
Machine learning experiment management tools: a mixed-methods
empirical study

Downloaded from: https://research.chalmers.se, 2025-01-20 01:30 UTC

Citation for the original published paper (version of record):
Idowu, S., Osman, O., Struber, D. et al (2024). Machine learning experiment management tools: a
mixed-methods empirical study. Empirical Software Engineering, 29(4).
http://dx.doi.org/10.1007/s10664-024-10444-w

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

Empirical Software Engineering (2024) 29:74
https://doi.org/10.1007/s10664-024-10444-w

Machine learning experiment management tools:
a mixed-methods empirical study

Samuel Idowu1 ·Osman Osman1 · Daniel Strüber1,2 · Thorsten Berger1,3

Accepted: 3 January 2024
© The Author(s) 2024

Abstract
Machine Learning (ML) experiment management tools support ML practitioners and soft-
ware engineers when building intelligent software systems. By managing large numbers of
ML experiments comprising many different ML assets, they not only facilitate engineer-
ing ML models and ML-enabled systems, but also managing their evolution—for instance,
tracing system behavior to concrete experiments when the model performance drifts. How-
ever, while ML experiment management tools have become increasingly popular, little is
known about their effectiveness in practice, as well as their actual benefits and challenges.
We present a mixed-methods empirical study of experiment management tools and the sup-
port they provide to users. First, our survey of 81 ML practitioners sought to determine the
benefits and challenges of ML experiment management and of the existing tool landscape.
Second, a controlled experiment with 15 student developers investigated the effectiveness of
ML experiment management tools. We learned that 70% of our survey respondents perform
ML experiments using specialized tools, while out of those who do not use such tools, 52%
are unaware of experiment management tools or of their benefits. The controlled experiment
showed that experiment management tools offer valuable support to users to systematically
track and retrieve ML assets. Using ML experiment management tools reduced error rates
and increased completion rates. By presenting a user’s perspective on experiment manage-
ment tools, and the first controlled experiment in this area, we hope that our results foster
the adoption of these tools in practice, as well as they direct tool builders and researchers to
improve the tool landscape overall.

Communicated by: Lei Ma

B Samuel Idowu
samuelid@chalmers.se

Osman Osman
oo565004@gmail.com

Daniel Strüber
danstru@chalmers.se

Thorsten Berger
thorsten.berger@rub.de

1 Chalmers | University of Gothenburg, Gothenburg, Sweden

2 Radboud University, Nijmegen, Netherlands

3 Ruhr University Bochum, Bochum, Germany

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-024-10444-w&domain=pdf
http://orcid.org/0000-0002-4143-322X

 74 Page 2 of 35 Empirical Software Engineering (2024) 29:74

Keywords Machine learning · Experiment management · Artifacts · Asset management ·
Tools · ML lifecycle

1 Introduction

In recent years, there has been a significant surge in the development of AI, specifically of
machine learning (ML) technology. Companies are now realizing the advantages of using
ML models instead of excessive manual programming to provide more efficient solutions
(Wuest et al. 2016), which ultimately saves time and money. Consequently, ML models are
being increasingly employed across different industries and fields (Jordan andMitchell 2015;
Nayak and Dutta 2017; Miotto et al. 2017; Sharma et al. 2020).

The effective management of ML assets is vital to the success of ML-enabled software
systems (Nahar et al. 2022; Idowu et al. 2022a, 2024; Nazir et al. 2024)—similar to how it is
essential to manage traditional software engineering assets during development. ML assets
are the artifacts used during ML model development (Idowu et al. 2022a, 2021, 2022b),
including resource artifacts such as datasets andmodels; software artifacts such as source code
files, computational notebooks, and (hyper)-parameters; experiment metadata; and execution
metadata and results, such as performance metrics (Zaharia et al. 2018). Emerging from
traditional software engineering, practitioners often employ version control systems (VCS)
to track ML experiments assets. However, there is a considerable difference between ML
and traditional software assets and how they are used (Janardhanan 2020; Arpteg et al. 2018;
Lewis et al. 2021). Since traditional VCS tools were not designed with ML development
use cases in mind, they do not offer adequate support to the user for exploring the history
of ML projects on the right level of abstraction. Since practitioners often perform hundreds
of iterations during ML experiments (Bouthillier and Varoquaux 2020), they need proper
tool support to effectively manage the involved assets and their versions. Important use case
are, for instance, tracing software behavior back to concrete experiment iterations (e.g., for
safety purposes), recognizing model drift, enhancing the explainability of the deployed ML
models, or understanding past decisions behind performing a concrete experiment (e.g., why
a certain hyperparameter or dataset clustering was performed).

To address these needs when developingML-enabled software systems, there has recently
been a surge of ML Experiment Management Tools, such as Neptune.ai (Neptune 2021),
MLflow (MLflow 2021), and DVC (DVC 2021). We consider ML experiment manage-
ment tools as a kind of ML asset management tools (Idowu et al. 2022a, which focus on
or provide support for the model prototyping or experimentation stages of model produc-
tion (Schlegel and Sattler 2022). Experiment management tools are either dedicated tools
or are integrated with other asset management tools, including ML lifecycle management,
pipeline management, and model management tools (Schlegel and Sattler 2022; Idowu et al.
2022a). In general, ML asset management tools provide support for the development of ML
components and AI engineering beyond what is available in traditional software engineer-
ing tools. Experiment management tools deal with practical concerns of ML experiments,
including versioning, traceability, auditability, reproducibility, and collaboration, by offering
relevant operations on ML assets. Among others, these operations allow users to compare
different experiment iterations and answer factual questions about assets of ongoing or com-
pleted experiments—for example, answering post-experiment questions (see Section 2.1) on
the assets linked to a specific model version. The available tools differ in their employed
paradigms for key operations, including asset tracking—typically either based on APIs or a

123

Empirical Software Engineering (2024) 29:74 Page 3 of 35 74

command line interface (CLI)—and querying and retrieving—typically based on graphical
dashboards or a CLI (see Section 2.2).

Recognizing their popularity, recent studies have systematically identified several such
tools, provided taxonomies, and compared their features (Quaranta et al. 2021; Idowu et al.
2021; Weber and Hußmann 2022; Schlegel and Sattler 2022). Our interactions with practi-
tioners, especially at an industrial conference, reveal that many have looked into such tools.
At the same time, some found them unfit for their way of working—a typical problem for
tools. To the best of our knowledge, there are no user-based empirical studies on ML exper-
iment management tools, specifically on their actual benefits, effectiveness, and challenges
from the user’s perspective. Improving our empirical understanding is essential to improve
such tools, providing requirements for researchers, tool builders, and educators.

We have conducted the first empirical study on the impact ofML experiment management
tools. Our research delves into the challenges users face while using these tools and how they
overcome them. We also explore the benefits of using such tools and the support provided
by existing tools.

Our study followed a mixed-methods design. First, we surveyed 81 ML practitioners who
have attended industry-focused ML conferences, made recent contributions to ML projects
on GitHub, or were relevant practitioners recruited via online freelancing services. The sur-
vey aimed to gather their personal opinions about the experiment management tools they
used, the limitations of adopting the tools, and the perceived benefits and challenges of ML
experimentation (see RQ1–3 in Section 3.1). Second, we conducted a comprehensive six-
hour controlled experiment where we guided 15 student developers with a background in
software engineering to perform typical supervisedML tasks. Wemeasured the effectiveness
of two tools that follow different tracking paradigms (API-based and CLI-based), compared
to a baseline scenario of not using any such tool, and to each other.

Our survey and controlled experiment complement each other as different methods to
answer our research question on ML experiment management tools. The controlled exper-
iment allowed for an in-depth investigation of the tools’ impact on user performance and
explored the benefits and challenges of participants’ experiences. The practitioner survey
provided a broader understanding of the challenges and benefits from a practitioner’s per-
spective. We believe that this mixed-methods design is crucial to obtain valid insights into
experimentmanagement tools. Our survey and experimentmaterials are available in an online
appendix (Appendix 2022).

We hope that our study on this increasingly popular class of tools, which are highly
relevant for software engineers buildingML-enabled systems, provides a basis for researchers
and tool builders to improve the tools, making them more effective, and increasing their
adoption.Our results support educatorswho train software engineers for buildingML-enabled
systems, providing informed recommendations regarding using tools in educating noviceML
developers. They help practitioners choose whether and which experiment management tool
might be useful in their project. We also hope to initiate a dialogue on the relevance of the
tools and whether their claimed benefits will pay off or whether organizations should invest
in better processes or training of their developers, among other considerations.

2 Background

We now provide background information on ML workflows, experiments, and experiment
management tools.

123

 74 Page 4 of 35 Empirical Software Engineering (2024) 29:74

2.1 MLWorkflow &ML Experiments

Similar to traditional software engineering,with stages, such as requirements analysis, design,
coding, and testing, ML experiments are performed in well-defined processes (Sarker et al.
2015), such as CRISP-DM (Wirth 2000), KDD (Fayyad et al. 1996), and TDSP (Microsoft
2017), stemming from a data science and data mining context. As shown in Fig. 1, these
workflows outline the ML stages of implementing ML-based software systems. They can
be summarized into stages of requirements analysis, data-oriented processing, model devel-
opment, and model operation (Kumeno 2020; Visengeriyeva et al. 2021; Wang et al. 2017).
Requirements analysis involves eliciting the model requirements and analyzing available
data, while data-oriented stages involve data collection, cleaning, labeling, and feature engi-
neering. Model development includes model design, training, evaluation, and optimization
(Arpteg et al. 2018; Visengeriyeva et al. 2021). Model operation includes deploying, mon-
itoring, and controlling in-production models. Figure 1 illustrates multiple feedback loops
(indicated by the left-pointing arrows) present in the workflow. These loops demonstrate
iterations over sets of the workflow stages for a variable number of times until the process
results in the desired outcomes (Arpteg et al. 2018).

In practice, substantial development effort goes into establishing viable ML models
through ML experiments and model prototyping (Vartak et al. 2016; Schelter et al. 2018).
These are often performed ahead of establishing a production-ready development pipeline.
In some settings, multiple practitioners experiment on data features provided through feature
stores, aiming to obtain the best-performing models. ML experiments consist of multiple
incremental iterations performed over the development workflow stages as experiment runs
or trials. The required exploratory and experimentation approaches to ML experiment and
model prototyping are the primary factors in the different development nature ofML-enabled
systems to traditional SE ones.As shown in Fig. 1, theMLworkflowcontains a linear progres-
sion from requirements analysis to operation stages; however, ML workflows are typically
non-linear and include multiple feedback loops (indicated by the upward arrows) (Amershi
et al. 2019). These feedback loops reflect the multiple experiment runs. We describe a run
as a one-time cycle through the relevant workflow stages, often resulting in a trained model.
Each run employs specific assets’ versions (e.g., datasets, hyperparameters, source code)
within the solution space of a particular ML task. The solution space includes required assets
such as datasets from the application domain presenting relevant features for the learning
task, a slice or subset of the initial dataset as training data, learning algorithms, and their
(hyper)-parameters. A completed run’s outcome often includes a trained model, the model
performance measurement based on test data, and obtained predictions from an unseen slice
or subset of the initial dataset. To find well-performing models, practitioners rely on multiple

Requirements
analysis

System
requirements

analysis

Data
analysis

Data
collection

Feature
engineering
& selection

Data
cleaning

Data
labelling

Model
training

Model
design &

construction

Model
evaluation

Model
optimisation

Data-oriented Model-development

Model
monitoring
& control

Model
deployment

Model-operations

Fig. 1 ML workflow highlighting the stages commonly involved with experimentation

123

Empirical Software Engineering (2024) 29:74 Page 5 of 35 74

instances of trial-and-error steps, due to the unpredictable nature of ML model performance
(Xin et al. 2018; Bouthillier and Varoquaux 2020; Amershi et al. 2019).

