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ABSTRACT

Context. In the heliosphere, power-law particle distributions are observed, for example, upstream of interplanetary shocks, which
can result from superdiffusive transport. This non-Gaussian transport regime may be due to intermittent magnetic field structures.
Recently, we have shown that a Lévy flight model reproduces the observed features at shocks: power-law distributions upstream of
the shock and enhanced intensities at the shock.
Aims. In this work, we extend the Lévy flight model to study the impact of superdiffusive transport on particle acceleration at shocks.
We compared the acceleration timescale and spectral slope to Gaussian diffusion and a Lévy walk model.
Methods. We solved the fractional transport equation by sampling the number density with the corresponding stochastic differential
equation that is driven by an alpha-stable Lévy distribution. For both Gaussian and superdiffusive transport, we used a modified ver-
sion of the cosmic ray propagation framework CRPropa 3.2.
Results. We obtained the number density and energy spectra for constant and energy-dependent anomalous diffusion, and we find,
compared to the case of Gaussian diffusion, harder energy spectra at the shock as well as faster acceleration. The spectral slope is
even harder than predicted for Lévy walks.
Conclusions Lévy flight models of superdiffusive transport lead to observed features in the heliosphere. We further show that su-
perdiffusive transport impacts the acceleration process by changing the probability of escaping the shock. The flexibility of the Lévy
flight model allows for further studies in the future that can take the shock geometry and magnetic field structure into account.

Key words. acceleration of particles – diffusion – shock waves – Sun: heliosphere

1. Introduction

Cosmic rays (CRs) undergo random scattering due to magnetic
field fluctuations present in astrophysical plasmas. When suc-
cessive small-angle scattering leads to Brownian motion of the
particles, this process can be described by Gaussian spatial diffu-
sion along the magnetic field (Kulsrud & Pearce 1969; Skilling
1975). The time evolution of the particles’ distribution function
may then be described by the transport equation (e.g., Parker
1965; Schlickeiser 2002), which has been successfully applied
to model Galactic CR transport (see, e.g., Becker Tjus & Merten
2020; Mertsch 2020, for reviews).

Observations in the heliosphere, however, indicate that
particle transport may not be Gaussian but instead anoma-
lous (Perri et al. 2022). Such evidence comes from power-
law profiles of ion and electron fluxes upstream of inter-
planetary shocks (Perri & Zimbardo 2007, 2008; Giacalone
2012; Perri et al. 2022) and at the solar wind termination
shock (Perri & Zimbardo 2009, 2012) as well as solar ener-
getic particle events (Trotta & Zimbardo 2011), which contra-
dicts expectations for Gaussian diffusion. Anomalous diffusion
may result from intermittent magnetic fields1, as particles scat-

? Corresponding author; sophie.aerdker@rub.de
1 This refers to non-Gaussian random magnetic fields governed by
strong coherent structures, filaments, and voids, which are areas of
weaker magnetic field strength.

ter in magnetic field structures but move freely between them
(Shukurov et al. 2017; Lübke et al. 2024).

Recently, we have shown how superdiffusive transport of
energetic particles at shocks leads to the observed upstream
power-law distributions and intensity peaks at the shock
(Effenberger et al. 2024). A fractional diffusion and a Lévy
flight model were introduced to describe superdiffusive trans-
port. In this paper, we extend the Lévy flight model from
Effenberger et al. (2024) to include the acceleration of particles
at the shock. The expected energy spectrum and acceleration
timescale give further insights into superdiffusion and its role
in particle transport. We compare the energy spectra we obtain
with the Lévy flight model to those obtained by standard diffu-
sive shock acceleration and by a Lévy walk model as discussed
in Perri & Zimbardo (2012).

In general, the term “anomalous diffusion” describes all
dynamics for which the mean-square displacement is character-
ized by a non-linear dependence on time,

〈(∆x)2〉 ∝ κ̃ζ tζ , (1)

in contrast to normal diffusion (ζ = 1). Depending on the anoma-
lous diffusion exponent ζ, the process is distinguished between
subdiffusive (ζ < 1) and superdiffusive processes (ζ > 1). Usu-
ally, ζ ≤ 2 is the upper limit for superdiffusive transport, with
ζ = 2 corresponding to ballistic transport or free streaming. It
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should be noted that the anomalous diffusion coefficient κ̃ζ is in
units of length2/timeζ .

