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Squashed 7-spheres, octonions and the swampland

B E W Nilsson

Department of Physics,
Chalmers University of Technology,
SE-41296 Göteborg, Sweden

E-mail: tfebn@chalmers.se

Abstract. We give a brief account of how to derive the entire eigenvalue spectrum
of the operators on the squashed S7 that appear in the compactification of eleven-
dimensional supergravity. These spectra determine the mass spectrum of the fields in
AdS4 and are important for the corresponding N = 1 supermultiplet structure. By an
orientation-flip on the squashed S7 we can also determine the spectrum of the corre-
sponding non-supersymmetric theory, and, e.g., its spectrum of marginal operators on
the boundary of AdS4 which has some relevance for the AdS stability conjecture in the
swampland program. Here we review recent work in [1, 2, 3] which is a continuation of
the work in [4] where the complete spectrum of irreducible isometry representations of
the fields in AdS4 was derived for this compactification. Details are here given primarily
for 2-forms while comments are also made on the key role of G2 and octonions for the
structure of the operator equations and mode functions on the squashed S7. Key features
of these improved methods were obtained in Joel Karlsson’s 2021 MSc thesis [5]. This is
a write-up of a talk given at ISQS28, Prague, Czech Republic, July 4, 2024.

1 Introduction
Compactification of D=11 supergravity on the squashed S7 dates back to the first half of the 1980s [6, 7]
(see also [8]) but has regained some interest recently. This is partly due to the swampland program and
in particular to one of the conjectures proposed in this context, namely the AdS stability conjecture [9]:
Any non-supersymmetric compactification leading to an AdS spacetime will be unstable. Our universe
is strongly believed, from observations, to be of de Sitter type for which another set of swampland
conjectures indicate that such compactifications can never be stable, something that again may be due
to the lack of supersymmetry in de Sitter space. For these reasons it is of utmost important to prove
these conjectures which so far have met with huge challenges. A second best approach is to find examples
supporting their correctness or to search for counterexamples showing that the conjectures fail to be true
(at least in their current formulation).

In the case of the AdS conjecture mentioned above a huge number of non-supersymmetric examples
exist that are BF (see below) stable but which ultimately have been demonstrated to be unstable due to
various kinds of decay channels. We will not discuss these any further here but instead concentrate on the
few cases that so far have not been proven unstable. Without claiming to be exhaustive we mentioned
here two cases in this category:

1. S-folds [10] and
2. Right-squashed S7 [7]

Note that without supersymmetry it seems very hard to prove stability directly but there are inter-
esting attempts involving fake supersymmetry, see [11]. The rest of this talk is devoted to explaining

https://creativecommons.org/licenses/by/4.0/
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recent results [4, 1, 3] concerning the second example, the right-squashed S7 compactification of D=11
supergravity. Of course, it is not possible to claim stability just by testing known decay modes since
there may be new ones found in the future. This is why supersymmetry, or possibly fake supersymmetry,
is so utterly important for proving stability.

When compactifying D=11 supergravity on AdS4×S7 there are three cases to consider, the round case
with eight supersymmetries, the left-squashed with one and the right-squashed case with no supersym-
metry. The two squashed cases are the skew-whiffed (orientation flipped) versions of each other. Being
supersymmetric the left-squashed case is absolutely stable from which one can show that also the right-
squashed case is BF stable [12] since all unitarity bounds are respected also in the non-supersymmetric
case [13].

Going beyond BF stability one may ask if introducing interactions may ruin stability in the non-
supersymmetric case. There are many aspects of this issue. One such is addressed in [14, 15], the up-shot
of which is that marginal operators in the 1/N expansion of beta-functions in the boundary field theory
are dangerous objects that might lead to the removal of fix-points and hence instabilities in the bulk
theory. It should be mentioned that the relevance of these claims are put in question by some authors,
see, e.g., the Introduction in [3] and work cited there. Here we will only discuss the presence or not of
marginal operators.

The author is very grateful to M.J. Duff, C.N. Pope, A. Padellaro, S. Ekhammar, and J. Karlsson for
the many collaborations that have led to the results presented here.

