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Abstract
We construct the heat kernel on curvilinear polygonal domains in arbitrary surfaces for
Dirichlet, Neumann, and Robin boundary conditions as well as mixed problems, including
those of Zaremba type.We compute the short time asymptotic expansion of the heat trace and
apply this expansion to demonstrate a collection of results showing that corners are spectral
invariants.

Résumé
Nous construisons le noyau de la chaleur pour des domaines polygonaux curvilignes dans
des surfaces arbitraires avec des conditions aux bords de Dirichlet, Neumann et Robin ainsi
que des conditions mixtes, y compris celles de type Zaremba. Nous calculons l’expansion
asymptotique de la trace quand le temps approche zéro et nous utilisons cette expansion pour
démontrer un ensemble de résultats montrant que les coins sont des invariants spectraux.
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2 M. Nursultanov et al.

1 Introduction

If two compact Riemannian manifolds (M, g) and (M ′, g′) are isospectral, meaning they
have the same Laplace spectrum, then they need not be isometric. However, isospectrality
does imply that M and M ′ both have the same dimension, n. Moreover, they also have the
same n-dimensional volume. Thus, both dimension and volume are spectral invariants, in
the sense that they are determined by the spectrum. This fact follows from Weyl’s law [52],
proven over one hundred years ago. It is natural to ask: what other geometric features are
spectral invariants?

The next geometric spectral invariant was discovered by Pleijel [44] some forty years after
Weyl’s law. For an n-dimensional Riemannian manifold with smooth boundary, the n − 1
dimensional volume of the boundary is a spectral invariant. About ten years later, McKean
and Singer [37] proved that certain curvature integrals are also spectral invariants. For smooth
surfaces and smoothly bounded planar domains, McKean and Singer [37] and independently
M. Kac [22] proved that the Euler characteristic is a spectral invariant. By the Gauss–Bonnet
theorem, this shows that the number of holes in a planar domain is a geometric spectral
invariant for a planar domain.

The tactic of both McKean and Singer and Kac was to use the existence of a short time
asymptotic expansion for the heat trace, together with the calculation of the coefficients in
this expansion. Recall that the heat kernel HM (t, z, z′) on a Riemannian manifold (M, g) is
the fundamental solution of the heat equation on M :{

(∂t + �z)HM (t, z, z′) = 0;
limt→0 HM (t, z, z′) = δz(z′).

(1.1)

As long as the eigenvalues are discrete and approach ∞ sufficiently quickly, which is the
case in all geometric settings considered here, the heat trace is the trace of this kernel, and
satisfies

Tr HM (t) =
∫
M
HM (t, z, z) dz =

∞∑
j=1

e−λ j t . (1.2)

Above, λ j are the eigenvalues of the Laplacian � on M , arranged in increasing order. As a
consequence, the heat trace is a spectral invariant. Therefore the coefficients in its asymptotic
expansion as t → 0 are also spectral invariants. The existence and calculation of an asymp-
totic expansion for the heat trace is a powerful method for producing spectral invariants. This
program has been carried out extensively both for smooth manifolds and for manifolds with
boundary [37].

Here, we are interested in the heat kernel on curvilinear polygonal domains which are
subsets of smooth surfaces. This includes curvilinear polygonal domains in the plane, as well
as more exotic non-planar examples. We are interested in the heat kernel for such domains
in part because it may allow us to determine new geometric spectral invariants. Indeed, we
show in Sect. 6 that in general, the presence or lack of vertices is a spectral invariant for
Dirichlet, Neumann, Robin, and mixed boundary conditions. Moreover, we shall see there
that a jump in boundary condition is also a spectral invariant.

Let us now introduce our geometric setting.

Definition 1.1 We say that � is a curvilinear polygonal domain if it is a compact subset of
a smooth Riemannian surface (M, g) with piecewise smooth boundary and a vertex at each
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The heat kernel on curvilinear polygonal domains… 3

non-smooth point of ∂�. A vertex is a point p on the boundary of � at which the following
are satisfied.

1. The boundary in a neighborhood of p is defined by a continuous curve γ (t) : (−a, a) →
M for a > 0 with γ (0) = p. We require that γ is smooth on (−a, 0] and [0, a), with
||γ̇ (t)|| = 1 for all t ∈ (−a, a), and such that

lim
t↑0 γ̇ (t) = v1, lim

t↓0 γ̇ (t) = v2,

for some vectors v1, v2 ∈ TpM , with −v1 �= v2.
2. The interior angle at the point p is the interior angle at that corner, which is the angle

between the vectors −v1 and v2.

Note that requiring −v1 and v2 to be distinct means that the interior angle will be an element
of (0, 2π), which rules out inward and outward pointing cusps. An angle of π is allowed.

A vertex in a curvilinear polygonal domain is an example of a conical singularity where
the link is a one-dimensional manifold with boundary. Moreover, it is a “non-exact” conical
singularity in the sense that the curve γ defining the boundary near a vertex may have non-
zero geodesic curvature on the entire interval (−a, a). For curvilinear domains in the plane,
this means that there need not be a neighborhood of the vertex in which the edges are straight.
This geometric setting is therefore not contained within the literature for either (1) conical
singularities whose link is a compact manifold without boundary nor for (2) planar polygons
for which the edges are straight near the vertices.

There is substantial work in the literature on heat trace expansions in the settings (1) and
(2). For conical singularities with no boundary on the link, a non-exhaustive list of works
concerning the heat kernel and its trace is: [12, 13, 24, 26, 29, 30, 41, 46]. In the case (2) of
vertices which locally have straight edges, a non-exhaustive list includes [23, 27, 42, 48].

For polygonal domains in the plane with the Dirichlet boundary condition, Fedosov
showed in the 1960s that the vertices produce an extra term in the short time asymptotic
expansion of the heat trace [9, 10]. This term appears in the coefficient of t0. Its most simpli-
fied form and calculation can be found in a paper of van den Berg and Srisatkunarajah [51],
although the expression there is originally due to unpublished work of Ray, and is mentioned
in both [22] and [37].

Although it has been widely assumed that analogous results for the heat trace expansion
hold for curvilinear polygons, a rigorous proof even in the planar Dirichlet case was not given
until [31]. Similar results hold for Neumann boundary conditions, see [34]. Although Robin
conditions have been studied on manifolds with boundary [14, 54], to our knowledge there is
no work in the literature about heat trace expansions with Robin conditions in the presence
of corners of arbitrary angles, even in the plane. For certain corner angles, however, we refer
to the physical approach of [3]. Outside the planar case, or even in the planar case with
mixed boundary conditions, less is known. For the mixed boundary condition, also known
as Zaremba boundary condition, references include [4, 21, 28, 47].

Our geometric microlocal methods allow us to handle the general case of compact curvi-
linear polygonal domains in surfaces, with any combination of Dirichlet, Neumann, and/or
Robin boundary conditions on the various smooth boundary components. The sign conven-
tion for our Laplacian, in local coordinates, with respect to the Riemannian metric, g, on a
surface is

� = − 1√
det(g)

2∑
i, j=1

∂i
√
det(g)gi j∂ j .
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4 M. Nursultanov et al.

Our convention for the Robin boundary condition on any portion of the boundary is:

∂u

∂ν

∣∣∣∣
∂�

= κu|∂� .

Here, the derivative on the left is the inward pointing normal derivative, and therefore, on the
right, κ is a non-negative function. Under this condition the spectrum is non-negative. We
assume throughout, for simplicity, that κ is smooth.

Our main result is:

Theorem 1.2 Let� be a curvilinear polygonal domain in a smooth surface with finitely many
vertices V1, . . . , Vn of angles α1, . . . , αn. Define its edges E1, . . . , En by letting E j be the
segment of the boundary between Vj−1 and Vj , with subscripts taken mod n. Let ED, EN ,
and ER be three disjoint sets whose union is {1, . . . , n}. For each j ∈ ED, EN , and ER, we
impose Dirichlet, Neumann, and Robin conditions with parameter κ j (x), respectively, along
E j . Assume that all functions κ j (x) are non-negative and smooth.

Let V= be the set of j for which vertex Vj has either zero or two Dirichlet edges adjacent
to it, i.e. either both j and j + 1 ∈ ED or neither are. Conversely, let V �= be the set of j
for which Vj has exactly one adjacent Dirichlet edge. Also let K (z) and kg(x) be the Gauss
curvature and geodesic/mean curvature of � and ∂� respectively.

Then the heat trace Tr H�(t) for the Laplacian with those boundary conditions, and
with the Friedrichs extension at each vertex, has a complete polyhomogeneous conormal
expansion in t as t → 0. Moreover, the first few terms of this expansion have the form

Tr H�(t) = a−1t
−1 + a−1/2t

−1/2 + a0 + O(t1/2 log t),

where:

a−1 = A(�)

4π
; (1.3)

a−1/2 = 1

8
√

π

⎛
⎝ ∑

j /∈ED

�(E j ) −
∑
j∈ED

�(E j )

⎞
⎠ ; (1.4)

a0 = 1

12π

∫
�

K (z) dz + 1

12π

∫
∂�

kg(x) dx − 1

2π

∑
j∈ER

∫
E j

κ j (x) dx (1.5)

+
∑
j∈V=

π2 − α2
j

24πα j
+

∑
j∈V�=

−π2 − 2α2
j

48πα j
. (1.6)

Remark 1.3 It is well-known that if the boundary of� is smooth then there are no logarithmic
terms in the heat expansion. We do not characterize the nature of logarithmic terms in the
expansion in our more general setting.

The proof of this result contains several ingredients which may be of independent interest.
The main strategy is to use geometric microlocal analysis to construct the heat kernel on a
heat space, denoted by �2

h , which is created by blowing up � × � × [0, 1) along various
p-submanifolds. On this heat space we show, in Theorem 5.8, that the heat kernel has a
polyhomogeneous conormal expansion at every boundary hypersurface. Indeed we construct
the heat kernel by solving suitable model problems at the various boundary hypersurfaces.
This gives a full description of the heat kernel on a curvilinear polygonal domain in a surface,
in all asymptotic regimes. As such this construction is useful for any application in which
fine structure information about the heat kernel near t = 0 is needed.
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The heat kernel on curvilinear polygonal domains… 5

A major advantage of this method is that a complete asymptotic description of the heat
kernel, rather than just its trace, is obtained. This allows precise asymptotic analysis for
expressions such as the gradient of the heat kernel and is likely of interest for future work.

The paper is organized as follows. In Sect. 2, we develop an integral representation of
the heat kernel for infinite circular sectors with Dirichlet, Neumann, and mixed boundary
conditions. We do this by first obtaining an integral representation of the Green’s function
for the corresponding boundary condition. Using functional calculus, we prove that the heat
kernel is obtained by taking the inverse Laplace transform of the Green’s function. By the
uniqueness of the heat kernel, we thereby obtain the equivalence of this integral representation
of the heat kernel and the more common series representation of the heat kernel [6]. In
Sect. 3, we construct the heat spaces and demonstrate the composition rule for operators with
polyhomogeneous conormal Schwartz kernels. To construct the heat kernel, we proceed in
Sect. 4 to solve the model problem for the smooth parts of the boundary for the Dirichlet,
Neumann, and Robin boundary conditions. In Sect. 5 we solve the model problem for the
vertices with the various boundary conditions and combinations thereof. In this way, we
construct the heat kernel on a curvilinear polygonal domain in a surface. In Sect. 6, we use this
construction together with our integral representation of the heat kernels obtained in Sect. 2
to compute the heat trace and prove Theorem 1.2. We conclude in Sect. 6 with applications
of Theorem 1.2 showing contexts in which corners (vertices) are spectral invariants.

1.1 Notation

For the benefit of readers, we collect here all notations occurring in at least two non-
consecutive pages.

Notation Meaning Sections

R, C, N Real, complex, and natural numbers

, � Real and imaginary parts
Z, N0 Integers and non-negative integers
H�, Tr H� The Heat kernel and Heat trace on a

curvilinear polygon �

1

E j , Vj Edges and vertices 1
K , kg The Gauss and geodesic curvature 1
G, GD , GN , GDN Green functions 2.1
Kν , Iν The modified Bessel functions 2.1
L, L−1 The Laplace transform and its inverse 2.2
F , F The index set and index family 3.1
pc Polyhomogeneous conormal distributions 3.1
β Blow-down map 3.1
E , V The set of edges and vertices 3.2
t f , e j , sv j , pv j , pe j Boundary hypersurfaces of single heat space 3.2
M2
h , M

2
rh , M

3
rh , M

3
rh,c Heat spaces 3.3, 3.5

E j0, E0 j , hv f f jk , hvr f j , hvl f j Boundary hypersurfaces of double heat
space and their components

3.3

f f , s f , f f j , s f j
πC , πL , πR Lifted projections from triple heat space to

double heat space
3.4

ρ, ρX Boundary defining functions 3.4
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6 M. Nursultanov et al.

Notation Meaning Sections

e f (·, ·) Boundary exponents 3.4
�C , �L , �R b-maps 3.5
FA , FAB , FABC , FABCD Boundary hypersurfaces of triple heat space 3.5

AF
h Spaces of pc functions 3.8, 4.2

�F
h , �a,b,c,d Set of pseudodifferential operators 3.8, 4.2

L Lifted heat operator 4.1.1
χ Euler characteristic 6.1.2

2 Analytic preliminaries

The Laplace operator on a curvilinear polygonal domain, even with specified boundary
conditions on each side, is emphatically not guaranteed to be self-adjoint. The angles at
the vertices as well as the possibility of different boundary conditions on either side of a
vertex can give rise to interesting phenomena [7, 8, 17]. We shall consider a Friedrichs type
extension of the Laplace operator here. The Laplacian is a priori a symmetric operator on
smooth, compactly supported functions on our domain, �.

Our sign convention for the Robin boundary condition is

∂v

∂n
= κv, for the inward pointing normal derivative.

The Robin parameter is smooth on each boundary component and is non-negative. We define
the Laplace operator corresponding to the mixed boundary conditions in the following way,
as in [11, 45]. Consider the form

a(u, v) =
∫

�

∇u(z)∇v(z)dz +
∫

∂�R

κ(z)u(z)v(z)dσ(z)

with domain

D(a) = {
u ∈ H1(�) : u|∂�D = 0

}
.

Above, ∂�D and ∂�R are the unions of the boundary components on which we impose the
Dirichlet and Robin boundary conditions, respectively, and κ(z) is the Robin parameter. Then
a is a closed, densely defined, symmetric form. Therefore, by [25, Theorem 2.23 Chap. 6],
it generates a self-adjoint operator, which we call the Laplace operator corresponding to the
boundary conditions we mentioned above.

2.1 Green’s functions

The general approach to study the heat kernel via the associated Green’s function and
Kantorovich–Lebedev transform is well documented in the literature, dating at least back
to Fedosov in the 1960s [10]. This approach has continued to produce interesting results
in modern work as well; see for example the doctoral thesis of Uçar [49] who considers
polygonal domains in hyperbolic surfaces. Although the general technique is well known,
the details of the calculations are often omitted. To maintain the flow and focus of this work,
we present here the results of our calculations, and for the sake of completeness include the
details in Appendix A.

123



The heat kernel on curvilinear polygonal domains… 7

We obtain integral expressions for Green’s functions for the Laplacian on an infinite
circular sector withDirichlet, Neumann, andmixed boundary conditions. Let γ be the interior
angle of the sector; we need only assume γ ∈ (0, 2π). The Green’s function solves the
following equation:⎧⎨

⎩
sG − ∂2G

∂r2
− 1

r
∂G
∂r − 1

r2
∂2G
∂φ2 = 1

r δ(r − r0)δ(φ − φ0),(
αG + β ∂G

∂φ

)∣∣∣
φ=0,γ

= 0,
(2.1)

with α = 1 and β = 0 for the Dirichlet boundary condition or α = 0 and β = 1 for the
Neumann boundary condition, and in all cases with spectral parameter s > 0.

For the Dirichlet boundary condition we compute in Appendix A that the Green’s function
is

GD(s, r , φ, r0, φ0) = 1

π2

∫ ∞

0
Kiμ(r

√
s)Kiμ(r0

√
s)

×
{
cosh(π − |φ0 − φ|)μ − sinh πμ

sinh γμ
cosh(φ + φ0 − γ )μ

+ sinh(π − γ )μ

sinh γμ
cosh(φ − φ0)μ

}
dμ, (2.2)

where Kν is the modified Bessel function of second kind. For the Neumann boundary con-
dition, we obtain

GN (s, r , φ, r0, φ0) = 1

π2

∫ ∞

0
Kiμ(r

√
s)Kiμ(r0

√
s)

×
{
cosh(π − |φ0 − φ|)μ + sinh πμ

sinh γμ
cosh(φ + φ0 − γ )μ

+ sinh(π − γ )μ

sinh γμ
cosh(φ − φ0)μ

}
dμ. (2.3)

For the mixed Dirichlet–Neumann boundary condition, taking the Dirichlet condition at
φ = 0 and the Neumann condition at φ = γ we obtain the Green’s function

GDN (s, r , φ, r0, φ0) = 1

π2

∫ ∞

0
Kiμ(r

√
s)Kiμ(r0

√
s)

×
{
cosh(π − |φ0 − φ|)μ + sinh(πμ)

cosh γμ
sinh((φ + φ0 − γ )μ)

−cosh(π − γ )μ

cosh γμ
cosh((φ − φ0)μ

}
dμ. (2.4)

2.2 The Heat kernel and the Green’s function

Let � be a self-adjoint, non-negative Laplace operator whose domain is contained in L2(�)

associated with certain boundary conditions

B(u) = 0 on ∂�,

where � is a domain with a piecewise smooth boundary ∂� which is contained in a larger
smooth ambient manifold. Assume that G(x, y, s) is the Green’s function of the operator
s + �, that is the solution of the system
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8 M. Nursultanov et al.

{
(s + �)G(x, y, s) = δ(x − y),

B(G) = 0.
(2.5)

Before stating the next result, we recall the definition of the Laplace transform and its inverse.

Definition 2.1 Let f be a continuous function such that there exists a constant c > 0 with∫ ∞

0
| f (t)|e−c|t |dt < ∞.

The Laplace transform of f is defined to be

g(s) := L( f (t))(s) :=
∫ ∞

0
f (t)e−st dt, 
(s) ≥ c.

The inverse Laplace transform is then

f (x) := L−1(g(s))(t) := 1

2π i
lim
k→∞

∫ a+ik

a−ik
g(s)est ds,

for t > 0 and a > c.

Proposition 2.2 With the notations above, let H(x, y, t) be the heat kernel corresponding to
�. Then

L[H ](x, y, s) = G(x, y, s),

where L is the Laplace transform.

