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Abstract—Distributed massive multiple-input multiple-output
networks utilize a large number of distributed access points
(APs) to serve multiple user equipments (UEs), offering significant
potential for both communication and localization. However, these
networks require frequent phase and time calibration between
distributed antennas due to oscillator phase drifts, crucial for
reciprocity-based coherent beamforming and accurate localization.
While this calibration is typically performed through bi-directional
measurements between antennas, it can be simplified to uni-
directional measurement under perfect knowledge of antenna lo-
cations. This paper extends a recent phase calibration narrowband
line-of-sight (LoS) model to a phase and time calibration wideband
orthogonal frequency division multiplexing model, including both
LoS and reflection paths and allowing for joint phase and time
calibrations. We explore different scenarios, considering whether
or not prior knowledge of antenna locations and the map is avail-
able. For each case, we introduce a practical maximum likelihood
estimator and conduct Cramér-Rao lower bound (CRLB) analyses
to benchmark performance. Simulations validate our estimators
against the CRLB in these scenarios.

Index Terms—Time Calibration, phase calibration, cell-free
massive MIMO, distributed antenna, reciprocity calibration, car-
rier phase positioning, delay estimation

I. INTRODUCTION

Distributed massive multiple-input multiple-output (mMIMO)
is a promising technology for next-generation communication
systems, where numerous distributed access points (APs) serve
multiple user equipments (UEs) with uniform service [1], [2].
However, it requires precise phase and time synchronization
between APs, critical for uplink combining, downlink MIMO
beamforming, and localization [1]–[4]. Bi-directional over-the-
air (OtA) measurements between the antennas of different APs
can be used to calibrate uplink-downlink reciprocity phase
errors for reciprocity-based beamforming [5]. Unless the local
oscillators (LOs) in different APs are mutually locked to each
other, the phase drift originating from LO noise requires fre-
quent (millisecond-level) re-calibration [6]–[8]. Such calibration
can also be accomplished using bi-directional OtA measure-
ments between the APs [3], [8].
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Fig. 1: Phase and time calibration between two asynchronous distributed single-
antenna APs in a distributed massive MIMO network, A and B, via LoS and
ground reflection paths (reflection point R). Depending on the prior knowledge
of the location (AP positions) and map (reflection point position and phase)
information, bi-directional or uni-directional measurements are needed.

While [3], [5]–[8] focus on phase calibration issues from
hardware impairments and asynchronous timing, time calibra-
tion is also crucial for delay-based high-accuracy localiza-
tion [4], [9], [10]. Joint phase and time calibration, especially
addressing errors from imperfect LOs between distributed an-
tennas, remains underexplored. The paper [3] offers a phase
calibration method for narrowband transmission over line-of-
sight (LoS) channels but does not address time calibration,
wideband systems, and multi-path effects (which commonly
arise from ground reflections [11]). Additionally, the potential
benefits of using location (AP positions) and map information
(reflection points and phases) in phase and time calibration
are not systematically explored. Specifically, knowing the AP
locations reduces the need for calibration from bi-directional to
uni-directional measurements, and knowing the map informa-
tion could enhance calibration accuracy. These research gaps
motivate our work.

In this paper, we introduce a novel phase and time calibra-
tion signal model for wideband distributed antenna systems,
enabling joint phase and time calibration for precise calibration
and accurate localization. We investigate various scenarios,
considering the availability of location (AP positions) and/or
map information (reflection position and phase), over both LoS
and reflection paths. We derive maximum likelihood (ML)-
based estimators for each scenario to solve the calibration
problem. Additionally, we provide a rigorous Cramér-Rao lower
bound (CRLB) analysis using Fisher information, establishing
a theoretical benchmark for performance evaluation. By exam-
ining a setup with two single-antenna APs, we emphasize that
our model and techniques apply also to calibration between



antennas of multi-antenna APs and between APs and UEs in
distributed mMIMO scenarios, broadening the potential impact
of our work.

II. SYSTEM MODEL

A. Phase and Clock Offsets
Two single-antenna APs A and B are shown in Fig. 1. Each AP,
A or B, has a transmit and receive branch, causing respective
time and phase offsets [7]. We assume that each AP has already
individually calibrated its transmit and receive antenna times
and phases.1 The rest of this paper focuses on phase and time
calibration between different antennas.

