanced computational capabilities have led to the ubiquity of hydraulic modelling 
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in the water industry, with applications in the planning, operation, and design of WDNs. Hydraulic 

modelling is employed on a routine basis to simulate the flow and pressure within the network under 

conditions of either steady state or quasi-steady state. In the context of hydraulic modelling, a steady 

state is defined as a condition where all parameters (e.g., flow, pressure) remain constant over time. In 

contrast, a quasi-steady state is defined as a condition where these parameters change slowly in 

comparison to the time scale of interest. Another significant aspect of hydraulic modelling is transient 

analysis, which pertains to the study of rapid changes in flow and pressure (Boulos et al., 2005). 

In addition to hydraulic modelling, water quality modelling represents another crucial component of 

WDN modelling. The objective of water quality modelling is to utilise information derived from the 

hydraulic model (e.g., flows) in order to simulate the spatio-temporal variability of water quality 

within the network. 

Hydraulic modelling is employed for a variety of purposes, including calculation, optimisation, water 

quality modelling, and asset management. In recent times, the scope of its applications has been 

broadened to encompass flushing, fire-flow analysis, transient analysis, multi-species quality 

modelling, resilience, and other areas. The calibration of these models is typically based on real-time 

monitoring of network parameters. 

The Hardy Cross, Linear (Wood & Charles, 1972), Newton-Raphson (Larock et al., 1999), and 

Gradient algorithm (Todini & Pilati, 1988) methods are among the most popular methods for 

analysing looped pipe networks (Tsakiris & Spiliotis, 2014). All these methods are numerical iterative 

algorithms designed to solve a set of linear and non-linear equations. Depending on the unknown 

determinant, these methods are classified as head-based or flow-based methods (Swamee & Sharma, 

2008). 

In addition to hydraulic modelling, prediction models can be employed to forecast failures in the 

WDN. A broad categorisation of these models reveals three predominant types: physical models 

(Makar, 2000), statistical models (Yamijala et al., 2009), and machine learning models (Fan et al., 

2022; Warad et al., 2024). Physical models simulate the underlying mechanical and environmental 

processes, taking into account the pipe's internal and external loads, as well as material deterioration 

caused by environmental and operational conditions. Such models require large quantities of data 

from inspections, which may be technically difficult and expensive (Wilson et al., 2017). Statistical 

and machine learning models have been found to be more cost and time effective than physical 

models for predicting pipe failures, as they can provide accurate predictions even with minimal data 

(Kimutai et al., 2015; Winkler et al., 2018). Statistical models analyse historical failure data to 

identify patterns and estimate the probabilities of future breaks, aiming to establish relationships 

between explanatory variables and failure patterns through mathematical equations (Kleiner & Rajani, 

2001). In recent years, machine learning models have become more widely adopted for pipe break 

analyses due to their ability to provide accurate predictions and capture complex relationships among 

the explanatory variables. In comparison to statistical models, machine learning models have been 

shown to possess enhanced predictive accuracy and a superior capacity to manage outliers (Forero-

Ortiz et al., 2023). 

The integration of these methods with Supervisory Control and Data Acquisition (SCADA) systems, 

Geographic Information Systems (GIS), and Computer-Aided Design (CAD) tools, along with the use 

of sensors, further enhances the capabilities of hydraulic modelling, allowing for more accurate and 

efficient management of WDNs. 
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2.4 Standard Operating Procedures to preserve integrity 

Standard Operating Procedures (SOPs) are established protocols that provide guidance on how to 

carry out a range of tasks within the WDNs (Kanakoudis & Tsitsifli, 2019; WHO, 2014). These 

include: 

• Maintaining Flows and Positive Pressure: This involves ensuring that water flows are 

maintained at optimal levels and that the pressure within the system is kept positive to prevent 

the ingress of contaminants. 

• Operating Intermittent Supplies: This refers to the management of water supplies that are not 

continuous, requiring careful scheduling and monitoring to ensure adequate supply when 

needed. 

• Maintaining Disinfection Throughout the Distribution System: This involves ensuring that 

water remains safe for consumption as it travels through the distribution system, which may 

include the addition of disinfectants. 

• Mixing Water Supplies from Different Sources: This involves the careful blending of water 

from various sources to ensure consistent water quality. 

• Inspection and Maintenance of Infrastructure: Regular inspection and maintenance of storage 

tanks, service reservoirs, valves, and other fittings are crucial to prevent leaks and ensure the 

efficient operation of the system. 

• Water Leakage Management: This involves the detection and repair of leaks in the system to 

minimize water loss. The Infrastructure Leakage Index (ILI) is an example of a performance 

indicator used to measure real water loss from the supply network. 

• Preventing Corrosion: This involves the use of various methods to prevent the corrosion of 

pipes and fittings, which can lead to leaks and water quality issues. 

• Selection of Pipe Materials and Chemicals: This involves choosing appropriate materials for 

pipes and chemicals for water treatment based on several factors such as cost, durability, and 

safety. 

• Installation of Backflow Prevention Devices: These devices prevent the reverse flow of water 

within the system, protecting the water supply from contamination. 

• Ongoing Evaluation of Backflow Prevention Devices: Regular checks and maintenance of 

these devices are crucial to ensure they are working effectively. 

• Repairing Water Main Breaks: This involves the prompt detection and repair of breaks in the 

water mains to prevent significant water loss and disruption to the supply. 

• Construction and Commissioning of New Mains: This involves the planning, construction, 

and testing of new water mains before they are put into operation. 

• Dewatering and Recharging Distribution Mains: This involves the removal and replacement 

of water within the mains, often carried out during maintenance or repair work. 

• Controlling Permeation: This involves measures to prevent the ingress of contaminants into 

the water supply through the pipe walls. 

• Collection and Testing of Water Samples: Regular sampling and testing of water are carried 

out to monitor water quality and ensure it meets health and safety standards. 

• Calibrating Equipment and SCADA Systems: Regular calibration ensures that equipment and 

systems are working accurately and efficiently. 

• Dealing with Customer Enquiries: This involves providing information and assistance to 

customers, addressing their concerns and queries about the water supply. 

The general principles provided by SOPs are frequently codified in laws, international standards, 

handbooks, and other means to aid water providers in their implementation. For example, the Swedish 
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Water and Wastewater Association (“Svenskt Vatten”) routinely releases checklists, handbooks, and 

reports on how to responsibly manage WDNs in Sweden.1 

2.5 Evidence for problems (RCTs & observational studies) 

From the descriptions in the previous section, it can be concluded that the drinking water distribution 

network is a complex system in many respects. This complexity arises from the dynamic nature of 

water use and the need for a variety of components to work together to maintain a delicate balance of 

appropriate operating conditions. Even Standard Operating Procedures (SOPs) have their own set of 

difficulties, ranging from logistical, technological and economic constraints that make it difficult to 

satisfy all the ideal controls in the network. Given these constraints, one might ask: Can the 

distribution network function as intended to deliver safe drinking water? Is there evidence that the 

distribution network could potentially be a source of disease to the population it serves? 

The relationship between water and health has been discussed since ancient times. Throughout 

antiquity, tasty or tasteless, cool, odourless and colourless water were considered desirable qualities 

[Then such waters as flow to the rising sun, must necessarily be clear, fragrant, soft, and delightful to 

drink, in such a city (…) The persons of the inhabitants are, for the most part, well coloured and 

blooming, unless some disease counteract.]2 and stagnant, murky, swampy water was to be avoided. 

The emphasis on desirable qualities in water stemmed from the belief that all disease was transmitted 

by vapours or mists filled with miasmata (vapours of decomposing organic matter). Water with poor 

qualities was thought to be contaminated with miasma, which would release vapours into the air and 

cause disease when inhaled. The miasma theory of disease remained the dominant explanation of 

disease transmission until the mid to late nineteenth century, when it began to be superseded by the 

germ theory of disease. The germ theory of disease gained prominence in part through experiments 

that disproved spontaneous generation (e.g. Louis Pasteur) and the identification of specific 

microorganisms as causative agents of disease (e.g. Koch's postulates). In addition, even before the 

aetiological agent of cholera was identified, John Snow (not to be confused with the fictional 

character) mapped cholera deaths in Soho, London, to support his conclusion that the source of the 

disease was contaminated water supplied by the Broad Street pump. John Snow’s work is considered 

to be the foundation of modern epidemiology.  

Epidemiology can be defined as the study of the distribution of disease and the factors that influence 

its frequency in human populations (Silman et al., 2018). Epidemiology seeks, among other things, to 

identify factors that affect health (e.g., agents that transmit disease, environmental factors), identify 

sensitive groups in a population, investigate outbreaks and control epidemics (Silman et al., 2018). 

There are two main measures of disease in a population: prevalence and incidence (Silman et al., 

2018). Prevalence is the proportion of a population affected by a disease at a specific point in time, 

which is described in Equation (1).  

 

 Prevalence  =  
Cases

Population (at risk)
 (1) 

 

Incidence is the number of new cases in a population within a specified time period. It can be 

expressed as a proportion (cumulative incidence Eq.(2)) or as a rate (Eq.(3)). Cumulative incidence 

can be used to calculate the level of risk for a certain population. The cumulative incidence is also 

known as attack rate. 

 
1 Svenskt Vatten homepage: Advice and Guidelines. 

https://www.svensktvatten.se/vattentjanster/dricksvatten/rad--riktlinjer/ 

   
2 Hippocrates On Airs, Waters, and Places 

https://www.svensktvatten.se/vattentjanster/dricksvatten/rad--riktlinjer/
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Cumulative incidence  =  

New cases 

Population at risk for some amount of time
 

 

(2) 

 

 
Incidence rate  =  

New cases over a time period

Time each person was observed,  summed for population 
 

 

(3) 

 

To estimate the increased risk of disease for a population exposed to a certain variable, three different 

ratios can be used. Risk ratio (RR) is the ratio of cumulative incidence in two population groups 

(Equation (4)). The risk ratio can also be seen as the relative risk of disease. If the RR = 1, the 

incidence is the same in the exposed group and the unexposed group: there is no association between 

exposure/risk factor and disease. If RR > 1, there is an increased risk of disease in the exposed group 

than in the unexposed group. If RR < 1, there is a reduction in risk of disease for the exposed group. 