Anomalous transport cannot be captured by the standard
transport equation but can be described by fractional trans-
port equations. Fractional transport equations can, for exam-
ple, be solved by applying the generalized Itô lemma to obtain
the corresponding stochastic differential equations (SDEs) that
are driven by an alpha-stable Lévy distribution (Itô 1951;
Magdziarz & Weron 2007). Section 2 gives an overview of the
fractional transport equation and the Lévy flight model we
employed to solve for the particle number density.

The Lévy flight model is more flexible than Fourier series
approximations (Stern et al. 2014; Effenberger et al. 2024). The
energy gain at the shock can be calculated along with the particle
transport, the (anomalous) diffusion coefficient can be momen-
tum dependent, and the 2D or 3D transport along magnetic field
lines can be modeled with a similar simulation setup, which is
not possible with the given Fourier series approximation. We
present initial results for the particle acceleration at a 1D planar
shock, and we contrast the constant and momentum-dependent
anomalous diffusion coefficients.

For Gaussian diffusion, the energy spectrum of particles at
a stationary non-relativistic planar shock with compression ratio
q has the characteristic slope s = 2 − 3q/(q − 1) – for example,
Drury (1983). Even for non-linear diffusion, this universal power
law can be found (Walter et al. 2022). Considering Lévy flights,
we find harder2 energy spectra at the shock, which is similar to
what Perri & Zimbardo (2012) found for Lévy walks.

We compare the time-dependent spectra and number densi-
ties at the shock to those obtained with constant Gaussian diffu-
sion as well as with a time-dependent Gaussian diffusion coef-
ficient that mimics the mean-square displacement of the corre-
sponding anomalous diffusion exponent ζ. This allows us to dif-
ferentiate between effects coming from the larger mean-squared
displacement of the Lévy flight model at a given time and those
coming from the different underlying stochastic processes.

2. Fractional diffusion and Lévy flights

A common way to model superdiffusive processes is through
the use of Lévy flights. As with Brownian motion, Lévy flights
are Markov processes, but the jump length distribution follows
an inverse power law (Metzler & Klafter 2000). From the jump
length distribution and the assumption of finite characteristic
waiting time between such jumps, a space-fractional diffusion
equation can be obtained (see, e.g., Metzler & Klafter (2004),
and references therein):
∂ f (x, t)
∂t

= κα∇
α f (x, t), (2)

with the fractal dimension α and fractional diffusion tensor κ̂α.
The Riesz derivative (Gorenflo et al. 1999) is given by

∇α f (x) = −
1

2 cos(απ/2)
( Dα
−∞ x + Dα

x +∞) f (x), (3)

with the Riemann-Liouville fractional derivative defined as

D1−β
0 t f (t) =

1
Γ(β)

d
dt

∫ t

0
(t − s)β−1 f (s)ds. (4)

For α = 2, the normal diffusion equation is recovered. Figure 1
shows trajectories of Brownian motion α = 2 and α = 1.7 with
the characteristic Lévy flights in 2D.
2 These correspond to smaller values for the power-law slope parame-
ter p−s, which is s > −2 here. More particles have high energies.
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Fig. 1. Ten pseudoparticle trajectories starting at (0, 0) for a Gaussian
diffusion process (α = 2.0, with κ2 = 1 top) and Lévy process (α = 1.7,
κ1.7 = 1, bottom). We discuss how to obtain pseudoparticle trajectories
and their meaning in Sect. 2.2.

The power-law distribution of the jump length leads to a
diverging variance since at a given time t, an arbitrarily large
distance ` may be traveled. However, Metzler & Klafter (2000)
define a "pseudo" mean-square displacement

[
x2

]
∝ t2/α to relate

the fractional dimension α to the anomalous diffusion exponent
ζ = 2/α. The fractional diffusion coefficient κα is in units of
lengthα/time.