The propagation delay between A and B is
τAB = ∥pA − pB∥/c, (1)

where pA and pB are the 2-D positions of A and B, and c is
the speed of light. Note τAB = τBA due to reciprocity. At global
time zero, the clock offset for the transmission from A to B is
δtAB ∈ R, and from B to A is δtBA ∈ R. The additional phase
offset transmitting from A to B and from B to A due to hardware
impairments (e.g., in-phase and quadrature (IQ) imbalance or
common phase error due to phase noise) is denoted by δϕAB

∈
[0, 2π) and δϕBA

∈ [0, 2π). We note that
δtAB = −δtBA , (2)
δϕAB

= −δϕBA
. (3)

These minus signs arise because a positive transmit time delay
shift has the opposite effect on the signal phase compared to a
positive receive time delay shift, due to opposite transmission
directions. See [7], [8] for more details.
B. Observation Model via LoS Path
We consider an OFDM system with subcarrier spacing ∆f Hz
and N subcarriers. The bandwidth is W = N∆f . The additive
white Gaussian noise (AWGN) noise power spectral density
(PSD) is N0. The transmit power is Ptx. The complex pilot
symbol vector at one OFDM symbol, transmitted by AP A,
is sA = [sA[0], · · · , sA[N − 1]]T ∈ CN . The average symbol
energy Es = E{|sA[n]|2} = Ptx/W .

Under an ideal LoS channel, the received symbol at AP B
over subcarrier n, after filtering, sampling, and cyclic prefix
removal, is given by2

yAB[n] = βABe
−jδϕAB e−j2πfcτ̃ABe−j2πn∆f τ̃ABsA[n] + wAB[n]

= βABe
jφABa(τ̃AB)[n]sA[n] + wAB[n], (4)

where βAB ∈ R is channel gain including path loss, wAB[n] ∼
NC(0, N0) is AWGN. The delay τAB, pseudo-delay τ̃AB (in-
cluding the clock offset), carrier phase φAB, and delay steering
vector element [a(τ̃AB)]n, are

τ̃AB = τAB + δtAB , (5)
φAB = −2πfcτ̃AB − δϕAB

, (6)

[a(τ̃AB)]n = e−j2πn∆f τ̃AB . (7)

1This assumption is valid as the antenna individual calibration can be done
using electromagnetic simulations or anechoic chamber measurements [12],
or OtA methods [13], [14]. More details on antenna individual calibration
definition are in [8].

2The model is equivalent to the model in [7, eq. (20)] by setting δϕAB
=

−(φt − φr) and τAB = τt − τr .

where the delay steering vector a(τ̃AB) ≜
[[a(τ̃AB)]0, · · · , [a(τ̃AB)]N−1]

T ∈ CN . Collecting yAB[n]
over N subcarriers gives yAB = [yAB[0], · · · , yAB[N − 1]]T.
We obtain (4) in vector form as

yAB =µAB +wAB, (8)
where µAB ≜ βABe

jφABa(τ̃AB)⊙ sA, and wAB =
[wAB[0], · · · , wAB[N − 1]]T.

Similar to (8), we define the received signals at AP A,
transmitted from AP B, as

yBA =µBA +wBA, (9)
where µBA ≜ βBAe

jφBAa(τ̃BA)⊙ sB. The pseudo delay τ̃BA and
carrier phase φBA are

τ̃BA = τBA + δtBA , (10)
φBA = −2πfcτ̃BA − δϕBA

(11)
Note that βAB = βBA and τAB = τBA due to reciprocity.

C. Observation Model via LoS and Reflection Paths
In practice, a pure LoS path from array A to B is not always
guaranteed due to multi-path effects like ground reflections. The
observation from array A to B, involving a LoS path and a
reflection path reflected at a reflection R is represented by

yAB = µAB + µAR +wAB, (12)
where µAR ≜ βARe

jφARa(τ̃AR)⊙ sA. The pseudo-delay, τ̃AR,
and carrier phase, φAR, of the reflection path are defined as

τ̃AR = τAR + δtAB , (13)
φAR = −2πfcτ̃AR − δϕAR

− δϕAB
. (14)

Here the reflection path delay τAR is given by τAR =
(||pA − pR||+ ||pR − pB||)/c, pR is the reflection location, and
the reflection introduces an unknown phase rotation δϕAR

.
Similarly, we can rewrite the observations from AP B to

A (8), via a LoS and reflection paths, as
yBA = µBA + µBR +wBA, (15)

where µBR = βBRe
jφBRa(τ̃BR)⊙ sB, and the pseudo-delay and

carrier phase of the reflection path transmitted from AP B are
defined as

τ̃BR = τBR + δtBA (16)
φBR = −2πfcτ̃BR − δϕBR

− δϕBA
. (17)

Note that βBR = βAR, the phase rotation δϕBR
= δϕAR

, and
τBR = τAR due to reciprocity [15].

