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Abstract: The rise in electricity costs for households over the past year has driven significant changes
in energy usage patterns, with many residents adopting smarter energy-efficient practices, such as
improved indoor insulation and advanced home energy management systems powered by IoT and
Digital Twin technologies. These measures not only mitigate rising bills but also ensure optimized
thermal comfort and sustainability in typical residential settings. This paper proposes an innovative
framework to facilitate the adoption of energy-efficient practices in households by leveraging the
integration of Internet of Things technologies with Digital Twins. It introduces a novel approach that
exploits standardized parametric 3D models, enabling the efficient simulation and optimization of
home energy systems. This design significantly reduces deployment complexity, enhances scalabil-
ity, and empowers users with real-time insights into energy consumption, indoor conditions, and
actionable strategies for sustainable energy management. The results showcase that the proposed
method significantly outperforms traditional approaches, achieving a 94% reduction in deployment
time and a 98% decrease in memory usage through the use of standardized parametric models and
plug-and-play IoT integration.

Keywords: internet of things; digital twin; home energy management systems; real-time monitoring;
IoT architecture

1. Introduction

Approximately 40% of worldwide energy use and 36% of worldwide emissions are
generated by buildings and cities, which renders them significant contributors of both global
energy consumption and CO2 emissions [1]. This significant environmental footprint has
underscored the need for innovative approaches and cutting-edge technologies in managing
and optimizing energy consumption within the residential sector. As a result, various digital
technologies like the Internet of Things (IoT) and Digital Twins (DTs) have developed as
promising solutions to address the challenges associated with energy management and
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sustainability while regulating thermal comfort in home environments [2]. These technolo-
gies will be more effective when integrated in real-life and real-time scenarios, allowing
for immediate data-driven adjustments and optimizations that align with user preferences
and environmental goals. Overall, the seamless, real-time integration of IoT and DTs into
Home Energy Management Systems (HEMSs) is critical for maximizing energy efficiency,
improving user comfort, and supporting the sustainability goals of modern smart cities.

The IoT allows seamless connectivity and real-time data collection from various smart
devices, providing granular insights into the energy usage of specific appliances and over-
all household consumption [3]. Moreover, the continuous data streams generated by IoT
networks are pivotal for applications in HEMSs, such as error analysis and prescriptive
maintenance [4]. By analyzing these data flows and created patterns within HEMSs, specific
applications can predict and address potential system faults or inefficiencies, ensuring
uninterrupted operation and reducing energy waste, while extending the lifespan of house-
hold devices. In an even broader sense, IoT data can also enhance security within the IoT
ecosystem itself through self-healing techniques that autonomously detect and resolve vul-
nerabilities [5]. This capability to ensure reliable, secure, and efficient operation underlines
the critical role of IoT data in modern HEMS applications. Overall, these capabilities make
IoT data indispensable for advancing intelligent, resilient, and sustainable HEMSs that
adapt dynamically to both user needs and environmental demands.

In parallel, DT technology offers a virtual replica of physical assets while enabling
dynamic simulation, predictive analysis, and optimization of systems such as HEMSs. By
integrating IoT within these DTs, it is possible to create an advanced, real-time model of
the residential environment that can monitor, control, and optimize energy use and other
parameters autonomously [6–8]. Visualization of IoT data within DT applications plays a
crucial role in enhancing user-centered experiences while providing clear, interactive repre-
sentations of energy usage and device performance. Such visualizations help users better
understand their energy consumption patterns and enable them to make informed decisions
about optimizing household energy. Furthermore, visualization tools aid in quickly identi-
fying issues within the IoT network per se, making it easier for users to detect and address
problems, such as connectivity issues or device malfunctions, through intuitive graphical
insights. This enhanced transparency fosters user engagement and empowers individuals to
actively participate in managing their home energy environment more effectively [9].