 

 Risk Ratio =  
Risk (cumulative incidence) in exposed group

Risk (cumulative incidence) in unexposed group
 (4) 

 

Odds ratio measures the relative odds of an outcome occurring after an exposure. The numerator is the 

number of exposed cases divided by the number of unexposed cases. The denominator is the number 

of exposed non-cases divided by the number of unexposed non-cases. An OR > 1 indicates increased 

odds of developing the outcome when exposed to a given variable, and an OR < 1 indicates the 

opposite. An OR = 1 indicates that the odds of the outcome are not affected by the variable (Szumilas, 

2010). Odds ratios can be expressed as in Equation (5): 

 

 Odds Ratio =  
Odds of disease in exposed group

Odds of disease in unexposed group
 (5) 

 

For rare diseases, i.e., where the prevalence is low, odds ratio are numerically similar to the risk ratio 

(Silman et al., 2018). 

The findings of studies investigating the correlation between the consumption of tap water and 

gastrointestinal illness (GI) have been inconclusive. Some studies have indicated that tap water plays 

a significant role in the endemic level of GI, whereas other studies have not identified such an 

association. A synthesis of the findings from a selection of the studies is provided in Table 1. 
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Table 1. Summary of RCTs and observational studies performed in the drinking water distribution network to assess the 

association between distribution network and GI. Table 1 in Paper I. 

 

2.6 Risk and QMRA framework 

Risk is typically defined in several ways, depending on the subject of evaluation (Aven, 2010). 

According to the WHO (2022), risk “is the likelihood of identified hazards causing harms in exposed 

populations in a specific time frame, including the magnitude of that harm and/or the consequences.” 

It is commonly expressed as Equation (6): 

 𝑅 = 𝑃 × 𝐶 (6) 

   

where R is the risk, P is the likelihood of occurrence of an undesired event (e.g., pipe break) and C 

represents the consequences of the event (e.g., infection from drinking contaminated water). 

A hazard is an agent with the potential to cause harm, which can originate from microbiological, 

chemical, radiological, or physical sources (WHO, 2022). The most apparent source of microbial risk 

is when the WDN is affected by the sewage system.  

2.6.1 Health risks associated to microbiological contamination  

Five major microbial risks have been identified for the distribution network (National Research 

Council, 2006). From higher to lower priority, they include: cross-connections and backflows; 

improper maintenance and operation of reservoirs; contamination during installation, rehabilitation, 

and repair of water mains; intrusion; and biofilms. The prioritization is based on the amount of 

evidence supporting their contribution to health risks for consumers. All these risks have been 

identified as causes of waterborne disease outbreaks (Craun, 2012; Hrudey & Hrudey, 2004; Hrudey 

& Hrudey, 2007; Risebro et al., 2007). A brief explanation of each risk is provided below.  

Cross-connections are defined as points in the distribution network where non-potable water elements 

(e.g., wastewater pipe) may come into contact with the drinking water (USEPA, 2002). A backflow 

can occur when the pressure of the non-potable water source exceeds that in the distribution network 

and there are inadequate cross-connection controls present (e.g., absence of a backflow prevention 

valve) (WHO, 2014). Cross-connections are considered one of the most serious public health risks in 

the distribution network (National Research Council, 2006; WHO, 2014).   

Routines exist to ensure correct hygienic practices during the installation, rehabilitation, and repair of 

water mains (Säve-Söderbergh et al., 2017; WHO, 2014, 2022). However, contamination can occur if 
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these procedures are not followed (e.g., inadequately disinfecting newly laid pipes) (National 

Research Council, 2006). Unhygienic practices during the installation, rehabilitation, and repair of 

water mains were classified as a high-priority issue (National Research Council, 2006).  

Water quality in reservoirs can be compromised in several ways. Physical breaches, such as cracks in 

the walls/roofs of the reservoir and cross-connections, can allow contamination to enter from the 

exterior (Falco & Williams, 2009; Kristianstads kommun, 2015). Inadequate hydraulic design can 

lead to long residence times, resulting in a complete loss of disinfectant and microbial regrowth 

(Clark et al., 1996; National Research Council, 2006; Seyoum & Tanyimboh, 2014). Improper 

management of reservoirs was considered a high-priority issue in the first assessment report by the 

National Research Council (2006).  

According to Besner et al. (2011), intrusion is defined as the contamination of drinking water due to 

adverse pressure conditions and physical breaches in the system. Three conditions are necessary for 

microbial contamination to occur: presence of pathogens surrounding the distribution network 

(source); occurrence of pressure transients or low-pressure events (adverse pressure conditions); and 

deteriorated physical conditions of the pipes (physical breach). Intrusion was considered a medium 

priority issue by the National Research Council (2006); however, it is gradually being recognized as a 

major contributor to the waterborne disease burden (Besner et al., 2011; Islam et al., 2015; Murphy et 

al., 2016).   

Biofilms are complex assemblies of microorganisms, extracellular polymeric substances, and organic 

and inorganic matter (Kauppinen et al., 2012). They are known to act as potential reservoirs for 

pathogens within the distribution network (Berry et al., 2006; Nocker et al., 2014; Wingender & 

Flemming, 2011). Pathogenic organisms that intrude the distribution network (e.g., via cross-

connections and backflow into the system) can attach to biofilms and subsequently detach due to 

shear stresses caused by increased water flow. Biofilms can harbour a variety of pathogens, including 

Cryptosporidium oocysts (Angles et al., 2007), enteric viruses (Skraber et al., 2005; Storey & 

Ashbolt, 2003), opportunistic pathogens (Farkas et al., 2012; Pryor et al., 2004), and bacterial 

pathogens (September et al., 2007; Wingender & Flemming, 2011). The National Research Council 

(2006) classified biofilms as a medium-priority issue. 

2.6.2 QMRA  

One of the most valuable methods available for quantifying microbial risks is the quantitative 

microbial risk assessment (QMRA) framework (Petterson & Ashbolt, 2016)(Petterson et al. 2016). 

According to WHO (2016), a QMRA consists of four basic steps:   

1 Problem formulation: This step determines the scope and purpose of the assessment. Hazards, 

exposure pathways and health outcomes are investigated;  

2 Exposure assessment: This includes quantifying pathogen sources, magnitude, and frequency of 

the exposure for the different scenarios being analysed;   

3 Health effects assessment: This involves estimating the health impact from the identified hazards 

and the population of the study (e.g., drinking water consumers);  

4 Risk characterization: This step combines the exposure and health effects assessments to quantify 

the risk of infection. This can be represented as number of consumers infected per year, DALYs. 

A sensitivity analysis can also be performed in this step to determine which parameters influence 

the most the QMRA results.  

An alternative QMRA framework presents a 5-step approach: 1) hazard identification, 2) dose-

response assessment, 3) exposure assessment, 4) risk characterisation and 5) risk management (Haas 

et al., 2014; WHO, 2016). In the risk management step, costs and measure effectiveness are important 

components to make a decision after performing the previous four steps. It is important to note that to 

perform a relevant assessment, uncertainties must be considered in each step. Otherwise, the results 
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may not be representative of reality (Bouwknegt et al., 2014). A detailed explanation of each step 

from a distribution network perspective follows below.  

1. Problem formulation  

The main aim with problem formulation is to determine the scope and the purpose of the risk 

assessment. A successful problem formulation requires effective identification of potential hazards, 

contamination pathways, and exposure outcomes. (WHO, 2016). However, already in this step some 

levels of assumptions are needed to successfully formulate the problem.  

An important assumption made early in the assessment is the choice of reference pathogens, as it is 

not possible to assess all waterborne pathogens in a single QMRA (WHO, 2016). The choice of 

reference pathogens assumes that all other pathogens of the same type are controlled in the same way 

as the reference. Reference pathogens should be those that are most representative of the local 

conditions. For example, Campylobacter, norovirus, and Cryptosporidium would be appropriate 

choices of reference pathogens for a QMRA carried out in Sweden: epidemiological studies support 

their selection (Abrahamsson; Guzman-Herrador et al., 2015).   

To determine the exposure pathway, it is necessary to define which hazardous events or scenarios will 

be included in the assessment. This definition is necessary because the potential pathways will differ 

depending on the risk being assessed. For example, if the risk assessor is interested in studying 

intrusion and reservoir contamination, transport within the distribution to the consumer can be 

identified in the same way (see Figure 2). However, the pathogen source and pathway will differ 

completely.  

The last step in the problem formulation is to determine which health outcome will be used to assess 

the risk (WHO, 2016). These can be expressed as, e.g., a yearly probability of infection or disability-

adjusted life years (DALYs). The choice of health outcome will depend on the objective of the risk 

assessment.  

2. Exposure assessment  

The primary objective of exposure assessment is to quantify the sources of contamination and the 

exposure pathways, as identified in step 1 - problem formulation (Haas et al., 2014). The 

quantification of potential pathogen concentrations in the distribution network has been achieved 

using both theoretical models (e.g., (Vairavamoorthy et al., 2007)) and source characterization 

(Besner et al., 2010; Karim et al., 2003). Most of the quantification has focused on the risk of 

intrusion and contamination during maintenance or repair work (Blokker et al., 2018; Teunis et al., 

2010b; Yang et al., 2015). Additionally, hydraulic models are essential for simulating the transport of 

water from the source to the consumers’ tap.  

Risk reduction measures to limit exposure to pathogens during a contamination event in the 

distribution network are limited compared to options available for the source water and treatment 

plant (Risebro et al., 2007). According to QMRAs already performed in the network, the following 

parameters achieve some kind of reduction of the pathogen concentration: disinfectant residual, 

dilution factor, flushing (Blokker et al., 2018; Teunis et al., 2010b; Yang et al., 2015).  

In the context of QMRAs in the distribution network, consumers are primarily exposed through the 

consumption of unboiled tap water (McInnis, 2004; Teunis et al., 2010b; Yang et al., 2011). To 

quantify this parameter, consumption pattern studies have been conducted in different settings (Hynds 

et al., 2012; Roche et al., 2012; Säve-Söderbergh et al., 2017). Local consumption pattern studies are 

needed to accurately describe exposure levels in the population and thus make QMRA results more 

reliable.  
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3. Health effects assessment  

After determining the population that will be exposed to a certain pathogen concentration, the next 

step will be to assess the health risk outcomes of these. The health effects assessment uses dose-

response models to relate the pathogen dose to a probability of infection or disease (Haas et al., 2014). 

Dose-response models are currently available for numerous pathogens: Campylobacter (Medema et 

al., 1996; Teunis et al., 2005; Teunis et al., 1999); Salmonella (Teunis et al., 2010a; Teunis et al., 

1999); E. coli O157:H7 (Teunis et al., 2004; Teunis et al., 2008a); adenovirus (Teunis et al., 2016); 

norovirus (Messner et al., 2014; Teunis et al., 2008b); Cryptosporidium (Teunis et al., 1999; Teunis et 

al., 2002); and Giardia (Teunis et al., 1999; Zmirou-Navier et al., 2006).  