2 D=11 supergravity and its compactification on S7

To find the background solutions we need the bosonic part of D=11 supergravity:

L =
1

κ2
(
R− 1

12
FMNPQF

MNPQ +
8

124
εM1...M11

AM1M2M3FM4...M7FM8...M11
)
. (1)

The ansatz for the D=11 background is given in terms of an 11= 4+7 split XM = (xµ, ym), a diagonal
product metric and a spacetime volume form for the non-zero components of the 4-form field strength:

GMN = diag(gµν(x), gmn(y)), Fµνρσ(x) = 3mεµνρσ(x), (2)

where m is a positive constant parameter of dimension 1/L.
Inserting this ansatz into the field equations one finds the background conditions

R̄µν = −12m2ḡµν , R̄mn(y) = 6m2ḡmn. (3)

Thus the background is AdS4 times a seven-dimensional compact manifold K7, examples of which are
plentiful, see ,e.g., [8]. As mentioned above we will here only discuss K7 = S7. However, as explained in
full detail in, e.g., [8] there exist one round and one squashed Einstein metric on this manifold. While
the orientation in the round case is irrelevant for the theory in AdS4 this is not the case for the squashed
metric as will be explained below.

One aim of this presentation is to summarize the recent results on the squashed S7 spectrum analysis,
in particular the one for 2-forms, which finally has lead to an almost complete understanding of all the
fine details. We start below by a short review of the irreps content relevant in AdS4, i.e., the unitary
irrepses of its isometry group SO(2, 3).

3 SO(2,3) irrep diagrams and singletons
The unitary irreps of SO(2, 3), which is the isometry group of AdS4 and also the conformal group on the
boundary of AdS4, are denoted D(E0, s) where E0 is the energy of the lowest state (see the state diagram
below copied from Nicolai [16]) and s its spin. In the case of a massless (pseudo)scalar (s = 0) field E0 is
equal to 1 or 2 depending on the boundary conditions chosen for the field. Note that the diagram extends
indefinitely upwards.

An interesting point for this presentation is the fact that the irreps sitting at the unitarity bound
values, D(E0 = 1

2 , s = 0) and D(E0 = 1, s = 1
2 ) are known as singletons. These have the special property

that they fluctuate (or “live”) only on the boundary of the AdS4 space, being in some sense topological
as bulk fields. These irreps have state diagrams with states only along the main trajectory (the first lower
right one in the diagram below). Arguments for why various kinds of singletons are needed in order to
make sense of the different S7 spectra and their relations are presented for the first time in [4], see also
[2, 3].
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In some cases it is possible to follow the change in E0, or rather the operator eigenvalues [17], see
also [2, 3], when squashing which indicates that the singletons on the round S7 must become ordinary
bulk scalars and fermions in the squashed vacua [4]. For this to be possible it seems that one must add
to the singleton state diagrams states corresponding to bulk scalar or fermion fields which, if true, would
be a new kind of Higgs effect. We will return to this issue again below. Unfortunately, so far there is no
Lagrangian realization of this in the literature as far as we know.

1
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Figure 1: Example of a state diagram for unitary irreps of SO(2, 3) denoted D(E0, s): For massless
(pseudo)scalars the states have energy and spin (E, j) with E = E0 + ∆E where E0 = 1 or 2 (depending
on boundary conditions) and j = s+ ∆s for s = 0. The scalar singleton has E0 = 1

2 and a state diagram
consisting of only the main trajectory (the first lower right one above).

4 D(E0, s) and the relation of E0 to the S7 operator eigenvalues via the mass matrix
In a Lagrangian formulation of a field theory on AdS4 there are relations between the E0 of the irreps
D(E0, s) and the masses of the fields. These relations are given in the table below where also the unitarity
bound is given for each spin.

s = 2 E0 = 3
2 + 1

2

√
(M/m)2 + 9 ≥ 3

s = 3
2 E0 = 3

2 + 1
2 |M/m− 2| ≥ 5

2

s = 1 E0 = 3
2 + 1

2

√
(M/m)2 + 1 ≥ 2

s = 1
2 E0 = 3

2 ±
1
2 |M/m| ≥ 1

s = 0 E0 = 3
2 ±

1
2

√
(M/m)2 + 1 ≥ 1

2

Table 1: E0 for AdS4 fields of given mass M and spin s (in Spin(2, 3)-irreps D(E0, s)) and the corre-
sponding unitarity bounds, see, e.g., [8].