Still, the diverging mean-square displacement is an issue for
the spatial transport of massive particles. This can be solved
by using Lévy walks instead. By coupling the jump probabil-
ity of a distance ` to the time t that is needed to travel such a
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distance, a well-defined mean-square displacement is recovered
(Metzler & Klafter 2000, 2004; Zaburdaev et al. 2015). Lévy
walks have already been used to model particle transport and
acceleration at shocks (Perri & Zimbardo 2012). The spatio-
temporal coupling leads to a different dynamical process that
cannot be easily modeled with our approach. However, Lévy
flights are a good approximation (we refer to Perri et al. (2015)
for a comparison of a Lévy flight and Lévy walk model). Thus,
we investigate how superdiffusive acceleration is different when
applying a Lévy flight model compared to Lévy walks.

To investigate superdiffusive shock acceleration with Lévy
flights, we solved the one-dimensional fractional transport equa-
tion while assuming isotropic particle distributions in momen-
tum space. The time evolution of the differential number density
N = p2 f (x, p, t) in space x and momentum p, with f being the
particle distribution function, is determined by

∂N

∂t
= κα∇

αN − u(x) ·
∂N

∂x
−

p
3
∂u
∂x

∂N

∂p
+ S (x, p, t), (5)

where the spatial diffusion is generalized to superdiffusion, and
we considered a spatially constant anomalous diffusion coef-
ficient κα. In this macroscopic picture (e.g., Krymskii 1977;
Kirk et al. 1988; Drury 1983) diffusive or superdiffusive shock
acceleration results from adiabatic heating due to the divergence
of the background flow u(x). Sources and sinks are given by
S (x, p, t).

2.1. Solving the fractional Fokker-Planck equation with
stochastic differential equations

The fractional transport equation, Eq. (5), is difficult to solve
analytically due to the non-local Riesz derivative. When energy
changes are neglected, the solution of the fractional diffu-
sion equation or fractional diffusion-advection equation can, for
example, be approximated by Fourier series (Stern et al. 2014;
Effenberger et al. 2024). A more flexible method is to sample
the solution with a Monte Carlo approach. For that, the transport
equation, Eq. (5), is written into a fractional Fokker-Planck equa-
tion (FFPE), which corresponds to a set of SDEs according to Itô
calculus (Itô 1951). In order to model one-dimensional superdif-
fusive shock acceleration, diffusion in momentum is neglected,
and the diffusion coefficient κα is considered to be constant in
space. The spatial displacement is then described by the SDE:

dx(t) = u dt +
√

2κ1/α
α dLα(t). (6)

Here, dLα(t) is an α-stable Lévy process, for α = 2 is identical
to a Wiener process and describes Brownian motion. The first
term describes the deterministic motion due to advection, and
the second term describes the stochastic motion, characterized
by the fractional diffusion coefficient κα and the Lévy process
dLα(t).

The change in momentum is given by an ordinary differential
equation since diffusion in momentum space is neglected,

dp(t) = −
p
3
∂u
∂x

dt . (7)

Equations (6) and (7) do not describe the time evolution of actual
particles but sample the differential number density N .

Stochastic differential equations can be approximated
numerically in their integral form (see, e.g., Kloeden & Platen
1992; Gardiner 2009). A modified version of the CR propaga-
tion framework CRPropa 3.2 (Alves Batista et al. 2022) is used

to solve the stochastic differential equation in space, which uses
the Euler-Maruyama scheme for integrating the SDE (6):

xn+1 − xn = u∆t +
√

2κ1/α
α ∆t1/αηα,t. (8)

In each simulation time step, ∆t, a random number ηα,t is drawn
from the α-stable Lévy distribution, and the position of the
pseudoparticles is updated to xn+1. The random number genera-
tion for ηα,t is based on the Chambers-Mallows-Stuck algorithm
(Chambers et al. 1976). Lévy flights result from random num-
bers drawn from the heavy power-law tails of the distribution.
For α = 2, the Euler-Maruyama scheme with a Wiener process
is recovered.

In general, the Euler-Maruyama scheme has no constraints
on the time step. However, the choice of time step can be crucial
to obtaining correct results, especially when simulating diffu-
sive shock acceleration. This is discussed in detail in such works
as Kruells & Achterberg (1994), Strauss & Effenberger (2017),
and Aerdker et al. (2024). Furthermore, to enhance statistics at
high energies that only a fraction of pseudoparticles ever reach,
we used the CandidateSplitting module of CRPropa. Pseu-
doparticles that cross specified boundaries in energy are split into
two copies. In the later analysis they are weighted accordingly to
obtain the correct spectra. Boundaries are chosen depending on
the expected spectral slope to balance the number of pseudopar-
ticles in each energy bin (see Aerdker et al. 2024, for details of
this method).