4.  Risk characterization  

Risk characterization consists in combining the exposure assessment and the health effects to generate 

a quantitative estimation of risk. Risk estimates are commonly expressed as yearly probability of 

infection, probability of illness and/or disability-adjusted life years (DALYs). These estimates can be 

used in diverse ways, e.g., compare the calculated health risk with a regulatory target. For example, in 

United States the acceptable annual probability of infection allowed is set to 1/10,000 consumers 

(National Research Council, 2006). Consequently, if a QMRA is performed for the distribution 

network and the estimated risk of infection is 2/10,000 consumers per year; it could be concluded that 

the risk is unacceptable if compared to the US health target.  

To properly characterize the risk, uncertainties must be included in the analysis (Bouwknegt et al., 

2014; Lindhe, 2010). A common way to perform uncertainty analyses in distribution network health 

risk assessments is through Monte Carlo simulations (Khanal et al., 2006; Nilsson et al., 2005; Teunis 

et al., 2010b; Torres et al., 2009). In Monte Carlo simulations, probability distributions are used as 

input data, selecting random numbers from the distribution for each calculation. This process is 

performed for a certain number of iterations (e.g., 1 000, 10 000), obtaining a probability distribution 

as the result (Lindhe, 2010).  

A sensitivity analysis may also be carried out for different reasons: refine the assessment, identify 

sources of uncertainty, and determine risk reduction measures, among others (WHO, 2016 984). 

Monte Carlo simulations can also be used for this purpose; however, the standard method involves 

changing the input variable and noting the extent of the change in the result.  

5. Risk management  

The risk characterisation results may be used to inform decisions on managing health risks (Haas et 

al., 2014). For example, if the risk is deemed unacceptable, mitigation measures are needed. After 

implementing the mitigation measure(s), a new risk estimate is calculated with the updated 

information. The adjusted risk estimate is then compared to the health target and evaluated 

accordingly. Possible mitigation measures during a contamination incident in the distribution network 

include (Blokker et al., 2018; Säve-Söderbergh et al., 2017):  

• Isolation of the affected area  

• Chlorination  

• Flushing  

• Boil water advisory  

• Emergency water sources  

Decision-making is an integral part of any successful project. It can involve either individuals or 

groups and can be based on a single criterion or multiple criteria (Zolghadr-Asli et al., 2021). One 

widely used decision-making tool is Multi-Criteria Decision Analysis (MCDA), a structured process 
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that aims to prioritize alternatives while considering multiple varying criteria (Ngubane et al., 2024; 

Taherdoost & Madanchian, 2023). In general, an MCDA process involves the following steps: 

1. Defining the decision problem, objectives, alternatives, and evaluation criteria 

2. Structuring the decision problem 

3. Incorporating stakeholder preferences 

4. Evaluating and scoring the alternatives 

5. Analyzing the results to provide recommendations 

 

  

Figure 2. Example of exposure pathways for intrusion and reservoir.  
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3 Materials and methods 

An overview of the work carried out is shown Figure 3. A literature review (Paper I) was conducted 

to identify the most relevant risks to address. Two different microbial risk events were simulated for 

this project: cross-connections and backflows, and intrusion. Paper II focused on a fault-tree analysis 

(FTA) method developed to estimate probabilities of infection (Pinf) using nationally aggregated and 

local data for three distinct risk levels. Additionally, an outbreak due to a cross-connection and 

backflow was simulated and used as validation for both the FTA and the outbreak simulation. Paper 

III focused on simulating intrusion due to a pipe break in a real WDN and was evaluated for multiple 

scenarios. Paper IV expanded on the intrusion case study by proposing a stochastic approach to 

estimating Pinf, in addition to providing additional sources of input data in the form of water quality 

analysis for indicators and metagenomics. Paper V introduced a risk management approach that 

combined QMRA with machine learning for predicting pipe failures and MCDA to support decision-

making. 

For the purposes of the WDN risk assessment, the health risk was calculated using Equation (6) 

presented in 2.6 Risk and QMRA framework. 

The pathogen concentrations arriving at the consumer taps for the microbial risk events were used as 

the dose component in the dose-response modelling. All risk events were assessed for the same 

reference pathogens, i.e., Campylobacter, norovirus, and Cryptosporidium, using published dose-

response relationships. The tolerable health risk was set to a daily target not exceeding 10-6, based on 

the rationale of (Signor & Ashbolt, 2009) to use as a daily risk target rather than an annual target to 

capture potentially elevated risk events of short duration. 

 

Figure 3. Overview for the workflow of each risk event and its connection to Papers I-V.  
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3.1 Prestudy 

As a first step, a narrative review (reported in Paper I) was conducted to assess the state of the art on 

the health risks of WDNs and to identify potential areas where QMRAs could be improved. The 

literature review focused on two main areas: (1) RCTs and observational studies assessing the 

contribution of WDNs to the endemic health burden, and (2) QMRAs conducted in WDN. The 

literature search was conducted in three databases: Scopus, Web of Science and PubMed. The 

following keywords were used for the initial literature search: (1) 'drinking water' (2) 'distribution 

system', 'distribution network' (3) 'disease outbreak', 'gastrointestinal disease'. The keywords were 

combined in different ways using Boolean operators. Keywords in group (3) were truncated for some 

searches. The same search strategies were used for the three selected databases. After the initial search 

strategy in Scopus, the results were refined using additional keywords, e.g., water contamination, 

epidemic, risk assessment, etc. In addition, the reference lists of articles retrieved from the search 

were screened to identify additional potentially relevant records. 

3.2 Study sites 

In this thesis, two microbial risks were assessed: cross-connection and backflow, and intrusion. For 

cross-connections and backflows in Paper II, the FTA method was initially applied at the national 

level in Sweden and at the local level in Gothenburg. The Gothenburg network is located in south-

west Sweden, spanning a total of 1 800 km. For further validation and comparison of the FTA 

predictions with traditional hydraulic modelling, a second network was selected (Figure 4). This 

network, situated in an undisclosed small municipality in Sweden, had previously experienced a 

waterborne outbreak associated with a cross-connection and backflow. Through PCR analysis, the 

causative agent was identified as norovirus.  The network at this site spanned 39.7 km, comprising 81 

nodes with pipe diameters ranging from 28 to 144 mm. 

For intrusion calculations in Paper III - Paper V, different methods were tested in a WDN located in 

Scania County in the southern part of Sweden (Figure 5). This site comprised a specific section within 

a larger WDN with a total length of 13.5 km pipelines of varying diameters, ranging from 25 to 200 

mm, and including 457 nodes. The annual water supply in the study area was 50 000 m³. The total 

estimated water losses through leakage in the WDN accounted for 27% of total water production. The 

WDN has a total of 280 metered service connections serving approximately 714 persons, considering 

an estimated daily demand of 140 l/p/d in Sweden and excluding non-revenue water (water losses). 

The pipe network was laid between 1.5 m to 2 m below the ground surface within the same trench as 

stormwater and wastewater pipes. It was estimated that most sewer pipes were at the same elevation 

as drinking water pipes, with approximately 0.5 m distance in the horizontal direction between the 

pipes. Furthermore, it was estimated that 100% of the pipes in the WDN were below the groundwater 

level (GWL) based on studies of GWLs in the area. 
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Figure 4. Schematic representation of the studied distribution network divided in zones Z1, Z2 and Z3. The contamination 

node (red dot) was located in Z1 and the water supply node (marked with an S) was located directly upstream of this node. 

The segment of the network not highlighted in any zone was discarded from the analysis, since the contamination did not 

reach the consumers in that area. For security reasons, the network scale and configuration has been distorted. Taken from 

Paper II. 

 

Figure 5. Case study section of the distribution network in Scania used for intrusion simulations. Critical nodes are shown in 

purple, whilst intrusion nodes are denoted by black diamonds. Taken from Paper III.   

3.3 Probability of Failure 

3.3.1 Fault tree for cross-connection and backflow failure 

The probability of a contamination event due to cross-connection and backflows occurring was 

calculated using the FTA method developed in Paper II. This calculation was based on nationwide 

and local data from various sources (see Table 2). The following parameters were considered: 

• Total Length of Distribution Network in Sweden: The Swedish Water & Wastewater 

Association (2000) reports a total length of 67,000 km. 

S 
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• Number of Swedish Municipalities: According to the Government Offices of Sweden, there 

are 290 municipalities. 

• Average Length of Distribution Network per Municipality: Calculated to be 231 km. 

• Contamination Events and Probabilities: 

Disturbances Reported (2000-2008): Malm et al. (2010) documented 11 incidents, 

resulting in a probability of 1.82 x 10-5 km-1 yr-1 for endemic disease contamination 

events. 

Outbreaks Reported (1980-2009): Nine outbreaks were reported, with a probability of 

4.48 x 10-6 km-1 yr-1 for contamination events leading to outbreaks. 

Severe Outbreaks (1980-2009): The probability of a contamination event leading to a 

severe outbreak was calculated to be 8.96 x 10-7 km-1 yr-1. 

Gothenburg Specific Data: For the Gothenburg distribution network, the probability of a 

contamination event was found to be 3.31 x 10-8 km-1 yr-1. 

Table 2. Summary of national estimates and Gothenburg for probability of a contamination event (P) for the different cases.   

Parameter  Value  Description  

Total length of distribution 

network in Sweden  
67 000 km  

The Swedish Water & 

Wastewater Association (2000) 

No. of Swedish municipalities  290  Government Offices of Sweden  

Average length of distribution 

network/municipality  
231 km    

No. of disturbances reported 

2000-2008  
11 incidents  Malm et al. (2010)  

No. of disturbances reported 

2000-2008 (km-1 yr-1)  
1.82 x 10-5  

Probability of a contamination 

event for endemic disease  

Outbreaks reported 1980-2009  9 outbreaks  Malm et al. (2010)  

Outbreaks reported 1980-2009 

(km-1 yr-1)  
4.48 x 10-6  

Probability of a contamination 

event that leads to outbreak  

Outbreaks reported 1980-2009 

(km-1 yr-1)*  
8.96 x 10-7  

Probability of a contamination 

event that leads to severe 

outbreak  

Gothenburg (km-1 yr-1)  3.31 x 10-8  

Probability of a contamination 

event for Gothenburg distribution 

network. Calculation available in 

Paper II - supplementary data.   

 

3.3.2 Logistic regression model for pipe failure 

In the context of the intrusion simulations conducted in Papers III and IV, no probability of 

contamination was calculated, i.e., P was assumed to be 1. Conversely, in Paper V, a logistic 

regression model was used to estimate the likelihood of pipe breaks that could lead to intrusion. 