Proof Let {e−t�}t≥0 be the semigroup generated by −�. We note that −� is a non-positive,
self-adjoint operator, so that this semigroup is well defined on L2(�). Moreover, the self-
adjointness gives

∥∥(λ + �)−1
∥∥ ≤ 1

dist(λ, σ (−�))
λ ∈ ρ(−�), (2.6)

where σ(−�) and ρ(−�) are, respectively, the spectrum and resolvent set of−�. Therefore,
by the Hille–Yosida theorem [53], {e−t�}t≥0 is a contracting semigroup. Hence, by Theorem
8.2.2 in [53], it follows

L ◦ e−t�(s) = (s + �)−1, s > 0, (2.7)

where L is the Laplace transform acting in t variable.
On the one hand, since the heat kernel H(x, y, t) is L transformable, we may express

L[e−t�φ] = L

∫
�

H(t, x, y)φ(y)dy =
∫

�

L[H ]φ(y)dy

for t , s > 0 and

(s + �)−1φ =
∫

�

G(x, y, s)φ(s)dy.

for s > 0. Therefore, the uniqueness of Schwartz kernels and (2.7) imply the statement. ��
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The heat kernel on curvilinear polygonal domains… 9

Fig. 1 Two examples of curvilinear polygonal domains, with edges and vertices

Remark 2.3 Due to Proposition 2.2, by applying the inverse Laplace transform to (2.2), (2.3),
and (2.4), we obtain expressions for the heat kernels for the Laplacian on an infinite circular
sector with Dirichlet, Neumann, and mixed boundary conditions, respectively. The heat ker-
nels for an infinite circular sector were computed by Cheeger using separation of variables
in polar coordinates [6, p. 592 (3.42)]. Cheeger’s formula simplifies in our setting to:

H(t, r , θ, r ′, θ ′) = 1

2t
exp

[
−r2 + (r ′)2

4t

] ∞∑
j=1

Iμ j

(
rr ′

2t

)
φ j (θ)φ j (θ

′). (2.8)

Here Iμ j are the modified Bessel functions, and (φ j , μ j ) are the eigenfunctions, and corre-
sponding eigenvalues, of the appropriate eigenvalue problem (D–D, N–N, or D–N) on the
interval [0, γ ]. By the uniqueness of the heat kernel we therefore obtain the equality of these
expressions with the inverse Laplace transform of the expression for the Greens functions.

3 Heat spaces

We consider curvilinear polygonal domains as in Definition 1.1; see examples illustrated in
Fig. 1.

3.1 Manifolds with corners and polyhomogeneity

Near a vertex, � has the differentiable structure of a manifold with corners after blowing
up the vertex. Specifically, an open neighborhood of a vertex is diffeomorphic to a sector,
(0, ε]×C , whereC is a circular arc. If we include the point {0}×C , then we obtain a smooth
manifold with corners. This is what is meant by “blowing up the vertex,” in the sense that
we replace the vertex with a copy of the link of the sector, namely C . This process may be
thought of as pretending that polar coordinates are actually valid down to the origin. Doing
this construction at each vertex yields a smooth surface with corners which we call �0. In
this way, we may identify the differentiable structure of all the surfaces we consider here as
the differentiable structure of manifolds with corners, defined below. The definition is first
due to Melrose [39], here we use the version which is introduced in [38].

In order to define a manifold with corners, we must first define t-manifolds.

Definition 3.1 [38, Definition 1.6.1] An n-dimensional t-manifold X is a paracompact Haus-
dorff space such that at each point x ∈ X there is a non-negative integer k such that
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10 M. Nursultanov et al.

a neighborhood of x is homeomorphic to a neighborhood of the origin in the product
[0,∞)k ×R

n−k , with all transition maps being smooth with respect to the subspace topology
on [0,∞)k × R

n−k ⊆ R
n .

Now we define a manifold with corners.

Definition 3.2 [38, Definition 1.8.5] A manifold with corners is a t-manifold such that each
boundary hypersurface is embedded.

Since with this definition we may have k = 0, we see that smooth manifolds without
boundary also fit into the general class of “manifolds with corners.”

The purpose of the heat space construction is to create spaces on which the heat kernel and
its trace are polyhomogeneous conormal distributions, abbreviated pc. This is a natural class
of functions within which to study partial differential equations on manifolds with corners;
see [33] and references therein. We briefly recap the definition here. To begin, we say that a
subset F ⊆ C × N0 is an index set if F is a discrete set satisfying the following properties:

• For all N , F ∩ {
(z) < N } is finite;
• If (s, p) ∈ F , then (s + 1, p) ∈ F ;
• If (s, p) ∈ F and p > 0, then (s, p − 1) ∈ F .

The latter two conditions are sometimes omitted from this definition, but they give pc func-
tions nice invariance properties; see [16].

Let X be an n-dimensionalmanifoldwith corners, and let {Mi }Ji=1 be the set of its boundary
hypersurfaces, that is, the set of all boundary faces of codimension one. We say that F =
(F1, . . . , FJ ) is an index family for X if each Fi = {(si j , pi j )∞j=1} is an index set, ordered so
that si j ∈ R are non-decreasing and pi j are non-increasing whenever si j is unchanged. For
each i , let xi be a boundary defining function for Mi ; that is, a smooth, non-negative function
xi : X → R such that xi vanishes precisely at Mi but the differential dxi is non-zero on Mi .
Wemay use boundary defining functions as coordinates on X . Finally, let Vb denote the space
of smooth vector fields on X which are tangent to all boundaries. With this terminology, we
define AF (X), the space of polyhomogeneous conormal, or pc functions, to be the space of
functions f smooth on the interior of X which have:

• generalized Taylor-like expansions at each boundary hypersurface Mi of the form

f ∼
∞∑
j=1

(xi )si j (log(xi ))pi j ai j (x
1, . . . , xi−1, xi+1, . . . , xn),

where for each i , the set {(si j , pi j )} is the index set Fi , enumerated so that si j is non-
decreasing;

• product type expansions of the same form at each corner (polyhomogeneous),
• and for which V f has expansions of the same type whenever V is a product of elements

of Vb (conormal).

The union of these spaces over all possible index sets is denotedA∗(X). Note that by definition
these spaces are invariant under Vb, in the sense that for any V ∈ Vb and any u ∈ AF (X),
Vu ∈ AF (X) as well. Observe also that smooth functions on X are pc with each index set
consisting of N0 × {0}.
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The heat kernel on curvilinear polygonal domains… 11

3.1.1 Blowups

Consider the finite cone, (0, 1]r ×S1θ with the Riemannian metric, dr2+r2dθ2, where dθ2 is
the standard metric on S1, and the conical point is at r = 0. The simplest example of blowing
up is replacing the conical point at r = 0 with a copy of S1, so that the finite cone is now
topologically identified with the cylinder [0, 1] × S1. In this example, the point at r = 0 is
replaced with the set of all directions, that is all values of θ , with which one can approach
the point, r = 0. This type of blowup is known as a radial blowup, or a normal blowup.

More generally, we shall consider blowups along p-submanifolds.An embedded subman-
ifold Y contained in a manifold with corners, X , is a p-submanifold if near each point q ∈ Y ,
there exist local coordinates so that Y is defined by the vanishing of a subset of these local
coordinates. For example, the boundary faces of X are p-submanifolds. The intersection of
two or more boundary faces of X is also a p-submanifold. The normal blowup of X around
Y is denoted by

[X; Y ] = ff � (X\Y ).

Above, ff is the inward pointing spherical normal bundle of Y which has replaced Y in [X; Y ].
There is a unique minimal differentiable structure with respect to which [X; Y ] is a manifold
with corners such that the following two conditions hold.

1. There is a smooth “blow-down” map

β : [X; Y ] → X

which is the identity on (X\Y ).
2. Cylindrical coordinates around Y are smooth coordinates on [X; Y ].
In case we wish to blow up two or more p-submanifolds, we write

[X; Y1; Y2]
to indicate that we first blow up Y1 and next blow up the lift of Y2 to [X; Y1]. This lift is the
usual lift if Y2 ⊆ Y1, and otherwise is the closure of Y2\Y1 in [X; Y1].

3.2 The single heat space

The first of the heat spaces we construct is the single heat space. Let � be a curvilinear
polygonal domain. Let E be the set of edges of � (maximal smooth boundary components)
and V the set of vertices. Throughout, we let �0 be � with the vertices blown up, so that �0

is a surface with corners. We also let Ṽ be the lift of V to �0, that is, the union of the faces
{r = 0} at each vertex.

Throughout, we will use the time coordinate T = √
t . This changes the smooth structure

at t = 0 somewhat, but allows us to avoid the use of parabolic blow-ups.
The heat kernel restricted to the diagonal is defined on � × [0,∞)T and is dubbed the

diagonal heat kernel. The single heat space is a natural habitat of the diagonal heat kernel
in the sense that the diagonal heat kernel lifted to the single heat space is pc. Note that the
single heat space is the same for all the possible boundary conditions we consider. To create
the single heat space, we begin with the manifold with corners �0 × [0, 1)T . We denote
its T = 0 boundary hypersurface1 by tf. The remainder of the boundary hypersurfaces

1 A boundary hypersurface will often be referred to as a boundary face or face. A “side face” is a boundary
hypersurface arising from the boundary in �. This is in contrast to the t f face as well as to the boundary
hypersurfaces created by blowing up along p-submanifolds.
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12 M. Nursultanov et al.

Fig. 2 Single heat space

correspond either to an edge or to a vertex (which has been blown up, so there is a boundary
hypersurface for each vertex). Denote the edge/side faces for positive T by {e j }|E |

j=1, and the

vertex faces Ṽ j × [0, 1)T by

{sv j }|V |
j=1. (3.1)

Next we perform blow-ups, first of the vertices at T = 0 and then of the edges at T = 0,
to create the single space2

Mh = [�0 × [0, 1)T ; {sv j }|V |
j=1 ∩ {T = 0}; E × {T = 0}].

We call the new faces obtained {pv j }|V |
j=1 and {pe j }|E |

j=1.
The sequence of blowups is therefore:

1. the normal blowup about each vertex for all time (implicit in the starting point of �0 ×
[0, 1)T );

2. the blowup of each vertex at T = 0;
3. the blowup of each edge at T = 0.

The space Mh has 2|V | + 2|E | + 1 boundary hypersurfaces in total.
Tomotivate this construction, consider the diagonal heat kernel on an infinite sector, which

from (2.8) is

H(t, r , θ, r , θ) = 1

2T 2 exp

[
− r2

2T 2

] ∞∑
j=1

Iν j

(
r2

2T 2

)
|φ j (θ)|2.

The pre-factor is not a pc function of (r , T ), but it is a pc function of (r , T /r). And indeed,
after creating pv j , T /r may be taken as a boundary defining function for tf near pv j .

In relation to the literature, our heat space construction can be seen as a hybrid combining
elements of Mooers’s heat space for manifolds with isolated conical singularities [41] and
Mazzeo and Vertman’s heat space for manifolds with edges [35]. The first step in Mooers’s

2 In the notation Mh for the single heat space, M acts as a place-holder for the various model geometries we
shall use to construct the heat kernel on our surface � (the analogous notation is used for the double and triple
heat spaces) (Fig. 2).
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The heat kernel on curvilinear polygonal domains… 13

construction is to blow up the conical singularity by replacing the point with the cross-section
(link) of the cone. Next she takes the product with time. It is completely equivalent to first
take the product with time, and then perform a normal blowup of the cone point for all time.
This is the procedure we follow at the vertices (and cone points). Next, we perform blowups
at T = 0 of the edges (and smooth boundary), analogous to [35].

In fact our construction can be viewed as an iterated version of [35], where we perform
each of their blow-ups at the vertices (of codimension 2) and then at the edges (of codimension
1). We expect that a similar construction, with additional iteration, could work for polyhedral
domains in manifolds of arbitrary dimension.

3.3 The double heat space

The double heat space is a natural habitat of the heat kernel in the sense that the heat kernel,
initially defined on �×�×[0,∞), lifts to be pc on it. As with the single space, our models
guide the construction of the double heat space by indicating which p-submanifolds should
be blown up to ensure that the heat kernel will be pc. The general philosophy is to mimic
[35], performing each of their blow-ups first at the vertices and then at the edges.

Begin with M2 := �0 × �0 × [0, 1)T . As we are using �0 rather than �, this is now a
manifold with corners, the analogue of the space with which Mazzeo and Vertman begin [35,
Sect. 3.1]. Denote its T = 0 boundary hypersurface by tf. All other boundary hypersurfaces
are of one of the following forms:

• E j × �0 × [0, 1), which we call E j0,
• �0 × E j × [0, 1), which we call E0 j ,
• Ṽ j × �0 × [0, 1), which is now a boundary hypersurface which we call hvrf j ;
• �0 × Ṽ j × [0, 1), which we call hvlf j .

As a guide to the nomenclature here,“h” indicates “height” because these blowups persist for
all time, and time is usually the vertical axis in figures of this type. As usual, “v” indicates
vertices, and “ff”, “rf”, and “lf” indicate left, right, and front faces respectively.3 Now, for
each j and k, blow up the intersection hvlf j ∩ hvrfk to create a new boundary hypersurface4

hvff jk . At this point we call the new space M2
0 :

M2
0 = [�0 × �0 × [0, 1); ∪ j,khvlf j ∩ hvrfk].

The next step is to blow up the union over all j of hvff j j ∩ {T = 0}. This blowup creates
N boundary faces, one at each vertex, denoted by ff j . We shall collectively refer to these as
ff for “front face(s).” The resulting space is

[M2
0 ; ∪ jhvff j j ∩ {T = 0}].

This construction at the vertices needs to be imitated at the edges, so now lift the triple
intersection of the diagonal, boundary, and T = 0, namely {(z, z′, 0) : z = z′ ∈ E},
to [M2

0 ; hvff j j ∩ {T = 0}]. As the lift of a p-submanifold is a p-submanifold, this lift is a
boundary p-submanifoldwhichmeets ff.Weblow it up, creating a newboundary hypersurface
at each side face.We denote their union by sf, for “side face(s)”.When we need to distinguish
components, we shall refer to the j th component as sf j . Observe that the side faces are

3 Some authors reverse the roles of “right” and “left” here—our terminology is chosen to match [35].
4 This is different from [35]. It may be that only the blow-ups with j = k are necessary, but doing all of them
makes the proof of the composition theorem easier to read.
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14 M. Nursultanov et al.

Fig. 3 This is a schematic depiction of the double heat space

pairwise disjoint, as their intersection in �0 × �0 × [0, 1) has already been blown up to
create ff. Let us call the space at this point the “reduced double heat space” M2

rh . It is the
analogue in our setting of the “intermediate heat space” in [35, Sect. 3.1]. Specifically, we
have

M2
rh = [M2

0 ; ∪ jhvff j j ∩ {T = 0}; {(z, z′, 0) : z = z′ ∈ E}].
The final blowup is at the lift of the diagonal at T = 0. This blowup produces the double

heat space:

M2
h = [M2

rh; {(z, z′, 0) : z = z′ ∈ �}].
Call the new front face td, for “time diagonal.” It intersects both sf and ff, as well as tf, though
no other boundary hypersurfaces (in particular none of the hvff, hvlf, or hvrf components, as
the intersection of the diagonal with the boundary has already been blown up). The double
heat space is depicted in Fig. 3.

3.4 The triple heat space

The triple heat space, unlike the single and double heat spaces, is not a natural habitat.
Instead, it is an artificial environment to which we shall lift the Schwartz kernels of operators
from their natural habitats on the double space in order to compose them. With the correct
construction of the triple space, the process of composition returns an element which is pc on
the double space. Consequently, the construction of the triple space is guided by the desire
to be able to lift and compose Schwartz kernels which live on the double heat space.

Our construction is based on that of Mazzeo and Vertman [35], and indeed is identical
when V = ∅, that is when there are no vertices. Our guiding principle is that whenever
Mazzeo and Vertman blow up a boundary, we first blow up V and then E . However, our
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The heat kernel on curvilinear polygonal domains… 15

setting is further complicated by the additional blow-ups at the vertices for positive time. To
begin, we consider the original triple space, with the vertices blown up in each factor so that
we have the structure of a manifold with corners:

M3 := �0 × �0 × �0 × [0, 1) × [0, 1) (3.2)

along with the three projections πC , πL , and πR defined by

πC : M3 → �2
0 × R√

(T ′)2+(T ′′)2 , (z, z
′, z′′, T ′, T ′′) → (z, z′′,

√
(T ′)2 + (T ′′)2);

(3.3)

πL : M3 → �2
0 × RT ′ , (z, z′, z′′, T ′, T ′′) → (z, z′, T ′); (3.4)

πR : M3 → �2
0 × RT ′′ , (z, z′, z′′, T ′, T ′′) → (z′, z′′, T ′′). (3.5)

These projections will be used to re-interpret operator composition in terms of pullbacks
and push-forwards. Modulo all the technical details, if we have two operators, one A with
Schwartz kernel KA and the other B with Schwartz kernel KB , the Schwartz kernel KC of
the composition C = A ◦ B is given by

KC = (πC )∗(π∗
L KAπ∗

RKB).

Fortunately, we do not need the full composition formula, just the version in which one of
the operators vanishes to infinite order at td. This is because we use the composition formula
to run a Neumann series argument to construct our heat kernel, and with a good enough
initial parametrix for the heat kernel, the error will vanish to infinite order at td. For this
reason, we will construct a reduced triple heat space M3

rh in order to prove a special case of
the composition formula, the case in which KB has order ∞ at the face td. In this case, KB

is pc on M2
rh .

5

The triple space construction is guided by the following conditions, which are necessary
and sufficient to obtain the composition formula we require:

1. we need the projection πC to lift to a b-fibration �C : M3
rh → M2

rh ;
2. we need the projection πL to lift to a b-map �L : M3

rh → M2
h ;

3. since KB is pc on M2
rh , we need only that the projection πR lift to a b-map �R : M3

rh →
M2

rh .

We therefore recall the definitions of these important “b-notions.”

Definition 3.3 [39, p. 51] Let f : X → Y be a smooth map between manifolds with corners,
X with boundary hypersurfaces M1(X), and Y with boundary hypersurfaces M1(Y ). Then
f is a b-map if for each H ∈ M1(Y ), and boundary defining function ρH

f ∗(ρH ) = 0 or f ∗(ρH ) = a ·
∏

G∈M1(X)

ρ
e f (G,H)

G , 0 < a ∈ C∞(X).

In the latter case, the numbers e f (G, H) are called the boundary exponents of f . In this case,
writing M1(X) = {G j }nj=1 and M1(Y ) = {Hk}mk=1, the exponent matrix is the matrix whose

entries are {e f (G j , Hk)}n,m
j,k=1.

Definition 3.4 [39, p. 53] A b-map is a b-submersion if the b-differential is surjective for all
x ∈ X . For the definition of the b-differential, we refer to [39, pp. 53–54].

5 In general, the operator kernel would be pc on M2
h but not on M2

rh .
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16 M. Nursultanov et al.

Definition 3.5 [39, p. 53] A b-map is b-normal if b f∗, defined as in [39, (7), p. 53] is
surjective.

Definition 3.6 [19, p. 124] A b-map is a b-fibration if f∗, acting on the b-tangent bundle, is
surjective on each fibre, and the image of each boundary hypersurface in X is either Y or
one boundary hypersurface H ⊂ Y . We note that this holds if and only if the b-map is both
b-normal and a b-submersion [39, p. 53].

Definition 3.7 [19, p. 124] A total boundary defining function for X , which we denote ρX , is
the product of boundary defining functions for all the boundary hypersurfaces. We say that
a b-fibration is simple if

f ∗ρY = a · ρX , 0 < a ∈ C∞(X).

In terms of the exponent matrix, this is equivalent to requiring that the elements are either
0 or 1, and moreover for each G ∈ M1(X) there exists precisely one H ∈ M1(Y ) with
e f (G, H) = 1.

To start constructing M3
rh , we begin with (3.2). This space has a number of boundary

hypersurfaces: the T ′′ = 0 face, which we denote FT L , the T ′ = 0 face, which we denote
FT R , and a number of faces of the form E j × �0 × �0 × [0, 1)T ′′ × [0, 1)T ′ , which we call
Fj00, with similar notation for products where E j is in the second or third factor. We also
have a number of faces of the form Ṽ j × �0 × �0 × [0, 1) × [0, 1), which we call FVj00

and collectively FV 00, et cetera. The notation used in the triple space is a bit different from
the single and double spaces, in particular the use of capitals. This is in part to distinguish
the triple space as an artefact to be used for the purpose of composition and in part to draw
a parallel to related constructions in the literature [1, 50] which use an analogous notation.