The SDE approach is quite flexible, and it is easy to extend
to higher dimensions and other geometries compared to Fourier
series approximations. In CRPropa, Eq. (8) is defined in the
lab frame. However, the diffusive step can be calculated in the
orthonormal base of the magnetic field by integrating along the
magnetic field line for parallel diffusion, calculating the perpen-
dicular diffusive step, and transforming back to the lab frame in
each time step (see Merten et al. 2017, for details of the transfor-
mation).

The ordinary differential equation, Eq. (7), describing the
time evolution of the pseudoparticles’ momentum is integrated
with a Euler scheme. CRPropa 3.2 does not allow for continuous
injection of pseudoparticles during the simulation time. Instead,
all pseudoparticle positions in phase-space are stored at times
Ti = i∆T during simulation. After simulation, the differential
number density n(x, p,T ) at time T is obtained by summing
over all contributions n(x, p,Ti) weighted by the time interval
∆T . The time interval ∆T does not necessarily need to be the
same as the simulation time step ∆t. We refer to Merten et al.
(2018), Aerdker et al. (2024) for more details. This method has
already been applied to model superdiffusive transport and com-
pared to a Fourier series approximation in a previous work
(Effenberger et al. 2024).

2.2. Solving the fractional diffusion equation:
Two-dimensional pseudoparticle trajectories

As a first application, we obtained the pseudoparticle trajecto-
ries for Gaussian diffusion and superdiffusion in 2D shown in
Fig. 1 by setting u = 0. To model the process in 2D, we made
the following changes to the Euler-Maruyama scheme (8): The
scattering direction was randomly chosen within [0, 2π), and the

diffusive step length ∆rdiff =

√
∆x2

diff + ∆y2
diff was calculated at

each time step. For this, two random numbers were drawn from
the Lévy distribution with

∆rdiff =
√

2κ1/α
α

√
η2

x + η2
y t1/α (9)
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while assuming that the diffusion coefficient κα is the same in
the x and y direction and with Lévy random numbers ηα,x, ηα,y.
This approach ensured a positive step length, and for α = 2, it
is equal to drawing a random number from the two-dimensional
chi distribution. This approach can easily be extended to three
dimensions.

3. Modeling superdiffusive shock acceleration

For the superdiffusive shock acceleration (SSA) with Lévy
walks, Perri & Zimbardo (2012) found that the energy spectrum
is slightly harder than predicted for the normal diffusive shock
acceleration (DSA). For the Lévy flights, we thus expected the
spectral slope to be flatter as well but not necessarily the same as
for the Lévy walks.

Walter et al. (2022) found that the spectral slope does not
differ from Gaussian diffusive shock acceleration for non-linear
diffusion where the diffusion coefficient depends on the distri-
bution function. Also, for time-dependent diffusion, we did not
expect a different spectral slope. However, similar to findings by
Walter et al. (2022), the acceleration timescale is affected by the
increasing diffusion coefficient over time.

In the macroscopic picture of the transport equation, acceler-
ation at the shock arises from the interplay between (anomalous)
diffusion and advection. In the following, we briefly explain the
constraints on modeling DSA or SSA with SDEs. We then com-
pare the results for SSA with Lévy flights to time-dependent dif-
fusion coefficient modeling, a process with the same (pseudo)
mean-square displacement.

3.1. One-dimensional planar shock

In the diffusive picture, momentum gain at shocks is described
by Eq. (7) so that the advective speed u(x) must be continuously
differentiable. Thus, a finite shock width is assumed instead of
a discrete shock transition. The one-dimensional planar shock at
x = 0 is described by

u(x) =
u1 + u2

2
−

u1 − u2

2
tanh

(
x

Lsh

)
, (10)

with upstream and downstream velocity, u1 and u2 =
u1/q, compression ratio q, and shock width Lsh. The veloc-
ity profile u(x) has also been used in other studies of
DSA (Kruells & Achterberg 1994; Achterberg & Schure 2011;
Walter et al. 2022; Aerdker et al. 2024).