D. Problem Formulation
The task is to jointly calibrate phase and time between two
single-antenna APs using uni-directional (known AP positions)
or bi-directional (unknown AP positions) OtA observations.
Two scenarios are considered based on the knowledge of AP
positions.
• Known AP positions: With known positions of APs A and

B, we can determine the delay τAB, which helps to calibrate
the phase and clock offsets using uni-directional observation
over LoS and reflection paths (if the paths are resolvable),
e.g., yAB from (12). With unknown map, i.e., unknown τAR
or δϕAR

, and a uni-directional two-path observation (12), the
unknown parameter vector is defined as

η = [δtAB , δϕAB
, τAR, δϕAR

, βAB, βAR]
T ∈ R6×1 . (18)



If the reflection position pR or the reflection rotation phase
δϕAR

is known, i.e., known map, the unknown vector η in (18)
is reduced by excluding τAR or δϕAR

, respectively.
With only a LoS path observation, the unknown parameter
vector in (18) is reduced to

η = [δtAB , δϕAB
, βAB]

T ∈ R3×1. (19)
• Unknown AP positions: Without knowing the posi-

tions of APs A and B, a uni-directional observation,
e.g., yAB from (12), is insufficient to independently es-
timate both τAB and δtAB , because there are more un-
knowns (6 in (18) and τAB) than measurable parameters
(φAB, φAR, τ̃AB, τ̃AR, βAB, βAR). Instead, bi-directional obser-
vations yAB and yBA are needed. With unknown map and
bi-directional two-path observations, the unknown parameter
vector is defined as

η = [τAB, δtAB , δϕAB
, τAR, δϕAR

, βAB, βAR]
T ∈ R7×1 . (20)

If the reflection information τAR and δϕAR are known, i.e.,
known map, the unknown vector η in (20) is reduced by
excluding τAR or δϕAR

, respectively.
With only LoS path observations, i.e., using observations yAB
from (8) and yBA (9), the unknown parameter vector is

η = [τAB, δtAB , δϕAB
, βAB]

T ∈ R4×1. (21)

III. PHASE AND TIME CALIBRATION

This section introduces four novel ML-based estimators for the
phase and time calibration tasks (18), (19), (20), and (21) in
Section II-D. These estimators share a similar form but differ
in their final grid search dimensions.

Proposition 1. The ML-based estimator of the unknown pa-
rameters η in (18), (19), (20), and (21) are respectively given
by

[δ̂tAB , τ̂AR, δ̂ϕAR
] = arg min

δtAB ,τAR,
δϕAR

LUni
2-path(δtAB , τAR, δϕAR

), (22)

δ̂tAB = argmin
δtAB

LUni
LoS(δtAB), (23)

[τ̂AB, δ̂tAB , τ̂AR, δ̂ϕAR
] = arg min

τAB,δtAB ,
τAR,δϕAR

LBi
2-path(τAB, δtAB , τAR, δϕAR

),

(24)

[τ̂AB, δ̂tAB ] = arg min
τAB,δtAB

LBi
LoS(τAB, δtAB), (25)

where (22) and (23) are the two-path and LoS estimators
using the uni-directional observation yAB from (12) and (8),
respectively. (24) and (25) are the two-path and LoS estimators
using the bi-directional observations y = [yT

AB,y
H
BA]

T, obtained
from (12) and (15), and from (8) and (9), respectively. The
negative log-likelihood functions (NLLFs) LUni

2-path, Luni
LoS, LBi

2-path,
and LBi

2-path share a similar form as

LML(·) = ∥ÿ∥22 + ∥c̈∥22 − 2
∣∣c̈Hÿ∣∣ , (26)

where, based on the specific estimator, LML =
{LUni

2-path,LUni
LoS,LBi

2-path,LBi
LoS}, ÿ and c̈ in (26) are substituted

accordingly to obtain the respective NLLF functions in (46),
(47), (42), and (48).

Proof. The detailed derivation of (24) is given in Appendix A.

The derivation of other three estimators follows similar steps,
given in Appendix B.

Analytically solving (22), (23), (24), and (25) is infeasible.
Thus, a practical approach is to perform a grid search over the
3-D, 1-D, 4-D, and 2-D parameter spaces for (22), (23), (24),
and (25), respectively.