From the full D = 11 supergravity Lagrangian linearized around any Freund-Rubin solution AdS4×K7

one can derive relations between the mass matrices and operators on the compact internal manifold K7.
The idea is simply a generalization of the fact that in a flat spacetime a D=11 box defines a mass matrix
M2 in D=4:

�11 = �4 + �7 ≡ �4 −M2. (4)

In the table below the graviton tower is given by masses M2 = ∆0 = −�, acting on scalars on the
compact manifold. From the table above we then get the corresponding values of E0. A final step is thus
to express the eigenvalues of the operators in the table below in terms Casimirs for the isometry group
in question. This will be made clear below for the squashed S7.
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spinparity Mass operator M2 or M depending on the spin

2+ ∆0

3
2 (±)

−i /D1/2 + 7m
2

1−(±) ∆1 + 12m2 ± 6m
√

∆1 + 4m2 = (
√

∆1 + 4m2 ± 3m)2 −m2

1+ ∆2

1
2 (±)

−i /D1/2 − 9m
2

1
2 (±)

i /D3/2 + 3m
2

0+(±) ∆0 + 44m2 ± 12m
√

∆0 + 9m2 = (
√

∆0 + 9m2 ± 6m)2 −m2

0+ ∆L − 4m2 = (∆L − 3m2)−m2

0−(±) Q2 + 6mQ+ 8m2 = (Q+ 3m)2 −m2

Table 2: Mass operators in Freund–Rubin compactifications, see, e.g., [8]. For spins with two tower
assignments, the subscripts (±), the plus and minus signs refer to branches of the M2 formulas or to the
positive and negative parts of the spectrum for linear operators (includes Q = ?d on 3-forms).

By using the definition ∆p = δd+ dδ an interesting new form of the Laplacian was found in [5]

∆ = −�−RabcdΣabΣcd, (5)

called the universal Laplacian since it turns out to be valid for any tensor field and thus unifies, e.g., ∆p

and ∆L. It was then heavily used in [3]. Below we will provide examples of how this is done.

5 Strategy to get the spectra of operators on the squashed S7

When we now turn to the squashed seven-sphere we need a realization of it and a method to compute the
spectra of the various operators appearing in the mass matrix table above. These are Hodge-de Rham
operators ∆p ≡ dδ + δd for p-forms with p = 0, 1, 2, 3, the Lichnerowicz operator ∆L and the Dirac
operators /Ds for spin s = 1

2 and s = 3
2 . There is also the linear operator Q = ?d acting on transverse

3-forms related to ∆3 by ∆3 = Q2. By squaring the linear operators they can all be represented by the
above universal Laplacian.

There are several ways to define the geometry of the squashed Einstein metric. The metric can for
instance be obtained as the distance sphere in the quaternionic projective space HP 2 as explained in
detail in [8], but perhaps a more intuitive picture is provided by the Hopf fibration, or Kaluza-Klein, form

ds2Hopf (S7) = dµ2 +
1

4
sin2 µ Σ2

i + λ2 (σi −Ai)2, (6)

where Σi and σi are two sets of left-invariant 1-forms satisfying the SU(2) Lie algebra, while Ai is the
SU(2) k = 1 instanton gauge field on S4. From this description of the squashed S7 we see that squashing
refers to a change in the relative size of the fibre S3 relative the base S4. The fact is that there are only
two Einstein metrics which arise for λ = 1, the round case, and for λ = 1/

√
5 which is the squashed case.

Although these two representations are frequently used we will here instead utilize a structure constant
based approach for Sp2 × SpC1 /(SpA1 × SpB+C

1 ) developed in [18]. The strategy is then as follows:

1. Derive the full spectrum of isometry irreps on the squashed S7: Done in [4].
2. Derive all possible operator eigenvalues: Done in [1, 5, 3].
3. Tie the irreps in 1. to the eigenvalues in 2.: Done in [3], see also [2].
4. Derive the possible values of E0 for all fields in AdS4 and form Heidenreich N = 1 supermultiplets
[19]: Done in [3], see also [2].
5. Skew-whiff to the right-squashed non-supersymmetric squashed S7 and study the possible single- and
multi-trace operators on the AdS4 boundary, and identify the marginal operators: Done in [3], see also [2].

A different approach to finding the squashed spectrum in AdS4 was used in [20] giving overlapping
results.
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6 Explicit 2-form mode results and their implications
We start by explaining the method used to obtain the isometry irrep content of the squashed S7

compactification. To be concrete and simple we start by discussing how to get the spectrum of spin
two modes in AdS4. Recall that the SO(2, 3) irreps are denoted D(E0, s) where for s = 2 we have

E0 = 3
2 + 1

6

√
M2/m2 + 9 where the mass matrix M2 = ∆0. Thus to find the spin 2 spectrum in AdS4

we need to derive the eigenvalue spectrum of ∆0 = −� on scalar modes on the squashed S7 and the
spectrum of isometry irreps that can occur. To obtain the latter the general procedure for any tensor
field on a coset manifold G/H is as follows:

1. Split the tangent space irrep of the field into H irreps,
2. The isometry spectrum contains any G irrep that when decomposed under H contains any of the H
irreps found in the previous step.