Consequently, experiment runs are repeatedly performed while modifying or using new
assets until the process results in a model that meets a specific target objective. Such mod-
ification includes adding, removing, or engineering features, changing learning algorithms,
testing different hyperparameters, and using various performance evaluation metrics. The
decision to perform new runs is usually based on an analysis of the results for the current
run and its model. Also, during the DevOps-oriented stages (deployment, monitoring, and
control of models), there is often a need to modify and make new experiment runs based on
newly available data or drift corrections to ensure models stay within the target objective’s
course. Figure 2 illustrates different asset types modified within a specific run’s solution
space. Model training involves training datasets, features, learning algorithms, and hyper-
parameters. Model evaluation involves test datasets, models, predictions, and performance
measures. The need to carry out multiple runs is often based on the analysis Yx of model
requirements and resulting model performance Mx when tested with dataset Ex ; however, a
user may use other requirement metrics to decide if a new run is required(Idowu et al. 2022a).

To find the best-performing combinations of the asset versions over several runs, a manual
or automatic approachmay be employed. Themanual approach follows experts’ decisions on
necessary step-by-step modifications within the solution space for new runs. The automatic
approach-AutoML (Waring et al. 2020; Tuggener et al. 2019; Zhang et al. 2022; Rashidi
et al. 2021)- systematically searches a pre-defined portion of the solution space (e.g., a
set of hyper-parameters range) for each run. For example, ML models can be automatically
selected and parametrized through training loops. Regardless of the employed approach, sev-
eral experiment runs are often performed before finding optimal models. The data-oriented
andmodel-development stages (highlighted in Fig. 1) involve numerous experiment runs due
to the experimental approach often required when designing and building models (Hohman
et al. 2020; Bouthillier and Varoquaux 2020). Without dedicated tool support, applied prac-
tices may be unstructured and ad hoc, which eventually limits post-experiment tasks and
the ability to address experiment concerns effectively. For example, consider an hypothetical
developer facing the following problem: I performed multiple experiment-runs yesterday,
and I was able to produce a Root Mean Square Error of 6.5. The problem is that I am not

Run, rx

Dataset, Dx

Feature, Fx

Training, Tx Algorithm, Ax

(Hyper)-
parameter, Hx

Model, Mx

Testing, Ex

Prediction, Px

Performance
measure, Mx

Pre-model phase Post-model phase

Analysis, Yx

Run, r(x-1)

Run, r(x+1)

Fig. 2 A representation of an ML experiment run

123

 74 Page 6 of 35 Empirical Software Engineering (2024) 29:74

quite sure which parameters I used, nor do I know which model version I used for that
evaluation run. This scenario is prevalent when users have performed so many iterations
that it becomes challenging to maintain multiple versions of the involved assets. The need
for asset management support is often attributed to the complexity and time overhead that
arises with manually managing the large number of asset versions resulting from the multiple
exploratory runs (Hill et al. 2016; Vartak et al. 2016; Schelter et al. 2018).

2.2 ML Asset Management & Experiment Management Tools

To provide adequate ML asset management, several tools and platforms support the system-
atic tracking, collection, storage, andmanagement ofML assets over the various development
stages of ML components, their deployment, and integration into software systems. We col-
lectively refer to such systems as ML asset management tools. The increasing popularity
of such systems implies the growing need for effective asset management for engineering
ML-enabled systems (Idowu et al. 2022a). Asset management tools provide various forms
of management support, including workflow, pipeline, model, data, and experiment manage-
ment (Schlegel and Sattler 2022; da Silva et al. 2019).

Experiment management tools treat ML experiment runs as their central abstraction. This
category includes dedicated tools, such as Neptune.ai, and multi-purpose tools with other
management features, such asMLflow, which providesMLflow tracking for experiment man-
agement andMLflowmodel& registry formodelmanagement. Experimentmanagement tools
aim to offer management support during the experimentation and model prototyping stage
to reduce the cost, time, and complexities that burden manual or ad hoc asset management.
Experiment management tools primarily offer reproducibility and post-experiment analy-
sis for exploratory model development, training, and optimization. The operations offered
by experiment management tools complement model development frameworks (e.g., SciK-
itLearn andTensorFlow (Idowu et al. 2024) and other assetmanagement tools. They primarily
offer functionalities to track asset states over multiple experiment runs in a structured and
organized manner during model development workflow, focusing less on the data-oriented
and the DevOps-oriented stages.

Figure 3 illustrates the workflow of using experiment management tools. For the user, they
eliminate the risk of forgetting to track or commit important experiment milestones. Most
tools capture and record a new version of modified assets when users execute an experiment
run—indicating a complete run. For example, DVC offers the command dvc exp run, which
executes a preconfigured experiment pipeline and simultaneously captures the versions of
associated assets. Users can later access prior runs and assets.

We identify the basic tasks offered to users by ML experiment management tools as: i)
Tracking assets and; ii) Querying & Retrieving assets (depicted in the Fig. 3). These tasks are
fundamental to support the various experiment concerns.Tracking involves logging of various
asset states when prepossessing data or training models. With the tracking support offered,
practitioners can version the diverse asset types used during ML experiments. Additionally,
tracking ML assets means that previous experiments can be easily reproduced since all the
assets of the experiment were recorded (Sculley et al. 2015). In contrast, the tools support
users to query and retrieve stored assets from previous experiments or runs. The retrieved
assets may be reused or retrieved for analysis, such as comparing multiple experiment runs.
Assets can also be retrieved from a particular experiment for reuse in a different one.Querying
and retrieving assets are essential aspects of post-experiment analysis, where users are often
interested in drawing insights from the results of the model development experiments. In a

123

Empirical Software Engineering (2024) 29:74 Page 7 of 35 74

Fig. 3 Workflow of using experiment management tools

related work, we present a meta-model (i.e., a data schema) of the data typically stored in
experiment management tools (Idowu et al. 2022b).

The paradigms for tracking assets are eitherAPI, which requires instrumentation of source
code to log state of assets during experiments, or CLI, where users pass special commands to
track the current states of experiment assets. Similarly, the employed paradigms to query and
retrieve stored assets for analysis or other purposes are typicially graphical dashboards orCLI.
For example, MLflow tracking focuses on capturing, storing, and managing ML artifacts.
it provides an API for logging experiment runs, including code and data dependencies, via
automatic or manual instrumenting application code. These runs can be viewed, compared,
and searched through aWeb dashboard UI. DVC, for instance, with the help of its experiment
management CLI commands, allows snapshot of all supported assets to be taken for each
completed experiment run.Other experimentmanagement tools, such as StudioML,GuildAI,
Datmo, and Deepkit, provide similar asset (including source code, dependencies, execution
environment, and logs) tracking and querying functionalities to support various experiment
concerns such as reproducibility.

In addition, experiment management tools are often available as cloud-based platforms
or standalone software tools (Schlegel and Sattler 2022). The cloud-based platform such as
Microsoft Azure ML (Azure 2022; Berg 2022), Amazon SageMaker (Amazon SageMaker
2023; Berg 2022), and Google Vertex AI (Vertex ai 2022; Berg 2022) offer multiple ML
as a service (MLaaS) tools through the public cloud infrastructure subject to payments. In
contrast, standalone software tools such as MLflow (MLflow 2021), Polyaxon (Polyaxon-
machine learning at scale 2023), DVC (Control 2023) and Hopsworks (Ormenisan et al.
2020), that can be deployed and used independently in a private computing environment or
on-premise.

123

 74 Page 8 of 35 Empirical Software Engineering (2024) 29:74

3 Methodology

We now describe our mixed-methods study design, including survey and experiment design,
participant and tool selection, and data analysis. The survey and controlled experiment mate-
rials and data are available in our online appendix (Appendix 2022).

3.1 Research Questions

We formulated the following research questions. Since our survey and controlled experiment
use a survey questionnaire and an experiment questionnaire (described in Sections 3.2 and 3.3),
we already refer to tables with these questions for illustration.

RQ1 What kinds of experiments are conducted and what experiment management tools,
and features, are used?
With the survey we provide insights into the nature of the experiments of the respondents,
then determine what parts of the tool landscape and relevant tool features are considered
essential (see Table 1)
RQ2 What are the perceived benefits of using experiment management tools?
With the survey we elicit the major reasons why practitioners adopt the use of experiment
management tools and their perceived benefits (see Table 2)
RQ3 What are the challenges and adoption barriers of experiment management tools?
With the survey we provide insights into the challenges of managing experiments with
and without such tools, and possible adoption barriers (see Table 3)
RQ4 How does the adoption of ML experiment management tools affect user perfor-
mance?
With the experiment, we establish whether the tools’ assistance is valuable enough to
motivate their adoption.We compare the ability of our participants to answer factual ques-
tions accurately (see Table 4) when using the management tools versus ad hoc strategies
RQ5 How are ML experiment management tools, features, and paradigms perceived
by users?
After establishing the value of the experiment management tools, with the experiment,
we aim to understand new users’ opinions and preferences regarding the paradigms and
features of the tools they used in the experiment. We rely on questions eliciting users’
views on the usability of the subject tools (see Table 5)

Table 1 Questions on the ML experiment nature and used tools asked in the survey (RQ1)

123

Empirical Software Engineering (2024) 29:74 Page 9 of 35 74

Table 2 Questions on the perceived benefit of tools asked in the survey (RQ2)

3.2 Study Design: Survey

Our survey relied on a questionnaire comprising open-ended, Likert-scale, and multiple-
choice questions. Many of the latter provided additional custom fields to ensure unlimited
elicitation.

The survey’s first part presented a brief introduction to the subject area. We introduced
the participants to ML experiment management tools and the importance of the survey and
explained example tools in the introduction with an illustration diagram to facilitate compre-
hension. We also clarified that non-tool users who performML experiments could contribute
by sharing their experiences as guided by our questionnaire. We asked whether participants
had performed ML experiments. We politely terminated the survey for those without such
experience. The remainder of this paper refers to the 92.6% who specified having ML exper-

Table 3 Questions on adoption barriers, limitations, and challenges of tools asked in the survey (RQ3)

123

 74 Page 10 of 35 Empirical Software Engineering (2024) 29:74

Table 4 Factual questions asked post-experiment (RQ4)

Table 5 Perception and opinion questions asked post-experiment (RQ5)

123

Empirical Software Engineering (2024) 29:74 Page 11 of 35 74

iment experience as survey participants. We then asked if the participants used specialized
experiment management tools. The participants that utilize ML experiment tools provided
information used in addressing RQ 1–3, those not using such tools provided information used
in addressing part of RQ3. The summary of all survey questions is presented in Tables 1 to 3.
Lastly, we set questions to help us place participants’ responses in the proper context. We
asked three questions here-their current role, the number of years of professional experience,
and their industries.

3.3 Study Design: Controlled Experiment

Tool SelectionRecall that there is awide range of experimentmanagement tools with varying
levels of support, which often extends beyond experiment management alone. From a prior
study (Idowu et al. 2021 that systematically identified experiment management tools, we
carefully selected two matured and representative example tools with different approaches
to tracking, querying, and retrieving ML experiment assets. Specifically, following the two
primary paradigms of experiment management tools described in Section 2.2, we chose
Neptune.ai, which represents (i) the intrusive API-based paradigm of tracking assets and (ii)
the Web dashboard (GUI) paradigm for post-experiment analysis. It is also among the seven
most common tools among the 28 identified tools in the survey (excluding custom tools, see
Fig. 5).

We chose DVC to represent (i) the CLI-based paradigm of asset tracking and (ii) CLI-
based post-experiment analysis. It is also among the eigth most common tools among the 28
identified tools in the survey (excluding custom tools, see Fig. 5). We find it more valuable to
compare the tools’ paradigms to user support than the tools themselves, since this will make
it possible to apply the outcome of this study to other tools. Another motivation is that ML
experiment management is a fast-moving space, thus, the subject tools and their principles
and paradigms may evolve quickly.

The two tools can be characterized as follows.Neptune.ai is a cloud-based service and tool
to trackML assets (e.g., datasets, parameters, metrics, and metadata). Tracking relies primar-
ily on developers instrumenting their source code. Assets are tracked as files and metadata,
and viewed or explored on a web dashboard for post-experiment analysis. The dashboard
allows viewing the experiment runs, their results, and associated assets (Neptune 2021).DVC
(Data Version Control) is a standalone tool that extends Git to make ML assets (e.g., models
and large datasets) shareable. It offers experiment management support through configurable
pipelines composed of different stages of the ML workflow. It provides CLI commands to
clone and track assets (e.g., models, metrics, and (hyper)-parameters). Fashioned after tra-
ditional VCSs, it also provides commands to query or retrieve assets for post-experiment
analysis (DVC 2021).