In the following, all units have been normalized so that

x̃ =
x
x0
, ũ =

u
u0
, t̃ =

t
t0
, κ̃ =

κ

κ0
, p̃ =

p
p0
, (11)

with x0/v0 = t0 and p0 being the momentum of pseudoparticles
injected at the shock. For modeling transport and acceleration
in the heliosphere, the normalization can be set, for example, to
x0 = 1 AU and v0 = 400 km/s. The compression ratio is assumed
to be q = 4.

3.1.1. Constraints on the simulation time step

The finite shock width in Eq. (10) leads to constraints on
the simulation time step and diffusion coefficient when mod-
eling an ideal shock (for discussion on normal diffusion, see,
e.g., Kruells & Achterberg 1994; Achterberg & Schure 2011;

Aerdker et al. 2024). From a numerical perspective, pseudopar-
ticles need to encounter the changing advection to be acceler-
ated, which implies a sufficiently small time step. However, with
small time steps, the diffusive step ∆xdiff =

√
2κ1/α

α ∆t1/α – a mea-
sure for the stochastic step – may become smaller than the shock
width. In that case, pseudoparticles would not make it back to the
shock to be repeatedly accelerated. This constraint essentially
depends on the chosen diffusion coefficient and shock width.

To model an ideal shock, the parameter ε = u1Lsh/κ2 should
be lower than one for Gaussian diffusion. Where the diffusion
coefficient is in units of lengthα/time when Lévy flights are con-
sidered. We found, however, that the constraints in the time step
are less restrictive for superdiffusive transport since occasionally
Lévy flights make it possible to cross the shock front again, even
if the mean diffusive step is small.

3.1.2. Simulation results

We compared the time-dependent number density and momen-
tum spectrum at the shock with superdiffusion, α = 1.7, to
normal diffusion, α = 2, and to normal diffusion with a time-
dependent diffusion coefficient that mimics the same depen-
dency of the mean-square displacement on time, κ2(t) = t2/α−1

with α = 1.7. Figure 2 shows the time evolution of the spectra
f p2 at the shock (x = [0, 1]) weighted by p2 for the different
diffusion processes and diffusion coefficients. The dotted lines
show the fitted slope of the spectra when the stationary solution
for p <= 102 p0 is reached. The spectra were fit in the range
p = [10, 102] p0 in order to exclude effects from pseudoparticle
injection at p = p0.

In the case of a constant Gaussian diffusion coefficient (left),
the stationary spectrum has the expected slope −2.017 ± 0.0033,
which is already reached at t̃ = 200. Acceleration at the shock
with a constant diffusion coefficient is quicker compared to that
with a diffusion coefficient that increases over time (middle). The
time-dependent diffusion coefficient slows down the acceleration
at the shock; thus, at t̃ = 200 the stationary solution for p < 102

is not yet reached, as expected for an increased diffusion coeffi-
cient in the estimate for the acceleration time τacc (see Eq. (14)).
The stationary spectral slope is the same as for a constant Gaus-
sian diffusion coefficient. The dip at low momentum (approx.
p < 3) comes from the vanishing diffusion coefficient early in
time (κ2(t = 0) = 0) and constraints on the chosen shock width
and simulation time step.

The right panel of Fig. 2 shows the time evolution resulting
from superdiffusive shock acceleration. The stationary spectrum
is harder compared to normal diffusion, s1.7 = 1.750 ± 0.007 for
p < 102. Also, the stationary solution at t̃ = 200 for p < 102 p0
is not yet reached. However, acceleration is more efficient than
in the case of time-dependent diffusion. The results are consis-
tent with the work of Perri & Zimbardo (2012), who also found
flatter spectra for superdiffusive shock acceleration with Lévy
walks.

Figure 3 compares the time evolution of the differential num-
ber density integrated over momentum. With increasing Gaus-
sian diffusion over time, more particles reach the upstream
region against the background flow compared to constant Gaus-
sian diffusion. With Lévy flights, the characteristic power-law
distributions emerge upstream. For a detailed discussion, see the
prpevious work by Effenberger et al. (2024). There, the number
densities differ since here the advection speed drops at the shock.