A few blow-up facts will be useful throughout.

Proposition 3.8 The following are true (each is well-known in the geometric microlocal
literature):

1. Blow-ups which are nested, disjoint, or transverse commute [19, Lemma 2.1].
2. Blow-down maps are b-maps [16, Sect. 2.3.3], [19, Proof of Lemma 2.7]. Moreover, if

Y ⊂ X is an intersection of boundary hypersurfaces of X, then the blow-down map from
[X; Y ] → X is a b-submersion. (This reduces to the case X = R

n+, Y = 0, and then
follows from a computation in local coordinates).

3. The composition of b-maps is a b-map [16, Sect. 2.3.3]. Further, it follows immediately
from the definition that the composition of b-submersions is a b-submersion.

4. Once a b-map is known to be a b-submersion, checking b-normality is a matter of ensur-
ing, by checking the exponent matrix, that no boundary hypersurface is mapped into a
face of codimension > 1 in the image [16, Definition 3.9], [1, Remark B.4].

We will also use the following.

Lemma 3.9 Suppose A, B, C, and D are p-submanifolds of a manifold with corners X, and
suppose that

A ⊆ B ⊆ D, A ⊆ C ⊆ D, and B ∩ C ⊆ A.

Then

[X;C; D; A; B] ∼= [X; A; B;C; D].
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The heat kernel on curvilinear polygonal domains… 17

Proof Nested blow-ups commute, so we may do A before C and D and thus

[X;C; D; A; B] ∼= [X; A;C; D; B].
Similarly, we may do B before D and thus

[X;C; D; A; B] ∼= [X; A;C; B; D].
Now since B∩C ⊆ A, the lifts of B andC are disjoint in the space [X; A], and since disjoint
blow-ups commute they may be done in either order. This completes the proof. ��

Our strategy will be to repeatedly take advantage of the following lemma of Hassell,
Mazzeo, and Melrose [19]:

Lemma 3.10 [19, Lemma 2.5] Suppose f : X → Y is a simple b-fibration of compact
manifolds with corners. Suppose U ⊂ Y is a closed p-submanifold. Then, with S the minimal
collection of p-submanifolds of X into which the lift of U under f decomposes, f extends
from the complement of f −1(U ) to a b-fibration fU : [X , S] → [Y ,U ], for any order of
blow-up of the elements of S.

This lemma guides our construction of the triple space using the construction of the double
space.

3.5 Lifting the projectionmaps

To construct the triple space from M3 we first blow up O = {T ′ = T ′′ = 0}. The spatial
variables are unaffected by this blow-up and so the space

[M3;O] = �3
0 × [[0, 1) × [0, 1); {0, 0}]. (3.6)

Denote the new front face by FO, and as usual continue to denote the T ′′ = 0 face by FT L

and the T ′ = 0 face by FT R . We claim:

Lemma 3.11 The projections πC , πL , and πR lift by continuity to projections �C , �L , and
�R with domain [M3;O] and ranges as in (3.3), (3.4), (3.5). Moreover, �C , �L , and �R

are all b-fibrations. Under �C , the image of FO is the face {T = 0}, and the faces at T ′ = 0
and T ′′ = 0 are mapped into the interior.

Proof This follows immediately from (3.6) and the corresponding statement considering
only the time variables. Specifically, the map

� : [[0, 1)T ′ × [0, 1)T ′′ ; {(0, 0)}] → [0, 1)T , T =
√

(T ′)2 + (T ′′)2

is a b-fibration, where the image of the front face is {T = 0}, and the image of the other two
faces is [0, 1). Now the lifted projection �C is simply � in the time variables and the usual
projection from M3 to M2 in the spatial variables, and thus is itself a b-fibration. Similar
arguments take care of �L and �R , as left and right projection lift to b-fibrations from
[R2+; {0}] to R. ��

We will now make further blow-ups to [M3;O] which allow all three of these maps to be
b-fibrations onto M2

0 . In each we use 3.10. Recalling (3.6), we define submanifolds PVVV ,
PVV 0, PV 0V , et cetera of [M3;O] by restricting to Ṽ (the lift of V ) each of the spatial
variables which have index V rather than 0. For example,

PV 0V = Ṽ × �0 × Ṽ × [[0, 1) × [0, 1); {0, 0}].
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18 M. Nursultanov et al.

Using this notation, the lift of hvff under �C is PV 0V , under �L is PVV 0, and under �R

is P0VV . Then the lifts of hvlf and hvrf may be computed under each map. Application of
Lemma 3.10 shows that

�C : [M3;O;PV 0V ] → M2
0 ,

�L : [M3;O;PVV 0] → M2
0 ,

�R : [M3;O;P0VV ] → M2
0 ,

are each b-fibrations. In fact we can define a common domain: let

M3
0 := [M3;O;PVVV ;PV 0V ;P0VV ;PVV 0].

Denote the new faces created by FVVV , FV 0V , et cetera.

Proposition 3.12 �C , �L , and �R all lift to b-fibrations from M3
0 to M2

0 .

Proof First observe that M3
0 is a blow-up of each of the three domain spaces for �C , �L ,

and �R . Indeed, begin with the domain space for �C and blow up the lift of PVVV . This
blow-up is nested with the blow-up of PV 0V , so it may be done before that. So a blow-up of
the domain space for �C is

[M3;O;PVVV ;PV 0V ].
Now we can blow up the lifts of P0VV and PVV 0, which are disjoint from the lift of PV 0V

and thus can be done in any order. Analogous arguments show that M3
0 is a blow-up of

each of the three domain spaces. Since all our p-submanifolds are intersections of boundary
hypersurfaces, by Proposition 3.8b),�C ,�R , and�L are all b-submersions from M3

0 to M2
0 .

At this point, proving these maps are b-fibrations is simply a matter of checking their
exponent matrices to make sure no boundary hypersurface is mapped into a corner. This
calculation is combinatorial, very similar to the proof of Lemma 3.14 in [33], and as a result
we omit it. ��

Having proven that �C is a b-fibration from M3
0 → M2

0 , we shall now lift �C to be a
b-fibration onto M2

rh . Let OV 0V = FO ∩ {z = z′′ ∈ Ṽ }, with a similar definition for OE0E ,
OVVV ,OEEE , etc. Using Lemma 3.10, we obtain that �C lifts to a b-fibration

�C : [M3
0 ;OV 0V ;OE0E ] → M2

rh .

Call the new faces FOV 0V and FOE0E . We are now in good shape with �C but we need to
do more work in order for �L and �R to be b-maps onto M2

h and M2
rh respectively.

To begin the extra work, we do some more blow-ups which preserve the b-fibration
property of �C . Begin withOVVV , which in M3

0 is FO ∩{z = z′ = z′′ ∈ Ṽ }. Using notation
as before, we claim that

�C : M3
cen := [M3

0 ;OV 0V ;OE0E ;OVVV ;OEEE ] → M2
rh

is a b-fibration. Indeed, this follows from two applications of [19, Lemma 2.7].6 Moreover,
by an application of Lemma 3.9, we have

M3
cen = [M3

0 ;OVVV ;OEEE ;OV 0V ;OE0E ].

6 See in particular the comment after the proof in [19]; in this case �C restricts to a b-fibration fromOVVV
onto ff and also fromOEEE onto sf, which is sufficient.
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Continuing in this vein, let L0VV = FT L ∩ {z′ = z′′ ∈ Ṽ }, with similar notations for L0EE ,
RVV 0, REE0, and let Rdiag = FT L ∩ {z = z′}. Let

M3
rh,c := [M3

cen; RVV 0; REE0; Rdiag; L0VV ; L0EE ].

Denote the five new boundary hypersurfaces by FRVV 0, FREE0, FT RD , FL0VV , and FL0EE .
None of the five new boundary hypersurfaces are mapped into a corner by �C ; their images
are hvrf, ∪ j E j0, the interior, hvlf, and ∪ j E0 j respectively. Thus by the same argument with
[19, Lemma 2.17], �C : M3

rh,c → M2
rh is a b-fibration.

Finally, using similar notation, we define p-submanifoldsOVV 0,OEE0,O0VV ,O0EE , and
OD , which is the interior lift of {t ′ = t ′′ = 0, z = z′} in our new space. Define the reduced
triple heat space

M3
rh := [M3

rh,c;OVV 0;OEE0;O0VV ;O0EE ;OD].

Call the new boundary hypersurfaces FOVV 0, FOEE0, FO0VV , FO0EE , and FOD . It is no
longer true that �C is a b-fibration from M3

rh onto M2
rh , but it is a b-map.

We must also know something about �L and �R :

Proposition 3.13 �L and �R lift by continuity to well-defined b-maps from M3
rh to M2

h and
M2

rh respectively.

Proof It is immediate by composing with the blow-down map that �L and �R lift to well-
defined b-maps from M3

rh to M2
0 . The question is whether they still lift to b-maps when

M2
0 is blown up to create ff, then sf, then (for �L ) td. But this may be checked directly:

computing the pullbacks of the boundary defining functions for the boundary hypersurfaces
of M2

h and M2
rh shows that each is a product of boundary defining functions on M3

rh . The
specific products are given below, in Lemma 3.14 (Fig. 4). ��

3.6 Combinatorics of b-maps

Nowwe come to the key combinatorial lemma for composition. Recall that�L : M3
rh → M2

h
and �R : M3

rh → M2
rh are b-maps and �C : M3

rh,c → M2
rh is a b-fibration.

Lemma 3.14 The exponent matrix entries for the b-maps �L : M3
rh → M2

h , �R : M3
rh →

M2
rh , and �C : M3

rh,c → M2
rh are all zero, except for the following, which are 1:

For �L : (FT R, tf), (FO, tf), (FOVj0Vj , tf), (FOE j0E j , tf), (FO0Vj Vj , tf),

(FO0E j E j , tf), (FT RD, td), (FOD, td), (FOVj Vj Vj , ff j ), (FRVj Vj0, ff j ), (FOVj Vj0, ff j ),

(FOE j E j E j , sf j ), (FRE j E j0, sf j ), (FOE j E j0, sf j ), (FVj VkVl , hvff jk), (FVj Vk0, hvff jk),

(FVj0Vl , hvrf j ), (FVj00, hvrf j ), (FOVj0Vj , hvrf j ),

(F0VkVl , hvlfk), (F0Vk0, hvlfk), (FO0Vj Vj , hvlf j ), (FL0Vj Vj , hvlf j ),

(FOE j0E j , E j0), (Fj00, E j0), (FO0E j E j , E0 j ), (F0 j0, E0 j ), (FL0E j E j , E0 j ), (3.7)
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Fig. 4 The schematic diagram for the construction of the reduced triple space as required here for our com-
position rule. The kernel KA lifts from the double heat space, M2

h , to the triple heat space via pullback by the
projection map�L . The kernel KB vanishes to infinite order at td, so it is pc on the reduced double heat space.
It lifts to the triple heat space via pullback by the projection map �R . On M3

rh the two kernels are composed,

and the result is then pushed forward by the blow-down map to M3
rh,c , followed by the projection map �C to

M2
rh

with FT L , F00 l , and F00Vl mapping to the interior.

For �R : (FT L , tf), (FO, tf), (FOD, tf), (FOVj0Vj , tf), (FOE j0E j , tf),

(FOVj Vj0, tf), (FOE j E j0, tf), (FOVj Vj Vj , ff j ), (FL0Vj Vj , ff j ), (FO0Vj Vj , ff j ),

(FOE j E j E j , sf j ), (FL0E j E j , sf j ), (FO0E j E j , sf j ), (FVj VkVl , hvffkl), (F0VkVl , hvffkl),

(FVj0Vl , hvlfl), (F00Vl , hvlfl), (FOVj0Vj , hvlf j ),

(FVj Vk0, hvrfk), (F0Vk0, hvrfk), (FOVj Vj0, hvrf j ), (FRVj Vj0, hvrf j ),

(FOE j0E j , E0 j ), (F00 j , E0 j ), (FOE j E j0, E j0), (F0 j0, E j0), (FRE j E j0, E j0), (3.8)

with FT R, Fj00, FVj00, and FT RD mapping to the interior.

For �C : (FO, tf), (Fj00, E j0), (FRE j E j0, E j0), (F00 j , E0 j ),

(FL0E j E j , E0 j ), (FOVj Vj Vj , ff j ), (FOVj0Vj , ff j ), (FOE j E j E j , sf j ), (FOE j0E j , sf j ),

(FVj VkVl , hvff jl), (FVj0Vl , hvff jl), (FVj Vk0, hvrf j ), (FVj00, hvrf j ), (FRVj Vj0, hvrf j ),

(F0VkVl , hvlfl), (F00Vl , hvlfl), (FL0VlVl , hvlfl), (3.9)

with FT R, FT L , F0 j0, F0Vj0, and FT RD mapping to the interior.

Proof All of the exponent matrices are computed the same way: by computing pullbacks of
boundary defining functions. Consider, for example, the face ff j of M2

rh . The faces of M
3
rh,c

which are in the preimage of ff j under �C are all of the faces where z = z′′ = Vj and√
(T ′)2 + (T ′′)2 = 0, that is T ′ = T ′′ = 0. These are precisely FOVj Vj Vj and FOVj0Vj , so

those two faces map to ff j , and the corresponding exponent matrix entries are 1. Computing
these pullbacks for each boundary hypersurface of M2

rh yields the desired exponent matrix
for �C . By a similar process we obtain the exponent matrices for �L and �R .
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Note also that the fact that�C is a b-fibration can be observed directly: for each boundary
hypersurface G of M3

rh,c there is at most one boundary hypersurface H of M2
rh such that the

(G, H) exponent matrix entry for �C equals 1. ��

3.7 Densities

Our kernels on the double space are most naturally considered as “full right densities” with
respect to the usual metric on �. For example, the kernels of our operators A and B will be

KA(t ′, z, z′) dt ′ dz′; KB(t ′′, z′, z′′) dt ′′ dz′′, respectively.

Multiplying the two, then integrating over t = t ′ + t ′′ and z′, yields

KA◦B(t, z.z′) dt dz′′.

If we multiply everything in the expressions by dz, we have the full-density form we need
for the pushforward theorem; see [31, Theorems 4 and 5] and [19, Theorem 2.3].

To apply the aforementioned pushforward theorem, we need to transform our natural met-
ric densities into canonical full densities and b-densities on M3

rh,c and M2
rh . Here are the

formulas for those transformations. Throughout, let ν(X) and νb(X) be canonical densities
and b-densities on a manifold with corners X , and let ρtot (X) be a product of boundary defin-
ing functions for all boundary hypersurfaces of X . It is immediate that νb(X) = ρ−1

tot (X)ν(X).

Proposition 3.15 The density bundles transform under blow-ups as follows:

β∗(ν(� × � × [0, 1))) = ρ4
f f ρ

3
s f ρ

3
hv f f ρhvl f ρhvr f ν(M2

rh);
β∗(ν(� × � × � × [0, 1))) = ρOρ7

OVVV ρ6
OEEEρ5

OV 0V ρ4
OE0Eρ5

VVV ρ3
V 0V

· ρ3
0VV ρ3

VV 0ρV 00ρ0V 0ρ00V ρ4
RVV 0ρ

3
REE0ρ

4
L0VV ρ3

L0EEρ2
T RDν(M3

rh,c).

Proof When blowing up a submanifold F of a manifold with cornersW , blow-up introduces
a factor of ρdim(W )−dim(F)−1, equivalently ρcodim(F)−1, with ρ the defining function for the
new (blown-up) face (see Proposition C.5 of [1]). We repeatedly apply this.7

For M2
rh , dim(W ) = 5. The blow-up to produce ff blows up a finite collection of points,

so the codimension is 5 and we acquire a ρ4
ff. The blow-up to produce sf, on the other hand,

requires t ′ = 0, z = z′ ∈ E , so the codimension is 4 and we acquire a ρ3. The blow-up to
produce hvff has codimension 4, and the blow-ups to produce hvlf and hvrf have codimension
2. Putting this all together yields the result.

A similar analysis works for M3
rh,c, being careful about repeated blow-ups. For example,

blowing upO introduces a factor of ρO at first. However, when blowing up a submanifold of
O, ρO itself continues to lift. For example, when creating FOVVV , ρO lifts to ρOρOVVV . ��

Another important observation is that rather than t ′ and t ′′, we are treating their square roots
as the boundary defining functions, so canonical densities have dT ′ and dT ′. For example,

ν(� × � × [0, 1)) = dTdzdz′′,

and recalling that dt = 2TdT ,

KA◦Bdtdzdz′′ = 2T KA◦Bν(� × � × [0, 1)).
7 Note that even though � with the usual metric is not technically a manifold with corners, the same analysis
works to write ν(�) in terms of ν(�0).
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Similarly,

KA(t ′, z, z′)KB(t ′′, z′, z′′)dt ′dt ′′dzdz′dz′′

= 4T ′T ′′KA(t ′, z, z′)KB(t ′′, z′, z′′)ν(� × � × � × [0, 1)2).

3.8 Composition theorem

To define various classes of operator kernels we use notation which is similar but not identical
to [35]. For an index family,

F = (Fff j , Fsf j , Fhvff jk , Fhvrf j , Fhvlf j , Fj0, F0 j , Ftd),

defineAF
h (M2

h ) to be the space of functions on M2
h which are pc with index sets given at the

respective faces by F and which also vanish to infinite order at tf. We also define �F
h as the

set of pseudodifferential operators whose Scheartz kernels, as functions on M2
h , are elements

of AF
h (M2

h ).
We may also use the notation

Aαff j ,αsf j ,αhvff jk ,αhvrf j ,αhvlf j ,α j0,α0 j ,αtd

h

to indicate functions on M2
h which are elements of AF

h for some index family F whose
index set at each face is bounded below by the corresponding α. In other words these are
functions on M2

h which are pc and which have leading order at each face no worse than
the corresponding α (and which furthermore do not have terms of the form xα(log x)p for
p ≥ 1). We also use �

αff j ,αsf j ,αhvff jk ,αhvrf j ,αhvlf j ,α j0,α0 j ,αtd in the analogous way.

Theorem 3.16 Suppose that A is an operator whose Schwartz kernel KA ∈ AFA
h with index

family

FA = (Aff j , Asf j , Ahvff jk , Ahvrf j , Ahvlf j , A0 j , A j0, Atd).

Suppose that B is an operator whose Schwartz kernel KB ∈ AFB
h with index family

FB = (Bff j , Bsf j , Bhvff jk , Bhvrf j , Bhvlf j , B0 j , Bj0, Btd = ∞).

Suppose, finally, that

A0 j + Bj0 > −1, Ahvlf j + Bhvrf j > −2, and Atd > −4. (3.10)

Then the Schwartz kernel of the composition A ◦ B is an element of AF
h , where F has index

sets

Aff j + Bff j + 4 at ff j ,

Asf j + Bsf j + 4 at sf j ,

(∪k(Ahvff jk + Bhvffkl + 2))∪(Ahvrf j + Bhvlf j ) at hvff jl ,

(∪k(Ahvff jk + Bhvrfk + 2))∪(Ahvrf j )∪(Aff j + Bhvrf j + 4) at hvrf j ,

(∪k(Ahvlfk + Bhvffkl + 2))∪(Bhvlfl )∪(Ahvlfl + Bffl + 4) at hvlfl ,

A j0∪(Aj + Bj0 + 4) at E j0,

B0 j∪(A0 j + Bj + 4) at E0 j ,

∞ at td.
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Proof By the pullback theorem (see [39, Theorem 3] or [19, Theorem 2.2]), �∗
L KA is poly-

homogeneous on M3
rh with index sets:

Atd at FT RD and FOD; Aff j at FOVj Vj Vj , FRVj Vj0, and FOVj Vj0;
Asf j at FOE j E j E j , FRE j E j0, and FOE j E j0; Ahvff jk at FVj VkVl and FVj Vk0;
Ahvrf j at FVj0Vl and FVj00; Ahvlfk at F0VkVl , F0Vk0, and FL0VkVk ;
A j0 at Fj00; A0 j at F0 j0 and FL0E j E j ; 0 at FT L , F00l , and F00Vl ; and finally

∞ at FT R, FO, FOVj0Vj , FOE j0E j , FO0Vj Vj , FO0E j E j .