As a baseline for comparison, we consider the No-Tool setup, that is, the case of adopting
ad hoc strategies without special management assistance from a tool. These include the use of
spreadsheet and folder/file naming conventions. This approach is a relevant case to consider,
since prior studies show that many practitioners still rely on manual, informal, or ad hoc
strategies when managing ML assets (Hill et al. 2016).

Experiment Design We designed a comprehensive experiment to collect participants’
experiences using the subject tools and the ad hoc strategies. Our experiment is based on the
typical stepswhenperforming supervisedML tasks, such as feature selection and engineering,
parameter tuning, and evaluation with different learning algorithms. The highlighted steps in
Fig. 1 show the essential activities of our experiments. We asked the participants to perform

123

 74 Page 12 of 35 Empirical Software Engineering (2024) 29:74

Neptune with
Boston dataset

DVC with
Califonia dataset

No-Tool with
Diabetes dataset

Study
Group A

DVC with
Diabetes dataset

No-Tool with
Boston dataset

Neptune with
Califonia dataset

Study
Group B

No-Tool with
Califonia dataset

Neptune with
Diabetes dataset

DVC with
Boston dataset

Study
Group C

Fig. 4 Cross-over design, varying the tools and datasets

multiple experiment runs of model building by selecting different features, building models
with varying data inputs, and evaluating and optimizing the model while tracking the relevant
assets. Thereafter, the participants were asked factual questions based on the generated assets
during the experiment (see Table 4). To this end, they used the subject tools to query and
retrieve specific data from previous runs (a.k.a., post-experiment analysis). To participate in
the No-Tool setup, users were instructed to refrain from using any experiment management
tools and instead utilize their own manual or ad hoc strategies. It was emphasized that tasks
should not be repeated and cheating to answer questions was strictly prohibited. In total, the
experiment took around six hours per participant.

To improve the validity, we adopted a cross-over design (Lui 2018), dividing our partici-
pants into three different study groupswith 5 participants per group. For example, participants
in group A received treatments in the order of 1, 2, and 3, whereas participants in study group
B received treatments in the order of 2, 3 and 1. This design enhances statistical power by
abolishing individual subject differences and generating more data points (Turner 2013)—in
our case, it increases the number of data points by a factor of 3. Our study groups, sgA,
sgB , and sgC , experimented with the same tools and datasets. However, we varied the order
of tools and datasets for the groups, as illustrated in Fig. 4. This variation avoids learning
effects, as participants cannot infer answers based on previous parts of the experiments.

Variables The independent variables in our experiment are the tools—Neptune.ai,
DVC, and No-Tool, and the SciKit Learn datasets—Boston, California, and Diabetes. The

Fig. 5 Used ML experiment management tools (AQ3)

123

Empirical Software Engineering (2024) 29:74 Page 13 of 35 74

dependent variables in this experiment are: the error rate and the completion rate of the fac-
tual questions posed to the participants (Table 4). The error rate indicates how many wrong
answers are provided for each subject tool. The completion rate indicates howmany questions
were answered for each subject approach. This quantitative data was used to answer RQ4.
Another dependent variable, used to answer RQ5 was the participant’s opinion on using
the tools and their their usage paradigms. This variable captured various quantitative and
qualitative data based on the respective questions in the experiment questionnaire (Table 5).

Experiment Material The material included tutorial documents, an experiment guide
with an experiment questionnaire, and Python scripts, all provided via a Google form.

The experiment guide that described the experiment tasks for the participants and con-
tained an experiment questionnaire with questions to be answered during the experiment.
We implemented it as a three-part Google form: Part 1 included participant-related ques-
tions, such as education level, ML experience, and possible prior experience with related
management tools. In Part 2, the participants were presented with ML regression tasks for
the Neptune.ai, DVC, and No-Tool setups (with the order varying between groups, as per
our cross-over design). We varied among three standard SciKit Learn datasets; Boston, Cal-
ifornia, and Diabetes datasets (Scikit Learn 2021). For instance, the group sgA started with
Neptune.ai and Boston dataset, while group sgB started with DVC and Diabetes dataset, see
Fig. 4. During the tasks, users were asked to experiment with different regression algorithms
(Linear Regression and Random Forest), with different combinations of data features, and
different (hyper)-parameters, resulting in multiple experiment runs. We considered a regres-
sion task rather than classification, because the model performance metric can be a single
numeric value that can be easily interpreted and compared across multiple runs. Following
the guided tasks, participants were asked factual questions about their tasks using each tool.
We instructed them to use the tools to answer these questions. These questions aimed to
investigate how effectively the subject tools support users in retrieving tracked assets by
comparing model performances across multiple iterations. We then asked usability questions
to elicit the participants’ opinions on each tool. In Part 3, we asked general questions about
user experience across all the tools and their preferences on tool features.

The scripts for the Python tasks were provided as skeleton scripts. These included impor-
tant code components like import statements, SciKit Learn code, and pre-filled seed values
to ensure a consistent basis for comparison. For the case of DVC, we also provided config-
uration files accordingly. To give the participants time to set up and familiarize themselves
with the subject tools, all participants were given information about the tools 24 hours before
the experiment, including setup instructions and a short tutorial.

3.4 Participants

Survey We recruited 81 participants in three different batches. First, practitioners recruited
during an industrialMLconference that attracts participants from international top companies
working on advanced ML projects (e.g., Spotify, NVidia, Klarna, Volvo, AstraZeneca, and
Ericsson). We discussed our research objectives with practitioners, and we followed up with
an email invitation to participate in the survey three weeks after the conference. From this
batch, we obtained 24 total participants. Second, participants recruited via GitHub, identified
by filtering for recent projects with dependencies on the top two ML libraries (Ml-Tooling
2023;Most popularmachine learning libraries 2021;Raschka andMirjalili 2019).Weensured
relevant projects by selecting only those invoking the library’s methods at least once. After

123

 74 Page 14 of 35 Empirical Software Engineering (2024) 29:74

that, we randomly fetched contributors to projects with commits lower than 60 to potentially
obtain users who have worked with model experimentation and are not fully reliant on Git for
asset management. Our primary goal is to target users with hands-on experience in machine
learning experiments over those who might have worked on large-scale ML projects but not
the model experimentation aspects. We sent invitation emails to the contributors and got 25
participants, with a response rate of about 1%. Third, participants recruited via a freelancing
service website. To ensure quality, we accepted participation only after reviewing their inter-
ested freelancers’ profiles and asking controlled questions to establish their qualifications.
We accepted participation from roughly 60% of the interested freelancers, giving us 32 par-
ticipants. The following statistics describe our participants: 35.6% work as data scientists,
31.7% as ML engineers, 12.5% as software engineers, while other indicated roles include
data engineers and researchers. The average experience is 4.4 years. 32.2% of the participants
indicated technology as their current domain, 17.8%education, 13.6%health, and 11.9%con-
sumer retail. Other indicated domains include consumer retail, telecoms, transport, gaming,
and agriculture.

To address the ethical aspects regarding mining software repositories (MSR) research
activities used for our second batch of participants, we considered guidelines of ethics on
MSR that apply to our case. In particular, our MSR activities were solely to recruit relevant
survey participants with relevant knowledge and skills and did not include the analysis of
research questions based on commit records or code. According to the guidelines by Gold
and Krinkle (Gold and Krinke 2022), relevant aspects are those on informed consent, compli-
ance, transparency, and accountability. As described by them, obtaining prior consent from
developers contributing to VCS is usually difficult to impossible. This is an intricate topic;
unfortunately, there is no consensus on some written guidelines (e.g., IEEE standards). We
carefully considered the privacy of contacted users and indicated our legitimate research
interests, intention, and the potential benefit of those GitHub users in the long term. To bal-
ance user privacy and the need for an adequate number of participants, we sent the invitations
successively, in batches. Furthermore, we clearly stated the purpose and benefits of our survey
in our invitation letter and sought the participants’ consent to collect their opinions.

Controlled ExperimentWe recruited 15 undergraduate student developers who major in
Software Engineering and have taken at least one B.Sc.-level AI/ML course. Since our study
elicits the learnability of the subject tools for new users, we considered student developers
with a few years of experience as suitable candidates. Several studies (Counsell 2008; Salman
et al. 2015; Höst et al. 2000; Berger et al. 2016; Runeson 2003; Falessi et al. 2018) suggest
that, in software-engineering-based controlled experiments, students are adequate stand-ins
for practitioners, especially when solving tasks with new techniques and tools. Consequently,
many empirical software engineering studies have used students as representative stand-ins
for practitioners. (Carver et al. 2003; Arisholm et al. 2007; Wels 2012). We applied two
selection criteria for our recruitment of participants: (1) Participants must be familiar with
ML and how to apply it using popular frameworks, such as SciKit Learn (https://scikit-learn.
org/scikit-learn.org) (Idowu et al. 2024). This is vital to avoid programming issues with basic
ML concepts, which are outside the scope of our work. (2) Participants must not have prior
experience with experiment management tools. These criteria aimed to help us eliminate bias
from the outcome of our research. We enforced our selection criteria based on the known
student information, and we also confirmed this by asking participants relevant information
to confirm they meet our criteria. The incentive for most students stems from mutual benefit:
the students were invited to participate in evaluation activities for other students’ theses under
the premise that the other students would also become evaluation participants for their thesis.

123

https://scikit-learn.org/
https://scikit-learn.org/

Empirical Software Engineering (2024) 29:74 Page 15 of 35 74

40% of our participants have less than six months of experience with ML, while 60% have
over six months of experience with ML.

3.5 Data Analysis

For both survey and the controlled experiment, we obtained a mixture of qualitative and
quantitative data from our participants. Two researchers analyzed and reported the results
with careful interpretations; then, other authors reviewed the results and the actual responses
for consistency.

For the quantitative analysis, we created descriptive statistics for the multiple-choice and
Likert-scale answers. For the qualitative analysis of the open-ended questions, we applied
thematic analysis. Specifically, identified recurring and essential themes in the participants’
responses and organized these themes (a.k.a., codes) in a hierarchy. These coding results are
available in our online appendix (Appendix 2022).With the combination of these quantitative
and qualitative analyses we answer RQ1–3 and RQ5.

RQ4, which determines the performance of the participants in the different groups (i.e.,
with the different treatments) in terms in terms of the two dependent variables, error rate
and completion rate, was answered by analyzing the factual questions in the experiment
questionnaire. As described above, the variable error rate quantifies how oftenwrong answers
are provided for each subject tool. The completion rate value indicates the extent to which
the factual questions were completed for each tool. Upon the results we performed statistical
tests. We used Kruskal-Wallis, a non-parametric test for multi-group comparisons, suited for
smaller groups that are likely not normally distributed. We applied a Bonferroni correction
to the significance threshold of 5% for three comparisons (Neptune vs. DVC, Neptune vs.
NoTool, DVC vs. NoTool, explained shortly), leading to a corrected threshold of 1.67%. This
analysis will enable us to conclude RQ4.

4 Results

Wenowpresent the results from our survey (RQ1–3) and our controlled experiment (RQ4–5).
On the nature of their ML experiments (AQ1), 81% of the survey responses indicate manual
experiments, where the outputs of each experiment run (model training) were analyzed and
evaluated before deciding on the necessary modifications for the next experiment run. In
contrast, 58% indicate automated experiments using training loops to find optimal results. The
responses show that 41% of participants perform both automated and manual experiments,
with 41%and 17%performing onlymanual and only automated experiments respectively. On
the largest count of experiment runs ever performed (AQ2), 8% of the participants reported
having performed 1–10 runs, 24% reported between 10–25 runs, 15% reported 25–50 runs,
31% reported between 50–100 runs, while 23% reported more than 100 runs.