IV. CRAMÉR-RAO LOWER BOUND AND ANALYSIS

Next, we derive the CRLB for parameters in (18), (19), (20),
and (21), respectively. The CRLB on the error variance of any
unbiased estimator of the unknown parameters η is defined as

Eη{(η̂ − η)(η̂ − η)T} ≥ (Jη)
−1. (27)

The Fisher information matrix (FIM) of η can be calculated as

[Jη ]i,j = 2ℜ
{ ∂µH

∂[η]i

∂µ

∂[η]j

} 1

N0
, (28)

where µ is chosen as [µT
AB + µT

AR]
T, µAB, and [µT

AB,µ
H
BA]

T

for the unknown parameters η from (18), (19), and (21),
respectively. Using the FIM for an unknown parameter vector
η, we calculate the lower bound on the error variance for the
i-th parameter as

var(η̂i) ≥ [J−1
η ]i,i. (29)

A. Known Positions with LoS Path or Two-path
1) LoS Path
In the scenario with known AP positions and uni-directional
observation (8) over LoS path, the analytical CRLBs of the
error variance of the unknown δ̂tAB and δ̂ϕAB

from (19) are

var(δ̂tAB) = [J−1
η ]1,1 = 3/(2π2W 2SNR), (30)

var(δ̂ϕAB
) = [J−1

η ]2,2 = 6f2
c /(W

2SNR) + 1/(2SNR), (31)
where the SNR ≜ Esβ

2N/N0. We omit the derivation details
for simplicity. The CRLB for δ̂tAB (30) shows that increasing the
bandwidth can reduce the estimation error to zero. In contrast,
the CRLB for δ̂ϕAB

(31) indicates a performance threshold.
Referring to Eq. (6), this occurs because, with perfectly known
δtAB , the error in the estimation of δϕAB

is independent of
bandwidth and only depends on SNR.
2) Two-path
In the scenario with known AP positions and uni-directional
observation (12) over two paths (LoS and reflection), the
CRLBs of the error variance of unknown parameters in η
from (18) is given in Appendix C.

B. Unknown Positions with LoS Path or Two-path
1) LoS Path
The analytical CRLBs of the error variance of τ̂AB, δ̂tAB , and
δ̂ϕAB

, from (21), are
var(τ̂AB) ≥ [J−1

η ]1,1 = 1/
(
(16π2f2

c + 4π2/3)SNR
)

(32)

var(δ̂tAB) ≥ [J−1
η ]2,2 = 3/(4π2W 2SNR), (33)

var(δ̂ϕAB
) ≥ [J−1

η ]2,2 = 3f2
c /(W

2SNR) + 1/(4SNR). (34)
We omit the derivation details for simplicity. Comparing (33)
and (34) with the uni-directional CRLBs, (30) and (31), bi-
directional observations halve the estimation variances of δtAB

and δϕAB
. Specifically, (32) shows that the estimation variance



TABLE I: Simulation parameters.
Parameter Value
pA,pB,pR [50, 50], [0, 0], [0,−10] m
Ptx, N0, fc, ∆f 10 mW, −174 dBm/Hz, 2 GHz, 60 kHz
δtAB , δϕAB

, δϕAR
0.67µs, 10◦, 20◦

βAB, βAR λ/(4π ∥pA − pB∥),
λ/(4π ∥|pA − pR|+ |pR − pB|∥)

TABLE II: Setups of two scenarios and the corresponding estimators.
Setups Scenario 1 Scenario 2
Prior Localization Known pA, pB Unknown pA, pB
Unknown parameters η Two-path: (18),

LoS: (19)
Two-path:(20),

LoS:(21)
Prior Map in two-path Reduced η (18) Reduced η (20)
Estimators Two-path est.:(22),

LoS est.:(23)
LoS est.:(25)

of τAB decreases with f2
c , unlike δtAB and δϕAB

. This is because
δtAB and δϕAB

can somehow be canceled out due to their opposite
signs in the carrier phases of bi-directional measurements: i.e.,
−δϕAB

in φAB and +δϕAB
in φBA. The same applies to δtAB

. This
in turn improves the estimation of τAB due to its same signs in
φAB and φBA.
2) Two-path
In the scenario with unknown AP positions and bi-directional
observation ((12) and (15)) over two paths (LoS and reflection),
the CRLBs of the error variance of unknown parameters in η
from (20) is given in Appendix D.

V. SIMULATION RESULTS

A. Scenarios
We consider a simulation setup involving two single-antenna
APs. The setup parameters, following similar parameters in [4],
are given in Table I. The evaluated scenarios and estimators are
given in Table II. The ML estimator (24) is not evaluated due
to its impractical and costly 4-D grid search.