The result for the squashed S7 is presented in terms of cross diagrams in [4] where each cross corre-

sponds to an G = Sp2 × SpC1 irrep (p, q; r). For scalars ∆0 = 20m2

9 CG, where CG(p, q; r) is the Casimir
[17], and the spectrum is given by the diagram (note that r = p),

∆
(1)
0

1

2

3

4

1 2 3 4
0 p

0

q r = p

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

Figure 2: Scalar cross diagram as given in [4]. Each cross corresponds to an isometry irrep (p, q; r), for

p ≥ 0, q ≥ 0, and r = p of eigenmodes φ of ∆0 with eigenvalues ∆
(1)
0 = m2

9 20Cg [17].

In the case of 2-forms [4] the isometry irrep spectrum contains 21 cross diagrams 15 of which contain
the transverse modes that are relevant for the spectrum of fields in AdS4. These 15 diagrams are divided
into sets that make up SpC1 irreps, in fact we have one 1, three 3 and one 5 [3] corresponding to the
vertical sets in the 2-form cross diagram below. By inspection we see that some diagrams lack crosses
along some lines parallell to the p-axes which is due to these irreps having zero norm. This phenomenon
was mentioned for spin 1/2 modes already in [17] but first fully analyzed for 2-forms and several other
simpler cases in [3]. The eigenvalues for these transverse 2-form modes were originally calculated in
[1] using a method relying heavily on G2 and octonions. This method did not, however, connect the
eigenvalues to the cross diagrams.

An improved version of this method was later developed in [5, 3] giving rise to the universal Laplacian
mentioned above and the following novel formulas: The algebraic approach to a coset G/H gives a
relation between a differential operator and a Lie algebra element Ta in the coset, namely acting on
Fourier modes Ďa = −Ta where Ďa = Da + 1

2fabcΣ
bc is an H-covariant derivative. Using that for the

squashed S7 fabc = − 1√
5
aabc [18] this derivative becomes G2 covariant in the sense that Ďaaabc = 0 [1]

where aabc are the octonionic structure constants.
From these facts we get the very simple formula

�̌ = TaT
a = −(Cg − Ch), (7)

which can easily be related to � [5] and hence to the eigenvalue equations we seek to solve.
In fact, on the squashed S7 one finds the following group theoretic version of the operator equation

valid for any tangent space tensor [5]:

∆ = Cg +
6

7
Cso(7) −

3

2
Cg2 −

1√
5
aabcΣ

abĎc, (8)

where the Cs are Casimir operators and Σab are the so(7) generators. Note that projectors onto G2

irreps are needed when solving the eigenvalue equations involving ∆ above and that they are all written
in terms of octonionic structure constants [5, 3].
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For 2-form modes Yab the expression above for the universal Laplacian leads to the eigenvalue equation

∆2Yab = CgYab + 3P7Yab −
2√
5
a[a1

bcĎcY|b|a2] = κ22Yab, (9)

which can be solved giving four sets of different eigenvalues. Thus one set must correspond to two sets
of cross diagrams and hence mode functions. This will verified below.

∆
(3)′

2

∆
(2)−
2 ∆

(2)+
2 ∆

(3)
2

1

2

3

4

1 2 3 4
0 p

0

q r = p+ 4

×
×
×
×

×
×
×
×

×
×
×
×

×
×
×
×

×
×
×
×

∆
(1)
2

1

2

3

4

1 2 3 4
0 p

0
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×
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×
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×
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×
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Figure 3: Transverse two-form cross diagrams.

To understand the mode-eigenvalue issue we need explicit expressions: The operators below acting
on scalar modes give all 21 2-form modes. Note that they contain the octonionic structure constants aabc
and its dual cabcd as well as the SpC1 Killing vectors si.