Note in particular that at the four hypersurfaces in the domain mapped to intersections of
two hypersurfaces in the range, the pullback index set is the sum of the index sets at the two
range hypersurfaces. At each of these the sum ends up being infinity. Similarly, �∗

RKB is
polyhomogeneous on M3

rh with index sets

Bff j at FOVj Vj Vj , FL0Vj Vj , and FO0Vj Vj ;
Bsf j at FOE j E j E j , FL0E j E j , and FO0E j E j ;
Bhvffkl at FVj VkVl and F0VkVl ; Bhvlfl at FVj0Vl and F00Vl ;
Bhvrfk at FVj Vk0, F0Vk0, and FRVkVk0; B0 j at F00 j ; Bj0 at F0 j0 and FRE j E j0;
0 at FT R, Fj00, FVj00, and FT RD; and finally

∞ at FT L , FO, FOD, FOVj Vj0, FOVj0Vj , FOE j E j0 and FOE j0E j .

It is also easy enough to compute the pullbacks of T ′ and T ′′; they each have order
1 at each face in the lift of T ′ = 0 and T ′′ = 0 respectively. Therefore the product
4T ′T ′′(�∗

L KA)(�∗
RKB) is polyhomogeneous on M3

rh with index sets

A j0 at Fj00; A0 j + Bj0 at F0 j0; B0 j at F00 j ;
Aff j + Bff j + 2 at FOVj Vj Vj ; Asf j + Bsf j + 2 at FOE j E j E j ;
Ahvff jk + Bhvffkl at FVj VkVl ; Ahvff jk + Bhvrfk at FVj Vk0;
Ahvrf j + Bhvlfl at FVj0Vl ; Ahvlfk + Bhvffkl at F0VkVl ;
Ahvrf j at FVj00; Ahvlfk + Bhvrfk at F0Vk0; Bhvlfl at F00Vl ;
Aff j + Bhvrf j + 1 at FRVj Vj0; Asf j + Bj0 + 1 at FRE j E j0;
Ahvlf j + Bff j + 1 at FL0Vj Vj ; A0 j + Bsf j + 1 at FL0E j E j ;
Atd + 1 at FT RD;
∞ at FT L , FT R, FO, FOD, FOVj Vj0, FOE j E j0, FOVj0Vj ,

FOE j0E j , FO0Vj Vj , and FO0E j E j .

(3.11)

Now we make the observation that on the front faces of each of the five blow-ups needed
to create M3

rh from M3
rh,c, the product (�

∗
L KA)(�∗

RKB) vanishes to infinite order. Applying
Proposition 3.8 five times, we see that 4T ′T ′′(�∗

L KA)(�∗
RKB) is in fact polyhomogeneous

conormal on M3
rh,c with index sets the same as in (3.11), with the exception of deleting the

five extra faces.
We would like to use the pushforward theorem, but first we must view 4T ′T ′′(�∗

L KA)

(�∗
RKB), currently a section of ν(� × � × � × [0, 1)2), as a section of ν(M3

rh,c). By

Proposition 3.15, as a section of ν(M3
rh,c), its orders are:
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A j0 at Fj00; A0 j + Bj0 at F0 j0; B0 j at F00 j ;
Aff j + Bff j + 9 at FOVj Vj Vj ; Asf j + Bsf j + 8 at FOE j E j E j ;
Ahvff jk + Bhvffkl + 5 at FVj VkVl ; Ahvff jk + Bhvrfk + 3 at FVj Vk0;
Ahvrf j + Bhvlfl + 3 at FVj0Vl ; Ahvlfk + Bhvffkl + 3 at F0VkVl ;
Ahvrf j + 1 at FVj00; Ahvlfk + Bhvrfk + 1 at F0Vk0;
Bhvlfl + 1 at F00Vl ; Aff j + Bhvrf j + 5 at FRVj Vj0;
Asf j + Bj0 + 4 at FRE j E j0; Ahvlf j + Bff j + 5 at FL0Vj Vj ;
A0 j + Bsf j + 4 at FL0E j E j ; Atd + 3 at FT RD;
and ∞ at FT L , FT R, FO, FOVj0Vj , and FO0E j E j .

(3.12)

Now we apply the pushforward theorem and push forward by �C . There is a condition
in the pushforward theorem, see [[19], Theorem 2.3] or [33]: any face which is mapped to
the interior must have index set greater than − 1 (or, equivalently, 0 as a b-density). This,
however, is guaranteed by (3.10). By the pushforward theorem, (�C )∗((�∗

L KA)(�∗
RKB))

is polyhomogeneous on M2
rh with index sets given as a section of ν(M2

rh) by

Aff j + Bff j + 9 at ff j ; Asf j + Bsf j + 8 at sf j ; ∞ at tf;
(∪k(Ahvff jk + Bhvffkl + 5))∪(Ahvrf j + Bhvlf j + 3) at hvff jl;
(∪k(Ahvff jk + Bhvrfk + 3))∪(Ahvrf j + 1)∪(Aff j + Bhvrf j + 5) at hvrf j ;
(∪k(Ahvlfk + Bhvffkl + 3))∪(Bhvlfl + 1)∪(Ahvlfl + Bffl + 5) at hvlfl;
A j0∪(Asf j + Bj0 + 4) at E j0; B0 j∪(A0 j + Bsf j + 4) at E0 j .

Finally, we use Proposition 3.15 to go back from sections of ν(M2
rh) to sections of ν(�×

� × [0, 1)), then divide by 2T to go back to dtdzdz′′. The index sets of the composition are
thus

Aff j + Bff j + 4 at ff j ; Asf j + Bsf j + 4 at sf j ; ∞ at tf and td;
(∪k(Ahvff jk + Bhvffkl + 2))∪(Ahvrf j + Bhvlf j ) at hvff jl;
(∪k(Ahvff jk + Bhvrfk + 2))∪(Ahvrf j )∪(Aff j + Bhvrf j + 4) at hvrf j ;
(∪k(Ahvlfk + Bhvffkl + 2))∪(Bhvlfl )∪(Ahvlfl + Bffl + 4) at hvlfl;
A j0∪(Asf j + Bj0 + 4) at E j0; B0 j∪(A0 j + Bsf j + 4) at E0 j .

��
Remark 3.17 It is instructive to compare our composition formula to that ofMazzeo–Vertman
[35, Theorem 5.3]. Indeed, the two settings coincide in the special case of a surface with
boundary and no vertices. Our faces ff, hvff, hvrf, and hvlf do not exist in that case.Moreover,
in the notation of Mazzeo–Vertman, � = Asf j + 4 and �′ = Bsf j + 4 (see Definition 3.1, and
note that the dimension of the base b = 1), so our calculations are in agreement.

4 The heat kernel on a surface with boundary

In this section wewill build the heat kernel for a surface with smooth boundary in the absence
of conical singularities. This construction has been performed in the Neumann and Dirichlet
settings by Grieser [16]; the Robin case we give here is new. The work we do here shall
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Fig. 5 The model heat kernels (abbreviated hk) and the boundary faces which intersect are given above. Note
that the heat kernel for the half plane is taken with the corresponding boundary condition: Dirichlet, Neumann,
or Robin

be used in the later construction of the heat kernel for a surface with corners. We follow
the usual geometric microlocal strategy. Namely, we specify models at various boundary
hypersurfaces to which {T = 0} lifts in the heat space, then look for a pc function which has
those models as its leading order behavior at each boundary hypersurface. In order for this
method to work the models must be compatible with each other at the surfaces where they
intersect, in the sense that their restrictions to the intersection must be identical, as otherwise
no pc function with the specified leading order behavior can exist.

This setting is a special case of the setting of surfaces with corners, and as such the double
heat space will be a special case of the space M2

h constructed in the previous section. Many
of the blow-ups are now trivial; in this setting, we need just two blowups, the first of which
is

[� × � × [0,∞); {(z, z, 0) : z ∈ ∂�}].
The new boundary face is sf, and in the absence of corners, the resulting space is the reduced
heat space M2

rh . To complete the construction, we perform one more blowup,

[M2
rh; {(z, z, 0) : z ∈ �}] = M2

h .

The resulting blown-up face is td. Thus, the heat space for a surface with smooth boundary
has boundary faces sf, td, tf, as well as the two side faces E10 and E01, which are the lifts of
∂� × � × [0,∞) and � × ∂� × [0,∞), respectively. The boundary hypersurfaces which
comprise the lift of {T = 0} to M2

h are therefore sf, td, and tf (Fig. 5).

4.1 Heat kernels on the half-plane

Let (x, y) be the usual Cartesian coordinates on R2, and consider the half-space

R
2+ := {(x, y) ∈ R

2 : y ≥ 0}. (4.1)

The heat kernel on all of R2 is

HR2(t, x, y, x ′, y′) := 1

4π t
exp

[
− (x − x ′)2 + (y − y′)2

4t

]
. (4.2)

4.1.1 The Neumann and Dirichlet heat kernels

By the method of images, the Neumann heat kernel on R2+ is

HR2(t, x, y, x ′, y′) + HR2(t, x, y, x ′,−y′)

= 1

4π t
exp

[
− (x − x ′)2

4t

](
exp

[
− (y − y′)2

4t

]
+ exp

[−(y + y′)2

4t

])
.

(4.3)
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The first term above is known as the direct term, whereas the second term is known as the
reflected term or image term. We examine the behavior of this Neumann heat kernel on the
double heat space M2

h , albeit in the simpler setting where there are no corners. Although we
will not prove that this heat kernel is pc on the double space in this section (it is a consequence
of later work), we will use our examination to determine the appropriate pc models in the
next section.

To examine the model heat kernels for the half-space, let us examine the blow-ups in local
coordinates. To get M2

h , we first blow up

{T = y = y′ = 0; x = x ′},
then blow up the lift of the diagonal at T = 0:

{T = 0; y = y′; x = x ′}.
After the first blow-up, coordinates near the interior of the new face sf, away from the
intersection with {T = 0} (where the second blow-up takes place), are given by

X := x − x ′

T
; ξ := y

T
; ξ ′ = y′

T
; x ′; and T . (4.4)

In these coordinates, the expression (4.3) becomes

T−2 1

4π
exp

[
−1

4
X2

](
exp

[
−1

4
(ξ − ξ ′)2

]
+ exp

[
−1

4
(ξ + ξ ′)2

])
. (4.5)

To encode this, we write

H−2,sf,N := 1

4π
exp

[
−1

4
X2

](
exp

[
−1

4
(ξ − ξ ′)2

]
+ exp

[
−1

4
(ξ + ξ ′)2

])
(4.6)

and say that H−2,sf,N , which we view as a function on sf, is the leading order model of the
Neumann heat kernel at the face sf, appearing at order T−2. What this means is that the
Neumann heat kernel, in a coordinate patch near the interior of sf, is given at least to leading
order (in this case, exactly) by

T−2H−2,sf,N .

After the second blow-up, coordinates near the interior of the new face td, away from
y = 0, are given by

X = x − x ′

T
; Y := y − y′

T
; x ′; y′; and T . (4.7)

Consider (4.3) in these coordinates. Away from y = 0 the image term is O(T∞), and so
(4.3) becomes

T−2 1

4π
exp

[
−1

4
X2

]
exp

[
−1

4
Y 2

]
+ O(T∞). (4.8)

So we may similarly define

H−2,td := 1

4π
exp

[
−1

4
X2

]
exp

[
−1

4
Y 2

]
, (4.9)

where we have omitted the N since the model will be the same for all boundary conditions.
The leading order of the Neumann heat kernel at td is given by

T−2H−2,td.
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To check for compatibility, we show that our model for the Neumann heat kernel on R
2+

is compatible with the model we have defined at td. Specifically, we want

H−2,sf,N |sf∩td = H−2,td|sf∩td.
The coordinate patches we have described to this point are not necessarily valid systems of
coordinates near the intersection sf∩td. However, it is easy enough to show that

η := T

y′ = 1

ξ ′ ; X; Y ; x ′; y′ (4.10)

are valid coordinates in a neighborhood of this intersection, away from tf. In this new coor-
dinate patch,

y = YT + y′, so ξ = Y + 1

η
, so ξ + ξ ′ = Y + 2

η
,

and we get

H−2,sf,N = 1

4π
exp

[
−1

4
X2

] (
exp

[
−1

4
Y 2

]
+ exp

[
−1

4
(Y + 2

η
)2

])
;

H−2,td = 1

4π
exp

[
−1

4
X2

]
exp

[
−1

4
Y 2

]
.

Restricting to sf∩td means letting η → 0 in the first term, which corresponds to approaching
sf∩td from the interior of sf, and letting y′ → 0 in the second term, which corresponds to
approaching sf∩td from the interior of td. We see immediately that the second exponential in
H−2,sf,N tends to zerowhen η tends to zero, and H−2,td is independent of y′, so the restrictions
are well-defined and they match. This proves compatibility of H−2,sf,N and H−2,td.

An identical analysis works for the Dirichlet heat kernel; the only difference is the sign
of the image term. So we write

H−2,sf,D

:= 1

4π
exp

[
−1

4
X2

] (
exp

[
−1

4
(ξ − ξ ′)2

]
− exp

[
−1

4
(ξ + ξ ′)2

])
, (4.11)

and just as before, H−2,sf,D is compatible with H−2,td.
Note that the models H−2,sf,N and H−2,sf,D themselves satisfy Neumann or Dirichlet

boundary conditions, respectively. In particular, looking at the expansion ofH−2,sf,N in ξ at
{ξ = 0} (i.e. y = 0), we observe that there is a complete Taylor expansion with no first-order
term. If we take ∂

∂ξ
H−2,sf,N and restrict to {ξ = 0}, we get zero. Similarly, H−2,sf,D has a

Taylor expansion with no zeroth-order term; that is, its restriction to {ξ = 0} is zero.
It is also useful to consider the heat operator, lifted from the left (that is, acting in the

unprimed coordinates):

L := ∂t − ∂xx − ∂yy = 1

2T
∂T − ∂xx − ∂yy .

This operator lifts under the blow-down maps to an operator on the double heat space, which
we also call L, abusing notation. The lift of the operator tL = T 2L is more useful, because
T 2L lifts to the double heat space to be a b-operator, except in a neighborhood of E10, where
it is merely smooth. In particular ρ2

E10
T 2L is a b-operator. Therefore T 2L (1) preserves

polyhomogeneity and (2) preserves infinite order vanishing at tf. These two facts shall be
useful.
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The operator T 2L can be analyzed in the coordinate systems (4.4), (4.7), and (4.10). In
the coordinates (4.4) we have by a chain rule calculation:

T 2L = 1

2
T ∂T − ∂XX − 1

2
X∂X − ∂ξξ − 1

2
ξ∂ξ − 1

2
ξ ′∂ξ ′ . (4.12)

In the coordinates (4.7), we have

T 2L = 1

2
T ∂T − ∂XX − 1

2
X∂X − ∂YY − 1

2
Y ∂Y . (4.13)

Finally, in the coordinates (4.10), we get

T 2L = 1

2
η∂η − ∂XX − 1

2
X∂X − ∂YY − 1

2
Y ∂Y . (4.14)

The point of all of this is to show that our leading order models solve model problems at
their designated boundary hypersurfaces. Specifically, since the heat kernel solves the heat
equation, we must have

β∗(T 2L)β∗(T−2H−2,td)
∣∣
td = β∗(T 2L)β∗(T−2H−2,sf,N )

∣∣
sf

= β∗(T 2L)β∗(T−2H−2,sf,D)
∣∣
sf = 0. (4.15)

Observe additionally that when lifting to the double heat space, in the coordinate systems
near these boundary faces, the three factors of H are independent of the T coordinate.
Consequently,

1

2
T ∂T (T−2H) = −T−2H,

and so

(T 2L − Id)|sfH−2,sf,N = (T 2L − Id)|sfH−2,sf,D

= (T 2L − Id)|tdH−2,td = 0. (4.16)

Remark 4.1 The Neumann and Dirichlet heat kernels for a half-space are indeed pc on M2
h .

This can be seen directly in local coordinates, and alternately follows from a reflection
argument similar to the proof of Lemma 5.1.

4.1.2 The Robin heat kernel

Now we consider the heat kernel on R
2+ with a Robin boundary condition, namely

∂u(x, y)

∂ y

∣∣∣∣
y=0

= κu(x, 0), for some constant κ > 0. (4.17)

We recall that this condition is for the inward pointing normal derivative. The explicit expres-
sion for this heat kernel is known [5]. It is

H
R
2+,Robin := H

R
2+,Neumann + Hcorr ,

where

Hcorr (t, x, y, x
′, y′) := −κeκ(y+y′)eκ2t

√
4π t

exp

[
− 1

4t
(x − x ′)2

]
erfc

(
y + y′
√
4t

+ κ
√
t

)
.
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Recall that the complementary error function is smooth in z, bounded by 1 for z ≥ 0, and
decaying to infinite order as z → ∞:

erfc(z) = 1 − erf(z) = 2√
π

∫ ∞

z
e−s2ds.

Let us examine the behavior of Hcorr in the coordinate systems (4.4) and (4.10). In (4.4):

Hcorr = −T−1 κeκT (ξ+ξ ′)eκ2T 2

2
√

π
exp

[
−1

4
X2

]
erfc

(
1

2
(ξ + ξ ′) + κT

)
.

The restriction of T Hcorr to sf, that is to T = 0, is well-defined. Based on our previous
notation, we give it a name:

H−1,sf,R := − κ

2
√

π
exp

[
−1

4
X2

]
erfc

(
1

2
(ξ + ξ ′)

)
. (4.18)

On the other hand, in the coordinate system (4.10) that is valid near the intersection of sf and
td, we have

Hcorr = −T−1 κeκ y′(ηY+2)eκ2η2(y′)2

2
√

π
exp

[
−1

4
X2

]
erfc

(
1

2
Y + 1

η
+ κηy′

)
.

We approach td∩sf from the interior of sf by letting η → 0. As this happens, the erfc function
decays to infinite order due to the 1/η term in its argument, and we see that Hcorr vanishes
to infinite order at td∩sf. Thus H−1,sf,R vanishes to infinite order at td, and so adding Hcorr

to the Neumann heat kernel does not disrupt compatibility at td∩sf.
The Robin correction term also solves a model problem at sf. The model problem in this

case is slightly different, because H has a factor of T−1 rather than T−2. Consequently,

1

2
T ∂T (T−1H) = −1

2
T−1H,

so here our model problem is (
tL − 1

2
Id

)∣∣∣∣
sf
H−1,sf,R = 0. (4.19)

For the sake of completeness we include this calculation. First, we compute (dropping the
subscripts for notational simplicity)

∂XH = κX

4
√

π
e−X2/4 erfc

(
ξ + ξ ′

2

)
�⇒ − X

2
∂XH = X2

4
H.

Similarly we compute

∂XXH = κ

4
√

π
e−X2/4 erfc

(
ξ + ξ ′

2

)
− κX2

8
√

π
e−X2/4 erfc

(
ξ + ξ ′

2

)
,

thus

−∂XXH = 1

2
H − X2

4
H, − X

2
∂XH − ∂XXH = 1

2
H.

Noting that erfc′(z) = −e−z2 , we also compute

∂ξH = κ

4
√

π
e−X2/4e−(ξ+ξ ′)2/4, −ξ

2
∂ξH = −ξκ

8
√

π
e−X2/4e−(ξ+ξ ′)2/4.
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By the symmetry in ξ and ξ ′, we also have

−ξ ′

2
∂ξ ′H = −ξ ′κ

8
√

π
e−X2/4e−(ξ+ξ ′)2/4.