B. Scenario 1: Calibration with Known AP Positions
1) Impact of Bandwidth
The root-mean-squared errors (RMSEs) on the estimation of
clock offset δ̂tAB and phase offset δ̂ϕAB

versus bandwidth W
are shown in Fig. 2 and Fig. 3, averaged over 50 Monte
Carlo simulations. The corresponding CRLBs are given in
solid lines. The results indicate that the proposed ML-based
estimators can nearly reach the corresponding CRLBs. Fine-
tuning the grid search size can further improve their stability.
With unknown map, the reflection path degrades the two-
path estimator’s performance compared to only LoS estimator
on LoS path model. This degradation lessens with growing
bandwidths, which allows a better resolution between LoS and
reflection paths (delay difference in Hz: 1/(τAR − τAB) ≈ 17
MHz). With known map, the two-path estimator performs better
than the LoS estimator for larger bandwidths (> 30 MHz),
showing a nonlinear improvement with bandwidth. The LoS
estimator performs poorly under the two-path model due to
mismatched estimators. The two-path estimators’ phase offset
RMSEs deviates from the CRLB for small bandwidths (< 20
MHz) because of phase wrapping. The RMSE values in Fig. 3
are larger than those in Fig. 2, aligning with (30) and (31).
2) NLLF Results
Fixing the bandwidth W = 12 MHz, Fig. 4 shows the clock
offset estimation error, (δ̂tAB − δtAB) × c measured in distance,
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Fig. 2: RMSE of the clock offset estimate δtAB in ns versus the bandwidth for
various estimators for the scenario with known AP positions. Solid lines are
the corresponding CRLBs.
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Fig. 3: RMSE of the phase offset estimate δϕAB in degree versus the bandwidth
for various estimators for the scenario with known AP positions.

which is a 1D slice of the 3D NLLF results, fixing the other
two parameters, for the two-path estimator (22) and the 1D
NLLF of the LoS estimator (23). The LoS estimator (23) shows
inferior performance under the two-path observation model (12)
due to interference from the reflection path. In contrast, the
two-path estimator (22) with unknown reflection parameters
offers better accuracy. Having knowledge of reflection path
parameters offers almost no advantage because of the limited
bandwidth of 12 MHz. The LoS estimator is most effective
under the LoS observation model (8), displaying the sharpest
NLLF curve near the ground truth. The results demonstrate the
superior performance of the proposed estimators, highlighting
the importance of a precise multi-path model over map data for
calibration accuracy.

C. Scenario 2: Calibration with Unknown AP Positions
Fig. 5 shows the RMSEs on the estimation of clock offset δτAB

and delay τAB versus bandwidth W for the LoS estimator (25)
under unknown AP positions and bi-directional observations
over LoS and two-path channel. The results of the LoS estima-
tor (23) using uni-directional observation from Fig. 2 is also
shown. The corresponding CRLBs are given in solid lines.

As bandwidth increases, the performance of both LoS estima-
tors for clock offset δτAB improves linearly. The bi-directional
LoS estimator (25) halves the estimation error, as discussed
by the CRLB analysis in Section IV-B. The delay estimation
τAB demonstrates a threshold effect where, with sufficiently
large bandwidth (> 100 MHz), the estimation can approach
its CRLB at a much lower level (see right y-axis) due to carrier
phase exploitation, similar to the threshold effect discussed
in [10]. The two-path measurements have a negligible effect on



−10 −5 0 5 10

10−15

10−12

10−9

Clock offset error in distance: (δ̂tAB − δtAB ) × c [m]

N
L

L
F

Two-path Est. (22): unknown map Two-path Est. (22): known map

LoS Est. (23) on Two-path model (12) LoS Est.(23) on LoS model (8)

Ground Truth

Fig. 4: 1-D snapshot of NLLF results for clock offset error in distance using 3-
D and 1-D search for two-path and LoS estimators, given known AP positions.
Signal bandwidth W = 12 MHz.

101 102
10−3

10−2

10−1

100

101

bandwidth W [MHz]

R
M

SE
of

δ
t A

B
[n

s]

LoS Est. (25) of δtAB on LoS model (8)

LoS Est. (25) of δtAB on 2-path model (12)

LoS Est. (23) of δtAB on LoS model (8)

10−5

10−4

10−3

10−2

10−1

R
M

SE
of

τ
A

B
[n

s]

LoS Est. (25) of τAB on LoS model (8)

LoS Est. (25) of τAB on 2-path model (12)

Fig. 5: RMSE on the estimation of the clock offset δ̂tAB (left y-axis) and delay
τ̂AB (right y-axis) versus the bandwidth for two LoS estimators, (23) and (46),
in scenarios with and without known AP positions and LoS path.

the bi-directional LoS estimator (25) for both clock offset and
delay, in contrast to the significant impact on the uni-directional
LoS estimator (23), as illustrated in Fig. 2 and Fig. 4, mainly
because bi-directional measurements help to decouple reflection
parameters from LoS parameters. For instance, δϕAB changes
signs in (12) and (15), unlike τAR and δtAB .