Logistic regression was mathematically formulated as in Equation (7) (Gasso, 2019): 
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 𝑝 =
1

1 + 𝑒−(𝑤𝑜+∑ 𝑤𝑖𝑥𝑖)𝑚
𝑖=1

 (7) 

   

In this equation, p is the output probability of each sample, xi denotes the value of the ith feature, wi is 

the weight of the ith feature and wo is the bias constant. The weighted sum of the features, combined 

with the bias, is passed through the sigmoid function (p), which transforms it into a value between 0 

and 1. The transformed value is then compared to the threshold value of 0.5, in order to determine the 

predicted class: 

 𝐶𝑙𝑎𝑠𝑠 =  {
 0  𝑖𝑓  𝑝 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
 1  𝑖𝑓  𝑝 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

 (8) 

where less than or equal to 0.5 classifies the pipe as intact (0) and more than 0.5 classifies as a 

break (1). 

   

The explanatory variables employed in the logistic regression model were selected from three distinct 

categories: physical, environmental and operational. An overview of the explanatory variables 

adopted for the model is provided in Table 3. 

Table 3. Explanatory variables for the logistic regression model. 

Variable Name Type Description 

Physical 

Length Numerical Pipe length in m 

Diameter Numerical Pipe diameter in mm 

Age Numerical Pipe age in years 

Material Categorical Material of pipe section 

Environmental 

Elevation Numerical Elevation from mean sea level 

Soil type Categorical Major soil type at pipe location 

Roads and Trainlines Categorical Close proximity to the pipe 

Operational 
Pressure Numerical Average operational pressure 

Historical breaks Numerical Previous recorded breaks 
 

The municipality provided physical pipe information and break records in EPANET and GIS formats, 

respectively. These datasets were then matched using QGIS geoprocessing features, and average 

operational water pressure was simulated over a 24-hour period in EPANET. Soil type data was 

obtained from the Geological Survey of Sweden (SGU). Categorical variables were created to account 

for the proximity of pipes to external infrastructure, such as road intersections and train lines, using 

GIS tools to generate buffer zones. These buffers were then overlaid with spatial data to establish 

relationships. Historical breaks were used to construct the target variable for predicting pipe failures 

over a 20-year period. 

The dataset available for training represented the entire water distribution network (WDN). The 

logistic regression model was trained on the larger WDN, excluding the case study section, while the 

testing was carried out only on the case study section. Consequently, it was possible to test the model 

and evaluate its performance on data not encountered during the training session.    

Data cleaning involved removing samples with missing factors and outliers. Numerical variables were 

standardised (adjusted to have a mean of zero and a standard deviation of one), and categorical 

variables were converted into a format suitable for analysis using a method called one-hot encoding 

(representing categories as binary vectors of 0s and 1s (James, 2013)). To address data imbalance, 

random oversampling was applied to the training dataset, enhancing the representation of the minority 

class (Werner de Vargas et al., 2023). 
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3.4 Contamination load 

Each risk event (Paper II - V) required a different procedure to calculate the contamination load, i.e., 

the number of pathogens entering the network. This was due to, among other things, different faecal 

sources, different mechanisms causing the contamination event and the type of model used. A 

summary of the contamination loads used for each risk event and case is presented in Table 4. 

 
Table 4. Summary of pathogens evaluated for each risk event, including contamination load assumed per scenario. 

Event Scenario 
Reference 

pathogens 

Contamination load 

(No. / L) [min, max] 
Reference Article 

Cross-

connection and 

backflow 

Endemic 

Campylobacter, 

norovirus, 

Cryptosporidium 

71.5 (13, 130) 

27.5 (5, 50) 

2.53 (0.5, 5) 

Henze (2001) 

Hewitt et al. (2011) 

Metcalf & Eddy 

(2003) 

Paper II 

Cross-

connection and 

backflow 

Outbreak 

(elevated) 

Campylobacter, 

norovirus, 

Cryptosporidium 

1 410 (130, 1 750) 

577 (70, 700) 

5.78 (0.7, 7) 

Paper II 

Cross-

connection and 

backflow 

Outbreak 

(extreme) 

Campylobacter, 

norovirus, 

Cryptosporidium 

20 062 (1 750, 25 000) 

600 (500, 700) 

8.5 (7, 10) 

Paper II 

Cross-

connection and 

backflow 

Outbreak Norovirus 

73.6 copies/min 

(55.6 – 83.33 

copies/min) 

Atmar et al. (2008) Paper II 

Intrusion 
Pipe break, 

water shortage 

Campylobacter, 

norovirus, 

Cryptosporidium 

1.3 log10 / 100 mL 

4.4 log10 / 100 mL* 

0.3 log10 / 100 mL 

Soller et al. (2010) 

Eftim et al. (2017) 

Ottoson et al. (2006) 

Paper III 

Intrusion Pipe break 

Campylobacter, 

norovirus, 

Cryptosporidium 

Triangular distribution 

considering pathogen 

in WW, frequency, 

dilution factor 

See Table 5 for more 

detailed information 

Paper IV / 

Paper V 

*1/1000 infectious gene copies (Seitz et al., 2011). 

3.4.1 Pathogen load due to cross-connection and backflows  

Three scenarios were considered in order to estimate the contamination load for use with the fault tree 

in Paper II: endemic risk level, elevated risk level and extreme risk level. The levels were taken from 

a sensor study carried out in Swedish networks (Jonsson et al., 2018). The different scenarios were 

based on an assumption of the amount of E. coli entering the distribution network: 

1. Endemic risk level: 5-50 CFU/100 mL (0.005-0.05 % untreated wastewater)  

2. Elevated risk level: 700 CFU/100 mL (0.7% untreated wastewater)  

3. Extreme risk level: 5000 CFU/100 mL (10% treated wastewater)  

 

The endemic risk level, abbreviated as F1 for national estimate and Got1 for Gothenburg estimate, 

represents the background level of risk present in the distribution network due to minor incidents. The 

elevated risk level (F2; Got2) represents an outbreak with the same magnitude of contamination as the 

Everöd outbreak (Kristianstads kommun, 2015). The extreme risk level (F3; Got3) was based on the 

Nokia outbreak (Laine et al., 2011).  

Pathogen levels were estimated from the literature on the ranges present in raw and treated wastewater 

(Henze, 2001; Hewitt et al., 2011; Metcalf & Eddy, 2003)(see Table 4). The reference pathogens 

chosen were Campylobacter, norovirus, and Cryptosporidium. These are the most relevant enteric 

pathogens for Swedish networks and represent bacterial, viral, and protozoan organisms 

(Abrahamsson, 2009). 
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To account for uncertainty, pathogen concentrations were treated as a triangular distribution (min, 

mode, max). The minimum and maximum values were taken from the range reported in the literature 

(if available) and the most likely value (mode) was the mean of the range. If the pathogen 

concentration in the literature was given as a point estimate, the maximum value from the less critical 

scenario was used to generate the range, e.g., the minimum concentration for Campylobacter in the 

elevated case was assumed to be the same as the maximum value in the endemic case. The mode was 

then the mean of the range multiplied by 1.5 to account for the skewness towards the maximum in the 

effluent. The pathogen concentrations for each risk case used for the QMRA are shown in Table 4. 

3.4.2 Norovirus load during outbreak due to cross-connection and backflow  

The contamination load for the outbreak case study in Paper II was only assessed for norovirus. To 

estimate the norovirus load, virus shedding in faeces, 109 norovirus/g of faeces (min-max: 1 x 105 – 

1.64 x 1012 copies/g of faeces), was taken from a human experimental study (Atmar et al., 2008). The 

amount of stool produced by a person in one day was 106 g (min-max: 80 g – 120 g) (Cummings et 

al., 1992). The median load at the septic tank outlet was 1.06 x 1011 copies/day; the minimum load 

was 1.06 x 107 copies/day; the maximum load was 1.74 x 1014 copies/day.  

The norovirus load was then applied a reduction factor, ranging between 10-6 and 10-3(Åström et al., 

2016). The reduction factor represented the transport of pathogens from the septic tank through the 

soil material to the private well, from which the contaminated water was fortuitously pumped into the 

distribution network. Due to the considerable uncertainty associated with the pathogen transport from 

the septic tank to the WDN, each reduction factor was considered a different scenario (scenarios C1-

C4). For scenario C1, the norovirus load intruding into the network was 73.6 copies/min (55.6 – 83.33 

copies/min). For each subsequent scenario, the norovirus load increased tenfold (equivalent to a 1 

log10 increase). 

3.4.3 Scenario-based estimation of intrusion loads 

In Paper III, the intrusion of soil water into the WDN was modelled with the aid of three distinct 

scenarios. The assumed layout of the distribution network pipes when generating these scenarios is 

shown in Figure 6. The three scenarios for intrusion evaluated in Paper III were: 

• Scenario 1: Pipe Break – Without Leakage (PBNo leakage)  

In this scenario, a pipe break was assumed to occur on the first pipe branch from the main distribution 

network to the selected area. Excess pressure in the WDN network was modelled by adjusting the 

status of the affected pipe. The status of the affected pipe was set to closed for 5 hours, and the lowest 

pressures observed at every node were recorded. Intrusion was assumed to occur only at the repair 

section, with no leakage in the rest of the WDN due to the assumption of new pipes without physical 

deficiencies. The intrusion volume was estimated by determining the volume of the affected section of 

the WDN given the diameter and length of the section. 

 

• Scenario 2: Pipe Break – With Leakage and Varying Intrusion Potential (PBLeakage)  

In the event of a main pipe break, the simulation was done by setting an extra demand of 20 l/s to the 

end node of the broken pipe to simulate high free flow due to the pipe break. The flow was set to last 

for 2 hours to reflect the leakage duration before it was identified, and the affected pipe was shut off. 

The affected pipe was then closed for an additional 3 hours to simulate the repair duration. The lowest 

pressures (Hp) at every node were extracted and used for determining the intrusion potential (ΔHint). 

This procedure was repeated to test the effect of different model variables. 
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• Scenario 3: Insufficient Water Supply  

Insufficient water in the WDN due to water shortage or process failures at the drinking water 

treatment plant was simulated using a flow control valve located downstream of the reservoir. The 

valve was run only during the simulation period of failure, between 06:00 and 11:00. Different flow 

settings across the valve were tested, and it was determined that flows of 2.5 l/s or lower would result 

in low pressures in the study area. The valve setting was thus set to 2.5 l/s, and the resulting lowest 

nodal pressure distributions were extracted and used for determining the intrusion volume. 