Finally, we compute

∂ξξH = −κ(ξ + ξ ′)
8
√

π
e−X2/4e−(ξ+ξ ′)2/4, −∂ξξH = κ(ξ + ξ ′)

8
√

π
e−X2/4e−(ξ+ξ ′)2/4.

In total, we therefore have

T 2LH = 1

2
H + −ξκ

8
√

π
e−X2/4e−(ξ+ξ ′)2/4 + −ξ ′κ

8
√

π
e−X2/4e−(ξ+ξ ′)2/4

+ κ(ξ + ξ ′)
8
√

π
e−X2/4e−(ξ+ξ ′)2/4 = 1

2
H,

verifying (4.19).
The upshot of all of this is that the Robin heat kernel on a half-space may be seen as a

correction of the Neumann heat kernel, where the correction is lower order in the sense that
it appears in the asymptotic behavior half an order below the leading order in the asymptotic
regime corresponding to sf, namely at T−1 rather than T−2. The correction also vanishes
to infinite order at the T = 0 diagonal in the interior, indicating that it has no effect on the
interior heat asymptotics. So the Robin heat kernel on a half space has:

• Leading order behavior at td of order T−2 given byH−2,td, in particular the same as the
Neumann and Dirichlet heat kernels;

• Leading order behavior at sf of order T−2 given by H−2,sf,N , in particular the same as
the Neumann heat kernel; and

• Additional sub-leading order behavior at sf of order T−1 given by H−1,sf,R (and some
subsequent terms at higher powers of T ). However, there is no additional sub-leading
order behavior at td.

4.2 Construction of the heat kernel on a surface with boundary

We are now poised to construct the Dirichlet, Neumann, and Robin heat kernels on a surface
with boundary, prove they are pc on the double heat space, and identify their leading order
terms in their pc expansion. Our construction is inspired by [35], [16] and indeed has already
been done in [35] for Dirichlet boundary conditions (which are the Friedrichs extension for a
cone-edge structure with one-dimensional edge and zero-dimensional link). These references
were both largely inspired and guided by [40].

We use the same double space M2
h that we have been using, which in the boundary-only

case for surfaces is the same as the double space of [35], with a one-dimensional edge and a
zero-dimensional cone link. Note that the faces have the same names, with the exception of
our E10 which corresponds to rf in [35] and our E01 which corresponds to lf. Our composition
formula, Theorem 3.16, agrees with that of [35] as well.

Throughout, wewill use boundary normal coordinates (x, y) on our surfacewith boundary
�. In these coordinates, the boundary is defined by y = 0. The Riemannian metric in these
boundary normal coordinates near the boundary takes the form

g(x, y)dx2 + dy2,
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with g(0, y) = 1, and g(x, y) smooth in x and y. The Laplacian has the following expression:

� := −∂xx − ∂yy + a1(x, y)∂xx + a2(x, y)∂x + a3(x, y)∂y,

where a1, a2, and a3 are smooth, with a1(x, 0) = 0 and a2(x, 0) = 0. In the interior, we
let z be a local coordinate patch on M ; then let Z = (z − z′)/T and use (T , Z , z′) near the
interior of td.

4.2.1 The Dirichlet and Neumann heat kernels

Since the heat space here only has boundary faces td, sf, tf, and the side faces, for an index
family F = (Ftd, Fsf, FE10, FE01), define AF

h to be the space of kernels in AF
h (�2

h), as
functions of (T , z, z′), which vanish to infinite order at tf. Similarly, we define �a,b,c,d to
be the set of operators whose kernels are in AF

h for some index family F which has leading
orders a, b, c, d , at the corresponding faces.

Let us beginwith theNeumannheat kernel.We follow [35].We construct first a parametrix:

Proposition 4.2 There exists an element of �−2,−2,0,0 whose Schwartz kernel H (1) satisfies
Neumann boundary conditions in the left (unprimed) variable, whose limit as T → 0 is
δ(z − z′), and with

T 2LH (1) ∈ A∞,−1,0,0
h .

Proof The idea is to solve our model problems to infinite order at td and first order at sf, and
to do so in a way that satisfies Neumann boundary conditions.

In the interior of td, we use the ansatz

H (1)(T , Z , z′) ∼
∞∑
j=0

T−2+ jH−2+ j,td(Z , z′). (4.20)

As in [35], we formally apply tL to this expansion and set the result equal to zero. We can
solve, inductively, for each coefficient function H−2+ j,td . For example, the equation for
j = 0 is

−T−2H−2,td − T−2
(

∂Z Z + 1

2
Z∂Z

)
H−2,td = 0.

By direct computation (4.16) letting H−2,td be the expression (4.9), namely

H−2,td(Z , z′) = 1

4π
e− 1

4 Z
2
,

it solves this equation for j = 0. For the higher order terms,we have to expand T 2L in a power
series in T , and more terms than just its restriction to td will be involved. Nevertheless, one
may show inductively that there exist terms H−2+ j,td(Z , z′) for all j that satisfy the formal
ansatz. These terms each decay rapidly in Z . Since � is a subset of a smooth manifold M
and this construction is uniform over the interior of M , all terms H−2+ j,td are smooth up
to sf∩td. The result also satisfies the delta function initial condition. We omit the details, as
they may be found in [35, 40], as well as other references.

We verified in Sect. 4.1.1 thatH−2,sf,N , defined in (4.6), is compatible withH−2,td, so it is
possible to choose an element of �−2,−2,0,0 whose kernel H (1) simultaneously has leading
order T−2H−2,sf,N at sf and has full expansion (4.20) at td, which vanishes to infinite order
at tf, and which is smooth down to E10 and E01. In fact it is also possible to choose H (1) to
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satisfy Neumann boundary conditions. To see this, examine the expansion ofH−2,sf,N as we
approach E10 and E01. Boundary defining functions for those faces are ξ and ξ ′ respectively.
Indeed, (4.6) is smooth in ξ and ξ ′, and it has no order 1 term at ξ = 0 or ξ ′ = 0. We may
thus choose H (1) so that there is no term of order 1 in its expansions at E10 and E01. This
H (1) satisfies Neumann boundary conditions, as claimed.

It remains to show that

T 2LH (1) ∈ A∞,−1,0,0
h .

First we have to show that T 2LH (1) is polyhomogeneous. However, the operator T 2L lifts
to one which is tangent to all boundary hypersurfaces except for E10, and at E10 it may be
written as ρ−2

E10
times such an operator. Since such operators preserve polyhomogeneity and

also preserve the infinite order vanishing at tf, the polyhomogeneity follows.
Now we compute the leading orders. Since H (1) has the full expansion (4.20), which is

annihilated by tL, we see that T 2LH (1) has order ∞ at td.
At sf, we claim that the model problem is the same as for a half-space. We have solved the

model problem for a half-space to first order, so we get an improvement of one order, from
−2 to − 1. To see this, compute tL in the coordinates (4.4). We get

T 2L = 1

2
T ∂T − ∂XX − 1

2
X∂X − ∂ξξ − 1

2
ξ∂ξ − 1

2
ξ ′∂ξ ′

+a1(XT + x ′, ξT )∂XX + Ta2(XT + x ′, ξT )∂X + Ta3(XT + x ′, ξT )∂ξ .

(4.21)

We apply T 2L to our pc expansion at sf, namely

T−2H−2,sf,N + T−1H−1,sf,N + . . . .

Since T 2L is tangent to sf, the leading order of the result will be at worst −2. We claim it
is actually − 1. Indeed, as with the half-space, the application of the first six terms in (4.21)
to T−2H−2,sf,N yields zero by (4.16). Moreover, applying T 2L to only the terms with order
T−1 or higher yields something of order at most − 1. So the only possible term of order −2
in the expansion of tLH (1) at sf comes from

T−2(a1(XT + x ′, ξT )∂XX + Ta2(XT + x ′, ξT )∂X

+ Ta3(XT + x ′, ξT )∂ξ )H−2,sf,N .

However, the coefficients of the last two terms vanish at sf to first order in T , and since
a1(x ′, 0) = 0 identically, so does the coefficient of the first term. In otherwords, the Laplacian
in boundary normal coordinates is the same as that for a half-space up to terms which are
lower order at sf. Thus tLH (1) has order − 1 at sf, as desired.

At E01, T 2L is tangent to E01, so the leading order remains unchanged at 0. Finally, at
E10, at any point in the interior of E10, we can use the coordinates (T , x, y, x ′, y′), in which
y is the defining function for E10. So H (1) has a smooth expansion in y down to y = 0, with
smooth dependence on all other variables. Applying T 2L would usually turn a term of order
yγ into a term of order yγ−2, but since H (1) has a smooth expansion, it stays smooth. So the
leading order of T 2LH (1) at E10 is 0, completing the proof. ��

As in [35], this can be improved at E10, the analogue of rf:

123



The heat kernel on curvilinear polygonal domains… 33

Proposition 4.3 There exists an element H (2) ∈ A−2,−2,0,0
h which satisfies Neumann bound-

ary conditions in the left variable, with

lim
t→0

H (2) = δ(z − z′) and T 2LH (2) ∈ A∞,−1,∞,0
h .

Proof This is a standard argument, as in [33, p. 32] and [35]. We use the fact that T 2L
is elliptic in the y-direction to iteratively solve away the Taylor expansion of T 2LH (1) at
E10. To be concrete, let A2 be a pc kernel on �2

h , smooth at E10, whose expansion in any
coordinate neighborhood (t, x, y, x ′, y′) is

1

2
y2

(
LH (1)

)
(t, x, 0, x ′, y′) + O(y3).

Then (T 2L)A2 is pc as well, and its leading order term at E10 is(
T 2LH (1)

)
(t, x, 0, x ′, y′).

Furthermore, using the coordinates (4.4) it is straightforward to see that A2 may be chosen
to be pc down to sf and have the same order as y2LH (1) at sf, namely 2 − 2 = 0. So if we
consider H (1) − A2, then (T 2L)(H (1) − A2) is pc and vanishes to first order, rather than
zeroth order, at E10. Moreover H (1) − A2 still satisfies Neumann boundary conditions.

This constructionmaynowbe iterated to produce A3, A4, et cetera, so that H (1)−∑k
j=2 A j

vanishes to order k − 1 at E10. The A j may be summed, and then setting

H (2) = H (1) −
∞∑
j=2

A j

gives us the result. Note that since each A j has order − 1 or better at sf (LH (1) has order −3
there, but y2 has order 2), the leading order term of H (2) at sf is still H−2,sf,N . ��

Now, as in [35], let P(2) = (tL)H (2). Then, as a kernel,

LH (2) = 1

T 2 P
(2) ∈ A∞,−3,∞,0

h .

Kernels on �2
h may be naturally identified as convolution operators on [0,∞) × �, acting

in the usual way. In this sense, as in [40, (7.67)] we have

LH (2) = Id−
(

− 1

T 2 P
(2)

)
. (4.22)

To see this for any g ∈ C∞([0,∞) × �), we have

LH (2) ∗ g(t) = (∂t + �)

∫ t

0
[H (2)g](s)(t − s) ds.

By the fundamental theorem of calculus and the definition of P(2), this becomes

[H (2)g(t)](0) +
∫ t

0

[
1

s
[P(2)g](s)

]
(t − s) ds.

Since [H (2)g(t)](0) = g(0) by the delta function initial condition, we have (4.22).
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To invert the right-hand side of (4.22), we use the Neumann series(
Id+ 1

T 2 P
(2)

)−1

= Id−
∞∑
j=1

(
− 1

T 2 P
(2)

) j

=: Id+P(3).

By our composition Theorem 3.16, since −T−2P(2) ∈ A∞,−3,∞,0
h , we obtain that for each

j , (
− 1

T 2 P
(2)

) j

∈ A∞,−4+ j,∞,0
h .

This series may therefore be asymptotically summed, and we obtain that P(3) ∈ A∞,−3,∞,0
h .

In fact this asymptotic sum is a legitimately convergent sum. This is asserted in [35] in the
edge case and proven in [40, p. 270] for compact manifolds; the same applies here as well.

Finally, set

H (3) = H (2)
(
Id+P(3)

)
.

By the definition of convolution, the Neumann boundary conditions, being satisfied by H (2),
are also satisfied by H (3). Since H (2) ∈ A−2,−2,0,0

h and P(3) ∈ A∞,−3,∞,0
h , our composition

Theorem 3.16 tells us that

H (3) ∈ A−2,−2,0,0
h + A∞,−1,0,0

h .

Since LH (3) = Id, H (3) satisfies the delta function initial condition. By uniqueness for the
Neumann heat kernel on a manifold with boundary, H (3) must therefore be the true heat
kernel.

Theorem 4.4 The Neumann heat kernel on� is pc on�2
h, and is an element ofA−2,−2,0,0

h . Its
expansion at td is given by (4.20), and its leading term at sf is given byH−2,sf,N . Moreover it
is smooth down to both E j0 and E0 j , and its expansion at sf is T−2 times a smooth expansion.

Proof The heat kernel is smooth down to E j0 because H (2) is smooth by construction, and
the composition theorem implies H (3) is smooth. The required statement at sf follows from
the same logic. Finally, it is smooth down to E0 j because it is symmetric. For the leading term
statements, the leading terms of H (2) have the claimed properties, and H (2)P(3) vanishes
rapidly at td and is lower order than H (2) at sf. This completes the proof. ��

An analogous theorem, proved in an identical fashion, holds for the Dirichlet heat kernel.
Since the Dirichlet boundary condition is the Friedrichs extension for a one-dimensional
cone, this is in fact a special case of [35]. Note that the Dirichlet boundary condition implies
that the heat kernel vanishes to first order at E10 and E01:

Theorem 4.5 [35]TheDirichlet heat kernel on� is pc on�2
h, and is an element ofA−2,−2,1,1

h .
Its expansion at td is given by (4.20), and its leading term at sf is given byH−2,sf,D. Moreover
it is smooth down to both E j0 and E0 j , and is T−2 times a smooth expansion at sf.

4.2.2 The Robin heat kernel

Wenow construct the Robin heat kernel on� as a correction, or perturbation, of the Neumann
heat kernel on�. To distinguish it, let HNeumann(t, z, z′) be the Neumann heat kernel, which
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is pc on �2
h by the previous section. Our Robin boundary condition is

∂u(x, y)

∂ y

∣∣∣∣
y=0

= κ(x)u(x, 0).

Our model will be the Robin heat kernel for a half-space with constant κ . With that in
mind, define

H (0)
Robin := HNeumann − κ(XT + x ′)

2
√

πT
exp

[
−1

4
X2

]
erfc

(
1

2
(ξ + ξ ′)

)
.

The distinction here is that now κ depends on the variable x , which can be expressed in terms
of the coordinates X , T , and x ′ as x = XT + x ′.

Both terms are pc. The first term is an element of A−2,−2,0,0
h and the second term is an

element of A∞,−1,0,0
h . Now we compute, using erfc′(s) = −2e−s2/

√
π , that(

∂

∂ y
− κ

)
H (0)

Robin

∣∣∣∣
y=0

= 1

T

∂

∂ξ

∣∣∣∣
ξ=0

(
−κ(XT + x ′)

2
√

πT
exp

[
−1

4
X2

]
erfc

(
1

2
(ξ + ξ ′)

))

−κH (0)
Robin

∣∣∣
y=0

= κ(XT + x ′)
2πT 2 exp

[
−1

4
X2

]
exp

[
−1

4
ξ ′2

]
− κ(XT + x ′) HNeumann |y=0

+ (κ(XT + x ′))2

2
√

πT
exp

[
−1

4
X2

]
erfc

(
1

2
ξ ′

)
.

(4.23)

Let this right-hand side be c(T , X , x ′, ξ ′). To put it politely, this is not zero. We correct this
defect by defining

H (1)
Robin := H (0)

Robin − ye−(y/T )2c(T , X , x ′, ξ ′).

This fixes the Robin defect: the derivative in y at y = 0 of the second term above is precisely
−c(T , X , x ′, ξ ′), and κ times this term is zero at y = 0, so we have(

∂

∂ y
− κ(x)

)
H (1)

Robin

∣∣∣∣
y=0

= 0.

Lemma 4.6 The function H (1)
Robin is an element of A−2,−2,0,0

h , satisfying Robin boundary
conditions in the left variable. At td, it has the same expansion as HNeumann. At sf, the first
two terms of its asymptotic expansion are the first two terms for HNeumann plus T−1H−1,sf,R,
where

H−1,sf,R := −κ(x ′)
2
√

π
exp

[
−1

4
X2

]
erfc

(
1

2
(ξ + ξ ′)

)
.

(Comparing to (4.18), the only change is that κ is now a function of x ′ rather than a constant.)
Furthermore,

tLH (1)
Robin ∈ A∞,0,0,0

h .
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Remark 4.7 Note that H (1)
Robin is a slightly better parametrix than H (1) was for the Neumann

and Dirichlet problems. This is because we have solved the model problem to two orders at
sf, rather than just to first order. This is necessary because we want to identify the sub-leading
term of the true Robin heat kernel at sf.

Proof We just showed H (1) does satisfy the Robin boundary condition. Now we claim it is
pc. At first it appears there are problems with the second term at y = T = 0 away from
the diagonal, and that we might need to blow up the intersection of E10 and tf. However, at
this intersection, c(T , X , x ′, ξ ′) decays rapidly, so in fact H (1)

Robin is already pc. It decays to
infinite order at tf because both terms in its definition do. We also have

H (1)
Robin − HNeumann = − ye−(y/T )2c(T , X , x ′, ξ ′)

− κ(XT + x ′)
2
√

πT
exp

[
−1

4
X2

]
erfc

(
1

2
(ξ + ξ ′)

)
.

It is immediate that the leading order of the second term at sf is in fact T−1H−1,sf,R , and
that the second term vanishes to infinite order at td and is smooth up to all other boundary
hypersurfaces. We claim that

ye−(y/T )2c(T , X , x ′, ξ ′) ∈ A∞,0,0,0
h , (4.24)

which immediately implies the statements concerning the asymptotic expansions of H (1)
Robin

at td and sf.
To prove (4.24), we need to check decay. The statements at E10 and E01 are obvious,

and the presence of ye−(y/T )2 implies the requisite infinite-order decay at td. The trickier
face is sf. Since y decays to first order at sf, and e−(y/T )2 is smooth, we need to examine
c(T , X , x ′, ξ ′) and show it has order at worst − 1. The third term in (4.23) is already order
−1. However, the first and second terms have order −2, but we shall compute that their
difference has order − 1. As T → 0, because HNeumann is polyhomogeneous, its restriction
to y = 0 has an expansion at sf, and the leading term is (4.6), so

HNeumann |y=0 = 1

T 2H−2,sf,N

∣∣∣∣
ξ=0

+ O

(
1

T

)

= 1

2πT 2 exp

[
−1

4
X2

]
exp

[
−1

4
(ξ ′)2

]
+ O

(
1

T

)
.

Examining (4.23), this T−2 term here cancels the first T−2 term, and thus c(T , X , x ′, ξ ′) is
O( 1

T ) at sf. Therefore the order of ye−(y/T )2c(T , X , x ′, ξ ′) is at worst 1 + (−1) = 0 at sf,
proving the claim (4.24).