This threshold effect arises due to the integer ambiguity
error (41) in the phase offset estimation when exploiting the
carrier phase. Fig. 6 shows the 1-D extraction from the 2-D
NLLF results of the estimator (25) for delay estimation at 50
MHz and 200 MHz. With larger bandwidths, a distinct global
optimum correctly identifies the optimum, while smaller band-
widths lead to numerous local optima and incorrect estimates.
Mismatched two-path measurements on the LoS estimator show
that the large bandwidth advantage is less apparent compared
to the cases without mismatch.

VI. CONCLUSION

This paper addresses phase and time calibration in distributed
mMIMO context using a wideband multi-path model for sep-
arate phase and time offsets calibration. We cover scenarios
with/without known AP positions and/or reflection information,
offering a practical framework. We developed ML estimators for
each scenario. Our CRLB analyses establish theoretical perfor-
mance benchmarks, improving the understanding of calibration
limits. Extensive simulations validated our estimators against
the CRLBs. Focusing on two single-antenna APs, we note that
our model and techniques are applicable to intra-AP and AP-
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for the LoS estimators and (25).

UE calibration in distributed massive MIMO. Future work can
explore calibration with unknown AP positions in a multi-path
channel and localization with multiple APs.

APPENDIX A
PROOF OF (24) IN PROPOSITION 1

Using the ML criterion, we solve the estimation of η
from (21) using the bi-directional two-path observation y =
[yT

AB,y
H
BA]

T ∈ C2N from (12) and (15) as
η̂ = argmax

η
p(y|η). (35)

Denote µAB-BA ≜ [µT
AB,µ

H
BA]

T ∈ C2N , and µR ≜
[µT

AR,µ
H
BR]

T ∈ C2N . Solving (35) is equivalent to minimize
the negative log-likelihood version of p(y|η). After removing
irrelevant terms in log p(y|η), the problem in (35) becomes to
minimize the NLLF, given by η̂ = argmin

η
LML(η), where

LML(η) ≜ ∥y − µAB-BA − µR∥22
=

∥∥∥y − βAB[e
−jδϕAB ejφ̃ABcTAB, e

jδϕBA e−jφ̃BAcHBA]
T

− βAR[e
−jδϕAB ejφ̃ARcTAR, e

jδϕBA e−jφ̃BRcHBR]
T
∥∥∥2
2
, (36)

=
∥∥∥y − βABe

−jδϕABcAB-BA − βARe
−jδϕABcAR-BR

∥∥∥2
2
, (37)

where φ̃AB ≜ φAB − δϕAB
, φ̃BA ≜ φBA − δϕBA

, φ̃AR ≜ φAR −
δϕAB

, φ̃BR ≜ φBR − δϕBR
, cAB-BA ≜ [ejφ̃ABcTAB, e

−jφ̃BAcHBA]
T,

cAR-BR ≜ [ejφ̃ARcTAR, e
−jφ̃BRcHBR]

T, and from (36) to (37) we
use δϕAB

= −δϕBA
(defined in (3)).

We can express two channel gains in vector form as β =
[βAB, βAR]

T. Thus we can rewrite (37) as

LML(η) =
∥∥∥y − e−jδϕABCA-R-Bβ,

∥∥∥2
2
, (38)

where CA-R-B ≜ [cAB-BA, cAR-BR] ∈ C2N×2. To solve this ML
estimation problem, we first estimate β as a function of the
remaining parameters in closed-form as

β̂ML = ℜ
{(

CH
A-R-BCA-R-B

)−1
(e−jδϕABCA-R-B)

Hy
}

=
1

2

(
CH

A-R-BCA-R-B
)−1

(e−jδϕABCA-R-B)
Hy

+
1

2

(
yH(e−jδϕABCA-R-B)

(
CH

A-R-BCA-R-B
)−1

)T

. (39)

Substituting (39) into (38) drops the dependency of β, we
obtain the compressed loss function