 

Figure 6. The position of a WDN pipe (cross-sectional view) in relation to the ground level (GL) and groundwater level 

(GWL) where: Hext represents the external piezometric head (elevation of groundwater - surface), PL is the pipe level, R is 

the pipe radius and Hp is the internal piezometric head. GWL is in meters above sea level (m.asl) while PL, and GWL are 

measured from the GL. Taken from Paper III – Supplementary information. 

The unit intrusion volume was determined using the orifice equation as shown in Equation (9): 

 Qint  =  Atot  ⋅  Cd  ⋅  √2g  ⋅  Δ Hint (9) 

 where: 

• Qint is the intrusion volume per time and length units, 

• Atot is the total area of all holes on the studied section of the WDN, 

• Cd is a coefficient dependent on the sharpness of the edge of the hole, 

• g is the gravitational acceleration, 

• ΔHint is the intrusion potential. 

The total area of the leakage holes (Atot) on every pipe was determined by re-arranging the orifice 

equation: 

  Atot  =  
Qout

Cd  ⋅  √2g  ⋅  Δ Hnormal

 

 

(10) 

Intrusion volume into the WDN was calculated for every affected pipe section and node in all 

scenarios. Sections of the WDN with similar characteristics were grouped, and the intrusion of each 

section was lumped into one node per section. A total of 32 intrusion nodes were identified for 

Scenarios 2 and 3. 

Pathogen intrusion into the WDN was determined based on the intrusion volume of soil water and 

assumptions on pathogen concentrations in the intruded water. The pathogens selected were 
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Campylobacter, norovirus, and Cryptosporidium. Several dilution factors were used to estimate 

pathogen concentrations in soil water based on field studies and literature values. The average 

concentrations of the studied pathogens in untreated wastewater were used to calculate the numbers of 

pathogens entering the system. These numbers were adjusted with a reduction factor to reflect 

contamination transport through the soil. 

3.4.4 Stochastic estimation of intrusion loads 

In Paper IV, the intrusion loads were calculated using a different method to that employed in Paper 

III, although the same WDN was used in both cases. The Water Network Tool for Resilience 

(WNTR) (Klise et al., 2020) was utilized to iterate over the most critical pipes in the network and 

simulate pipe breaks for each. WNTR is a hydraulic modelling package developed in Python, which 

allows for greater versatility when, for example, generating contamination scenarios. For each pipe 

break iteration, low pressures experienced in the WDN nodes were logged. This process allowed for 

the creation of a Pandas DataFrame containing relevant information such as the name of the broken 

pipe, time of break, leak area and resulting low pressures in the network for a whole 24-hour period.  

To estimate the intrusion load, the pressure results were combined with estimations of pathogen 

concentrations from water sampling results and literature values. A summary of the input parameters 

for intrusion load estimation is presented in Table 5. The estimation process involved over 1200 

iterations, incorporating varying pipe breaks and time of break, in addition to a range of dilution 

factors and pathogen levels in faeces. 

Table 5. Summary of input parameters for estimation of pathogen concentrations for intrusion simulation.  

Parameter  Distribution / Model  Comment  

Pathogen in faeces  

Campylobacter  

Triangular (0, 20, 200)  

  

norovirus*  

Triangular (1000, 34000, 1000000)  

  

Cryptosporidium  

Triangular (0.5, 10, 398)  

   

(Soller et al., 2010)  

  

Dilution factor  Uniform (2 log10; 4 log10 size: 1000)  
Based on E. coli results from 

sampling  

Frequency  Uniform (0.1, 1 size: 1000)  
Based on the detection of E. coli & 

pathogens from sampling  

Intrusion volume  Hydraulic model  

Calculated using Module 1 – pipe 

break from Paper IV – supplementary 

material 

*Norovirus concentrations were further reduced by an infectivity coefficient, assuming 1 in 1000 norovirus are infectious 

(Seitz et al., 2011).  

3.5 Contamination transport 

Once the contamination loads had been calculated as outlined in Section 3.4, the available WDN 

models were employed to simulate the contamination transport within the networks. This facilitated 

the quantification of contamination levels (outbreak simulation in Paper II and intrusion simulations 

in Papers III-V) reaching the consumers' taps. For both WDN case studies, the model included 

demand patterns and pressure levels at the supply node, representing expected operational conditions 

relevant to each scenario. For the outbreak calculation in Paper II, the cross-connection was assumed 

to last for 1 hour per day, for 9 to 10 days. In the hydraulic model, the quality time step was set to 1 

minute, and the simulation run for 168 hours. For the intrusion calculations in Paper III, the duration 

of the contamination event varied between 2 to 8 hours, depending on the scenario being evaluated. 
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The simulation was also run for 168 hours. For Paper IV and V, the intrusion duration was set to 1 

hour, quality time step of 5 minutes and the simulation run for 72 hours.  

3.5.1 Dose-response and risk estimates 

This subsection describes the methodology used to calculate dose-response and risk estimates for the 

contamination events simulated in Papers II-V. The resulting pathogen concentrations arriving at the 

consumers’ taps were combined with Swedish consumption studies to calculate a dose to use for the 

dose-response modelling. The dose was calculated as: 

 𝐷 = 𝐶𝑛𝑜𝑑𝑒 ∙ 𝑉   (11) 

   

where D is the dose, Cnode is the pathogen concentrations at the consumer tap and V is the volume of 

water ingested per person.  

The volume of water ingested was determined from two different consumption studies available for 

Sweden: a log-normal distribution used in Paper II (Westrell et al., 2006) and a gamma distribution 

used in Papers III-V (Säve-Söderbergh et al., 2018). 

The cross-connection and backflow contamination event using FTA (Paper II) and all intrusion 

contamination events (Papers III-V) were assessed for the same reference pathogens, while only 

norovirus was evaluated in the outbreak simulation in Paper II. The Exact Beta-Poisson model was 

used to assess the dose-response for each reference pathogen. Using this dose-response model, the 

probability of infection was calculated with: 

 Pinf  =  1 − 𝑒𝑥𝑝−𝑟 ∙𝐷  (12) 

   

where Pinf is the probability of infection, r is a sample from the Beta distribution with α, β parameters 

for each pathogen and D is the dose ingested. 

The Beta distribution parameters for each reference pathogen were: Campylobacter (α = 0.024, β = 

0.011) (Teunis et al., 2005), norovirus (α = 0.04, β = 0.055) (Teunis et al., 2008b) and 

Cryptosporidium (α = 0.115, β = 0.176) (Teunis et al., 2002). The population was assumed to be 

homogenous, i.e., all consumers would respond according to the chosen dose-response function. 

In Paper II, the daily probability of infection (C) was calculated by combining Pinf with cross-

connection and backflow events of durations varying between 1 to 24 hours. For intrusion events in 

Paper III to V,  

 𝐶  =  1 − (1 −  𝑃𝑖𝑛𝑓)
𝑛

  (13) 

   

where C is the daily probability of infection, Pinf is the probability of infection for an event of n 

duration and n is duration of the contamination event expressed in days.  

In the outbreak simulation presented in Paper II, an additional step was taken to estimate the amount 

of symptomatic illnesses based on the daily risk of infection from norovirus estimated using both FTA 

and the hydraulic simulation of the outbreak. The proportion of asymptomatic infections due to 

norovirus GII.4 was assumed to be 40.7% (95% CI: 32.8%–49.0%), taken from an outbreak study in 

Japan (Miura et al., 2018). The probability of developing symptoms when infected, Pillness, was 

calculated as:  

 Pillness  =  𝑃(𝑖𝑙𝑙𝑛𝑒𝑠𝑠|𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛) ∙  𝐶 (14) 

   

where Pillness is the probability of illness, P(illness│infection) is the conditional probability of developing the 

illness after infection, and C is the daily probability of infection. 
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3.6 Water sample collection and analysis 

For Paper IV, water samples were collected between 2018 and 2022 during scheduled and unplanned 

pipe repairs in a large Swedish drinking water distribution network.  

Plastic bottles were autoclaved at 121°C for 21 minutes before use in the field. The minimum amount 

of water collected was 100 mL for coliform enumeration and 500 mL for DNA extraction. Depending 

on the size of the repair pit, two or more samples were collected from the same site and considered 

different sample points. Coliform enumeration was carried out within 4 hours of collecting the 

sample.   

Total coliforms and Escherichia coli concentrations were determined using the Colilert® test (IDEXX 

Laboratories, Westbrook, Maine). Highly turbid samples were diluted (1:10 to 1:100 dilution) using 

autoclaved Milli-Q water. The samples were incubated at 36°C for 24 hours; with an additional 

incubating time of 1 – 4 hours when wells were uncertain.  

Table 6. List of waterborne pathogens run through genomic databases to identify if their sequences were present in the 

samples collected.  

Pathogen Pathogens of interest (common) Pathogens of interest (emerging) 

Bacteria 

Vibrio cholera, serovarieties O1 and O139 Helicobacter pylori 

Salmonella spp. Aeromonas hydrophila 

Shigella spp. Leptospira sp. 

Escherichia coli (possibility to distinguish 

haemorrhagic serotypes) 
 

Campylobacter spp.  

Legionella pneumophila  

Mycobacterium avium complex (MAC)  

Pseudomonas aeruginosa  

Virus 

Adenovirus Alphatorquevirus 

Astrovirus Cyclovirus 

Norovirus Erythroparvovirus 

Hepatovirus A Bocaparvovirus 

Rotavirus Protoparvovirus 

Protozoa 

Cryptosporidium sp. Microsporidia 

Giardia intestinalis Cyclospora cayetanensis 

Entamoeba histolytica Cystoisospora belli 

Toxoplasma gondii  

Naegleria fowleri  

Acanthamoeba spp.  

Helminths  Schistosoma sp. 
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Microorganisms in the water samples were concentrated by filtering 25-255 mL of water through 0.2 

µm pore size cellulose membranes. Subsequently, the membranes were preserved at -80°C, for a 

maximum of six months, until DNA extraction. The FastDNA™ Spin Kit for Soil (MP Biomedicals, 

USA) was used according to the manufacturer’s instructions to isolate DNA from the particulates 

attached to the membranes. The extracted DNA was then stored at -20°C, and the samples with DNA 

concentrations greater than 8 000 ng/ml were sequenced. Library preparation and 150 bp paired-end 

shotgun sequencing using Illumina’s NovaSeq 6000 system was carried out by Eurofins Genomics. 