The majority, 69%, of participants in fact use experiment tools (AQ3). Fig. 5 shows the
reported tools. In addition, Table 6 present an overview of the most frequently named tools
based on their supported paradigms for asset tracking and querying, which provides context
for the choice of tools in our experiment. In particular, tools such as SageMaker, DVC,
Pachyderm, Guild AI, and PolyAxon support the CLI approach for tracking and querying.
Other popular tools such as TensorBoard, MLFlow, Weights & Biases, Neptune, Comet.ml,
and Veta.ai support API-based asset tracking, whereas almost all tools provide a GUI-based
approach for asset querying, including the CLI-based ones, which usually let the user choose

123

 74 Page 16 of 35 Empirical Software Engineering (2024) 29:74

Table 6 Characteristics of the top 10 experiment management tools

Asset tracking mode Asset querying mode
API-based CLI-based No support GUI-based CLI-based No support

TensorBoard � �
Google colab � �
MLFlow � �
Weights & Biases � �
SageMaker � � � �
Kubeflow � �
Neptune � �
DVC � � �
Pachyderm � � �
Comet.ml � �

between GUI and CLI. A noteworthy outlier is the second-most named tool, Google Colab,
a cloud-based Jupyter notebook environment that provides access to computing resources.
For this tool, it is important to note that it is not designed specifically as an experiment
management tool and lacks key experimentmanagement features, including built-in solutions
for versioning, tracking, querying, or comparing assets fromdifferent experiment runs. It does
provide integration with experiment management tools that support API-based tracking, such
as TensorBoard. A more comprehensive characterization of ML experiment management
tools and their features is provided elsewhere (Idowu et al. 2022a, b).

We observed that 70% of those using tools use at least two of them, with an average of
2.7 tools per practitioner. As the essential asset types to manage (AQ4), 22% of obtained
responses state (hyper-)parameter and configuration, 21% model and its metadata, 19%
dataset and its metadata, and 18% computation and execution data, including metrics and
logs. 13% and 8% consider it necessary to systematically manage “scripts and source code”
and “pipeline” assets, respectively. As important features of experiment management tools
(AQ5), 80% of the participants chose visualization, 63% pipeline support, and 51% ver-
sioning. Language-agnostic and SaaS features were rated as least important with 18% and

> 100

41.3% 41.3%17.3%

Others

11.6%25.6%62.8%

8.0% 24.0% 14.7% 30.7% 22.7%

69.3%

Use tool

Fig. 6 Nature of experiments, tools, and essential features (AQ1, AQ2, AQ3, AQ6)

123

Empirical Software Engineering (2024) 29:74 Page 17 of 35 74

20%, respectively. For the other features, 43% found querying, 41% computational resource
provision, 39% VCS integration, and 33% dependency management important. In addition
to the multiple-choice options, participants reported compatibility with in-house or custom
solutions and test and validation data selection as essential features. Finally, as the preferred
usage paradigm for tracking assets (AQ6), 63% of responses indicate tracking via API in
scripts over 26% who preferred the CLI-based approach. Figures 6 and 7 show the summary
of RQ1.

– While AutoML is increasingly becoming popular, several ML tasks still require man-
ual experimentation, with experiment tasks often requiring up to 100 runs.

– The ratio of used experiment management tools per practitioner is about 3 to 1, indi-
cating that the tool landscape is well known as practitioners use multiple experiment
management tools.

– Practitioners find tracking and managing metadata on experiment assets critical.

Summary

4.1 Perceived Tool Benefits (RQ2)

As shown in Fig. 8, most participants perceived ML experiment management tools to be
highly beneficial. 72% of the responses strongly agreed or agreed that tools facilitate their
ML tasks (BQ1.a), while 18% were neutral. 39% were neutral on the ease of learning and
using the tools (BQ1.b), while 45% either agreed or strongly agreed to ease of use. 76%
strongly agreed or agreed thNature of experiment, tools and essential features (AQ4, AQ5)at
experiment management tools make them perform experiments efficiently (BQ1.c), while
12% were neutral. 48% agreed or strongly agreed that using experiment management tools
helps improve their model performance (BQ1.d), while 30% were neutral. 74% agreed or
strongly agreed they obtain management benefits when using the tools compared to when
not using them (BQ1.e), while 20% were neutral. 33% disagreed that simple command-line
interfaces similar toGit are sufficient for querying andmaking analyses of tracked experiment

Computation &
Execution data

Parameter &
Configuration

Model &
Metadata

Dataset &
metadata

Scripts &
Source Code

Pipeline Assets

Visualization
Pipeline
Support

Versioning Querying
Computational

Resource
Provision

VCS
Integration

Dependency
Management

21.8% 21.3% 19.0% 17.8% 12.6% 7.5%

80.4% 62.4% 51.0% 43.1% 41.2% 39.2% 33.3%

Fig. 7 Nature of experiment, tools and essential features (AQ4, AQ5)

123

 74 Page 18 of 35 Empirical Software Engineering (2024) 29:74

Strongly Disagree Strongly AgreeDisagree Neutral Agree

BQ1.f

BQ1.a

BQ1.b

BQ1.c

BQ1.d

BQ1.e

BQ1.g

BQ1.h

617205

5 9 16 20

241565

816159

2413103

391517

1520105

1121811

1.a: Exp. mgmt. tools facilitate my ML/DL tasks well. 1.b: Easy to learn and use. 1.c: Make me perform exp. more efficiently.

1.d: Improve the performance of my models. 1.e: Provide a benefits. 1.f: Cmd-line interface is sufficient for querying and analyzing assets

1.g: GUI dashboards are essential for querying and analysis assets 1.h: Prefer dedicated tools over multi-purpose tools.

No Answer

2

4

2

4

2

2

1

8

Fig. 8 Result: questions related to perceived benefits (BQ1)

assets (BQ1. f), while 29%were neutral, with 23% that agreed or strongly agreed. 69%agreed
or strongly agreed that GUI dashboards are essential for efficient querying and analyses of
experiment assets and metadata (BQ1.g), while 20% were neutral. 63% prefer or strongly
prefer dedicated tools over multi-purpose tools with extended features (BQ1.h), 22% do not
prefer such, while 16% are neutral.

On the benefits and values of experiment management tools (BQ2), responses were
almost uniform for all the benefits. The benefits, in the order of popularity, are time savings,
experiment result analyses and comparison, traceability, reproducibility, result and model
optimization, collaboration, and replicability.

– Practitioners recognize the benefits of experiment management tools in the follow-
ing order of importance: experiments’ result analysis & comparison, traceability,
reproducibility, model optimization, collaboration, and replicability.

– Most practitioners prefer dedicated experiment management tools over multi-
purpose tools. This is likely because dedicated tools are designed for the specific
needs of practitioners and, therefore, offer more specialized and efficient function-
ality for managing experiments and associated metadata. However, we also noted
that GUI-based tools were generally perceived as more beneficial and efficient for
asset and metadata management overall, regardless of whether they were dedicated
or multi-purpose.

Summary

4.2 Challenges, Adoption Barriers, and Limitations (RQ3)

Experiment Management Without Specialized Tools 52% of the participants who do not
use experiment management tools report being aware that such tools exist (CQ1). However,
37% of them are not using such tools because they lack knowledge or experience. 25% are
not using such tools because they prefer tailored or in-house built management tools. 13%
of them are not sure they will benefit from using such tools. Other reasons include the extra

123

Empirical Software Engineering (2024) 29:74 Page 19 of 35 74

cost and time of using such tools, organizational barriers, and data sensitivity levels. When
asked how they manage versions of their experiment assets (CQ2), 44% of them use Git.
In contrast, 35% use dedicated naming conventions for folders and files, 13% use custom
databases, and 9% do not manage asset versions.

Our participants reported the following challenges they face when not using the special-
ized tools (CQ3). A challenge is the inability to ensure that essential experiment outputs
and their version are consistently and correctly stored, leading to unknowingly overwriting
important asses. Another common challenge is the difficulty in retrieving multiple models
and corresponding asset versions from previous runs for reuse, especially in projects with
many experiment trials. Ad hoc solutions are reported ineffective with increasing experiment
runs, making it difficult to track changes made to specific assets over an extended period. In
addition, working without specialized tools makes result interpretation difficult due to the
lack of visualization to correlate assets to model performance or generate reports to com-
pare different experiment runs. 80% strongly agreed or agreed that specialized experiment
management tools can improve asset management, while only 17% were neutral (CQ4).

Limitation and Challenges With Specialized Tools 6.7% of our participants strongly
agreed, and 29.3% agreed, to experience limitations with the tools (CQ5), affecting their
experiments. 50% of the responses were neutral, while 14% either disagreed or strongly
disagreed.

The particular issues reported about the tools (CQ6) are technical restrictions, vendor
lock-in, computing resource limitations, missing features, usage costs, and a steep learning
curve. Our participants reported various technical issues. For example, 15% of the code
count from the thematic analysis indicate tool support for few asset types, while 8% indicate
a preference for more flexible and non-restrictive tools with extended support for custom
asset types. By design, some tools track assets as immutable objects to ensure persistence.
However, some participants indicate this as a limitation. Data accessibility problems were
also reported, as some tools do not interface with custom data stores. Our participants also
indicated that tools primarily target data scientists and ML engineers and do not fit perfectly
into software engineering workflows. Participants have expressed concerns about the limited
and simplistic visualization options offered by certain tools. To improve this, we suggest that
more customizable visualizations should bemade available, including advanced features such
as heat maps and network graphs. Additionally, enhancing the usability of these visualization
tools would greatly benefit users.

On missing features, participants experienced limitations due to a lack of: automatic
parameter search, direct integration with databases, custom ML pipelines support, autho-
rization and authentication support, VCSs (especially Git) integration, and integration with
post-deployment operation and existing visualization tools.

Our respondents find cloud service usage cost and computing resources to be limitations.
Many tools offer paid cloud-based SaaS, however some offer free services with limited
computing resources. As a result, freemium users may experience limitations in terms of
storage, memory, and computing resources, while high cost can be a barrier for premium
users. Another related limitation is the vendor lock-in issue, which makes it difficult for
practitioners to adopt tools or services different from their current vendors. For standalone-
tool users, some see the restriction to private computing as a limitation since they are unable
to take advantage of faster computing resources. Some participants indicated a steep learning
curve as a limitation.

Similarly, regarding challenges experienced when using the tools (CQ7), 34% of the
thematic code count indicate poor documentation or a steep learning curve as a challenge. 14%
indicate the tools to lack robustness and consistent availability, making them immature and

123

 74 Page 20 of 35 Empirical Software Engineering (2024) 29:74

buggy. For example, a participant reported experiencing strange tool behavior after reaching
hundreds of iterations. 14% indicate challenges in tool setup or usage in development team
settings where strong collaboration is required.

– Considering practitioners who do not use experiment management tools, the main
adoption barrier is a lack of awareness of their benefits.

– Practitioners who do not use experiment management tools mainly adopt version
control systems and dedicated naming conventions for folders and files to manage
multiple runs of experiments.

– Practitioners who do not use experiment management tools report that it is challeng-
ing to consistently and correctly store or trace experiment assets with alternative
approaches.

– Considering practitioners who use experiment management tools, the challenges
associated with experiment management tools include steep learning curves, robust-
ness, and lack of support for custom setups. Challenges reported for cloud-based
tools include vendor lock-in, resource limitations, and high usage costs.

– Practitioners who use experiment management tools report missing features as a
challenge, indicating that desired tool features are mostly not found in a single tool.

Summary

4.3 User Performance (RQ4)

The error and completion rate for questions DQ1−10 in Table 4 reflect the effect of the support
offered by the subject tools when performing ML experiments. The tools provide users with
the option to organize their experiment assets. For instance, there are greater chances of
stating wrong answers to factual questions about completed experiments when there is no
structure for organizing assets. To discuss the value of the subject tools, we calculated the
error and completion rate for each tool across all study groups (Fig. 9 shows themean values).
The completion rate describes the ratio of attempted questions, while the error rate implies
the fraction of wrongly answered to all attempted questions.