3 The spectra were fit for p < 102 p0 at t̃ = 800 by a least-squares
method.
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Fig. 2. Time evolution of the weighted spectrum f (p, t)p4 at the shock (x̃ = [0, 1]) for normal diffusion, κ̃2 = 1 (left); time-dependent diffusion,
κ̃2(t) ∝ t̃2/1.7−1 (middle); and Lévy flights with α = 1.7 and κ̃1.7 = 1 (right). Time-dependent diffusion and Lévy flights with α = 1.7 have the same
(pseudo) mean-square displacement. The dashed lines indicate the slope of the fitted spectra at time t̃ = 800.
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Fig. 3. Time evolution of the number density integrated over momentum n =
∫
N dp for normal diffusion, κ̃2 = 1 (left); time-dependent diffusion,

κ̃2(t) ∝ t̃2/1.7−1 (middle); and Lévy flights with α = 1.7 and κ̃1.7 = 1 (right). The dashed line shows the number density at t̃ = 800.

The dashed lines show the number density profiles at t̃ =
800. Since there are no significant changes in the range x̃ =
[−20, 50], the steady-state solution is already reached for Gaus-
sian diffusion and almost for time-dependent Gaussian diffusion
and Lévy flights.

3.2. Comparison to Lévy walks

The question of why fractional diffusion changes the uni-
versal shock spectrum in contrast to time-dependent or
even non-linear diffusion coefficients remains. At a one-
dimensional planar shock, the spectral slope only depends
on the shock compression ratio and the escape probability
(see, e.g., Drury 1983). Since the compression ratio remains
the same, superdiffusion modeled with Lévy flights must
result in a lower escape probability, leading to more efficient
acceleration.

For Lévy walks, Perri & Zimbardo (2012) using the propa-
gator approach obtained the escape probability Pesc and with that

the power law for superdiffusive shock acceleration:

γ = Pesc
E

∆E
= 6

µ − 2
µ − 1

1
q − 1

+ 1. (12)

Here, ∆E/E is the relative energy gain of relativistic particles at
a planar shock with compression ratio q. Their parameter µ can
be related to the anomalous diffusion exponent ζ = 4 − µ. Thus,
the fractional dimension α = 2/(4 − µ) has the same (pseudo)
mean-square displacement. For the relation between the escape
probability and spectral index, we also refer to Kirk et al. (1996),
as they found softer spectra for subdiffusive shock acceleration.

Figure 4 compares the spectra of superdiffusive shock accel-
eration obtained with Lévy flights to those with Lévy walks with
the same anomalous diffusion exponent ζ. We did not find the
same spectral slopes for the Lévy flights but found even harder
spectra. Thus, the jump length distribution of Lévy flights seems
to lower the escape probability even more, which leads to more
efficient acceleration.
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Fig. 4. Stationary spectra for p <= 100p0 for different fractional dimension α considering Lévy flights. On the left, the resulting energy spectra
are shown. The dots are simulation results, and lines indicate the slopes fitted to the range p = (10, 100)p0. The fitted slopes are shown in
comparison to the slopes for Lévy walks in the right panel, depending on the fractional dimension α and (pseudo) mean-square displacement.The
fitted values for the Lévy flights are (with decreasing fractional dimension): s = −2.012 + −0.004, s = −1.934 ± 0.003, s = −1.844 ± 0.005 s =
−1.764 ± 0.005, s = −1.659 ± 0.013, s = −1.576 ± 0.012.

3.3. Comparison of particle number densities

Another approach to analyzing the escape probability is to have
a look at the differential number densities for the different dif-
fusion processes. Figure 5 compares the differential number
density of all considered diffusion processes in the range x̃ =
[−10, 10].

Differences between the processes are subtle. For both time-
dependent Gaussian diffusion and Lévy flights, more particles
are upstream and close to the shock, as indicated by the negative
ratio in the upper and middle panel of Fig. 5. For Lévy flights,
the upstream power laws are visible as more particles make it
far upstream, even compared to time-dependent Gaussian diffu-
sion – at least at t̃ = 800, without an upper boundary for the
time-dependent diffusion coefficient κ2(t). Also, the peak struc-
ture that forms at the shock for Lévy flights is visible at x = 0 in
the upper panel.

More interesting is the ratio between the diffusion pro-
cesses that have the same (pseudo) mean-square displacement
in the bottom panel. For Lévy flights, the particle number den-
sity far upstream is higher, indicating a more efficient scatter-
ing from the downstream region back over the shock. Also,
the number density right at the shock is higher. In the macro-
scopic approach, energy gain at the shock comes from the
divergence of the velocity profile (see Eq. (7)). With more
particles close to the shock, they may be accelerated more
efficiently.