Y(1)
ab = aab

cĎc, Y(2)i
ab = aab

csc
i, Y(3)i

ab = εijksa
jsb

k, Y(4)i
ab = s[a

iĎb], (10)

Y(5)i
ab = cab

cdsc
iĎd, Y(6)i

ab = a[a|
cdsc

iĎd|b], Y
(7)ij
ab = s[a

{i|ab]
cdsc

|j}Ďd. (11)

The novel aspect of these mode functions is present in Y(6)i
ab : It contains a two derivative operator

Ďab = Ď(aĎb). This was found in [2] and will be explained in [21]. Deriving the eigenvalues for these
modes shows that there is indeed a degeneracy in the eigenvalues [3] as is seen in the table below.
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sp E0 E0 − 1
2 E0 + 1

2 E0 SpC1 E0 values

1+1 1+(∆
(3)
2 ) 1

2 (i /D
(2)−
3/2 ) 1

2 (i /D
(2)+
3/2 ) 0+(∆

(1)
L ) 3 3

2 + 1
6

√
20Cg + 9

1+2 1+(∆
(3)′

2 ) 1
2 (i /D

(2)′−
3/2 ) 1

2 (i /D
(2)′+
3/2 ) 0+(∆

(1)′

L ) 5 3
2 + 1

6

√
20Cg + 9

Table 3: Supermultiplets with spin and parity s = 1+. The two tables of all spins up to s = 2 are given
in [3]. Here, each entry, represented by s(operatoreigenvaluemode type), corresponds to a specific spin component
of a Heidenreich N = 1 supermultiplet, but with the highest spin first. The notation indicates also the
relevant cross diagrams of ∆p, for p = 2, L, and i /D3/2 as given in [3]. The SpC1 irrep entries specify the
number of cross diagrams belonging to the supermultiplet.

When the entire squashed spectrum was derived in [4] it was also found that all states fit into the
following N = 1 supermultiplets (referred to by their maximum spin component): 1 spin 2, 6 spin 3/2,
6 spin 1−, 8 spin 1+ and 14 Wess-Zumino multiplets. However, when comparing this squashed spectrum
to the round one some states do not fit into a Higgs picture relating the two spectra. These states were
of two types [4]:

1. States occurring in the round SSB spectrum but not in the squashed:
Lichnerowicz modes of ∆L : (4,2), (5,3)
Rarita-Schwinger modes of i /D3/2 : (4,2), (5,1), (1,3)

2. A state occurring in the squashed spectrum but not in the round: i /D3/2 mode (1,1) [2].

A way to make these facts fit with a Higgs/deHiggs kind of picture was suggested in [4] (see also [2, 3])
involving adding singletons to the spectra: N = 8 supersingleton to the round spectrum and a fermionic
singlet singleton to right-squashed spectrum (while nothing is added to the left-squashed spectrum).

7 Conclusions
We end by listing a number of conclusions related to the results presented above:
1. Singletons: There are modes in the round case that do not appear in either of the squashed cases
although the latter are a kind of Higgsed version of the former. However, by adding the N = 8 singleton
supermultiplet to the round spectrum, and a fermionic singlet singleton to the right-squashed spectrum,
one can argue that the three spectra are consistent with each other. There is also a spin 3/2 mode in the
squashed spectrum that does not exist in the round spectrum. This fact can also be seen to be consistent
by invoking a deHiggsing in the spin 3/2 sector of the two squashed cases [4, 2].
2. The left-squashed spectrum 1: The N = 1 supersymmetric spectrum in the left-squashed case is com-
pletely understood apart from the degeneracy encountered in all supermultiplets containing fields whose
masses are related to the Lichnerowicz operators on S7 [3].
3. The left-squashed spectrum 2: We find a rather surprising feature namely that supersymmetry does
not fix the boundary conditions of scalar and spin 1/2 fields in the left-squashed case. In other words,
the values of E0 for these fields fit in two different ways into Wess-Zumino supermultiplets using different
assignments of boundary conditions (that is different choices of ± in the formulas for E0). In fact, there
are irreps whose boundary conditions in the round case cannot be retained in the squashed case [3].
4. The right-squashed spectrum 1: By skew-whiffing (orientation-flipping) one obtains the spectrum of
the right-squashed non-supersymmetric compactification which again is BF stable [13].
5. The right-squashed spectrum 2: Having established in the left-squashed case that boundary conditions
can be chosen in different ways, the right-squashed spectrum becomes very dependent on boundary con-
ditions and how they are chosen. In particular, it is possible to choose boundary conditions so that there
are no marginal operators on the boundary at all [2, 3], something that might be relevant for the AdS
swampland stability issue [9] as mentioned in the Introduction.
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