The raw sequence reads were deposited at the NCBI short read archive with accession number 

PRJNA993188. The raw sequence reads were quality filtered using fastp v0.23.2 (Chen et al., 2018) 

and the microbial community composition of the samples was analysed using MetaPhlan v4.0.6 

(Blanco-Míguez et al., 2023). Diversity of taxa in a sample and dissimilarity in community 

composition between samples were calculated with the mathematical framework based on Hill 

numbers (Chao et al., 2014) using qdiv v2.2.1 (Modin et al., 2020).  

A comprehensive list of pathogens (shown in Table 6) was compiled from the literature to identify 

through common genetic sequence databases. (Magana-Arachchi & Wanigatunge, 2020; Ramírez-

Castillo et al., 2015; WHO, 2022).  

3.7 Risk reduction measures and stakeholder preferences 

In this thesis, work relating to risk reduction measures was undertaken in Paper III and Paper V. In 

Paper III, a range of risk reduction measures were subjected to evaluation in order to ascertain the 

viability of managing the infection risks associated with the simulated intrusion scenario. The default 

scenario to use as baseline was Scenario 2, as described in Section 3.4.3. Model parameters that were 

modified to represent the implementation of risk reduction measures included increasing the log10 

reduction when estimating the contamination load intruding into the WDN, reducing the leakage rate 

by 50% and 75% as well as reducing the repair time for the pipe break to 2 hours.   

In order to ascertain potential measures for implementation as risk reduction strategies, a review of 

the literature was undertaken, and discussions were held with relevant stakeholders.Ten industry 

experts were selected for the study, including water specialists, utility managers and water supply 

consultants. These individuals were selected on the basis of their experience and knowledge in the 

maintenance and rehabilitation of water distribution systems.Informed consent was obtained from all 

study participants.  

To facilitate the evaluation process, stakeholders were provided with a spreadsheet to rate each 

strategy against the evaluation criteria on a scale of 1-5, with 1 being the least favourable and 5 being 

the most favourable.The expert ratings were used to create a decision matrix, where each row 

represents a strategy, and each column represents an evaluation criterion. The alternatives and 

evaluation criteria considered are presented in Table 7 and Table 8. 

The TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method was used to 

rank and prioritize these strategies (Park et al., 2023). The TOPSIS method uses an Ideal Solution (IS) 

and a Negative Ideal Solution (NIS) to find the best alternative. The best alternative is closest to the IS 

and farthest from the NIS, and the Euclidean distance is used to measure the distance from both 

solutions. Higher scores indicate the most favorable strategies according to the evaluation criteria. 

 

 

 



Materials and methods 

 

29 

 

Table 7: Different alternatives for reducing risks in water distribution systems 

Strategies Strategy description 

Pressure management Regulate water pressure through pressure-reducing valves. 

Pipe repair and rehabilitation Conduct repairs and apply techniques such as pipe lining. 

Pipe replacement Replace old or deteriorating pipes with new ones. 

Increase inspection and testing  Enhance the frequency and thoroughness of pipe inspections.  

Increase metering Install additional meters to better monitor water flow and usage. 

Active leakage control 
Implement strategies for continuous measurement and management of 

leaks, including the use of specialized tools. 

Cross connection control 
Implement measures to identify and manage unauthorized or improper 

cross-connections. 

Public awareness and engagement Educate and engage the community on the importance of leak reporting. 

 

Table 8: Evaluation criteria for the different strategies. 

Evaluation Criteria (C) Criteria description 

Cost The financial expenditure required to implement and maintain the strategy. 

Executability 
The ease and feasibility of implementing the strategy within the existing 

infrastructure. 

Risk reduction The extent to which the strategy lowers the overall risk. 

Social concern 
The strategy’s impact on the community and stakeholders (social, environmental 

and public health). 

Reliability The consistency and dependability of the strategy over time. 
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4 Results and discussion 
Key results from the different risk event calculations are presented in the following chapter. The 

results are interpreted in the larger context of microbial risk assessments in drinking water distribution 

networks. 

4.1 Risk estimates 

From the literature review conducted in Paper I, two microbial risks were identified to be 

investigated in this thesis: cross-connection and backflows in Paper II, and intrusion events in Paper 

III-V. In Paper II, both national (Sweden) and local (Gothenburg) risk estimates of cross-connection 

and backflow events were calculated using FTA. Figure 7 illustrates the estimated national daily risks 

of infection for endemic, elevated and extreme cases. The median values of daily risk for 

Campylobacter ranged between 10-4 and 10⁻2, for norovirus between 10-5 and 10-3, and for 

Cryptosporidium between 10-5 and 10⁻⁴. The greatest spread was observed for norovirus in all three 

cases, while the largest proportion of values close to the absolute maximum risk of infection was seen 

for Campylobacter. Campylobacter also demonstrated the least spread of all the cases studied. 

Surprisingly, the national daily risk of infection was highest for the endemic case (F1) compared to 

the elevated (F2) and extreme (F3) cases for all reference pathogens. This may be explained by the 

higher frequency of incidents in the network than reported outbreaks, i.e., higher P for incidents that 

do not seem to cause outbreaks. 

 

Figure 7. Box plots for daily risks of infection from cross-connection and backflows in an average Swedish distribution 

network (Paper II). The red line is the target value for daily risk of infection (10−6). Times (in hours) on the x-axis represent 

the different durations of contamination events considered for the calculations, e.g., 1 h is a cross-connection and backflow 

event lasting 1 h. The bottom and top of the box are the 25th and 75th percentile of the values, respectively. The line inside 

the box is the median. The upper whisker shows the largest value (excluding outliers), and it is calculated as 1.5*IQR. The 

value for the bottom whisker is 0 (not shown). 

It is not uncommon for local conditions to vary considerably between networks, despite their 

comparable size. This is reflected in the evaluation of the Gothenburg system using FTA, whereby the 

infection risks for all scenarios were found to be below the acceptable target of 10-6 (Figure 8). This 

finding is inconsistent with the anticipated outcome based on the national estimates, as the assumption 

of a positive correlation between network length and incident probability would suggest otherwise. As 

the national data combines networks with varying degrees of functionality, averaging their 

performance, distribution networks that are considered well-functioning (such as in Gothenburg) 

would require local risk assessments to obtain a realistic outcome from the analysis. 
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Figure 8. Box plots for daily risks of infection from cross-connection and backflows in the Gothenburg distribution network 

(Paper II). The red line is the target value for daily risk of infection (10−6). Times (in hours) on the x-axis represent the 

different durations of contamination events considered for the calculations, e.g., 1 h is a cross-connection and backflow 

event lasting 1 h. The bottom and top of the box are the 25th and 75th percentile of the values, respectively. The line inside 

the box is the median. The upper whisker shows the largest value (excluding outliers), and it is calculated as 1.5*IQR. The 

value for the bottom whisker is 0 (not shown). 

For the outbreak case study, the calculated daily risks of infection for the scenarios simulated using 

hydraulic modelling are shown in Figure 9. For scenarios C1 and C2, the daily risk of infection was in 

the order of 10−2 and 10−1, respectively; and for scenarios C3 and C4, the median value for risk of 

infection was 1 (i.e., 100% infected).  

 

Figure 9. Daily risk of infection of norovirus during the studied outbreak for each zone (Z1-Z3) and scenario (C1–C4). 

Mean, min and max refer to the mean, minimum and maximum levels of contamination that intrude the network during 

the hydraulic simulation. The bottom and top of the box are the 25th and 75th percentile of the values, respectively. The line 

inside the box is the median. The upper whisker shows the largest value (excluding outliers), and it is calculated as 1.5*IQR. 

The value for the bottom whisker is 0 (not shown). Taken from Paper II. 

In Paper III, the estimated 75th percentile of the daily risk of infection due to intrusion (Figure 10a-

c) was above the target value of 10−6 for all scenarios, all pathogens, and all tested dilution effects 

between pathogen concentration in wastewater and soil water (with some few exceptions 

for Cryptosporidium and 4 log10 unit reduction). While the risks for all pathogens were considered 

unacceptable, Campylobacter was observed to have the highest risks, and norovirus the lowest. 
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As illustrated in Figure 11a, the probability of infection exhibited a notable decline, accompanied by a 

simultaneous reduction in the leakage rate. This resulted in a reduction in the total area of leakage 

holes, which in turn led to a decrease in the intrusion volume during low/no pressure events. 

Nevertheless, it is evident that even minimal intrusion volumes within the WDN can still give rise to 

unacceptable risks during low-pressure events (Figure 11a). The probability of infection exceeded the 

health target limit of 10⁻⁶ even when the leakage rate and, consequently, the intrusion volume were 

reduced from the initial value (27%) to half (14%) and then to a quarter (7%). 

Regarding the impact of the duration of the pipe break event, it was observed that in this section of the 

WDN, the intrusion was more significantly influenced by the time period during which the event was 

detected than by the actual time the repair work of the pipe was undertaken. This was due to the low 

flow observed when the downstream WDN was isolated from the main water supply. The observation 

of different durations of low-pressure events in scenario 2 revealed a proportional relationship 

between the probability of infection and the duration of the low-pressure event (Figure 11b). 

In Paper IV, the calculated infection estimates (Figure 12) generally indicated a lower Pinf in 

comparison to the risk estimates obtained in Paper III (Figure 10). This discrepancy can be attributed 

to several factors inherent to the model setup.  

The new stochastic intrusion model built in the Python environment (Paper IV) incorporates the 

possibility for multiple pipes to fail, thus representing a more comprehensive approach than that 

presented in Paper III, where only one major pipe was at risk of breaking. This allowed for the 

inclusion of pipe failures that may have a less pronounced impact on the critical nodes in the Pinf 

estimates. For instance, an isolated branch situated downstream of the critical node may be considered 

in multiple iterations of the new simulations. Conversely, pipes that may have a more direct impact on 

the node, such as pipes in close proximity to the node, were also considered. Since the choice of pipe 

is randomised, it is expected that the variation in risk will reflect whether the node is in a more 

sensitive area of the network or if it is only directly impacted by a few select pipes. 