Now consider (tL)H (1)
Robin . Since LHNeumann = 0 because it is the heat kernel, we have

(tL)H (1)
Robin = (tL)(H (1)

Robin − HNeumann)

= (tL)(−ye(−y/T )2c(T , X , x ′, ξ ′))

− (tL)

(
κ(XT + x ′)

2
√

πT
exp

[
−1

4
X2

]
erfc

(
1

2
(ξ + ξ ′)

))
. (4.25)

The first term is an element ofA∞,0,0,0
h before applying tL. Since tL is tangent to all boundary

hypersurfaces except E10, it preserves the orders, and at E10, tL takes a smooth expansion
to a smooth expansion. The second term is an element of A∞,−1,0,0

h , but we can write the
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Taylor expansion of κ(XT + x ′) in powers of T . The T 0 term is just κ(x ′), yieldingH−1,sf,R ,
which tL annihilates by (4.19). All terms except the T 0 term are elements of A∞,0,0,0

h , and
thus remain so after the application of tL. This completes the proof of Lemma 4.6. ��

From here the argument is very similar to the Neumann and Dirichlet arguments.

Proposition 4.8 There exists an element H (2)
Robin ∈ A−2,−2,0,0

h which satisfiesRobin boundary
conditions in the left factor, with limt→0 H (2) = δ(z − z′), and with

tLH (2) ∈ A∞,0,∞,0
h .

Moreover the expansions of H (2)
Robin and H (1)

Robin are identical for all terms at td and for the
terms of order −2 and − 1 at sf.

Proof We add terms at order y2 and up at the face E10, as in Proposition 4.3. Note that each
of these terms is yk for k ≥ 2 times a term which has order −2 at sf, and thus each of these
terms has order greater than or equal to zero at sf, so there is no effect on the first two terms
of the expansion there. ��

Now we let

P(2)
Robin := tLH (2)

Robin; P(3)
Robin := −

∞∑
j=1

(
− 1

T 2 P
(2)
Robin

) j

.

We have T−2P(2)
Robin ∈ A∞,−2,∞,0

h , so its j th power is an element of A∞,−4+2 j,∞,0
h by the

composition theorem, and thus P(3)
Robin ∈ A∞,−2,∞,0

h . As before the sum is convergent, not
just asymptotically convergent. Then set

H (3)
Robin = H (2)

Robin

(
Id+P(3)

Robin

)
.

This satisfies the Robin boundary conditions and the initial condition, so by uniqueness it
is the true Robin heat kernel. By composition, H (2)

Robin P
(3)
Robin ∈ A∞,0,0,0

h , so H (3)
Robin has the

same first two terms at sf and same full expansion at td as H (2)
Robin . We have now proved:

Theorem 4.9 The Robin heat kernel on �, with smooth non-negative Robin parameter κ(x),
is pc on �2

h, and is an element of A−2,−2,0,0
h , smooth down to both E10 and E01 and equal

to T−2 times a smooth expansion at sf. It is equal to the Neumann heat kernel on � plus a
correction term which is an element of A∞,−1,0,0

h and which has leading order H−1,sf,R at
sf.

Indeed, the only part of this we have not addressed is the smoothness, and it follows as in
the Neumann case.

5 The heat kernel on a curvilinear polygonal domain

Consider a two-dimensional sector Sγ with angle γ ∈ (0, 2π). We investigate heat kernels
on Sγ to serve as models for our eventual construction of the heat kernel on curvilinear
polygonal domains.
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5.1 Properties of the heat kernel for an infinite sector

We will consider the D–D, N–N, and D–N heat kernels. Recall the expression from [6,
p. 592 (3.42)], which in our setting is simply

H(t, r , θ, r ′, θ ′) = 1

2t
exp

[
−r2 + (r ′)2

4t

] ∞∑
j=1

Iμ j

(
rr ′

2t

)
φ j (θ)φ j (θ

′). (5.1)

Here Iμ j are the modified Bessel functions, and (φ j , μ j ) are the eigenfunctions, and corre-
sponding eigenvalues, of the appropriate eigenvalue problem (D–D, N–N, or D–N) on the
interval [0, γ ].

The pc properties of (5.1) are not obvious from the expression alone. They are equally
non-obvious from the equivalent expression given by the inverse Laplace transform of the
Green’s function. However, we claim:

Lemma 5.1 In each of the three settings, D–D, N–N, and D–N, the heat kernel (5.1) is pc on
our double space (Sγ )2h.

Proof The proof is based on the reflection argument in [2, Sect. 3]. Consider the D–D case
for the moment. The sector Sγ doubles to an infinite flat cone C2γ , and if we let L cut this
cone in half, then we claim that the D–D heat kernel on Sγ is

HSγ (t, r , θ, r ′, θ ′) = HC2γ (t, r , θ, r ′, θ ′) − HC2γ (t, r , θ, refL(r ′, θ ′)). (5.2)

Above HC2γ is the Friedrichs heat kernel on C2γ , and refL is reflection across L . Indeed it is
clear that the difference of heat kernels satisfies the heat equation and the initial condition on
Sγ , as well as the Dirichlet boundary condition. By uniqueness of the heat kernel, we have
(5.2).

The pc properties of HSγ may now be deduced from those of HC2γ , as in [2]. By [41],
[35], HC2γ is pc on a double heat space. In the notation of [35], the x-coordinate is r , there
is no y-coordinate, and the z-coordinate is θ . The Mazzeo–Vertman heat space is not exactly
the same as our heat space (C2γ )2h , as [35] do not create a face hvff, but nevertheless: ��
Proposition 5.2 The Mazzeo–Vertman heat space is a blow-down of (C2γ )2h, and therefore
HC2γ is pc on (C2γ )2h.

Proof Beginwith themanifoldwith corners [0,∞)×(C2γ )0×(C2γ )0. TheMazzeo–Vertman
heat space is created by blowing up:

• {0} × Ṽ × Ṽ ; and
• the lift of the interior T = 0 diagonal.

From this space, we make a further blow-up at [0,∞) × Ṽ × Ṽ . We claim that the resulting
space is (C2γ )2h , which is all we need. Indeed, this further blow-up is disjoint from the lift
of the interior T = 0 diagonal and thus may be done second instead of third, by Proposition
3.8. It may then be done first instead of second, since nested blow-ups commute (again by
Proposition 3.8). Hence our heat space (C2γ )2h is a blow-up (indeed, an overblown version)
of the Mazzeo–Vertman heat space. ��

This takes care of the direct term,which is the first term in the right side (5.2). The reflected
term [the second term in the right side of (5.2)] is pc on a nearly identical space, the only
difference being that we blow up the T = 0 anti-diagonal {T = 0, r = r ′, θ = refL(θ ′)}
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in the last step rather than the t = 0 diagonal. The lifts of the diagonal and anti-diagonal
are not disjoint. They intersect at the lift of {T = 0, r = r ′, θ = θ ′ ∈ L}. So in order to
obtain a space on which both the direct and reflected terms are pc we blow up that lift before
dealing with the diagonal and anti-diagonal. We do this: first blow up that lift, then blow
up the diagonal and anti-diagonal, and we have obtained a space on which the direct and
reflected terms are both pc.

When we restrict our spatial arguments to lie in Sγ , we claim that this space is the double
heat space (Sγ )2h . Indeed, blowing up the lift of {T = 0, r = r ′, θ = θ ′ ∈ L} is preciselywhat
is needed to create the face sf. We are doing it after blowing up hvff, hvlf, and hvrf, rather
than before, but these blow-ups are disjoint (since we have already created ff) and therefore
commute. The anti-diagonal does not appear once we have restricted our arguments to lie in
Sγ . Therefore HSγ is pc on (Sγ )2h , as desired.

The argument for the N–N heat kernel is identical; there is a plus sign instead of a minus
sign in (5.2). For the D–N heat kernel, we double twice, to the cone C4γ , and use the method
of images with four terms rather than two. The details are very similar and we omit them
here. This proves Lemma (5.1). ��

Having proven that HSγ is pc on the double space, we may write down its leading order
models at the various boundary hypersurfaces. We begin at ff. In the interior of ff, good
coordinates are given by

T = √
t, R := r

T
, R′ := r ′

T
, θ, θ ′. (5.3)

In fact these coordinates are good uniformly down to hvlf and hvrf in the Mazzeo–Vertman
double space, but to create (Sγ )2h we have made an additional blowup at hvff, which in these
coordinates is {R = R′ = 0}. Fortunately this is not important for our present concerns.
Writing (5.1) in the coordinates (5.3) gives

HSγ = 1

2
T−2 exp

[
−1

4
(R2 + (R′)2)

] ∞∑
j=1

Iμ j

(
1

2
RR′

)
φ j (θ)φ j (θ

′). (5.4)

This motivates the definition of the models

H−2,ff,DD, resp. H−2,ff,DN , resp. H−2,ff,NN

:= 1

2
exp

[
−1

4
(R2 + (R′)2)

] ∞∑
j=1

Iμ j

(
1

2
RR′

)
φ j (θ)φ j (θ

′), (5.5)

where (φ j , μ j ) are the eigenfunctions and eigenvalues of the appropriate problems on [0, γ ].
It is then true that the leading term of the expansion of HSγ at ff, with D–D, D–N, or N–N
boundary conditions, is T−2H−2,ff,DD , T−2H−2,ff,DN , or T−2H−2,ff,NN , respectively.

As usual, the heat kernel is decaying to infinite order at tf. We claim that its models at sf
and at td are familiar:

Proposition 5.3 The leading order models at sf and td of HSγ are the same as the models
(4.11), (4.6), and (4.9) for a manifold with boundary, namely H−2,sf,D or H−2,sf,N at each
of the two components of sf (depending on the boundary condition) and H−2,td at td.

Proof This is true because of locality; in fact, all the models are the same, not just the leading
order. In any patch of sf away from ff, the spatial variables are near the boundary of Sγ

but bounded away from the corner. Since we are looking at short-time asymptotics, Kac’s
principle holds: the heat kernel can be approximated to infinite order in T by the heat kernel
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on a half-plane. To make this precise, we quote [32, Theorem 3]; see also [43]. Since this
works on any patch of sf away from ff, and the models themselves are pc on sf, they must
agree on all of sf, including down to ff. ��

Since HSγ is pc on the double heat space, its leading order models must be compatible
with each other at the intersections. We will use this in the construction of the heat kernel for
curvilinear polygonal domains. In particular:

Corollary 5.4 We have the following compatibility conditions for the D–D heat kernel:

H−2,ff,DD|ff∩sf = H−2,sf,D|ff∩sf; H−2,ff,DD|ff∩td = H−2,td|ff∩td.
An analogous result holds for the N–N heat kernel at both intersections, and for the D–N
heat kernel at ff ∩ td. Moreover, if sf1 is the Dirichlet component of sf and sf2 is the Neumann
component of sf, we have the appropriate compatibility conditions for the D–N heat kernel
at ff ∩ sf:

H−2,ff,DN |ff∩sf1 = H−2,sf1,D|ff∩sf1; H−2,ff,DN |ff∩sf2 = H−2,sf2,N |ff∩sf2 .
Remark 5.5 The preceding two results may be of independent interest, as it is not obvious
from the explicit expressions of the leading order models that they satisfy these compatibility
conditions.

5.2 Construction of the heat kernel

As before, let � be a curvilinear polygonal domain, a subdomain of a larger surface M .
Label its edges E j and its vertices Vj , with Vj connecting E j and E j+1 (with the appropriate
generalization for multiple connected boundary components, which are allowed). For each
j , let� j be a surface with smooth boundary, also a subdomain of M , such that E j is a subset
of the boundary of � j . Such a surface may always be created. In fact, using the tubular
neighborhood theorem, � j may be chosen to be contained within a small neighborhood (in
M) of E j .

5.3 Dirichlet and Neumann boundary conditions

We now construct the heat kernel in the setting where the boundary conditions on each side
are either Dirichlet or Neumann, rather than Robin. Consider the heat space �2

h . We define a
kernel H (1) on this heat space by specifying its leading order behavior at various boundary
hypersurfaces. In Fig. 6, we show the faces of the double heat space whose boundaries
have non-empty intersection, and in Fig. 7, we zoom in on the double heat space near the
intersection of V and E . In fact, we will define H (1) on a blown-down version of the heat
space, without the faces hvff jk . Call this space �̃2

h . By the proof of Proposition 5.2, the hvff
blowupmay be done last, so �̃2

h is in fact a blow-down of�
2
h . The reason is that the blowup at

hvff is not necessary for the heat kernel for an exact cone, and is not done inMazzeo–Vertman
[35]. Here we only require this blowup to obtain the composition formula in Theorem 3.16.

First, at td, we require H (1) to have the usual local asymptotic expansion (4.20), namely

H (1) ∼
∞∑
j=0

T−2+ jH−2+ j,td. (5.6)

Naturally we also ask that H (1) decay to infinite order at tf.
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Fig. 6 The lines between boundary faces of the double heat space indicate faces whose boundaries have
non-empty intersection. The E j0 and E0 j faces are omitted for the sake of simplicity. We note that E j0 has
non-empty intersection with hvrf, sf, and tf, whereas E0 j has non-empty intersection with hvlf, sf, and tf

Fig. 7 This is a schematic illustration of the intersection between the side and front faces

Observe that since � is a subdomain of a smooth manifold M , each model H−2+ j,td is
smooth up to the boundary of �, so in particular smooth up to each sf j and each ff j .

At each side face sf j , we use the heat kernel on � j , in boundary normal coordinates, as a
model, where � j is the surface with boundary defined above. By Theorems 4.4 and 4.5, the
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heat kernel H� j is pc on (� j )
2
h , and its expansion at the face sf of (� j )

2
h may be written

∞∑
k=0

T−2+kH� j
−2+k,sf

formodelsH� j
−2+k,sf which are pc on sf.Note that the leading orderH

� j
−2,sf is eitherH−2,sf,D or

H−2,sf,N , defined in (4.11) and (4.6), as appropriate. Now our face sf j is simply a subdomain
of the face sf of (� j )

2
h , namely the restriction of sf to the region where both spatial variables

are elements of E j ⊆ ∂� j . So we simply set

H (1) ∼
∞∑
k=0

T−2+kH� j
−2+k,sf. (5.7)

The requirements (5.7) and (5.6) are compatible since the heat kernel H� j is pc and has
the same models. They are also both compatible with infinite-order decay at tf, and with the
appropriate boundary conditions on E j0, for the same reason.

Near each face ff j it is necessary to pick local polar coordinates. Define r and θ to be the
polar-coordinate version of boundary normal coordinates along E j , so that i.e. x = r cos θ

and y = r sin θ . In these coordinates, E j is given by θ = 0, and E j+1 is given by a curve
with angle θ = α j at the origin. Of course, we could also have chosen polar coordinates
from the boundary normal coordinates along E j+1, so that E j+1 is precisely θ = α j and
E j is a curve with angle θ = 0 at the origin. These two choices of polar coordinate systems
agree to second order in a neighborhood of r = 0. With this described, coordinates valid in
the interior of ff are (5.3). Moreover, in these coordinates, we have R = 0 at hvlf j , R′ = 0
at hvrf j , θ = 0 at E j0, θ = α j at E j+1,0 ∩ f f j , θ ′ = 0 at E0 j , and θ ′ = α j at E0, j+1 ∩ f f j .
The face hvff j is an extra, overblown face at R = R′ = 0.

The point is that at ff j , we can just use one of the models H−2,ff,DD , H−2,ff,DN (or its
flipped variant H−2,ff,ND) or H−2,ff,NN , depending on which boundary conditions we are
imposing on E j and E j+1. These models are defined in (5.5). So we require that at each ff j ,

H (1) ∼ T−2H−2,ff,DD(R, θ, R′, θ ′), (5.8)

with DD replaced by DN, ND, or NN depending on the boundary conditions. Since the
Laplacian is equal to the Laplacian for a straight sector to leading order at ff, these models
solve the model problem at each ff j .

By Corollary 5.4, the requirement (5.8) is compatible with (5.6) and (5.7) at td and at
sf j . At sf j+1, it also follows from Corollary 5.4, because even though we no longer have an
exact cone and thus the boundary normal coordinates for E j+1 do not agree with the polar
coordinates (r , θ) everywhere, these two coordinate systems do agree to second order in
ρ f f j . A similar argument, from the exact cone condition, shows that (5.8) is compatible with
the appropriate boundary conditions at E j0 and E j+1,0.

Since (5.8) is identical to the model for the exact sectorial heat kernel, this is also com-
patible with H (1) being pc on �̃2

h rather than �2
h .

The point of checking compatibility is that as a result, we know that there exists a kernel
H (1), pc on �̃2

h , with the expansions (5.6), (5.7), and (5.8) at the boundary hypersurfaces td,
sf j , and ff j respectively, and which decays to infinite order at tf and satisfies the appropriate
boundary conditions at each E j0. If we let ν0, j be the smallest eigenvalue of the appropriate
cross-sectional Laplacian in θ at each component ff j (note that in the Neumann–Neumann
case we have ν0, j = 0, and otherwise ν0, j > 0), then the leading orders of H (1) may be
chosen as follows:
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• −2 at td, sf j , and ff j , with only integer powers in the expansion;
• 0 at E j0 and E0 j for each j , with only integer powers in the expansion; and
• ν0, j at hvlf j and hvrf j , with other fractional powers.

As in the case of manifolds with boundary, we consider P(1) := tLH (1). It is pc on �̃2
h . Since

both �H (1) and ∂t H (1) satisfy the boundary conditions (by the eigenfunction expansion, the
Laplacian preserves the boundary conditions when it is applied), so does P(1). The leading
orders of P(1) are as follows:

• ∞ at td and at each sf j , since we have solved the model problem to all orders;
• − 1 at ff j , since we have solved the model problem to one order;
• 0 at E0 j , and ν0, j at hvrf j , since the lift of tL is tangent to these hypersurfaces;
• 0 at E j0, since tLdecreases the index set by 2, but notwhen applied to a smooth expansion;

and
• ν0, j − 1 at hvlf j , since tL decreases the index set by 2 at this face but the leading term

is killed, as in Mazzeo–Vertman [35]. The leading order term of the Laplacian is the
same as for the flat Laplacian, and our model is the flat heat kernel there. Technically
this requires us to choose H (1) to be equal to (5.8) in a neighborhood of hvlf j , which we
can do. Note this is compatible with the boundary condition at E j0 as well.

We now construct an improved parametrix which has error decaying to infinite order at
both hvlf and E j0. We do this in two steps, first eliminating the error at hvlf. This proceeds
exactly as in Mazzeo–Vertman [35], as hvlf is the analogue of their face rf. In the interior of
hvlf, r is a boundary defining function for hvlf; the other variables are θ ∈ [0, α j ], T , and
z′ ∈ �. To remove a term rγ a(θ, t, z′) in the expansion of P(1) at hvlf j , we need to solve
the indicial equation on the cone C([0, α j ]) in (r , θ), with t and z′ as parameters:(

−∂rr − 1

r2
(∂θθ + 1

4
)

)
u(r , θ, T , z′) = rγ T−2a(θ, T , z′),

with the appropriate boundary conditions at θ = 0 and θ = α j . Since a is a term in
the expansion of P(1), it, itself, satisfies those boundary conditions. Therefore, as in [33,
35] a solution u exists with asymptotic behavior at r = 0 given by either rγ+2 or possibly
rγ+2 log r in case of an unlucky indicial root coincidence. The dependence in t and z′ is purely
parametric, so u(r , θ, T , z′) is pc in a neighborhood of hvlf j . We multiply u(r , θ, T , z′) by
a cutoff function equal to 1 on a neighborhood of hvlf j , choosing the cutoff function so that
its gradient is parallel to each edge E j0 and thus preserves the boundary conditions at θ = 0
and θ = α j . Then subtracting this product from H (1) eliminates the term rγ a(θ, T , z′) in
the expansion at hvlf and does not change the leading order of H (1) at any other boundary
hypersurface. In particular, since hvlf does not intersect td or sf, the expansion of H (1) there
is unchanged. Moreover, r vanishes at ff, so u actually decays to the same order as a at ff,
and thus the leading order of the expansion of H (1) at ff is unchanged.