The responses for Neptune have an average completion rate of 98% and an average error
rate of 7%. DVC obtains an average completion rate of 96% and an average error rate of
29%. The No-Tool alternative has an average completion rate of 84% and error rate of 48%.

Neptune DVC No-Tool

Completion rate Error rate
0

50

100

25

75

Pe
rc

en
ta

ge
 (%

)

7%

84%

98%

29%

48%

96%

Fig. 9 Results: average completion and error rates

123

Empirical Software Engineering (2024) 29:74 Page 21 of 35 74

The error rate was lowest when using Neptune, followed by DVC, and participants made
the most errors when using the No-Tool alternative. The latter difference vanished in the
post-hoc comparison (explained shortly).

To evaluate whether the differences are significant, we conducted a Kruskal-Wallis test
together with post-hoc comparisons with a Bonferroni-corrected significant threshold. For
the completion rates, we observe one comparison with a p-value smaller than the signifi-
cance threshold of 0.0167 (Neptune vs. NoTool, p=0.009), and a second case in which p is
close to, but not lower than the threshold (DVC vs. NoTool, p=0.04428). We conclude that
Neptune differs significantly from No-Tool, while we do not find statistical significance in
the other cases. For the error rates, there is a highly significant difference between Neptune
vs. NoTool as the p-value is much lower than 0.0167 (p=0.00095). Neptune also shows a
significant difference to DVC (p=0.0044). However, the error rates of DVC and No-Tools are
not significantly different. Interestingly, the perception of the participants was still different:
the overwhelming majority found it difficult to complete the tasks without the use of any ML
experiment tool.

– The outcome of our controlled experiment established the effectiveness of experiment
management tools, as participants could attempt more factual-based questions with
lower error rates when using these tools over the manual approach.

– The effectiveness of experiment management tools is observed to be higher in the
GUI dashboard-based tool than the CLI-based tool, as participants completed more
factual-based questions with lower error rates using Neptune than DVC.

Summary

4.4 User Perception on Tools (RQ5)

The responses to the usability questions EQ1−12 in Table 5 reflect the users’ opinions on and
howuseful the subject tools are. For the ease of completing the tasks (EQ1), the overwhelming
majority found completing the tasks very easy with Neptune. 73% of the participants found
it to be Easy, while 20% found it Very easy. For the same question about DVC, the responses
were slightly positive andmostly neutral, with 46% respondingNeutral, and 33% responding
Easy, and 20% respondingDifficult. Notably, 80% of the participants found using “No-Tool”
Difficult.

For querying and retrieving assets to compare experimental runs (EQ2), most participants
(93%) found the GUI dashboard of Neptune very helpful, with only 7% neutral responses.
When asked the same about DVC’s CLI commands, 53% of the participants were neutral,
with 47% finding the CLI helpful. For “No-Tool,” 53% thought the manual approach was
not helpful, with 20% neutral responses.

When asked about the significance of using experiment management tools versus “No-
Tool” (UQ3), all participants agreed (80% Strongly agree, 20% Agree) the subject tools
provide significant support for tracking and retrieving assets during model development.
These responses are backed up by the error and completion rates, where the error rates
for Neptune and DVC are significantly lower than the No-Tool alternative. Likewise, the
completion rates for Neptune and DVC are substantially higher than for No-Tool. Figure 10
summarizes these results.

123

 74 Page 22 of 35 Empirical Software Engineering (2024) 29:74

Fig. 10 Results: support for tracking, querying, and retrieving generated data from ML experiments

The average time the participants spent on the experiment tasks varies slightly across
the three setups (EQ4). When using Neptune, the participants spent 1.62 hours on the task.
When using DVC, the average time was reduced to 1.5 hours, and they only spent 1.33 hours
on the task when using No-Tool. However, it is worth noting that these times are not useful
for comparing the time efficiency of the different approaches. This is because many of the
reported times come from incomplete attempts at completing the tasks, in particular for the
case of No-Tool, in which only 6 out of 15 participants completed all tasks (also see the
earlier presentation of completion rates).

When asked about the best tool for tracking assets among Neptune and DVC (EQ5), the
response is balanced, with 53.3% preferring Neptune, and 47% DVC. For the best tool for
querying and retrieving previously tracked data (EQ6), Neptune took the lead with 73%
in its favor, while 27% prefer DVC. Also, 73% of the participants prefer Neptune’s GUI
dashboard for comparison over DVC’s CLI commands. When asked about the least intrusive
tool (EQ8), 53% of the participants picked Neptune, while 47% picked DVC. For ease of
learning (EQ9),most participants (73%) believeDVCwas the easiest to learn.We believe this
reflects the experience of the CLI-based tools, such as Git for managing assets in traditional
software engineering. As for the tool to recommend to practitioners (EQ10), 67% said they
would recommend Neptune over DVC, while 33% said they would recommend DVC. Lastly,
37% reported that Neptune provides the best support for comparing experiment runs (EQ11).
Figure 11 shows the summary of these results.

For the open-ended question EQ12, we report the codes from our thematic analysis. For
Neptune.ai, the code “Good UI,” referring to responses that mentioned a good user inter-
face (UI), occurs eight times. “Ease in Completing Tasks” comes up three times, indicating
answers that mentioned the ease of completing the tasks using Neptune.ai. The “Time-to-
Learn” code appears six times, referring to responses that stressed that it took a while to learn
how to use the tool. For the DVC responses, the most frequent code was “Simple command,”
which appeared nine times. This code relates to the answers which commented favorably on
simple commands that are easy to understand.Additionally, the “Git” code occurs seven times

123

Empirical Software Engineering (2024) 29:74 Page 23 of 35 74

Fig. 11 Results: responses to user opinion questions (Table 5)

in the response: DVC was described as similar to Git, hence making it simple to learn for a
user familiar with Git. Consequently, this code was mostly linked with the “Easy-to-learn”
code, which occurred six times. There were mainly two codes that occurred in the responses
for the No-Tool setup, and that is, the “Time Consuming” and the “Difficult” codes, both
occurring at 6 and 8 times, respectively, where “Time Consuming” indicates a long time it
took to complete tasks.

One can observe an apparent discrepancy between the average completion times reported
earlier and the frequency of the “Time Consuming” code for No-Tool. However, we earlier
observed that the reported times partially come from incomplete attempts at completing the
tasks. To obtain further insight, we performed a more detailed analysis for the 6 participants
whose statements on No-Tool were associated with the code “Time-consuming”: 4 of 6 have
a lower completion rate for No-Tool than for DVC and Neptune, in one case as low as
38%. In line with this, their textual feedback emphasizes the perceived difficulty and effort
of using No-Tool. Of the remaining 2, one provides additional nuance by emphasizing a
specific activity—namely, keeping track of values—that they perceived as time-consuming
in No-Tool, while the other tools had other time-consuming aspects (e.g., for initial setup).
The other remaining participant did not provide relevant details.

– Participants found it easier to use GUI-based tools for completing the tasks of
managing assets.

– Significant numbers of users find the provided support from the specialized tools
essential.

– The results indicate that there is no clear distinction among user preferences regard-
ing two questions: preference for tracking assets and the tool considered least
intrusive.

Summary

123

 74 Page 24 of 35 Empirical Software Engineering (2024) 29:74

5 Discussion

We now discuss the outcomes of our study, their implications, and how they can be used to
inform further research on the design and implementation of new features in ML experiment
management tools. Recall that our target audience are researchers, tool builders, and educa-
tors. With our discussion, we aim to contribute valuable insights and recommendations that
can inform the advancement of ML experiment management tools and support the evolving
needs of practitioners and researchers in this domain.

Addressing Identified Challenges The survey participants reported various challenges
when usingML experiment management tools (See Section 4.2).Wemake recommendations
for the commonly reported limitations and challenges. To improve usability and effectiveness,
some actionable results should be considered. First, addressing the steep learning curves can
be done by providing comprehensive documentation and tutorials. Second, improved user-
friendly interfaces that guide users through the tools’ functionalities should be considered.
Additionally, the maturity of the tools is not too high yet, and maturity should be improved.

To improve robustness, the stability and reliability of experiment management tools can
be enhanced by conducting rigorous testing, bug fixing, and incorporating error-handling
mechanisms. It is essential to consider a broad variety of development use cases during test-
ing, such as large-scale or complex experiments and effective integration with other tools.
Supporting custom setups can be addressed by offering flexible configurations, customizable
workflows, and compatibility with various ML frameworks and libraries. Developers should
provide flexible configuration settings, integration capabilities, and extensibility options,
allowing users to adapt the tools to their specific needs and integrate them seamlessly with
their existing toolchain. For cloud-based tools, tools should offer interoperability and porta-
bility features that allow users to easily migrate their experiments and data between different
tools platforms or environments. Emphasizing open standards, data portability, and compat-
ibility with popular frameworks can minimize the risk of vendor lock-in and provide users
with greater flexibility and control. By focusing on these actionable results, developers of
ML experiment management tools can enhance practitioners’ experience and productivity in
managing ML experiments.

– Enhance ML experiment management tools with easy-to-use interfaces, detailed
documentation, and improved learning and robustness. Prioritize compatibility with
popular frameworks and allow for customized setups to boost productivity and user
experience.

Recommendation

Integration into Software Engineering Tools In light of the paradigm shift towardsML-
enabled systems, it is crucial to develop new, improved, and integrated software engineering
tools that can effectively support the unique requirements of ML. Currently, experiment
management tools primarily target data scientists and lack interoperability with traditional
software engineering (SE) tools. To address this gap, we recommend that new and improved
SE tools should incorporate essential experimentmanagement capabilities natively.An exam-
ple of a step in this direction is the integration of experiment management support in Visual
Studio through an extension, as demonstrated by the tool DVC (Dvc extension for visual
studio code 2022). Our study results confirmed the positive impact of ML experiment

123

Empirical Software Engineering (2024) 29:74 Page 25 of 35 74

management capabilities on development performance, with survey participants express-
ing preferences for the considered paradigms. Therefore, we advocate for the integration of
experiment management tools into the ecosystems of traditional software engineering tools,
allowing for a seamless and efficient workflow that encompasses both ML and non-ML
development activities.

– Software engineering tools need built-in experiment management features to support
MLneeds andbridge the gapwith data scientists. Integration into existing ecosystems
is crucial for a streamlined workflow.

Recommendation

Tool Paradigms: Balancing Preferences and Recommendations During the survey
and experiment, we observed a balanced preference for asset-tracking modalities, namely
API-based and CLI-based approaches. This finding contradicted our initial expectations, as
API-based tracking is often associatedwith drawbacks such asmanual overhead and increased
error-proneness, as discussed in previous studies (Idowu et al. 2021; Ormenisan et al. 2020).
One possible explanation for this observation could be the participants’ level of experience or
familiarity with CLI-based tools. Users who are less comfortable with command-line inter-
faces may prefer an API-based approach, regardless of the associated overhead. Another
explanation could be that the experiment participants did not perceive the additional lines of
code required for instrumenting and tracking assets as a significant overhead. Instead, they
may have considered it a necessary part of the tasks, given the focus of the experiment on
management tools. Since the preferences for asset tracking modalities were evenly balanced,
we recommend that future tools support both API- and CLI-based approaches to cater to the
varying preferences of users. Furthermore, as part of future work, researchers can explore the
specific aspects and components that should be tracked automatically using methods such
as Mining Software Repositories (MSR). This investigation can lead to the development of
automated methods for tracking assets, improving the efficiency and accuracy of asset man-
agement processes. Regarding the comparison betweenGUI-based andCLI-based paradigms
for querying and retrieving, participants found GUI-based tools easier to use, resulting in
higher completion rates and fewer errors. This finding aligns with the prevalence of web
dashboard interfaces in most tools. However, considering that traditional asset management
tools, such as those based on Git, often offer a bimodal interface (CLI and GUI), we recom-
mend that future experiment management tools provide both CLI and GUI paradigms. This
approach would effectively cater to users from both software engineering and data science
backgrounds, accommodating their distinct preferences and maximizing usability.

– Future tools should support multiple paradigms for asset management to cater to
varying preferences of users, accommodate users from software engineering and
data science backgrounds, maximize usability, and address distinct preferences.