LML(τAB, δϕAB
, δtAB , τAR, δϕAR

) = ∥y̆ − e−2jδϕAB c̆A-R-B∥22,
(40)



where y̆ ≜ y − 1
2CA-R-B

(
CH

A-R-BCA-R-B
)−1

CH
A-R-By and

c̆A-R-B ≜ 1
2CA-R-B

(
CH

A-R-BCA-R-B
)−1

CT
A-R-B(y

H)T . Similarly,
we can also estimate δϕAB

in closed-form using the remaining
parameters as

δ̂ϕAB
= −

∠
(
c̆HA-R-By̆

)
2

+ z1π, (41)

where z1 ∈ Z is introduced to account for possible integer
ambiguities in phase estimation. Inserting (41) into (40) yields
LBi

2-path(τAB, δtAB , τAR, δϕAR
) = ∥y̆∥22 + ∥c̆ABA∥22 − 2

∣∣c̆HABAy̆
∣∣ .

(42)

APPENDIX B
PROOF OF (22), (23), AND (25) IN PROPOSITION 1

Using the ML criterion, we solve the estimation of η
from (18), (19), and (21) by minimizing the following NLLFs
LML(η) ≜

∥yAB − µAB − µAR∥22 , for η in (18), yAB in (12) (43)

∥yAB − µAB∥22 , for η in (19), yAB in (8) (44)

∥y − µAB-BA∥22 , for η in (21), y in (8), (9), (45)
where the bi-directional LoS observation y = [yT

AB,y
H
BA]

T ∈
C2N in (45) is obtained from (8) and (9).

We omit some details for simplicity and follow similar steps
from (36) to (41) to compress the unknown βAB, βBA (if
applicable), βAR (if applicable), βBR (if applicable), and δϕAB

in each NLLF function in (43), (44), and (45). Specifically,
we obtain the compressed loss function of (43) for the uni-
directional two-path estimator,
LUni

2-path(δtAB , τAR, δϕAR
) = ∥y̆AB∥22 + ∥c̆ABR∥22 − 2

∣∣c̆HABRy̆AB
∣∣ ,

(46)

where y̆AB ≜ yAB − 1
2CABR

(
CH

ABRCABR
)−1

CH
ABRyAB and

c̆ABR ≜ 1
2CABR

(
CH

ABRCABR
)−1

CT
ABR(y

H
AB)

T , CABR ≜
[ejφ̃ABcAB, e

jφ̃ARcAR] ∈ CN×2, cAB ≜ a(τ̃AB) ⊙ sA and
cAR ≜ a(τ̃AR)⊙ sA.

Similarly, we can also obtain the compressed loss function
of (44) for the uni-directional LoS estimator,

LUni
LoS(δtAB) = ∥ýAB∥22 + ∥ćAB∥22 − 2

∣∣ćHABýAB
∣∣ , (47)

where ýAB ≜ yAB − cHAByAB/2∥cAB∥22cAB and ćAB ≜
e−j4πfcτ̃AByH

ABcAB∥cAB∥22cAB/2. We obtain the compressed loss
function of (45) for the bi-directional LoS estimator,

LBi
LoS(τAB, δtAB) = ∥ỹ∥22 + ∥c̃ABA∥22 − 2

∣∣c̃HABAỹ
∣∣ , (48)

where ỹ ≜ y − cHABAycABA/∥cABA∥22 and c̃ABA ≜
yHcABAcABA/∥cABA∥22.

APPENDIX C
CRLB CALCULATION OF η FROM (18).

The FIM of η from (18) is calculated following (28) using
∂µ/∂δtAB = D1µ, ∂µ/∂δϕAB

= −jµ, ∂µ/∂τAR = D1µAR
∂µ/∂δϕAR

= −jµAR ∂µ/∂βAR = µAR/βAR ∂µ/∂βAB =
µAB/βAB. Here D1 = diag(d1), and d1 = −j2π(fc1N +
∆f ([−(N−1)/2, · · · , (N−1)/2])). Using these derivatives, the
corresponding FIM elements can be calculated following (28).
Notably, the FIM size is reduced based on prior knowledge of
τAR and δϕAR

. Finally, the error covariance bounds for δtAB , δϕAB
,

τAR, and δϕAR
(if applicable) are obtained following (29).

APPENDIX D
CRLB CALCULATION OF η FROM (20).