Additionally, in Paper IV the variability in the level of contamination present in the soil water 

surrounding the pipe was introduced as probability distributions rather than as point estimates as in 

Paper III. The parameters employed to estimate the level of contamination comprised probability 

distributions for the typical concentrations of pathogens in wastewater, the dilution factor for the 

wastewater in soil based on the results of sampling and metagenomics, as well as the prevalence of 

pathogens in the soil water based on metagenomics. It is possible that this approach may have 

introduced a degree of bias in the concentration estimates. Nevertheless, the application of 

randomisation should serve to offset any potential bias and instead result in concentrations that are 

more reflective of the conditions typical of distribution networks in Sweden. 
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Figure 10. Box plot for daily probability of infection for selected critical nodes (CN1–10) for Campylobacter, norovirus, 

and Cryptosporidium across three scenarios: 1 (dark blue), 2 (light blue), and 3 (yellow). The plots labelled a, b, and c 

represent a reduction/dilution factor of 2, 3, and 4 log10 units, respectively, between the pathogen concentrations in 

wastewater and soil water. The target limit for the daily probability of infection (10⁻⁶) is represented by the red line, while 

the 25th percentile is represented by the bottom line of the box, the 50th percentile is the line in the box, and the 75th 

percentile is the top line of the box. Taken from Paper III. 
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a)

 
b)

 

Figure 11. Box plot for daily probability of infection considering a) different leakage rates (27% – dark blue, 14% – light 

blue, 7% – yellow) and b) different event times (2 h – dark blue, 5 h – light blue, 8 h – yellow) for selected critical nodes 

(CN1–10) for the pathogens Campylobacter, Norovirus, and Cryptosporidium for scenario 2 (2 log10 units reduction/dilution 

factor between the pathogen concentrations in wastewater and in soil water). The target limit for the daily probability of 

infection (10−6) is represented by the red line, while the 25th percentile is represented by the bottom line of the box, 50th 

percentile is the line in the box, and 75th percentile is the top line of the box. Taken from Paper III. 

  

Figure 12. Box plots of Pinf from Campylobacter for stochastic simulations of intrusion events using faecal 

indicator/metagenomics results from the sampling campaign. Taken from Paper IV. 
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The stochastic intrusion model was enhanced through the incorporation of a logistic regression model, 

which was utilised to calculate the probability of pipe failures and to supplement the health risk 

calculations in Paper V. The predictions from the aforementioned model are illustrated in Figure 13. 

Integration of the raw probability of infection estimates calculated using the WNTR modules 

developed in Paper IV with these probabilities of failures resulted in the generation of a daily risk of 

infection map (Figure 14). The WDN segments marked in red represent those that on average exceed 

the acceptable daily risk target during the entirety of the simulation. It is worth noting that the pipe 

break studied in Paper III - Scenario 1 does not seem to have elevated infection risks, due to the low 

probability of pipe failure. The highest risks are concentrated in the central section of the WDN and in 

some of the branches.  

 
Figure 13. Map of the WDN in Scania County showing the probability of a pipe break calculated with the logistic regression 

model from Paper V. Pipes with low probability of failure (≤ 0.05) are shown in green, pipes with medium probability (0.05 

< p ≤ 0.3) are shown in orange and pipes with high probability of failure (p > 0.3) are shown in red. 
 

 
Figure 14. Map of the WDN in Scania County showing pipe segments with a daily risk of infection above 10-6 in red, while 

pipe segments under 10-6 are shown in green. The daily risk of infection was calculated by using the raw probability of 

infection values and combining them with the probability of failure. Taken from Paper V.  
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4.2 Effect of measures and stakeholder preferences 

Table 9 illustrates the impact of varying specific inputs within the model, which may be regarded as 

analogous to the implementation of risk-reducing measures. For instance, an increase in the log10 

reduction of contamination in the vicinity of the pipes may be indicative of an increase in wastewater 

network renewal, whereby leakages from wastewater pipes are reduced. Another potential measure is 

the implementation of improved physical separation between drinking water and wastewater pipes. 

The largest reductions in median Pinf were observed for these two scenarios. An increase in the log 

reduction from 2 to 4 log10 resulted in a notable reduction in the median Pinf for all critical nodes (CN) 

and all pathogens. It is worth noting that the reduction in Pinf was proportional to the magnitude of the 

log10 reduction, i.e. an additional log10 reduction in pathogen concentration resulted in a 1 log10 

reduction in Pinf. This would be in-line with an epidemiological study conducted during WDN repairs 

in Sweden, where it was found that the presence of sewage lines at the same level as the drinking 

water pipe was associated with an increased risk of GI (Säve-Söderbergh et al., 2017). 

Two further scenarios were also evaluated, in which the leakage rate was reduced to 14% and 7%. 

The reduction of leakage rates within the network may be achieved through the implementation of 

enhanced pipe renewal programmes and the introduction of more robust leakage detection strategies. 

A reduction in the leakage rate of approximately 50% and 75% resulted in comparable reductions in 

Pinf across all nodes and for all pathogens. Similarly, the reduction in leakage rates resulted in 

proportional reductions in median Pinf for all nodes and all reference pathogens, in a manner 

analogous to the log reduction scenarios. 

Two additional scenarios were evaluated to ascertain the impact of varying repair times, 

encompassing both the detection period and the duration of repair. In one scenario, the overall repair 

time was reduced by a period of three hours. In the alternative scenario, the overall repair time was 

increased by an equivalent duration. A reduction in the overall repair time may be indicative of a 

combination of measures that could be employed in the future. Such measures could include the 

implementation of an early warning system to detect a break and promptly alert the relevant personnel 

from the water supplier. Conversely, an extended repair time could be indicative of prospective 

scenarios in which the detection and repair of pipes is more challenging due to unforeseen 

circumstances, necessitating the implementation of alternative strategies. 

The results from varying repair times did not corroborate the linear trends that had been anticipated 

based on previous scenarios. While a reduction in repair time resulted in a reduction in the median Pinf 

for the majority of nodes, certain nodes, notably CN6, exhibited a significant increase (> 2000%) in 

Pinf for Campylobacter and Cryptosporidium. Conversely, an increase in repair time resulted in an 

overall increase in the median Pinf for the network, accompanied by a slight reduction in Pinf for some 

reference pathogens in nodes CN1, CN2, and CN9. One potential explanation for this is the dynamic 

nature of water distribution networks, whereby the time component affects the hydraulics, and thus 

the transport of contaminants within the network.  

It can be posited that the duration of the repair is equivalent to the duration of the low-pressure event, 

which another intrusion model found to be one of the most relevant factors influencing the probability 

of virus infection (Teunis et al., 2010b). However, epidemiological studies in the Nordic countries 

have yielded mixed results; one study found an association between the duration of the water 

shutdown and a higher risk of GI (Nygard et al., 2007), while another study found no association 

(Säve-Söderbergh et al., 2017).  

The experts' input resulted in a clear prioritization of strategies (see Figure 15 & Table 10). The 

highest ranked risk reduction measure was pressure management (score = 0.71), followed by Pipe 

Repair and Rehabilitation (score = 0.65), Increase Metering (score = 0.62), and Active Leakage 

Control (score = 0.61). The lowest ranked measure was public awareness and engagement (score = 
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0.41). The most preferred criterion was risk reduction (weight = 0.2663) and the least preferred 

criterion was social concern (weight = 0.1576), while executability and reliability were equally 

preferred (weight = 0.2011). The survey findings suggest that investing in physical infrastructure and 

operational efficiency, particularly through pressure management and pipe repair, would be preferred 

for risk reduction. 

Table 9. Summary of variation in percentage (%) of median (50th percentile) daily probability of infection for measures 

tested compared to baseline Scenario 2 (2 log10 unit reduction, 27% leakage/intrusion rate, and 5 hours event period) for 

varying log10 reduction, leakage, and repair time (Paper III). For varying log10 reduction and leakage, an average of the 

variation for the three reference pathogens is shown due to the similarity of the values. Positive values indicate an increase in 

risk while negative values indicate a reduction in risk (“Campy” – Campylobacter, “Crypto” – Cryptosporidium).  

Critical 

Node 

(CN)  

Median Pinf for Scenario 2*  % Variation of Pinf with measures (negative – reduction, positive – increase)  

Campy  Norovirus  Crypto  
3 log10 

reduction  

4 log10 

reduction  

Varying 

leakage/intrusion  
2-hour repair time  8-hour repair time  

14%  7%  Campy  Norovirus  Crypto  Campy  Norovirus  Crypto  

1  7.1E-05  6.6E-07  1.4E-06  -92.33  -99.24  -49.94  -82.99  -24.42  -23.35  -23.28  -4.89  11.68  -4.23  

2  6.3E-05  4.8E-07  2.8E-06  -92.43  -99.24  -49.85  -83.04  -41.02  -43.19  -29.2  94.69  82.99  -4.21  

3  5.4E-05  7.2E-07  2.2E-06  -92.41  -99.24  -49.66  -82.96  -32.89  -32.66  -29.74  144.8  140.4  11.34  

4  2.1E-05  1.9E-07  5.3E-07  -92.24  -99.22  -49.59  -82.5  42.16  14.65  -58.78  292.5  275.0  55.82  

5  5.8E-05  6.2E-07  1.3E-06  -92.32  -99.23  -49.55  -82.87  -34.65  -26.57  -30.66  54.42  78.31  26.84  

6  8.5E-05  7.6E-07  1.6E-06  -92.41  -99.24  -49.02  -82.93  2020  -17.83  2011  27.18  110.36  4.69  

7  7.8E-05  7.1E-07  2.5E-06  -92.38  -99.24  -49.73  -82.98  -43.24  -46.62  -24.42  728.3  757.9  774.2  

8  6.6E-05  5.9E-07  1.4E-06  -92.41  -99.24  -49.51  -82.93  -60.82  -61.12  -58.07  114.2  116.4  113.9  

9  7.2E-05  4.1E-07  2.0E-06  -92.43  -99.24  -49.09  -82.92  -41.74  -41.88  -35.61  -21.12  -10.39  26.12  

10  6.8E-05  6.2E-07  1.7E-06  -92.35  -99.24  -49.72  -82.94  -32.24  -37.38  -30.93  445.5  409.8  417.3  

Average  6.3E-05  5.8E-07  1.7E-06  -92.37  -99.24  -49.57  -82.91  175.1  -31.60  169.0  187.6  197.2  142.2  

*2 log10 unit reduction, 27% leakage/intrusion rate, and 5-hour repair time 

 

  
Figure 15. Ranking of strategies according to their TOPSIS score (n = 10 participants). 
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Table 10. Normalised weights based on expert judgement.  

Criteria Ranking Weight 

Cost 4 0.1739 

Executability 2 0.2011 

Risk Reduction 1 0.2663 

Social Concern 5 0.1576 

Reliability 2 0.2011 

   

4.3 Validation of risk estimates 

Based on the results for scenario C1 from Paper II, the number of symptomatic cases was quantified 

(Figure 9). The median number of symptomatic cases, as estimated using hydraulic modelling, varied 

between 97 and 148, depending on the assumptions about the duration of the contamination event (9 

or 10 days) and the number of people per household (3 or 4). The most affected neighbourhood was 

Z2, with between 41 and 61 symptomatic cases, depending on underlying assumptions. The number 

of symptomatic cases for the outbreak case study was also estimated using the results from the 

national FTA. The number of symptomatic cases, as estimated using the infection risk calculated with 

FTA for 1 h duration, was 87. The epidemiological survey carried out during the outbreak recorded 

179 cases of illness. 