Recommendation

Towards Comprehensive Tools According to findings, practitioners frequently use
multiple experiment management tools, with an average of three tools being utilized per
practitioner. This highlights our practitioners’ familiarity and awareness of the experiment

123

 74 Page 26 of 35 Empirical Software Engineering (2024) 29:74

management tool landscape. However, it remains unknown from our study whether these
tools are employed within the same project or if users switch between them over time due to
project changes. To gain a deeper understanding, we recommend future research to investi-
gate why practitioners adopt multiple tools. This exploration can provide valuable insights
into the tooling landscape, enabling tool builders to better address identified needs and pref-
erences of users. To mitigate the potential impact of complexity arising from heterogeneous
development environments caused by multiple tools used concurrently or simultaneously,
we propose that experiment management tools be designed as a toolbox with complemen-
tary add-ons supporting different use cases and platforms. This approach would foster faster
maturity and create a robust ecosystem that can be customized to cater to diverse needs,
thereby addressing some of the challenges identified in our study. Additionally, integrating
experiment management tools into established traditional software engineering tools, such as
integrated development environments (IDEs) commonly used in production-focused devel-
opment, is recommended. By seamlessly integrating with existing IDEs, these tools would
offer easy setup and usage for IDE users, streamlining the adoption process and promoting
their widespread use.

– Create experiment management tools as a toolbox with complementary add-ons to
support different platforms and use cases. Integrate them into established software
engineering tools for widespread usage.

Recommendation

Guidance for Educators in Selecting Tools For educators, providing students with the
knowledge and skills they need to manageML experiments effectively is critical. Our study’s
findings can offer valuable guidance for educators teachingML-related courses orworkshops.
When selecting tools to include in educational materials, educators should prioritize usability
and user-friendly interfaces. The study revealed that participants preferred tools with intuitive
interfaces that guide users through functionalities. Therefore, educators should choose tools
that prioritize ease of use and provide comprehensive documentation and tutorials to support
students in the learning process. To improve student performance in ML tasks, educators
should consider using tools that can help reduce errors and increase completion rates. Our
research in Section 4.3 suggests that API-based tools are effective for tracking, while GUI-
based tools are useful for querying and retrieving experiment assets. However, based on
responses to EQ9 in Section 4.4, we recommend CLI-based tools for students who are
already familiar with Git. These guidelines will help students develop the skills needed to
manage ML experiments effectively and meet industry demands.

Guidance for Practitioners in Selecting Tools Practitioners must select the appropri-
ate experiment management tools when managing ML projects. To help with this decision,
we propose that practitioners assess their project’s characteristics and requirements first.
Project scale, complexity, team size, available resources, and project goals are all critical
considerations in determining the necessity and suitability of experiment management tools.
More specifically, we recommend utilizing experiment management tools for large-scale
experiments with more than 25 iterations, particularly if done manually rather than through
autoML-based experiments. Using specialized tools would be more beneficial for efficiently
managing the experiments. We recommend choosing tools based on similar paradigms for
practitioners familiar with CLI-based tools. For example, Git usersmight findDVCeasier and
more effective thanGUI-based tools.We recommend that practitioners select fromcommonly

123

Empirical Software Engineering (2024) 29:74 Page 27 of 35 74

used tools, for example, tools with high usage frequency as reported in Fig. 5, as such tools
tend to have intuitive interfaces, thorough documentation, and ample learning resources to
minimize the learning curve. Based on our result in Section 6, desired functionality and
features vary based on tasks and scenarios. For scenarios requiring a lot of experiment data
exploration and analysis, we recommend GUI-based dashboard tools that offer visualization
out of the box, such as TensorBoard. For scenarios requiring automated experiments, we
recommend using tools with pipeline orchestration support, such as MLFlow and Kubeflow.
Our findings (EQ7 in Section 4.4) suggest that for scenarios that require a large number of
experiment runs, tools with API-based paradigms for asset tracking offer significant benefits.
These tools enable seamless integration with automated workflows and assist in managing
repetitive experiments. Moreover, based on our results (EQ6 in Section 4.4), we recom-
mend using tools with GUI-based paradigms for querying and retrieving assets for tasks that
involve frequent asset retrieval. The user-friendly interfaces and interactive visualizations
these tools provide simplify exploring and retrieving experiment assets. They are easy to
navigate, allowing practitioners to access assets from multiple iterations efficiently and with
minimal errors, thus increasing productivity.

Informal Asset Management In previous studies, it has been observed that practitioners
often rely on informal methods, such as notes, spreadsheets, and emails, to track ML assets
(Hill et al. 2016). In our study, we found similar patterns, with participants resorting to
printing asset values to console output or noting them on paper during the tasks when no
systematic tool support was available. However, these informal approaches are known to
be costly, time-consuming, and error-prone (Gharibi et al. 2019; Hill et al. 2016). Although
some participants were able to answer our factual questions correctly using these informal
methods, it is important to note that the completion or error rates for such questions would
likely be lower if users were asked after a long period or if the medium used to store the
values was not readily accessible. Real-worldML scenarios often involve practical situations
that may require accurate answers to factual questions days or even weeks after conducting
an experiment. In such cases, a structured and tool-supported approach to asset management
becomes crucial. To gain further insights into the impact of informal assetmanagement versus
the use of experiment management tools on model development in practical settings, we
recommend conducting longitudinal studies that assess the cost-benefit trade-offs associated
with the adoption of experiment management tools. These studies would provide valuable
insights into the tangible benefits and potential drawbacks of leveraging such tools in real-
world ML projects.

Scope and FutureDirectionsThe findings presented in this study are based on a selection
ofML tasks and scenarios. Our results indicate that GUI-based tools demonstrate advantages
for tasks like asset tracking, querying, and retrieving, which were specifically examined in
this study. However, it is important to acknowledge that the CLI-based paradigm may have
its own strengths and benefits for tasks and scenarios that were not specifically explored
here. Therefore, it is recommended that future research explores additional usage scenarios,
such as scripting or pipeline integration, to gain a more comprehensive understanding of
the capabilities and effectiveness of experiment management tools. While our study focused
on specific management tasks, including asset tracking, querying, and retrieving, through a
controlled experiment, it is important to recognize that experiment management tools can
serve a broader range of functions. For instance, tasks like debugging and model fine-tuning
are other critical aspects that can be supported by these tools butwere not covered in our study.
Thus, for a more comprehensive evaluation and understanding of the potential of experiment
management tools, it is recommended that future research explores and investigates their

123

 74 Page 28 of 35 Empirical Software Engineering (2024) 29:74

effectiveness in these additional tasks. This will contribute to a more holistic assessment of
the capabilities and usability of such tools in the context of ML asset management.

6 Threats to Validity

External Validity One threat to external validity is the number of participants in our experi-
ment, which was conducted with 15 subjects. In the context of the inherent trade-off between
external and internal validity in empirical research (Siegmund et al. 2015), our experiment
is leaning towards internal validity, as it provides insights from a six-hour experiment (plus
upfront preparation), in which participants interacted with actual tools. As such, it provides
much more in-depth insights than, for example, a questionnaire survey can produce—at the
price of takingmore effort for the participants to complete the experiment, and for us to recruit
participants. To enhance validity, our adopted cross-over design, among other benefits (e.g.,
eliminating individual subject differences as much as possible), maximized the number of
data points we could obtain in this setup, leading to 45 observations in total.

Furthermore, our student developers can be considered as practitioners with software
engineering experience, but they have only basic knowledge about ML. In fact, prior studies
suggest student developers can be representative stand-ins for practitioners when using tools
they are not familiar with (Counsell 2008; Salman et al. 2015; Höst et al. 2000; Berger et al.
2016; Runeson 2003; Falessi et al. 2018). We confirmed this for our participants. New users
are a critical user group because companies might be hesitant to invest in developer tools
that require significant specialized experience, and that complicate the onboarding of new
employees. They also reflect a large group of software engineers, who develop ML-based
systems and have development experience, but only basic knowledge of ML. To enhance
the generalizability of our experiment results beyond the two tools considered, we purposely
selected them to represent the two broad categories of existing experiment management tools
based on a prior study (Idowu et al. 2021). In addition, we report our results over features
(which are shared among tools, or could be adopted), not only the concrete tools.

Furthermore,we acknowledge that a group of our participants for our surveywere recruited
from a specific conference. Even though the conference was attended by professionals from
several international companies, recruiting participants from only one conference can still
be a source of bias. We strengthened external validity by recruiting participants from two
additional sources—GitHub and a freelance service platform—, allowing us to capture a
broader range of perspectives and experiences from relevant practitioners.

Internal Validity A threat might be that our survey and experiment tasks and questions
reflect our own biases, and bias the participants accordingly. To mitigate this threat, we
performed two dry-runs of our survey and experiment from which we sought feedback. Fur-
thermore, we may have misinterpreted our survey and experiment data, which we mitigated
by cross-checking all questions, responses, and analysis results by an author not involved in
the initial analysis. Finally, in our six-hour experiment, participants might have been subject
to fatigue or lack of motivation and have not performed at a consistent level throughout the
experiment. We mitigated this threat by counterbalancing: since the tool order was varied
between groups, all tools, on average, faced the same order-related advantages and disad-
vantages. We also allowed the participants to take rest breaks during the experiment. When
evaluating the internal validity of this study, it is essential to consider whether the manage-
ment tasks analyzed in the research cover the entire spectrum of tasks and scenarios that
management tools support. It is worth noting that the specific management tasks examined in

123

Empirical Software Engineering (2024) 29:74 Page 29 of 35 74

this study do not encompass every potential use case or scenario that these tools can handle.
As a result, the study’s focus on a limited subset ofmanagement tasksmay restrict its ability to
completely capture the breadth and diversity of capabilities provided by management tools.
This limitation could affect the generalizability of the study’s results to a more extensive
range of management tasks and scenarios encountered in real-world situations.

Construct Validity While using a survey gives us the advantage of eliciting information
from a large number of participants, it introduces a construct validity threat, where the ter-
minology used in our survey may differ from those the practitioners use or understand. We
mitigate this threat by implementing measures to align the terminology and concepts in our
survey questionnaire and upfront communication with the participants. First, we provide a
summarized explanation of the tools in the invitation letters. Second, the questionnaire instru-
ment starts with an introduction section to aid a common understanding of the survey terms.
In addition, we enhance the construct validity of our study by triangulating the responses
for specific research questions using both the controlled experiment and the practitioner sur-
vey. For instance, our results for RQ2 (in particular, those illustrated in Fig. 8) show that
users recognize the benefits of using the tools, confirming our findings from the controlled
experiment (RQ4).

A further threat might be hypothesis guessing. Participants might have assumed a hypoth-
esis, e.g., that experiment management tools are better for experiment management and,
consequently, might have performed worse when using the ’no-tool’ option in our experi-
ments. This threat is mitigated by two factors: First, we asked participants to proceed as they
normally would without using experiment management tools. Second, considering the nature
of our experiment tasks, the threshold for participants to intentionally adapt their behavior to
support an assumed hypothesis - deliberately working slower, making more mistakes and not
completing tasks - is arguably higher than for other kinds of tasks (e.g., answering Likert-style
questions, which were not asked for the ’no-tool’ option). Nevertheless, we cannot rule out
that participants might have been demotivated as a result of hypothesis guessing and might
therefore have performed worse.

Conclusion Validity To ensure conclusion validity, we employed statistical tests for the
tools’ performance comparison to mitigate validity threats due to smaller participant groups.
In general, we argue that the methodology adopted was appropriate to obtain reliable insights
regarding the effect of specialized tools on user performance. In particular, statistical hypoth-
esis tests, such as our employed Kruskal-Wallis test, account for the sample size in a way
that ensures robustness: if the sample sizes are small, a stronger difference between the two
sets of observations is needed to still be able to conclude significance. For our data this was
the case-even though we used a particularly strict correction of the significance threshold for
inter-group analysis (Bonferroni). This gives us a high level of confidence in the robustness
of our results.