Nonetheless, one of the primary challenges in integrating IoT with DTs for real-life ap-
plications is ensuring that IoT setups are non-intrusive and quick to deploy [10]. Especially
in home environments, IoT devices must be easy to install without requiring significant
modifications to existing infrastructure, as intrusive setups can discourage adoption and
increase complexity while adding inconvenience to the tenants. Furthermore, achieving
real-time visualization outcomes from DTs presents scalability and replicability issues [11].
Creating a personalized DT model for each user can be both time-consuming and memory-
intensive, as each DT requires dedicated storage and processing resources to maintain
an accurate and responsive virtual replica [11]. Moreover, designing and creating these
models also demands considerable effort, especially when using custom techniques like
3D scanning to capture unique environments, which further complicates scaling DT appli-
cations across many users. This personalized modeling approach can lead to significant
resource consumption, particularly when managing high volumes of IoT data, making it
a potential bottleneck in effectively scaling DT applications. Additionally, ensuring that
DTs are continuously updated in response to real-time IoT data requires efficient data syn-
chronization, which can strain computational resources if not optimized [12]. Addressing
these challenges is crucial for making IoT-integrated DT solutions feasible, efficient, and
user-friendly in real-world settings.

Overall, HEMSs are increasingly adopting IoT technologies to enable smarter energy
management. However, traditional HEMSs face several limitations, including lack of real-
time feedback and actionable insights to help users make informed decisions; limited
scalability in adapting to diverse residential setups and IoT ecosystems; and challenges
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in providing predictive capabilities for energy optimization and occupancy trends. These
limitations hinder the ability of HEMSs to fully support user engagement, energy efficiency,
and sustainability practices. DT technology seems to be a promising solution. While DT
technology has shown promise in industrial and commercial applications, its integration
with IoT for residential HEMS remains largely unexplored. Existing studies focus predomi-
nantly on either DT frameworks for large-scale systems or basic IoT implementations for
energy management, without addressing the potential of combining these technologies to
enhance scalability, usability, and efficiency in residential settings.

This research aims to fill this gap by proposing a novel DT-enabled HEMS framework
that bridges the physical and digital domains, empowering users with real-time insights
and predictive analytics for sustainable energy management. The primary scientific goal
is to address challenges related to deployment complexity, scalability, and resource effi-
ciency by introducing a standardized parametric model for Digital Twins. This framework
emphasizes seamless integration, real-time monitoring, and intuitive visualization to em-
power users with actionable insights into their energy consumption patterns. By utilizing
a pre-defined Digital Twin framework, the solution bypasses the need for extensive cus-
tomization, such as complex 3D scanning or unique modeling, thereby enabling efficient
scalability across multiple users while maintaining resource efficiency. This setup facilitates
seamless integration between IoT and Digital Twin systems, allowing users to benefit from
the insights and advantages of a Digital Twin without the complexity and effort typically as-
sociated with creating and maintaining personalized models. Consequently, this approach
makes advanced home energy management more accessible, user-friendly, and effective,
even for large-scale deployments. The main novelties of this paper area as follows:

• Non-intrusive, user-friendly plug-and-play IoT setup. The proposed framework sim-
plifies the installation process by leveraging pre-configured IoT devices and stan-
dardized interfaces. This approach was empirically validated during the case study
implementation, where IoT devices were installed with minimal modifications to
existing infrastructure, as detailed in Section 5.

• Pre-designed, scalable Digital Twin model. The proposed standardized DT framework
significantly reduces computational demands by avoiding resource-intensive custom
modeling. This claim is substantiated by the results in Section 5.4, which demonstrate
a 98% reduction in memory usage compared to traditional approaches.

• Enhanced accessibility and usability: The proposed system combines pre-defined DT
models with plug-and-play IoT devices, providing users with Digital Twin insights
and energy management capabilities through a streamlined setup process requiring
minimal maintenance effort.

The remainder of this paper is structured as follows: Section 2 presents a review
of related works, highlighting recent advancements in IoT and Digital Twins for home
energy management systems. Section 3 defines the proposed Digital Twin framework and
its functional objectives within the HEMS context. Section 4 details the IoT integration
methodology and middleware framework for real-time data synchronization and device
interaction. Section 5 provides a case study demonstrating the practical implementation and
validation of the proposed system. Finally, Section 6 concludes the paper by summarizing
the findings and discussing future research directions.