In the outbreak case study, the results of the epidemiological survey conducted in the area were found 

to be in close alignment with the outcomes for scenario C1, as simulated using the hydraulic model. 

This suggests that the assumptions made for scenario C1 were the most accurate in terms of 

representing the actual conditions that led to the outbreak, specifically in regard to contamination 

entering the network and the duration of the event. One potential limitation was the absence of a local 

consumption pattern, which would have been relevant in QMRA studies (Blokker et al., 2018; Säve-

Söderbergh et al., 2018; Westrell et al., 2006). It is plausible that the peak contamination occurred 

during a time of day when most users were utilising the water for non-potable purposes. This could 

result in an overestimation of the risk to consumers, given that not all water used by the household 

would be for drinking purposes. Nevertheless, it seems unlikely that this was a contributing factor in 

our simulation, as the estimated cases were consistent with the findings of the outbreak survey. 

A further potential source of uncertainty was secondary person-to-person transmission, which was not 

considered in the outbreak simulation. Outbreak investigations have shown that secondary person-to-

person transmission may represent between 7% to 84% of the norovirus cases during an outbreak 

(Tsang et al., 2018). As illustrated in Figure 17, this could be a potential source for the 

underestimation of the model, given that a number of households were not included in the analysis 

due to falling outside of the identified impacted zones. 

In order to validate the results obtained in Paper III, a comparison was made between the infection 

risks associated with norovirus and the estimated burden of acute gastrointestinal illness (AGI) in 

Sweden. The predicted incidence of AGI cases due to norovirus using the aggregated median daily 

infection risks for all scenarios was 0.07 cases per person-year (min-max: 0.02 - 4.4) [calculations 

not shown]. The incidence of AGI in Sweden has been estimated at 0.36 and 0.43 cases per person 

per year (Edelstein et al., 2016; Säve-Söderbergh et al., 2019). Furthermore, epidemiological studies 

in Scandinavia have estimated that the proportion of AGI cases attributable to water distribution 

network incidents is 37–38% (equivalent to 0.10–0.12 cases per person per year) (Säve-Söderbergh 

et al., 2017). Other studies have demonstrated that the number of additional cases resulting from tap 

water consumption may range from 14 to 40% (Payment et al., 1997). Although the available 

estimates of AGI incidence do not differentiate between the various pathogens, these estimates 

provide a theoretical upper limit to the extent of the risk that may be reasonably predicted. It can be 
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posited that the developed model can produce reasonable estimates of risk when benchmarked against 

the available epidemiological studies. Nevertheless, it is imperative to exercise caution, as the 

modelling may potentially underestimate or overestimate by a factor of one order of magnitude. 

 

Figure 16. Predicted infected consumers (symptomatic infections) for scenario C1 under different assumptions for the 

outbreak case study. Total number of persons becoming ill (n = 179) documented in an outbreak survey is shown as a red 

line. Scenario 1a – 3 persons per household and 9 days cross-connection and backflow duration; Scenario 1b - 4 persons per 

household and 9 days duration; Scenario 2a - 3 persons per household and 10 days duration; Scenario 2b - 4 persons per and 

10 days duration. Adapted from Table 4 in Paper II. 

 

 

Figure 17. Geographical distribution of reported cases (red circles) according to the epidemiological survey. The direction of 

flow is indicated by blue arrows, with the pink circle marking the contamination site. A small number of households 

(enclosed in the blue circle) were situated outside of the identified impacted zones by the hydraulic model. Adapted from 

Paper II. 
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4.4 Contamination levels and microbial communities 

Based on the sampling results obtained to use as input for Papers IV & V, it seems reasonable to 

conclude that the predominant microorganisms in the water surrounding the drinking water pipes have 

adapted to the local environmental conditions in the soil and are therefore unlikely to be indicative of 

faecal contamination. Notwithstanding the absence of E. coli in the metagenomic data, other faecal 

bacteria were observed. The dominant genera from the human gut were Bacteroides, Phocaeicola, 

Faecalibacterium, Prevotella, Alistipes, and Blautia A (Liu et al., 2021). Figure 18 illustrates the 

relative abundance of these genera in the samples. It is noteworthy that samples with low E. coli 

counts (less than 100 per L) exhibited a complete absence of gut-associated genera, whereas samples 

with high E. coli counts demonstrated the presence of at least five of these genera. Moreover, the 

samples with elevated E. coli levels also exhibit a high degree of diversity (Figure 19). The microbial 

communities present in sewage are markedly distinct from those that are adapted to the soil 

environment. It can thus be postulated that the intrusion of sewage into the soil may be a potential 

explanation for the increased diversity, the observations of gut-associated bacteria, and the elevated E. 

coli counts. 

   

Figure 18. Relative abundance (%) of gut-associated genera. The samples are ordered from left to right in ascending order 

based on E. coli counts.  

      

Figure 19. Diversity of the sample (a) and similarity in microbial community composition shown in a principal coordinate 

analysis (b).  
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5 Conclusions 
This research aimed to establish a comprehensive microbial risk management framework for water 

distribution networks. The study addressed the following research questions: 

 

RQ1: What are the current methodologies and tools for evaluating microbial risks in water 

distribution networks? 

Several methodologies and tools were employed to evaluate microbial risks, including Fault Tree 

Analysis (FTA), Quantitative Microbial Risk Assessment (QMRA), hydraulic modelling, scenario 

generation techniques, Monte Carlo simulations, logistic regression for calculating the probability of 

pipe failure, and the combination of metagenomics with indicator analysis. These methods provided a 

robust foundation for assessing microbial risks. 

 

RQ2: How can these methodologies be improved to provide a more accurate and comprehensive 

assessment of health risks in water distribution systems? 

Improvements to the methodologies were identified, such as using local data instead of national 

aggregate data for FTA to enhance accuracy. The combination of metagenomics with indicator 

analysis showed significant potential for better detection of faecal contamination. Additionally, the 

use of stochastic models allowed for a more nuanced understanding of pipe failures and 

contamination levels, providing a more comprehensive assessment of health risks. 

 

RQ3: What are the most influential factors affecting the risk of infection in water distribution 

networks? 

The study identified key factors influencing the risk of infection, including the concentration of 

pathogens in intruding soil water, the duration of low-pressure events, and the temporal variation in 

consumption and hydraulics. These factors were found to have a significant impact on the risk of 

infection and should be considered in risk assessments. 

 

RQ4: How can the developed models and methodologies be integrated into a comprehensive 

microbial risk management framework for water distribution networks? 

The developed models and methodologies were integrated into a comprehensive framework by 

executing simulations within the Python environment, streamlining the process and eliminating the 

need for proficiency in multiple software programs. The combination of different methods (FTA, 

QMRA, hydraulic modelling, logistic regression) and the implementation of measures to reduce 

failure events and contamination levels were key components of the framework. Additionally, Multi-

Criteria Decision Analysis (MCDA) was used to rank and highlight stakeholder preferences for risk 

reduction measures. Practical implications include the potential for water suppliers to use these 

integrated models to enhance microbial risk management and improve public health outcomes. 
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5.1 Possibilities for future work 

The findings of this research open several avenues for future work, which can further enhance the 

understanding and management of microbial risks in water distribution networks. The following 

points outline potential areas for future research and practical applications. 

• Legionella and premise plumbing. 

The latest European Drinking Water Directive (Directive (EU) 2020/2184) 3 introduced more stringent 

measures to control Legionella in premise plumbing systems. Legionella, the causative agent of 

Legionnaires' disease, poses a significant health burden, with increasing incidence rates, particularly 

among vulnerable populations (Collier et al., 2021; Moffa et al., 2023). Future research endeavours 

could focus on incorporating the risk posed by opportunistic pathogens into the overarching microbial 

risk framework for WDNs. However, in order to achieve this, the following challenges must be 

addressed: limitations on actionable strategies from the water supplier side due to legislative 

constraints, as premise plumbing is frequently under the jurisdiction of other entities; and the absence 

of actionable information (e.g. plumbing material, physical condition, etc.) for the aforementioned 

reason. The integration of these legislative requirements into existing microbial risk management 

frameworks will be pivotal in ensuring a comprehensive water safety strategy. 

• Machine learning/deep learning techniques for predicting failure/contamination events 

In recent years, advanced machine learning (ML) and deep learning (DL) algorithms have been used 

to predict water quality and identify potential contamination events (Feng et al., 2025; Li et al., 2024). 

These techniques can analyze large amounts of data to find patterns and make accurate predictions. 

For example, they can help predict when and where contamination might occur in a water distribution 

network. However, these methods require high-quality data to be effective. Future research should 

focus on combining ML and DL with other technologies like data mining and cloud computing to 

improve prediction accuracy. Collaboration between water professionals and AI experts will be 

essential to develop and refine these predictive models. 

• Complementary methods to traditional microbiological water analyses as input data for 

QMRA.  

Traditional water quality assessment methods, such as membrane filtration or Colilert, have 

limitations in detecting a broad range of microbial contaminants and providing real-time data. 

Alternative techniques like flow cytometry and shotgun sequencing offer significant benefits. For 

example, flow cytometry has been shown to detect rapid changes in bacterial concentration, 

composition, and viability in real-time, making it a valuable tool for early-warning systems (Safford 

& Bischel, 2019). Flow cytometry could be used to detect intrusion and cross-connection 

contamination. Shotgun sequencing allows for the identification of entire microbial communities, 

offering insights into the presence of pathogens and microbial diversity (Taylor et al., 2024). These 

methods can enhance the accuracy and comprehensiveness of water quality assessments, supporting 

more effective microbial risk management. 

• Combination of water quality sampling, hydraulic modelling and syndromic surveillance.  

The potential exists for enhancement of the detection and validation of contamination events through 

combination of microbial water quality sampling with hydraulic modelling and syndromic 

surveillance. Despite an absence of conclusive evidence on the effectiveness of syndromic 

surveillance for early detection of waterborne outbreaks, the combination of multiple sources of 

signals with spatial information has the capacity to improve timeliness and reduce false alarms 

 
3 https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32020L2184 

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32020L2184
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(Hyllestad et al., 2021). Consequently, future research should concentrate on integrating these 

methods to potentially validate model predictions and test various contamination scenarios. The 

integration of these approaches holds considerable promise in offering a more comprehensive 

understanding of contamination dynamics and enhancing the accuracy of risk assessments. 
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