7 RelatedWork

Prior studies have focused primarily on the features and suitability of these tools for ML
practitioners and users (Schlegel and Sattler 2022; Idowu et al. 2022a; Isdahl and Gundersen
2019; Ferenc et al. 2020). However, in contrast to these existing studies, our research targets
a different audience: tool developers and researchers who are actively investigating the chal-
lenges that arise from extended asset types in the context of developingML-enabled systems.
Our work addresses the unique requirements and considerations faced by these developers,

123

 74 Page 30 of 35 Empirical Software Engineering (2024) 29:74

providing them with valuable insights and guidance for the design and implementation of
ML experiment management tools.

As related work, Schlegel and Sattler (2022) conducted a systematic literature review to
provide a comprehensive overview of tools, systems, and platforms that facilitate the man-
agement of ML assets (Schlegel and Sattler 2022). Their work involved the derivation of
assessment criteria, which were subsequently applied to evaluate more than 60 tools across
various asset management categories, including experiment management tools. By under-
taking this systematic review and assessment, Schlegel et al. contributed valuable insights
into the landscape of ML asset management tools, shedding light on the different options
available and aiding practitioners in selecting suitable tools for their specific needs. Similarly,
to evaluate how research activities towards improved and new ML asset management tools
are catching up, Weber et al. (Weber and Hußmann 2022) conducted a systematic literature
review, where they analyzed 76 systematically selected relevant publications. They sum-
marized the analyzed tools’ trends, strengths, and weaknesses and proposed some potential
future directions. Idowu et al. position and discuss asset management as an essential disci-
pline to scale the engineering ofML-based systems, facilitating experimenting, development,
deployment, and operation of ML-based systems (Idowu et al. 2021, 2022a). The authors
survey available tools and present a feature model with common and distinguishing features,
such as the supported asset types, the asset collection approach, and their supported opera-
tions. Similarly, Quaranta et al. (2021) presented a feature taxonomy of popular experiment
management tools.

Serban et al. (2020) analyze academic and grey literature to identify best practices for
ML development. They reveal the importance of tracking experiment predictions with model
version and input data—a common support operation offered by our considered tools. Isdahl
and Gundersen (2019) survey several ML platforms on their support to reproduce empirical
results. They propose a new method to assess the subject platforms and analyze features that
improve reproducibility. In a similar survey, Ferenc et al. (2020) investigate features such as
data versioning, graphical dashboards, model versioning, andMLworkflow support available
in ML tools. They consider related tools as found in these work (Isdahl and Gundersen 2019;
Ferenc et al. 2020), such as DVC and MLflow, as well as several academic prototypes (Tsay
et al 2018; Gharibi et al. 2019; Alberti et al. 2018; Schelter et al. 2018; Namaki et al. 2020).

The existing related work primarily targets ML practitioners and generally offers results
to inform about the ML tooling landscape, the existing features, and comparisons across
different tools (Schlegel and Sattler 2022; Weber and Hußmann 2022; Idowu et al. 2021,
2022a). In contrast, our contributions target tool developers and researchers investigating
new ways to improve tooling support for practitioners of AI engineering (Bosch et al. 2022;
Bosch 2022; Khomh et al. 2018). Also, in contrast to several related works comparing tools
from different asset management categories, we focused on experiment management tools to
investigate the value of experimentmanagement support from the user perspective. This is the
first work providing empirical-based insight derived from tool users (i.e., ML practitioners)
experience and opinion on experiment management tools.

8 Conclusion

We presented a mixed-methods study on ML experiment management tools from the users’
perspectives. Our survey with 81 practitioners as well as our controlled experiment with
15 participants shed light on the nature of ML experiments, experiment management tools

123

Empirical Software Engineering (2024) 29:74 Page 31 of 35 74

benefits, challenges, and adoption barriers, as well as their effects on user performance and
perception.

Investigating the nature of ML experiments revealed that manual experimentation still
plays a significant role, often involving a substantial number of experiment runs—despite
techniques such as AutoML gaining popularity. Additionally, practitioners tend to use mul-
tiple experiment management tools, indicating a well-known tool landscape. The tracking
and management of metadata on experiment assets were identified as critical aspects for
practitioners.

Our practitioners recognized the benefits of experiment management tools for various
purposes. These include result analysis and comparison, traceability, reproducibility, model
optimization, collaboration, and replicability. It was observed that practitioners generally
preferred dedicated experiment management tools over multi-purpose ones. The specialized
functionality offered by dedicated tools aligns with the specific needs of practitioners, result-
ing in more efficient management of experiments and associated metadata. Furthermore,
regardless of whether they were dedicated or multi-purpose, GUI-based tools were perceived
as more beneficial and efficient for asset and metadata management.

Our study also explored adoption barriers and limitations associated with experiment
management tools. Lack of awareness of the benefits of these tools emerged as a significant
barrier for practitioners who do not use them. Instead, these practitioners rely on version
control systems and naming conventions for managing experiments. However, they face
challenges in consistently and correctly storing or tracing experiment assets. On the other
hand, practitioners who do use experiment management tools reported challenges such as
steep learning curves, robustness issues, lack of support for custom setups, and the absence
of desired features. These findings highlight the need for comprehensive tool capabilities and
user-friendly interfaces.

Our controlled experiment demonstrated the effectiveness of experiment management
tools to enhance user performance. Participants using these tools achieved higher accu-
racy and completion rates in factual-based questions compared to manual approaches. GUI
dashboard-based tools, specifically Neptune, outperformed CLI-based tools like DVC in
terms of completion rates and error rates for factual-based questions.

Recall that experimentmanagement tools offer different paradigms to users to interactwith
them.Our participants foundGUI-based tools easier to use formanaging assets. Additionally,
a significant number of users considered the support provided by specialized tools to be
essential. However, the findings also show that there is no clear distinction among user
preferences regarding the preference for tracking assets and the tool considered least intrusive.

In conclusion, our study provides valuable insights into the nature of experiments, the
perceived benefits of experiment management tools, adoption barriers, limitations, and user
performance. The findings highlight the significance of experiment management tools in
enhancing efficiency, traceability, and reproducibility in machine learning tasks. The iden-
tified challenges and limitations can guide the development of more user-friendly and
feature-rich tools. Future research should explore additional usage scenarios beyond the
tasks and scenarios considered in this study, investigate the reason behind the use of multiple
experiment management tools by a single user, and further evaluate the performance and
effectiveness of experiment management tools in different contexts.

Acknowledgements We thank Carl Vågfelt Nihlmar for his valuable contributions during the data collection
for the survey presented in this paper. The work was supported by Berger’s fellowship granted by the Royal
Swedish Academy of Sciences and the Wallenberg Foundation.

Funding Open access funding provided by University of Gothenburg.

123

 74 Page 32 of 35 Empirical Software Engineering (2024) 29:74

Data Availability Statements The experiment and survey response data that support the findings of this study
have been deposited in Appendix (2022).

Declarations

Conflicts of interest The authors declared that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Alberti M, Pondenkandath V, Wursch M, Ingold R, Liwicki M (2018) DeepDIVA: a highly-functional python
framework for reproducible experiments. ICFHR, pp 423–428

Amazon SageMaker. Available: https://aws.amazon.com/sagemaker/
Amershi S, Begel A, Bird C, DeLine R, Gall H, Kamar E, Nagappan N, Nushi B, Zimmermann T (2019) Soft-

ware engineering formachine learning: a case study. In: International conference on software engineering:
software engineering in practice (ICSE-SEIP). IEEE, pp 291–300

Appendix (2022). Available: https://github.com/isselab/2024-appendix-ml_exp_mgmt_study
Arisholm E, Gallis H, Dyba T, Sjoberg DI (2007) Evaluating pair programming with respect to system com-

plexity and programmer expertise. IEEE Trans Software Eng 33(2):65–86
Arpteg A, Brinne B, Crnkovic-Friis L, Bosch J (2018) Software engineering challenges of deep learning. In

SEAA
Azure ai | microsoft cloud (2022). Available: https://azure.microsoft.com/
Berg G (2022) Image classification with machine learning as a service:-a comparison between azure, sage-

maker, and vertex ai
Berger T, Völter M, Jensen HP, Dangprasert T, Siegmund J (2016) Efficiency of projectional editing: a con-

trolled experiment. In: FSE, pp 763–774
Bosch J (2022) Introduction to the ai engineering theme. Accelerating Digital Transformation: 10 Years of

Software Center, p 399
Bosch J, Olsson HH, Brinne B, Crnkovic I (2022) AI engineering: realizing the potential of AI. IEEE Softw

39(6):23–27
Bouthillier X, Varoquaux G (2020) Survey of machine-learning experimental methods at neurips2019 and

iclr2020. Tech, Rep
Carver J, Jaccheri L, Morasca S, Shull F (2003) Issues in using students in empirical studies in software

engineering education. In: HealthCom, pp 239–249
Control DV (2023) What is dvc?. Available: https://dvc.org/doc/user-guide/what-is-dvc
Counsell S (2008) Do student developers differ from industrial developers?. In: ITI, pp 477–482
da Silva DN, Simões A, Cardoso C, de Oliveira DE, Rittmeyer JN, Wehmuth K, Lustosa H, Pereira RS, Souto

Y, Vignoli LE, Salles R, de Heleno SC, Ziviani A, Ogasawara E, Delicato FC, de Pires PF, da Pinto HLC,
Maia L, Porto F (2019) A conceptual vision toward the management of machine learning models. In
CEUR Workshop Proceedings 2469:15–27

DVC (2021) Dvc. https://dvc.org/
Dvc extension for visual studio code (2022). Available: https://marketplace.visualstudio.com/items?

itemName=Iterative.dvc
Falessi D, Juristo N, Wohlin C, Turhan B, Münch J, Jedlitschka A, Oivo M (2018) Empirical software engi-

neering experts on the use of students and professionals in experiments. ESE, pp 452–489
Fayyad U, Piatetsky-Shapiro G, Smyth P (1996) The KDD process for extracting useful knowledge from

volumes of data. Commun ACM 39:27–34

123

http://creativecommons.org/licenses/by/4.0/
https://aws.amazon.com/sagemaker/
https://github.com/isselab/2024-appendix-ml_exp_mgmt_study
https://azure.microsoft.com/
https://dvc.org/doc/user-guide/what-is-dvc
https://dvc.org/
https://marketplace.visualstudio.com/items?itemName=Iterative.dvc
https://marketplace.visualstudio.com/items?itemName=Iterative.dvc

Empirical Software Engineering (2024) 29:74 Page 33 of 35 74

Ferenc R, Viszkok T, Aladics T, Jász J, Hegedüs P (2020) Deep-water framework: the Swiss army knife of
humans working with machine learning models. SoftwareX 12:100551

Gharibi G, Walunj V, Rella S, Lee Y (2019) ModelKB: towards automated management of the modeling
lifecycle in deep learning. RAISE, pp 28–34

Gold NE, Krinke J (2022) Ethics in the mining of software repositories. Empir Softw Eng 27(1):1–49
Hill C, Bellamy R, Erickson T, Burnett M (2016) Trials and tribulations of developers of intelligent systems:

a field study. In VL/HCC, pp 162–170
Hohman F, Wongsuphasawat K, Kery MB, Patel K (2020) Understanding and visualizing data iteration in

machine learning. In: Proceedings of the 2020 CHI conference on human factors in computing systems,
pp 1–13

Höst M, Regnell B, Wohlin C (2000) Using students as subjects-a comparative study of students and profes-
sionals in lead-time impact assessment. ESE 5(3):201–214

Idowu S, Sens Y, Berger T, Krueger J, Vierhauser M (2024) A large-scale study of ml-related python projects.
In: 39th ACM/SIGAPP symposium on applied computing (SAC)

Idowu S, Strüber D, Berger T (2021) Asset management in machine learning: a survey. In: ICSE-SEIP. IEEE,
pp 51–60

Idowu S, Strüber D, Berger T (2022a) Asset management in machine learning: state-of-research and state-of-
practice. ACM Computing Surveys (CSUR)

Idowu S, Strueber D, Berger T (2022b) Emmm: a unified meta-model for tracking machine learning experi-
ments. In: Euromicro conference on software engineering and advanced applications (SEAA)

Isdahl R, Gundersen OE (2019) Out-of-the-box reproducibility: a survey of machine learning platforms. In:
eScience. IEEE

Janardhanan P (2020) Project repositories for machine learning with tensorflow. Procedia CS 171:188–196
JordanMI,Mitchell TM (2015)Machine learning: trends, perspectives, and prospects. Science 349(6245):255–

260
Khomh F, Adams B, Cheng J, Fokaefs M, Antoniol G (2018) Software engineering for machine-learning

applications: the road ahead. IEEE Softw 35(5):81–84
Kumeno F (2020) Sofware engineering challenges for machine learning applications: a literature review.