2. Literature Review

HEMSs are rapidly evolving as essential technologies for optimizing residential energy
use, improving sustainability, and enhancing user comfort. As energy demands grow and
renewable sources become more prevalent, integrating IoT technologies and DTs appears to
be a promising strategy in advancing these systems. IoT-based HEMSs allow for granular
monitoring and control, enabling homeowners to make real-time adjustments, while DTs
leverage virtual replicas of physical systems to simulate and optimize energy use. This
section reviews recent advancements in IoT and DT architectures within HEMSs, analyzing
a range of solutions that highlight both the strengths and challenges of these emerging
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approaches. Through these technologies, HEMSs are moving closer to achieving smart,
self-regulating, and sustainable residential environments.

2.1. IoT for Home Energy Management

IoT-based HEMSs empower homeowners with precise control over energy consump-
tion, fostering smarter and more responsive home environments. This subsection examines
current IoT technologies for energy monitoring and device control, highlighting different
architectures and approaches in processing, usability, and scalability. Al-Ali et al. [13] and
Machorro-Cano et al. [14] introduce IoT-based HEMSs that leverage Big Data collection and
analytics. Both collect data from a network of ambient and energy consumption sensors
to a centralized server. Al-Ali et al.’s system uses the shelf Business Intelligence software
(Hitachi Vantara V2016) for visualization and energy use monitoring, while Machorro-Cano
et al. utilizes the J48 classification Machine Learning (ML) algorithm for analyzing con-
sumption and user behaviors to optimize energy efficiency and comfort. In the second case,
real-time visualization comes via a mobile app. Gupta et al. [15] propose a Big Data and
IoT-driven Energy Management System (EMS) for residential areas that utilizes distributed
processing to monitor, visualize, and analyze large-scale energy consumption data for
optimizing household and community-level energy use. These approaches enable data-
driven insights and predictive analytics but they face challenges with scalability, latency,
and security vulnerabilities due to volume, as well as the centralized collection of gener-
ated data and high computational demands [16]. Ilieva et al. [17] raise another important
question in the context of IoT for HEMSs, which is the connectivity and interoperability of
smart home devices. The authors propose a smartFW framework to address the challenges
associated with integrating various commonly used communication protocols such as
Zigbee, EnOcean, KNX, X10, and Z-Wave.

The challenges that arise from Big Data approaches are partially mitigated with the
adoption of cloud-based processing. Condon et al. [18] and P. & S. [19] introduce Cloud-IoT-
based HEMSs that use layered architectures for real-time energy monitoring and appliance
or socket control. Beyond the sensor network, the communication layer uses the lightweight
MQTT protocol while data storage, APIs (middleware layer), analytics, visualization, and
user interaction (application layer) are delegated to cloud services. These approaches
initially scale easily but can be costly as the number of installations and computational
intensity grows. Latency issues and the demand for reliable connection can hinder the
real-time aspect of these approaches. Finally, storing sensitive energy consumption data in
the cloud raises concerns about data security and user privacy.

The introduction of edge computing with IoT-driven HEMSs utilizes local data process-
ing to enhance real-time decision-making, reduce latency, and improve security. Ferreira
et al. [20] propose a low-cost, edge-computing middleware for HEMSs, utilizing microser-
vices to enhance scalability and minimize latency. The middleware is designed with a hybrid
approach where basic data collection, processing, and control tasks are handled locally at
the edge, while more complex analyses are offloaded to the cloud. Javed et al. [12] propose a
resilient, edge-based demand response (DR) optimization system for Smart Energy Systems
that uses a local cloud architecture and ML to improve energy efficiency and ensure user
comfort. The introduction of additional local cloud nodes allows this scheme to scale to large
facilities while keeping data processing local to each node. Iqbal et al. [21] presents an edge-
computing-based system that integrates IoT devices with a blockchain to create a secure and
decentralized framework for real-time monitoring and prediction of energy usage, using
ARIMA for forecasting and smart contracts to facilitate automated transactions for energy
trading and DR. Finally, edge computing in IoT-driven HEMSs reduces latency, improves
scalability and privacy, and mitigates security risks by limiting data transmission, though it
requires managing computational constraints and increased system complexity [22].
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2.2. Digital Twins in Residential Energy Management

DTs in residential energy applications represent a transformative approach to energy
management, enabling enhanced efficiency and sustainability. These models focus on
the complexities of modern systems, extending the integration of IoT schemas for home
energy management. The creation of dynamic, virtual replicas of physical assets enables
real-time monitoring, predictive maintenance, and data-driven decision-making, leading to
optimized energy consumption and improved system efficiency [23]. Recent advancements
in Machine Learning (ML) and Artificial Intelligence (AI) further enhance DT capabilities,
allowing for intelligent decision-making that adjusts to user behaviors and external fac-
tors [24]. This section explores the role of DTs in residential energy management systems,
focusing on their potential to create energy-efficient, self-regulating home environments
that are aligned with the goals of smart and sustainable living.