The FIM of η from (20) is calculated following (28) us-
ing µ = (µAB-BA + µR), defined after (35). The deriva-
tives are ∂µ/∂τAB = D1,1µAB-BA, ∂µ/∂δtAB = D1,2µ,
∂µ/∂δϕAB

= −jµ, ∂µ/∂τAR = D1,1µR, ∂µ/∂δϕAR
=

−jµR, ∂µ/∂βAR = µR/βAR, ∂µ/∂βAB = µAB-BA/βAB.
Here D1,1 = diag([d1,−d1]), D1,2 = diag([d1,−d2]), and
d2 = −j2π(fc1N −∆fdiag([−(N − 1)/2, · · · , (N − 1)/2])).
These derivatives can be used following (28). Notably, the FIM
size are reduced based on prior knowledge of τAR and δϕAR

.
Finally, the error covariance bounds for each parameter in (20)
are obtained following (29).
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[1] Ö. T. Demir, E. Björnson, and L. Sanguinetti, “Foundations of user-centric
cell-free massive MIMO,” Foundations and Trends® in Signal Process.,
vol. 14, no. 3-4, 2021.

[2] H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta,
“Cell-free massive MIMO versus small cells,” IEEE Trans. Wireless
Commun., vol. 16, no. 3, pp. 1834–1850, Jan. 2017.

[3] E. G. Larsson, “Massive synchrony in distributed antenna systems,” IEEE
Trans. Signal Process., vol. 72, pp. 855–866, 2024.

[4] A. Fascista, B. J. Deutschmann, M. F. Keskin, T. Wilding, A. Coluccia,
K. Witrisal, E. Leitinger, G. Seco-Granados, and H. Wymeersch, “Uplink
joint positioning and synchronization in cell-free deployments with radio
stripes,” IEEE ICC Workshop, 2023 May.

[5] J. Vieira, F. Rusek, O. Edfors, S. Malkowsky, L. Liu, and F. Tufvesson,
“Reciprocity calibration for massive MIMO: Proposal, modeling, and
validation,” IEEE Trans. Wireless Commun., vol. 16, no. 5, pp. 3042–
3056, 2017.

[6] Y. Xu, E. G. Larsson, E. A. Jorswieck, X. Li, S. Jin, and T.-H.
Chang, “Distributed signal processing for extremely large-scale antenna
array systems: State-of-the-art and future directions,” arXiv preprint
arXiv:2407.16121, 2024.

[7] R. Nissel, “Correctly modeling TX and RX chain in (distributed) massive
MIMO—New fundamental insights on coherency,” IEEE Commun. Lett.,
vol. 26, no. 10, pp. 2465–2469, 2022.

[8] E. G. Larsson and J. Vieira, “Phase calibration of distributed antenna
arrays,” IEEE Commun. Lett., 2023.

[9] S. Fan, W. Ni, H. Tian, Z. Huang, and R. Zeng, “Carrier phase-based
synchronization and high-accuracy positioning in 5G new radio cellular
networks,” IEEE Trans. Commun., vol. 70, no. 1, pp. 564–577, 2021.

[10] H. Wymeersch, R. Amiri, and G. Seco-Granados, “Fundamental perfor-
mance bounds for carrier phase positioning in cellular networks,” in IEEE
GLOBECOM. IEEE, 2023 Dec., pp. 7478–7483.

[11] S. Jaeckel, L. Raschkowski, S. Wu, L. Thiele, and W. Keusgen, “An ex-
plicit ground reflection model for mm-wave channels,” in IEEE WCNCW.
IEEE, 2017, pp. 1–5.

[12] L. Sevgi, S. Cakir, and G. Cakir, “Antenna calibration for EMC tests and
measurements,” IEEE Antennas Propag. Mag., vol. 50, no. 3, pp. 215–
224, 2008.

[13] X. Jiang, A. Decurninge, K. Gopala, F. Kaltenberger, M. Guillaud,
D. Slock, and L. Deneire, “A framework for over-the-air reciprocity
calibration for TDD massive MIMO systems,” IEEE Trans. Wireless
Commun., vol. 17, no. 9, pp. 5975–5990, 2018.

[14] Y. Cao, P. Wang, K. Zheng, X. Liang, D. Liu, M. Lou, J. Jin, Q. Wang,
D. Wang, Y. Huang et al., “Experimental performance evaluation of cell-
free massive MIMO systems using COTS RRU with OTA reciprocity
calibration and phase synchronization,” IEEE JSAC, vol. 41, no. 6, pp.
1620–1634, 2023.

[15] Y. Zhang, J. Zhang, X. Chu, and J. Zhang, “Effects of wall reflection
on the per-antenna power distribution of ZF-precoded ULA for indoor
mmWave MU-MIMO transmissions,” IEEE Communications Letters,
vol. 25, no. 1, pp. 13–17, 2020.