Iterating this process produces a parametrix H (2a) and an error P(2a) with all the same
properties as H (1) and P(1), except for two differences. First, there may be logarithmic terms
at ff j (as well as at hvlf j ) once we go one order down in the expansion. Second, P(2a) now
vanishes to infinite order at hvlf j for each j .

To remove the error at E j0, we follow the same template as for manifolds with boundary,
using boundary ellipticity. Namely, if y is the boundary normal coordinate for the side � j ,
add a kernel which is equal to

1

2
y2

(
LH (2a)

)
(T , x, 0, x ′, y′) + O(y3)
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and supported in a neighborhood of E j0. This improves the order of the error at E j0 from
0 to 1. Note also that LH (2a) vanishes to infinite order at sf j , so there is no effect on the
expansion at sf j . Iterating this process and taking an asymptotic sum, as for manifolds with
boundary, we obtain the following.

Proposition 5.6 There exists a kernel H (2) pc on �̃2
h, satisfying the appropriate combination

of Dirichlet and Neumann boundary conditions, with limt→0 H (2) = δ(z − z′), where if we
let P(2) = tLH (2),

• H (2) vanishes to infinite order at tf and has the full expansions (5.6) and (5.7) at td and
each sf j respectively;

• H (2) has leading term given by (5.8) at each ff j , with the next term being one full order
lower (possibly logarithmic);

• P(2) vanishes to infinite order at tf, td, each sf j , each hvlf j , and each E j0;

• P(2) has leading order − 1 at each ff j , 0 at each E0 j , and ν0, j at each hvrf j .

We will need to compose, so we will blow up to pass to �2
h by creating hvff jk .

Corollary 5.7 The kernels H (2) and P(2) also lift to be pc on �2
h, with leading orders 2ν j,0

and ∞ respectively at hvff jk .

Now we eliminate the last error by forming the formal Neumann series

Id+P(3) := Id−
∞∑
k=1

(
− 1

T 2 P
(2)

)k

.

Note that T−2P(2) vanishes to infinite order at all faces except for ff j , E0 j , and hvrf j , where
it has leading orders −3, 0, and ν0, j respectively. We use Theorem 3.16 to analyze the power
(−T−2P(2))k . We see immediately that it also vanishes to infinite order at all other faces and
has leading order −4 + k at ff j . At hvrf j , the index sets have an inductive relationship: the
index set for the kth power is the extended union of the index set for the (k − 1)st power
with k plus the index set for the 0th power. The union of all of these is indeed a legitimate
index set. In particular, there are only a finite number of extended unions involved at order
less than s for each value of s. The leading order is ν0, j , and there is no logarithmic term at
that leading order. At E0 j , the index set is the same as that for P(2), with leading order zero.

All of this allows us to asymptotically sum the Neumann series, and as before, the sum is
convergent. The sum P(3) has the same leading orders as P(2) at each boundary hypersurface.
As before, we let

H (3) = H (2)
(
Id+P(3)

)
,

and deduce that H (3) is the true heat kernel.
By Theorem 3.16, the term H (2)P(3) vanishes to infinite order at tf, td and sf, with leading

order− 1 at ff j , so it does not affect the expansion at td and sf and does not affect the first term
at ff j . It has leading order greater than or equal to zero everywhere else, with no logarithmic
terms. This tells us the following:

Theorem 5.8 The heat kernel for�, with Dirichlet or Neumann boundary conditions on each
side E j , is pc on �2

h, vanishing to infinite order at tf and continuous down to all boundary
hypersurfaces except for td, sf j , and ff j .
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Its full expansions at td and each sf j are (5.6) and (5.7), which are the same as those for
a closed manifold, and a manifold with boundary and the appropriate boundary condition,
respectively.

Its expansion at ff j has leading term (5.8) and no other terms within one order.

Remark 5.9 It is certainly possible to push through the composition formula and compute the
index sets of the heat kernel for � at other faces (hvff, hvrf, hvlf). However, we do not think
that the results obtained in this fashion are optimal—there are quite a lot of log terms which
may not actually exist—so we omit the statements. In fact, it is possible that the off-diagonal
faces for positive time, namely hvff jk for j �= k, are not necessary at all, but our results are
easier and likely quicker to prove this way.

The following corollary is a version of Kac’s principle of not feeling the boundary for
the Dirichlet boundary condition [22]; see also [43] for the Neumann and Robin boundary
conditions.

Corollary 5.10 The full expansions at td, sf j , and ff j are local, in the sense that if two domains
with corners � and �′ are isometric in a region R, then the expansions at the corresponding
faces of the heat spaces �2

h and (�′)2h agree to all orders when the spatial variables are
restricted to lie within the interior of R.

Note that these are all the faces in the lift of {t = 0} where the heat kernel has nontrivial
behavior, so the statement implies that any global contribution to the heat kernel at t = 0 is
O(t∞).

Proof The corollary follows immediately for td and sf j from the construction, since the
expansions there are the same as for H (2). For ff j , it is also true: although the powers
(T−2P(2)) j are compositions and thus not local, by the composition theorem, their expansions
at ff j only depend on the expansion of P(2) itself at ff j , which is local. Thus the expansion
of P(3) at ff j is local, and using the composition theorem again, so is the expansion of the
true heat kernel. ��

5.4 Robin boundary conditions

The construction of the Robin heat kernel proceeds very similarly to that of the Neumann
heat kernel, though the boundary condition is somewhat more complicated. For each edge
E j , let κ j (x) be a smooth function on E j . The key lemma is as follows.

Lemma 5.11 There exists a kernel H (1)
Robin, pc on �̃2

h and with limt→0 H (2) = δ(z− z′), such
that, letting P(1)

Robin = H (1)
Robin,

• H (1)
Robin satisfies Robin boundary conditions with parameter κ j (x) on each edge E j ;

• H (1)
Robin vanishes to infinite order at tf and has the full expansion (5.6) at td;

• At each sf j , H
(1)
Robin has the same full expansion as the Robin heat kernel on � j , with a

parameter agreeing with κ j (x) upon restriction to E j ;

• At each ff j , H
(1)
Robin has the same leading term (5.8) as in the Dirichlet, Neumann, or

mixed cases, using the Neumann model at every Robin edge; and
• P(1)

Robin has leading orders ∞ at td and at sf j , − 1 at ff j , 0 at E0 j and E j0, ν j,0 at hvrf j ,
and ν j,0 − 1 at hvlf j .

123



46 M. Nursultanov et al.

Proof The issue is compatibility of all these requirements, noting that Robin boundary
conditions are more complicated than Dirichlet or Neumann boundary conditions at the
intersections of E j0 with sf j and ff j . However, it turns out that Robin boundary conditions
only affect the sub-leading terms of the expansion of H (1) at ff. This is why the Robin heat
kernel may be viewed as a correction of the Neumann heat kernel.

We require the full expansion (5.6) at td, and observe that this is compatible with the
expansion at sf j , whose form is guaranteed by Theorem 4.9, and the leading term (5.8) at ff j .
Indeed the compatibility betwen td and sf j follows from the fact that the Robin heat kernel
on � j is pc. The compatibility between td and ff j follows from the fact that the Neumann
heat kernel on � is pc. The compatibility between sf j and the leading term at ff j follows
from the fact that the leading term at sf j is the same as for the Neumann problem on �, so
we can use Corollary 5.4 as in the previous section. It remains only to show that we can find
such a kernel which also satisfies Robin boundary conditions.

To do this, note that Robin boundary conditions imply that if u is the leading order term
(zeroth order) of the expansion of H (1)

Robin at ff, then the next term must be

κ(x)y · u.

Since y vanishes at ff j and sf j as well as E0 j , this term vanishes to an order at ff j and sf j
which is one higher than the order of u there. Hence any compatibility requirements only
affect the lower order terms.

In order to dissect the compatibility requirements imposed by Robin boundary conditions,
we zoom in near a triple intersection E j0 ∩ sf j ∩ ff j . Let boundary defining functions ρE ,
ρsf, and ρff be chosen so that the product of all three is y; we use these three coordinates and
suppress the (parametric) dependence in all other coordinates. We write out the (previously
specified) expansion at sf j as well as the (unknown save for the first term) expansion at ff j ,
doing both for t H (1) rather than H (1) to keep notation simple:

t H (1)
Robin

∼=
∞∑
i=0

ρi
sfgi (ρE , ρff) at sf j ;

t H (1)
Robin

∼=
∞∑
j=0

ρ
j
ffh j (ρE , ρsf) at ff j . (5.9)

We also write the expansion of each gi at ρff = 0:

gi (ρE , ρff) ∼=
∞∑
k=0

ρk
ffaik(ρE ) + O(ρ∞

ff ). (5.10)

In order for the expansions (5.9) to be compatible with each other, for each j , we need

h j (ρE , ρsf) ∼=
∞∑
i=0

ρi
sfai j (ρE ) + O(ρ∞

sf ). (5.11)

On the other hand, in these coordinates, our Robin boundary condition becomes(
1

ρsfρff

∂

∂ρE
− κ(ρsf, ρff)

)
H (1)

Robin = 0,

i.e.

(
∂

∂ρE
− ρsfρffκ(ρsf, ρff)

)
t H (1)

Robin = 0.
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Plugging in (5.9), organizing, and equating the coefficients of the ρi
sf terms tells us that the

compatibility condition at sf j ∩ E j0 is, for each i ≥ 1:

(gi )ρE (0, ρff) = ρff ·
(
the coefficient of ρi

sf in
i∑

�=0

κ(ρsf, ρff)g�−1(0, ρff)ρ
�
sf

)
, (5.12)

and that this derivative is zero when i = 0. Similarly, the compatibility condition at ff j ∩ E j0

is, for each j ≥ 1,

(h j )ρE (0, ρsf) = ρsf ·
⎛
⎝ the coefficient of ρ

j
ff in

j∑
m=0

κ(ρsf, ρff)hm−1(0, ρsf)ρ
m
ff

⎞
⎠ , (5.13)

and that the derivative is zero when j = 0.
Recall that the full expansion of H (1)

Robin is specified at sf j ; since that heat kernel satisfies
Robin conditions, we assume the compatibility condition (5.12). We have also specified the
first term h0(ρE , ρsf) at ff j . Since it satisfies aNeumann boundary condition, its ρE derivative
at E0 j is indeed zero, as required. We need to show that lower-order terms h j , j ≥ 1, may
be chosen to simultaneously guarantee (5.11) and (5.13). Working one j at a time, (5.11)
prescribes the full expansion of h j (ρE , ρsf) at ρsf = 0, and (5.13) prescribes the order 1 term
of h j at ρE = 0 in terms of the order-0 term of h j−1. As long as these two requirements are
consistent we are fine.

To check this, we just plug (5.11) into (5.13). After rearrangement and equating like terms,
we see that we need for each i and j > 1,

a′
i j (0) = the coefficient of ρi

sfρ
j
ff in

i−1∑
�=0

j−1∑
m=0

κ(ρsf, ρff)a�,m(0)ρ�+1
sf ρm+1

ff . (5.14)

This, in turn, is guaranteed by plugging (5.10) into (5.12), completing the proof of Lemma
5.11. ��

The construction of the Robin heat kernel is now analogous to the Dirichlet and Neumann
cases.We solve away the error at hvlf j and then at E j0.When solving away the error at hvlf j ,
we need to remove a term rγ a(θ, t, z′). Since ∂θ = r∂y , the coefficient a(θ, t, z′) actually
solves Neumann conditions, rather than Robin conditions, at θ = 0 and θ = α j . So as in
the Neumann construction, the indicial equation may be solved and the solution, which has
leading order γ + 2 at hvlf j , may be added to our parametrix in a neighborhood of hvlf j .
Of course this does not preserve the Robin condition at E j0. However, the error has leading
order γ + 2 at hvlf j , and y has order 1 there. If we just add back κ y times this Robin error in
a neighborhood of hvlf j , the result satisfies the Robin boundary condition. Moreover, after
applying tL, the result has error at worst (γ + 2)+ 1− 2 = γ + 1 there. So this construction
may be iterated to remove the error at hvlf j .

The error at E j0 may be eliminated in the same way as before, since adding terms at order
2 at E j0 does not affect the Robin boundary condition there. The construction of the formal
Neumann series proceeds precisely as before, and yields:

Theorem 5.12 The heat kernel for�, withDirichlet, Neumann, orRobin boundary conditions
on each side E j , is pc on �2

h, vanishing to infinite order at tf and continuous down to all
boundary hypersurfaces except for td, sf j , and ff j .

Its full expansion at td is (5.6), which is the same as that for a closed manifold.
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Its full expansion at each sf j is (5.7), which is identical to that for the manifold with
boundary� j and the appropriate (Dirichlet/Neumann/Robin) boundary condition. Note that
by Theorem 4.9, at any Robin component of sf j , the leading term is equal to the leading term
for the heat kernel on � j with Neumann boundary conditions, the second term is H−1,sf,R,
and all other terms are at order T = t1/2.

Its expansion at each ff j has leading term (5.8), with Neumann conditions at any Neumann
OR Robin component, and Dirichlet conditions at any other Dirichlet component. There are
no other terms within one order in T = t1/2.

6 Heat trace on a curvilinear polygonal domain

Let � be a curvilinear polygonal domain as defined previously, with a Dirichlet, Neumann,
or Robin condition along each side. Assume any Robin parameters κ(x) are smooth along
each side. In the previous section we have constructed the heat kernel for � and shown that
it is pc on �2

h . We now pass to the heat trace.
The first thing to do is to restrict to the diagonal. The lifted diagonal in �2

h is a p-
submanifold and is diffeomorphic to �h via the lift of the map (t, z, z) → (t, z). The
identification of faces is hvff → sv, ff → pv, sf → pe, td → tf. Therefore, by restriction:

Proposition 6.1 The diagonal heat kernel H�(t, z, z) is pc on �h, with leading order −2 at
tf, each pv j , and each pe j , as well as non-negative leading orders at all other boundary
hypersurfaces.

Remark 6.2 Naturally, all locality statements about the kernel still hold when it is restricted
to the diagonal. For example, the expansion at tf is the same as that for a closed manifold.
The expansion at pe j is the same as that for a manifold with boundary. If there are any Robin
edges, the expansion at the corresponding pe j is the same as the Neumann expansion, plus
the restriction to the diagonal of H−1,sf,R , plus terms of order zero.

Let π1 be the lift of the projection map from �0 × [0, 1)T to [0, 1)T to a map from �h to
[0, 1)T . This map is the composition of a projection map and a blow-downmap and therefore
is a b-map which is a b-submersion. Since the image space has no corners it is automatically
b-normal, and therefore π1 is a b-fibration. Thus, from the pushforward theorem:

Theorem 6.3 The heat trace Tr H�(t) has a pc expansion in T = t1/2.

Wecan say substantiallymore, and in fact can explicitly identify all terms in this expansion
up to and including the t0 term, by carefully analyzing push-forward by this integration map.
The integration is with respect to the usual measure dz on �. Multiplying both sides by the
canonical density dT , we get∫

�

H�(T 2, z, z) dz dT = Tr H�(T 2) dT .

The density dz dT is ν(� × [0, 1)T ), but it is not ν(�h). Using an analogous process to the
proof of Proposition 3.15,

(β)∗(dz dT ) = ρ2
ffρsfν(�h).

So, writing integration as a push-forward by π1, we obtain

(π1)∗(H�(T 2, z, z)ρ2
pvρpe · ν(�h)) = Tr H�(T 2) · ν([0, 1)T ).
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From this we see that we really need to understand H�(T 2, z, z)ρ2
pvρpe.

Remark 6.4 This transformation to canonical densities explains why the leading terms at pe
and pv, though they both have order −2, only contribute at orders − 1 and 0 respectively to
the heat trace.

Consider the function H�(T 2, z, z)ρ2
pvρpe. Its expansions are as follows:

• At tf, there is an expansion in integer powers of T beginning with T−2.
• At pe, there is an expansion in integer powers of T beginning with T−1.
• At pv, there is an expansion with leading term at T 0 which may have logarithmic terms

beginning at T log T .

We may say more about these expansions. Each of them is inherited from the expansion at
the corresponding face in the double space. From that analysis, each term of the expansion
of H�(T 2, z, z) at the face tf is T j times a smooth function of z. Since T = ρtfρpeρpv for

suitable boundary defining functions, the coefficient of the term of order ρ
j
tf at tf has leading

order j at pe and at pv. When multiplying by ρ2
pvρpe, though, this coefficient has leading

order j + 1 at pe and j + 2 at pv. Similarly, the order ρ
j
pe term at pe has leading order j + 1

at pv.
What this means is that no extended unions appear in the pushforward theorem. Recall

that an extended union only occurs when the coefficient of a term of order j at one boundary
hypersurface in the preimage of {t = 0} itself has leading order at most j at an adjacent such
boundary hypersurface, which may produce a term t j log t (or t j (log t)2 if all three boundary
hypersurfaces are involved). The preceding discussion shows that this does not happen. So
any logarithmic terms in the heat trace expansion must come from logarithmic terms at the
face ff (i.e. pv), and thus arise at order T 1/2 at the earliest. Therefore

Tr H�(t) = a−1t
−1 + a−1/2t

−1/2 + a0t
0 + O(t1/2 log t).

Moreover, the coefficients a−1, a−1/2, and a0 are the sum of the contributions from each of
the three faces tf, pe, and pv.

These contributions are easy to evaluate. At tf, the expansion is just the usual heat trace
expansion from the interior of a manifold (as the coefficients are all the same), giving a
contribution of

A(�)

4π t
+ 1

12π

∫
�

K (z) dz + O(t).

At pe j , for the same reason, the expansion is the heat trace expansion for a manifold with
boundary, giving a contribution for each edge E j . The McKean–Singer asymptotics [37] tell
us what this termmust be in the Dirichlet and Neumann settings. In the Robin setting, there is
an extra contribution at t0 coming from the integral ofH−1,sf,Robin , and it is easy to see that
it will be an integral of κ(x) over the boundary times a constant. From [14, Theorem 5.2],
we know what the constant must be.8 All in all, the contribution from pe j is, where kg(x) is

8 An expression for this term also appears in [54]. However, it differs by an overall sign from the expression
in [14]. A direct computation due to Félix Houde [20] indicates that the reference [14] has the correct sign.
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the geodesic curvature on the boundary,

−�(E j )

8
√

π
t−1/2 + 1

12π

∫
E j

kg(x) dx + O(t1/2) in the Dirichlet setting;

�(E j )

8
√

π
t−1/2 + 1

12π

∫
E j

kg(x) dx + O(t1/2) in the Neumann setting;

and
�(E j )

8
√

π
t−1/2 + 1

12π

∫
E j

kg(x) dx − 1

2π

∫
E j

κ(x) dx + O(t1/2)

in the Robin setting. As discussed previously, atpv, the leading order contribution to the heat
trace is at T 0. This reflects the fact that rdr lifts to T 2RdR, thereby canceling the factor of
T−2. The leading order term in the expansion of the diagonal heat kernel at pv is the same as
it is for the heat kernel on an exact sector of the same angle, and therefore may be calculated
by studying the model heat kernel on that sector.