Intelligent Decision Technologies 13:463–476
Lewis GA, Bellomo S, Ozkaya I (2021) Characterizing and detecting mismatch in machine-learning-enabled

systems. In 2021 IEEE/ACM 1st workshop on AI engineering-software engineering for AI (WAIN).
IEEE, pp 133–140

Lui KJ (2018) Sample size determination for a 3-treatment 3-period crossover trial in frequency data. Thera-
peutic innovation & regulatory science 52(4):407–415

Microsoft (2017) Team Data Science Process Documentation. Available: https://docs.microsoft.com/en-us/
azure/machine-learning/team-data-science-process/

Miotto R, Wang F, Wang S, Jiang X, Dudley JT (2017) Deep learning for healthcare: review, opportunities and
challenges. Briefings in Bioinformatics 19(6):1236–1246. Available: https://doi.org/10.1093/bib/bbx044

MLflow (2021) Mlflow. https://mlflow.org/
Ml-Tooling (2023) Ml-tooling/best-of-ml-python: a ranked list of awesome machine learning python libraries.

updated weekly. Available: https://github.com/ml-tooling/best-of-ml-python
Most popular machine learning libraries 2014/2021. Available: https://statisticsanddata.org/data/most-

popular-machine-learning-libraries
NaharN,ZhouS,LewisG,KästnerC (2022)Collaboration challenges in buildingml-enabled systems: commu-

nication, documentation, engineering, and process. In: Proceedings of the 44th international conference
on software engineering, pp 413–425

Namaki MH, Floratou A, Psallidas F, Krishnan S, Agrawal A, Wu Y (2020) Vamsa: tracking provenance in
data science scripts

Nayak A, Dutta K (2017) Impacts of machine learning and artificial intelligence on mankind. In: 2017 inter-
national conference on intelligent computing and control (I2C2), 2017, pp 1–3

Nazir R, Bucaioni A, Pelliccione P (2024) Architecting ml-enabled systems: challenges, best practices, and
design decisions. J Syst Softw 207:111860

Neptune (2021) Neptune.ai. https://neptune.ai/
Ormenisan AA, Ismail M, Haridi S, Dowling J (2020) Implicit Provenance for Machine Learning Artifacts.

MLSys’20, p 3
Polyaxon-machine learning at scale. Available: https://polyaxon.com/
Quaranta L, Calefato F, Lanubile F (2021) A taxonomy of tools for reproducible machine learning experiments
Raschka S, Mirjalili V (2019) Python machine learning: machine learning and deep learning with Python,

scikit-learn, and TensorFlow 2. Packt Publishing Ltd

123

https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/
https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/
https://doi.org/10.1093/bib/bbx044
https://mlflow.org/
https://github.com/ml-tooling/best-of-ml-python
https://statisticsanddata.org/data/most-popular-machine-learning-libraries
https://statisticsanddata.org/data/most-popular-machine-learning-libraries
https://neptune.ai/
https://polyaxon.com/

 74 Page 34 of 35 Empirical Software Engineering (2024) 29:74

Rashidi HH, Tran N, Albahra S, Dang LT (2021) Machine learning in health care and laboratory medicine:
general overview of supervised learning and Auto-ML. International Journal of Laboratory Hematology,
vol 43, no S1, pp 15–22. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/ijlh.13537

Runeson P (2003) Using students as experiment subjects–an analysis on graduate and freshmen student data.
In: EASE, pp 95–102

Salman I, Misirli AT, Juristo N (2015) Are students representatives of professionals in software engineering
experiments? In ICSE 1:666–676

Sarker IH, Faruque F, Hossen U, Rahman A (2015) A survey of software development process models in
software engineering. IJSEA 9:55–70

Schelter S, Böse JH, Kirschnick J, Klein T, Seufert S (2018) Declarative metadata management: a missing
piece in end-to-end machine learning. SysML 2018:3

SchlegelM, SattlerKU (2022)Management ofmachine learning lifecycle artifacts: a survey. arXiv:2210.11831
Scikit Learn (2021) Datasets: Boston and diabetes. https://scikit-learn.org/stable/datasets/toy_dataset, califor-

nia, https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_california_housing.html
Sculley D, Holt G, Golovin D, Davydov E, Phillips T, Ebner D, Chaudhary V, Young M, Crespo JF, Dennison

D (2015) Hidden technical debt in machine learning systems. NIPS 28:2503–2511
SerbanA, van der BlomK, Hoos H, Visser J (2020) Adoption and effects of software engineering best practices

in machine learning. ESEM
Sharma R, Kamble SS, Gunasekaran A, Kumar V, Kumar A (2020) A systematic literature review

on machine learning applications for sustainable agriculture supply chain performance. Comput-
ers & Operations Research 119:104926. Available: https://www.sciencedirect.com/science/article/pii/
S0305054820300435

Siegmund J, Siegmund N, Apel S (2015) Views on internal and external validity in empirical software engi-
neering. In: 2015 IEEE/ACM 37th IEEE international conference on software engineering. vol. 1. IEEE,
pp 9–19

Tsay J, Mummert T, Bobroff N, Braz A, Westerink P (2018) Runway: machine learning model experiment
management tool. SysML, pp. 1–3

Tuggener L, Amirian M, Rombach K, Lörwald S, Varlet A, Westermann C, Stadelmann T (2019) Automated
machine learning in practice: State of the art and recent results. In: 2019 6th Swiss Conference on Data
Science (SDS). pp 31–36

Turner JR (2013) Crossover Design, New York, pp 521
Vartak M, Subramanyam H, Lee WEE, Viswanathan S, Husnoo S, Madden S, Zaharia M (2016) ModelDB: a

system for machine learning model management. In the Workshop. ACM Press, pp. 1–3
Vertex ai | google cloud (2022). Available: https://cloud.google.com/vertex-ai
Visengeriyeva L, Kammer A, Bär I, Plöd A (2021) ml-ops.org. Available: https://ml-ops.org/content/end-to-

end-ml-workflow
Wang M, Cui Y, Wang X, Xiao S, Jiang J (2017) Machine learning for networking: workflow, advances and

opportunities. IEEE Network 32:92–99
Waring J, Lindvall C, Umeton R (2020) Automated machine learning: review of the state-of-the-art and

opportunities for healthcare. Artificial Intelligence in Medicine, vol 104, pp 101822. Available: https://
www.sciencedirect.com/science/article/pii/S0933365719310437

Weber T, Hußmann H (2022) Tooling for developing data-driven applications: overview and outlook. Proceed-
ings of Mensch und Computer 2022:66–77

Wels S (2012) Test driven development. In: Proceedings of Agile Seminar 2012
Wirth R (2000) CRISP-DM: towards a standard process model for data mining. ICKDDM, 24959:29–39
Wuest T,Weimer D, Irgens C, Thoben KD (2016)Machine learning in manufacturing: advantages, challenges,

and applications. Production & Manufacturing Research 4(1):23–45
Xin D, Ma L, Liu J, Macke S, Song S, Parameswaran A (2018) Accelerating human-in-the-loop machine

learning: challenges and opportunities. In: Proceedings of the second workshop on data management for
end-to-end machine learning, ser. DEEM’18. New York, USA: Association for Computing Machinery.
Available: https://doi.org/10.1145/3209889.3209897

Zaharia M, Chen A, Davidson A, Ghodsi A, Hong SA, Konwinski A, Murching S, Nykodym T, Ogilvie P,
Parkhe M et al (2018) Accelerating the machine learning lifecycle with mlflow. IEEE Data Eng. Bull
41(4):39–45

ZhangD, ShenY,HuangZ,XieX (2022)Automachine learning-basedmodelling and prediction of excavation-
induced tunnel displacement. Journal of Rock Mechanics and Geotechnical Engineering, vol 14, no 4,
pp 1100–1114. Available: https://www.sciencedirect.com/science/article/pii/S1674775522000786

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://onlinelibrary.wiley.com/doi/abs/10.1111/ijlh.13537
http://arxiv.org/abs/2210.11831
https://scikit-learn.org/stable/datasets/toy_dataset
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_california_housing.html
https://www.sciencedirect.com/science/article/pii/S0305054820300435
https://www.sciencedirect.com/science/article/pii/S0305054820300435
https://cloud.google.com/vertex-ai
https://ml-ops.org/content/end-to-end-ml-workflow
https://ml-ops.org/content/end-to-end-ml-workflow
https://www.sciencedirect.com/science/article/pii/S0933365719310437
https://www.sciencedirect.com/science/article/pii/S0933365719310437
https://doi.org/10.1145/3209889.3209897
https://www.sciencedirect.com/science/article/pii/S1674775522000786

Empirical Software Engineering (2024) 29:74 Page 35 of 35 74

Samuel Idowu is a PhD computer science and engineering graduate from the University of Gothenburg and
Chalmers University of Technology, Sweden. Before that, he completed his Licentiate and M.Sc. degree at
Lulea University of Technology, also in Sweden. Samuel’s research interests lie in Applied Machine Learn-
ing, AI engineering, and empirical software engineering.

Osman Osman is an M.Sc Computer Science and Engineering graduate at the University of Gothenburg.

Daniel Strüber is a Senior Lecturer in Software Engineering at Gothenburg University and Chalmers Uni-
versity of Technology, Sweden, and an Assistant Professor at Radboud University, the Netherlands. After
receiving the PhD degree from the University of Marburg in Germany in 2016, he was a Postdoctoral Fel-
low at the University of Koblenz in Germany and at Gothenburg University and Chalmers University of
Technology in Sweden. He is project investigator for competitive grants from the Swedish Research Council
and the German Science Foundation. He received six best-paper awards. His service was recognized with
distinguished reviewer awards at SPLC 2020 and 2023. His research focuses on model-driven software engi-
neering, software product lines, and AI engineering.

Thorsten Berger is a Professor in Computer Science at Ruhr University Bochum in Germany. After receiv-
ing the PhD degree from the University of Leipzig in Germany in 2013, he was a Postdoctoral Fellow
at the University of Waterloo in Canada and the IT University of Copenhagen in Denmark, and then an
Associate Professor jointly at Chalmers University of Technology and the University of Gothenburg in
Sweden. He received competitive grants from the Swedish Research Council, the Wallenberg Autonomous
Systems Program, Vinnova Sweden (EU ITEA), and the European Union. He is a fellow of the Wallenberg
Academy—one of the highest recognitions for researchers in Sweden. He received two best-paper and two
most-influential-paper awards. His service was recognized with distinguished reviewer awards at the tier-one
conferences ASE 2018 and ICSE 2020, and at SPLC 2022. His research focuses on model-driven software
engineering, program analysis, empirical software engineering, and AI engineering.

123

	Machine learning experiment management tools: a mixed-methods empirical study
	Abstract
	1 Introduction
	2 Background
	2.1 ML Workflow & ML Experiments
	2.2 ML Asset Management & Experiment Management Tools

	3 Methodology
	3.1 Research Questions
	3.2 Study Design: Survey
	3.3 Study Design: Controlled Experiment
	3.4 Participants
	3.5 Data Analysis

	4 Results
	4.1 Perceived Tool Benefits (RQ2)
	4.2 Challenges, Adoption Barriers, and Limitations (RQ3)
	4.3 User Performance (RQ4)
	4.4 User Perception on Tools (RQ5)

	5 Discussion
	6 Threats to Validity
	7 Related Work
	8 Conclusion
	Acknowledgements
	References