3.4. Momentum-dependent diffusion

A more realistic description of the diffusion coefficient includes
a dependence on the particles’ momentum. With the SDE
approach, momentum-dependent diffusion in 1D can be modeled
within the same framework. In the following, we show the result-
ing spectra at a shock while considering momentum-dependent
(fractional) diffusion coefficients

κα(p) = κ0

(
p
p0

)δ
. (13)

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x/x0

−1.0

−0.5

0.0

n
i
−
n
j

Fig. 5. Difference in differential number densities comparing Gaussian
diffusion and Lévy flights (orange dots), constant and time-dependent
Gaussian diffusion (blue squares), time-dependent Gaussian diffusion
and Lévy flights (light blue triangles).

The fractional transport equation is solved analogously to the
previous section but with the diffusion coefficient in the SDE (6)
now being momentum dependent.

For Gaussian diffusion, the mean time to reach momentum
p depends on the momentum dependence of the diffusion coef-
ficient (Drury 1983). For α = 1, the mean acceleration time is
given by

t̄(p) ∝ τacc

(
p
p0
− 1

)
, (14)

with τacc = 3/(u1 − u2)(κ1/u1 + κ2/u2). For Gaussian diffusion,
the mean acceleration time we obtained for the simulation agrees
with the one given by Eq. (14).

With δ > 0, momentum-dependent diffusion slows down
the acceleration at the shock over time since the particles reach
a higher momentum, and with that the diffusion coefficient
increases. Figure 6 shows the spectrum of momentum-dependent
Gaussian diffusion and Lévy flights with κ0 = 1 and δ = 1 at the
same times as for constant diffusion coefficients in Fig. 2. The
cutoff due to the finite acceleration time is visible in both cases.
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Fig. 6. Time evolution of the weighted spectrum f (p, t)p4 at the shock
(x = [0, 1]) for energy-dependent normal diffusion, κ2 = 1p (left) and
Lévy flights with α = 1.7 and κ1.7 = 1p (right).
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Fig. 7. Time evolution of the distribution f (x, t) integrated over momen-
tum p for energy-dependent normal diffusion, κ̃2 = 1p/p0 (left) and
Lévy flights with α = 1.7 and κ̃1.7 = 1p/p0 (right).

Considering superdiffusion, Eq. (14) is hard to define. How-
ever, Fig. (6) shows that it takes longer to reach the same momen-
tum in case of energy-dependent Lévy flights compared to Gaus-
sian diffusion. The Gaussian diffusion and Lévy flight process
have the same value, κ0 = 1 here, but different physical units.
At a given time, the Lévy flight model has a larger mean-square
displacement, which slows down the acceleration process. It is,
thus, difficult to compare the different processes.

One attempt by Perri & Zimbardo (2012) scales the diffusion
coefficient for Lévy walks with the fractional dimension µ. This
leads to a smaller anomalous diffusion coefficient, and they con-
cluded that superdiffusive acceleration is faster than Gaussian
diffusion, which is similar to our results in the previous section.

Over time, more particles make it to the upstream region
due to the increasing diffusion coefficient. Figure 7 shows the
number density upstream of the shock over time. The upstream
number density breaks from a Gaussian core to power-law tails.
While the slope of the tails is determined by the fractional
dimension, the break position depends on the diffusion coeffi-
cient (see Effenberger et al. 2024). The effective diffusion coeffi-
cient grows over time when particles are accelerated to a higher
momentum.

4. Discussion and conclusions

We have presented a Lévy flight model of superdiffusive acceler-
ation based on stochastic differential equations that is an exten-

sion of the Lévy flight approach described in Effenberger et al.
(2024) for superdiffusive transport. The energy gain of CRs at
the shock is given by Eq. (7), which was solved along with
Eq. (6) to describe the Lévy flight motion of CRs. We used a
modified version of CRPropa3.2 to solve the system of (stochas-
tic) differential equations with a Euler-Maruyama scheme.