6.1 Vertex contributions

We recall our explicit calculations of the Green’s kernels for infinite circular sectors to
compute the “vertex contribution” to the short time asymptotic expansion of the heat trace.
For this purpose it is convenient to define:

A :=
∫ ∞

0
Kiμ(r

√
s)Kiμ(r0

√
s) cosh(π − |φ0 − φ|)μdμ,

B :=
∫ ∞

0
Kiμ(r

√
s)Kiμ(r0

√
s)
sinh πμ

sinh γμ
cosh(φ + φ0 − γ )μdμ

C :=
∫ ∞

0
Kiμ(r

√
s)Kiμ(r0

√
s)
sinh(π − γ )μ

sinh γμ
cosh(φ − φ0)μdμ,

F :=
∫ ∞

0
Kiμ(r

√
s)Kiμ(r0

√
s)
sinh(πμ)

cosh γμ
sinh((φ + φ0 − γ )μ)dμ

and

E := −
∫ ∞

0
Kiμ(r

√
s)Kiμ(r0

√
s)
cosh(π − γ )μ

cosh γμ
cosh((φ − φ0)μ)dμ.

The Dirichlet and Neumann Green’s functions are, respectively,

GD = 1

π2 (A − B + C) , GN = 1

π2 (A + B + C) .

For the Dirichlet condition at φ = 0 and Neumann condition at φ = γ , the Green’s function
is

1

π2 (A + F + E).

In [43, Sect. 3] we have computed the contributions of the terms A, B, andC to the heat trace;
see also [51] for an earlier computation along similar lines. In particular, we computed the
integral of each of these expressions, along the diagonal r = r0 and φ = φ0 over the region
[0, R]r × [0, γ ]φ with respect to polar coordinates (r , φ). The vertex contribution comes
solely from the C term in the D–D and N–N cases. There we see that the C term contributes
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to the heat trace [43, Sect. 3.1.3]

π2 − γ 2

24πγ
. (6.1)

In the D–N case, the vertex contribution arises from the terms F and E.

6.1.1 Contribution from the F term

Let us make some manipulations

sinh(πμ)

cosh γμ
sinh((φ + φ0 − γ )μ)

= sinh(πμ)

cosh γμ
sinh((φ + φ0 − γ )μ) − sinh(πμ)

sinh γμ
cosh((φ + φ0 − γ )μ)

+ sinh(πμ)

sinh γμ
cosh((φ + φ0 − γ )μ)

= sinh((φ + φ0 − γ )μ) sinh γμ − cosh((φ + φ0 − γ )μ) cosh γμ

sinh γμ cosh γμ
sinh(πμ)

+ sinh(πμ)

sinh γμ
cosh((φ + φ0 − γ )μ).

This expression simplifies to:

− 2 sinh(πμ)

sinh(2γμ)
cosh((φ + φ0 − 2γ )μ) + sinh(πμ)

sinh γμ
cosh((φ + φ0 − γ )μ) =: −2B1 + B2.

By the calculation of the trace of the B term in [43, Sect. 3], the contribution of B2 is
R

4
√

π t
+ O(

√
t). Next we note that, for φ = φ0,

∫ γ

0
B1dφ = sinh πμ

2μ
=

∫ γ

0
B2dφ.

Hence the contributions of B1 and B2 are the same, so that F contributes

− 2
R

4
√

π t
+ R

4
√

π t
+ O(

√
t) = − R

4
√

π t
+ O(

√
t). (6.2)

Consequently, this gives no contribution because the coefficient of t0 vanishes.

6.1.2 Contribution from the E term

Finally, we study the term E . We need to compute

− 1

π2

∫ ∞

0
Kiμ(r

√
s)Kiμ(r0

√
s)
cosh(π − γ )μ

cosh γμ
cosh((φ − φ0)μ)dμ

123



52 M. Nursultanov et al.

This is similar to the computation of the C term, which we would like to recycle. Hence, we
add and subtract:

−cosh(π − γ )μ

cosh γμ
cosh((φ − φ0)μ) + sinh(π − γ )μ

sinh γμ
cosh((φ − φ0)μ)

− sinh(π − γ )μ

sinh γμ
cosh((φ − φ0)μ)

= − cosh(π − γ )μ sinh γμ + sinh(π − γ )μ cosh γμ

sinh γμ cosh γμ
cosh((φ − φ0)μ)

− sinh(π − γ )μ

sinh γμ
cosh((φ − φ0)μ).

This reduces to:

2 sinh(π − 2γ )μ

sinh(2γμ)
cosh((φ − φ0)μ) − sinh(π − γ )μ

sinh γμ
cosh((φ − φ0)μ) =: 2C1 − C2.

We recognize the term ∫ ∞

0
Kiμ(r

√
s)Kiμ(r0

√
s)C2dμ = C .

Consequently, we already know the contribution to the trace from C2, because it is the same
as that which we computed for C

γ

2π
· π2 − γ 2

12γ 2 + O(t∞), t ↓ 0.

The reason we write it in this way is to recall the differences between the contributions of
C1 and C2. The factor of γ in γ

2π comes from the trace calculation in which we integrate
the angular coordinate over (0, γ ). This factor is therefore the same in C1. Hence when we
consider C1, we just need to change γ to 2γ in the second factor only. The contribution of
C1 is

γ

2π
· π2 − (2γ )2

12(2γ )2
,

and hence the trace contribution of E is

π2 − 4γ 2

48πγ
− π2 − γ 2

24πγ
= −π2 + 2γ 2

48πγ
+ O(t∞). (6.3)

We have now computed the contribution of the vertex to the t0 term. Any Robin–Dirichlet, or
Robin–Neumann, or Robin–Robin corner is treated as if the Robin conditions were Neumann
conditions, as the corresponding models at ffdiag, j are the same.

The vertex contribution for an interior angle of γ is therefore:

π2 − γ 2

24πγ
for D−D,N−N,R − −R, and N−R boundary conditions (6.4)

or

− π2 + 2γ 2

48πγ
for D−N and D−R mixed boundary conditions. (6.5)

The vertex contribution (6.5) appears to be new and may be of independent interest. In §B
we show how, given the D–D corner contribution, one may also use the more familiar series
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expression for the heat kernel as in [6] to compute the N–N and D–N corner contribution.
The result is of course the same as we have computed here. In summary, we have Theorem
1.2.

Remark 6.5 The Gauss–Bonnet theorem dictates that

2πχ(�) =
∫

�

K (z) dz +
∫

∂�

kg(x) dx +
n∑
j=1

(π − α j ),

where χ(�) is the Euler characteristic of �. This yields an alternate expression for a0:

a0 = 1

6
χ(�) − 1

12π

n∑
j=1

(π − α j ) − 1

2π

∑
j∈ER

∫
E j

κ j (x) dx

+
∑
j∈V=

π2 − α2
j

24πα j
+

∑
j∈V�=

−π2 − 2α2
j

48πα j
.

Remark 6.6 It is straightforward to allow for surfaces which may also have isolated conical
singularities. An isolated conical singularity with opening angle 2α will give contribute to
the heat trace:

π2 − α2

12πα
.

6.2 Vertices as spectral invariants

Here we apply our results, presenting several contexts in which the presence, or lack, of
vertices is spectrally determined.We also show that a jump in boundary condition is spectrally
determined.

Theorem 6.7 Let � be a surface with at least one vertex with interior angle not equal to π

and either the Dirichlet boundary condition or the Neumann boundary condition. Let � be
a smoothly bounded surface with either the Dirichlet boundary condition or the Neumann
boundary condition such that χ(�) ≤ χ(�). Then � and � are not isospectral.

Proof It suffices to compare the short time asymptotic expansion of the heat traces and
demonstrate that the coefficients cannot be the same for � and �. The coefficient a0 for �

is:

a0(�) = χ(�)

6
− 1

12π

n∑
j=1

(π − α j ) +
n∑
j=1

π2 − α2
j

24πα j
,

where � has n vertices with interior angles α j . This expression simplifies to:

a0(�) = χ(�)

6
− n

12
+

n∑
j=1

π2 + α2
j

24πα j
.

On the other hand,

a0(�) = χ(�)

6
≤ χ(�)

6
.
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Since at least one α j �= π , it is a straightforward exercise in multivariable analysis [31] to
demonstrate the strict inequality

a0(�) >
χ(�)

6
≥ χ(�)

6
= a0(�).

��
We obtain a similar result for the Robin boundary condition. Recall the Robin boundary

condition is,

u = κ
∂u

∂ν
, on all smooth boundary components, κ ≥ 0.

Above, ∂u
∂ν

is the inward pointing unit normal, as in (4.17).

Theorem 6.8 Let � be a surface with at least one vertex with interior angle not equal to
π with the Robin boundary condition as above, with constant Robin parameter. Let � be a
smoothly bounded surface with χ(�) ≤ χ(�). Assume the same Robin boundary condition
on ∂�. Then � and � are not isospectral.

Proof We argue by contradiction. Assume that� and� are isospectral. Then, theymust have
the same heat trace coefficients. The terms a−1/2(�) and a−1/2(�) show that the boundaries
of � and � have the same length. Hence, since at least one of the angles α j is not equal to
π , we have

a0(�) = χ(�)

6
− n

12
+

n∑
j=1

π2 + α2
j

24πα j
− κ|∂�|

2π
>

χ(�)

6
− κ|∂�|

2π
.

Above, |∂�| is the length of the boundary of �, n is the number of vertices, and α j is the
interior angle at the j th vertex. On the other hand

a0(�) = χ(�)

6
− κ|∂�|

2π
= χ(�)

6
− κ|∂�|

2π
< a0(�).

This is the desired contradiction. ��
For the case of smoothly bounded surfaces, the spectrum also detects a jump in the

boundary condition, even without vertices. This is depicted in Fig. 8.

Theorem 6.9 Let � be a smoothly bounded surface which has Dirichlet boundary condition
and Neumann boundary condition on a single boundary component (that is, a nontrivial
Zaremba boundary condition), with a Friedrichs extension at the interface. Let � be a
smoothly bounded surface which has either Neumann or Dirichlet boundary condition (not
mixed). Assume that

χ(�) ≥ χ(�).

Then � and � are not isospectral.

Proof For �, the heat trace coefficient

a0(�) = χ(�)

6
− n

16
,
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Fig. 8 For a circular domain, impose the Dirichlet boundary on the red arc and the Neumann boundary on
the black arc, taking the Friedrichs extension at the intervace. Such a domain is not isospectral to any simply
connected smoothly bounded domain which has either the Dirichlet or Neumann condition (but not mixed).
In fact, one may take the red and black pieces of the boundary to be of any proportions, not necessarily equal

where n is the number of times the boundary condition jumps between Dirichlet and Neu-
mann. We obtain this because the boundary is smooth, and hence the angle at the “vertex”
where the boundary condition jumps is equal to π . On the other hand,

a0(�) ≥ χ(�)

6
≥ χ(�)

6
> a0(�),

since n ≥ 1. ��
In conclusion, we determine contexts in which entirely mixed Dirichlet–Neumann ver-

tices are spectrally determined. In particular, this shows that we may distinguish between
the presence of mixed-boundary condition vertices versus vertices with the same boundary
condition on both sides; see Fig. 9.

Theorem 6.10 Assume that � is a surface with vertices with mixed Dirichlet and Neumann
boundary condition such that each vertex has Dirichlet on one side and Neumann on the
other side. Moreover, assume that all interior angles are less than π√

2
. Let � be any surface

which is either:

1. smoothly bounded and with either the Dirichlet or Neumann, but not mixed, boundary
condition;

2. a surface with vertices with either the Dirichlet or Neumann, but not mixed, boundary
condition.

Assume further that χ(�) ≤ χ(�). Then � and � are not isospectral.

Proof We compute the heat trace coefficient for �,

a0(�) = χ(�)

6
− n

12
+

n∑
j=1

−π2 + 2α2
j

48πα j
.

Above, n is the number of vertices, and α j is the interior angle at the j th vertex. By the
assumption that α j < π√

2
for all j we have

a0(�) <
χ(�)

6
− n

12
.
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Fig. 9 For a rectangular domain we impose the Dirichlet boundary condition on the red sides and Neumann
boundary condition on the black sides

On the other hand, if � has smooth boundary and Dirichlet or Neumann boundary condition
(not mixed), we have

a0(�) ≥ χ(�)

6
≥ χ(�)

6
> a0(�).

This shows that � and � are not isospectral.
In case � has m vertices, and a single fixed boundary condition then

a0(�) ≥ χ(�)

6
− n

12
+

m∑
j=1

π2 + β2
j

24πβ j
.

Here the interior angle at the j th vertex is β j . By the assumption that � has vertices, at least
one β j �= π , and therefore

a0(�) >
χ(�)

6
≥ a0(�).

Consequently, � and � are not isospectral. ��

We conclude with a familiar example which satisfies the hypotheses of the preceding
theorem. Let us consider domains in the planewhich do not have holes. Let� be a rectangular
domain with the Dirichlet boundary condition on two opposite sides, and Neumann boundary
condition on the other two sides; see Fig. 9. Then, the interior angles are all equal to π

2 < π√
2
.

Consequently, the theorem shows that such a domain is not isospectral to any smoothly
bounded domain with either Dirichlet or Neumann (but not mixed) boundary condition, nor
is it isospectral to any domain with corners but which has a single fixed boundary condition,
either Dirichlet or Neumann. An analogous result holds for any polygonal domain which has
an even number of sides and alternating Dirichlet and Neumann boundary conditions, such
that the interior angles do not exceed π√

2
.
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Appendix A. Calculation of the Green’s function for Dirichlet,
Neumann, andmixed Dirichlet–Neumann boundary
conditions

Herewewill explain how toobtain the explicit expression for theGreen’s functions introduced
in Sect. 2.1. Inspired by Fedosov [10], we consider the Kontorovich–Lebedev transform

F(x) =
∫ ∞

0
Kix (z) f (z)

dz

z

and its inverse transform

f (y) = 2

π2

∫ ∞

0
x sinh(πx)Kix (y)F(x)dx .

Above, Kν is the modified Bessel function of second kind. At least formally

f (r0
√
s) =

∫ ∞

0

2

π2r

∫ ∞

0
x sinh(πx)Kix (r

√
s)Kix (r0

√
s)dx · f (r

√
s)dr .

Hence, in the distributional sense we obtain

2

π2r

∫ ∞

0
x sinh(πx)Kix (r

√
s)Kix (r0

√
s)dx = δ(r − r0). (A.1)

We will search for the Green’s function of the following form G(s, r , φ, r0, φ0) =
2

π2

∫ ∞

0
Kiμ(r

√
s)Kiμ(r0

√
s)μ sinh(πμ)�(μ, φ, φ0)dμ. (A.2)

Inserting (A.2) into (2.1) and using the definition of Kν , we want to solve:

2

π2

∫ ∞

0
Kiμ(r

√
s)Kiμ(r0

√
s)μ sinh(πμ)

1

r2
[−(iμ)2�(μ, φ, φ0) − �′′(μ, φ, φ0)

]
dμ

= 1

r
δ(r − r0)δ(φ − φ0).

By (A.1), it will suffice to find � such that

−(iμ)2�(μ, φ, φ0) − �′′(μ, φ, φ0) = δ(φ − φ0),

α�(0) + β�′(0) = 0, α�(γ ) + β�′(γ ) = 0, (A.3)

with either α = 1 and β = 0 or α = 0 and β = 1. Solving the first case will yield (2.2), and
the second case will yield (2.3). For this purpose, we note that

�1(φ) := α sinh φμ − μβ cosh φμ, �2(φ) := α sinh(φ − γ )μ − μβ cosh(φ − γ )μ

are solutions of (A.3) and satisfy the first and second boundary conditions, respectively.
Hence, the Green’s function is obtained by inserting

� := −�1(φ)�2(φ0)

W (�1,�2)
, for φ < φ0, (A.4)

into (A.2) where above W (�1,�2) is the Wronskian of �1 and �2.
Similarly, with the Dirichlet–Neumann mixed boundary condition, the Green’s function

is of the form (A.2), but in this case � solves

−�′′ + μ2� = 0, �(0) = 0, �′(γ ) = 0.
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Now defining

�1(φ) := sinh(φμ), �2(φ) := cosh((φ − γ )μ)

the Green’s function is obtained from (A.4) inserted into (A.2).

Appendix B. The corner contribution using Cheeger’s series expression
for the heat kernel on an infinite sector

Here we show how, given the contribution for a D–D corner, which has been computed in [43,
51], we may use the series expression of the heat kernel from [6] to compute the contribution
for both N–N and D–N corners. For a corner of angle α, the corner contribution is obtained
by computing the renormalized integral, (see also [18, 19])

f.p.ε=0

∫ 1/ε

R=0

∫ α

0

1

2
R exp

[
−1

2
R2

] ∞∑
j=1

Iμ j

(
1

2
R2

)
|φ j (θ)|2 dθ dR.

Since the cross-sectional eigenfunctions, φ j , have unit L2 norm, this simplifies to

f.p.ε=0

∫ 1/ε

R=0

1

2
Re− 1

2 R
2

∞∑
j=1

Iμ j (
1

2
R2) dR. (B.1)

In the Dirichlet–Dirichlet case, μ j = jπ/α and (B.1) becomes

f.p.ε=0

∫ 1/ε

R=0

1

2
Re− 1

2 R
2

∞∑
j=1

I jπ/α

(
1

2
R2

)
dR. (B.2)

By [43, 51], (B.2) is equal to

π2 − α2

24πα
. (B.3)

In the Neumann–Neumann case, the only difference is that there is a zero eigenvalue. So
the difference of the corner contributions in the D–D and N–N cases is

f.p.ε=0

∫ 1/ε

0

1

2
Re− 1

2 R
2
I0

(
1

2
R2

)
dR. (B.4)

This integral may be evaluated directly. First make a substitution in the integral setting
u = 1

2 R
2, so that it becomes

f.p.ε=0

∫ 1
2ε2

0

1

2
e−u I0(u) du.

In [2, 5.5], a primitive for the integrand is obtained,

g(u) := e−uu(I0(u) + I1(u)) �⇒ g′(u) = e−u I0(u).

Since I0(0) = I1(0) = 0, the integral above is therefore

f.p.ε=0
1

2

[
1

2ε2
e
− 1

2ε2

(
I0

(
1

2ε2

)
+ I1

(
1

2ε2

))]
. (B.5)
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However, both I0(z) and I1(z) have expansions of the form

ezz−1/2(C0 + C1z
−1 + C2z

−2 + . . . )

as z → ∞. Substituting these expansions for the Bessel functions above, there are only
odd powers of ε in the expansion. Therefore the coefficient of the ε0 power is zero, and
the finite part is zero. This shows that (B.4) equals zero and the Neumann–Neumann corner
contribution is (B.3), the same as the Dirichlet–Dirichlet contribution.

In the Dirichlet–Neumann cases, μ j = ( j + 1/2)π/α, starting at j = 0, so we get

f.p.ε=0

∫ 1/ε

0

1

2
Re− 1

2 R
2

∞∑
j=0

I( j+1/2)π/α

(
1

2
R2

)
dR. (B.6)

Observe that, since renormalized integrals are linear, this equals

f.p.ε=0

∫ 1/ε

0

1

2
Re− 1

2 R
2

∞∑
j=1

I jπ/(2α)

(
1

2
R2

)
dR

−f.p.ε=0

∫ 1/ε

0

1

2
Re− 1

2 R
2

∞∑
j=1

I jπ/α

(
1

2
R2

)
dR.

(B.7)

We recognize this to be (B.2) for angle 2α minus (B.2) for angle α. We therefore obtain the
Dirichlet–Neumann mixed corner contribution is

π2 − (2α)2

48πα
− π2 − α2

24πα
= −π2 − 2α2

48πα
. (B.8)
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