We find that the energy spectra at the shock are harder when
CRs are subject to Lévy flights than for Gaussian diffusion. For
Lévy flights, the spectral slope depends on the fractional dimen-
sion α but not on the anomalous diffusion coefficient. This is
analogous to Gaussian diffusion, where the diffusion coefficient
impacts the acceleration timescale but not the stationary spec-
trum.

The energy spectra are even harder than previously found by
Perri & Zimbardo (2012) for Lévy walks. The spectral slope was
determined by the compression ratio of the shock and the escape
probability of the particles (Drury 1983). With the compression
ratio being the same, the probability to escape the shock must
be changed due to the power-law jump length distribution of the
Lévy flights. Compared to Gaussian diffusion, more particles are
upstream, and thus the transport back to the shock must be more
efficient. Since Lévy flights do not have a cutoff at large jumps
similar to Lévy walks, it is plausible that the resulting energy
spectra are even harder for the same anomalous diffusion expo-
nent ζ.

Comparison of such fundamentally different processes as
Gaussian diffusion, Lévy flights, and Lévy walks is not triv-
ial. To eliminate the effect of the increasingly higher mean-
square displacement of the Lévy flight processes, we fur-
ther compared our results to a Gaussian process with a time-
dependent diffusion coefficient. The mean-square displacement
of the time-dependent Gaussian and Lévy process are always the
same, but the underlying scattering process is different. Com-
pared to the time-dependent Gaussian diffusion, Lévy flights
have a shorter acceleration timescale. This is different from
the approach by Perri & Zimbardo (2012), who scaled down
the anomalous diffusion coefficient depending on its fractional
dimension for Lévy walks in order to compare the acceler-
ation time to that of Gaussian diffusion. For future work in
this context, a study of the effect of so-called tempered Lévy
motion (Baeumer & Meerschaert 2010) may be of interest (i.e.,
the effect of exponentially truncated Lévy distributions on parti-
cle transport (see, e.g., le Roux 2024)).

This work has investigated anomalous diffusion at the level
of particle distributions and energy spectra. However, it remains
unclear what physical process is responsible for the non-
Brownian motion. This side of the problem can be approached
by, for example, studying test particle motion in magnetohy-
drodynamic or synthetic turbulence with intermittent coherent
structures (Lübke et al. 2024). Recently, Lemoine (2023) and
Kempski et al. (2023) have found that CRs can be scattered on
bent magnetic field lines when their gyroradius exceeds the cur-
vature radius of the magnetic field. Such localized, strong scat-
tering events can lead to non-Brownian diffusion on small scales
(Lemoine 2023).

To make meaningful predictions on superdiffusive particle
transport in astrophysical scenarios, both the fractional dimen-
sion and anomalous diffusion coefficient must be known. For
Gaussian diffusion, the diffusion coefficient may be calculated
from theory (e.g., Shalchi 2020, 2021) or obtained in full-orbit
test particle simulations by deriving running diffusion coeffi-
cients 〈∆x2〉/∆t (e.g., Mertsch 2020; Reichherzer et al. 2022).
For Lévy flights, the running anomalous diffusion coefficient
would converge over 〈∆x2〉/∆tζ . Thus, when the fractional
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dimension α = 2/ζ (or α = 4 − ζ for Lévy walks) is known, the
anomalous diffusion coefficient can be determined from test par-
ticle simulations. For a similar study investigating subdiffusion
of test particles depending on the considered turbulence, we refer
to Tautz & Shalchi (2010). The anomalous diffusion coefficient
and fractional dimension can also be fit to observations by tak-
ing into account the slope of the upstream power-law distribution
(determined by the fractional dimension) and the distance from
the shock at which the distribution turns into power laws (deter-
mined by the anomalous diffusion coefficient) (Effenberger et al.
2024).

Our work on superdiffusive transport and acceleration at
1D planar shocks sets the basis for more elaborate studies of
anomalous transport. With the flexibility of the SDE approach,
3D superdiffusive transport can also be modeled analogously to
Eq. (9). We have already shown in Sect. 2.2 how pseudoparticle
trajectories in two dimensions can be obtained, and this can eas-
ily be extended to three dimensions. Also, anisotropic superdif-
fusion parallel and perpendicular to the magnetic field lines can
be studied using the field line integration of CRPropa 3.2. Fur-
thermore, the impact of a spherical shock geometry and the cor-
responding cooling due to the expanding wind can be taken into
account in a future analysis.
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