Fathy et al. [25] propose a multi-layered DT framework that integrates both household-
specific Home Digital Twins (HDTs) and a centralized Energy Digital Twin (EDT) to enhance
energy management systems. In this framework, each HDT reflects household energy use
patterns and user preferences, enabling local appliance scheduling optimization through
edge-deployed reinforcement learning (RL). The EDT, in turn, aggregates energy demand
data across households, allowing for dynamic adjustment of dual tariff rates based on
real-time demand trends. Complementing this approach, Testasecca et al. [26] introduce a
DT framework that leverages Building Information Modeling (BIM), IoT, and ML services
to optimize energy usage and sustainability within various case studies, including smart
grids, microgrids, and district heating networks. Their findings highlight the benefits and
challenges of DT applications in HEMSs, noting key limitations in scalability, data quality,
and stakeholder engagement.

De Lope et al. [27] extend the application of AI-driven DTs in HEMSs to optimize
hybrid renewable hydrogen systems for self-sufficiency and efficiency. The effectiveness in
real-time energy optimization is evident by the implementation in a housing project in Spain
but the complexity of the system creates challenges in adaptability and scalability, while the
centralized processing and demanding ML algorithms raise concerns regarding security and
computational demands on larger scales. Cotti et al. [28] focus on user empowerment by
introducing an ML-powered digital twin for smart homes. The system uses an unsupervised
machine learning approach to simulate the impact of different appliance modes on energy
consumption. Through a user-friendly web-based interface, users can create trigger–action
rules and receive recommendations for optimizing energy consumption.

Table 1 presents a detailed comparison of key features and methods across various
related works in the domain of IoT-enabled DT systems for energy management. The
comparison highlights significant gaps in prior research and underscores the comprehen-
sive capabilities of this paper. The features compared were selected to address the key
challenges in deploying IoT-enabled DT systems for HEM. These include scalability, us-
ability, and resource efficiency, critical factors for real-world adoption. ‘Non-intrusive IoT
Setup’ ensures minimal structural modifications for seamless integration in diverse envi-
ronments, while ‘Pre-designed DT Framework’ highlights the scalability and efficiency of
standardized models, eliminating the need for resource-intensive customizations. The term
‘Non-intrusive IoT Setup’ focuses on minimizing the impact on existing infrastructure, such
as avoiding structural modifications or rewiring, whereas ‘Ease of Installation’ highlights
the simplicity and user-friendliness of the process, such as plug-and-play functionality.
While related, these terms address different aspects of deployment. Other features, such as
real-time IoT-DT integration and cost-effectiveness, were included to provide a compre-
hensive comparison with existing solutions. These criteria reflect the essential capabilities
needed to advance the usability and accessibility of DT systems. This selection not only
benchmarks our framework against current approaches but also underscores its ability to
address practical deployment challenges.
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Table 1. Comparison of features and methods across related works.

Feature/
Method

Non-Intrusive
IoT Setup

Pre-Designed
DT Framework

Real-Time
IoT-DT

Integration
Scalability Ease of

Installation
Cost-

Effectiveness Interoperability

Al-Ali et al. (2017)[13] ✓ ✓

Machorro-Cano et al. (2020) [14] ✓ ✓

Gupta et al. (2020) [15] ✓ ✓ ✓ ✓

Condon et al. (2023) [18] ✓ ✓ ✓ ✓

Ferreira et al. (2022) [20] ✓ ✓ ✓

Iqbal et al. (2023) [21] ✓ ✓ ✓ ✓

Testasecca et al. (2024) [26] ✓ ✓ ✓ ✓

This Paper ✓ ✓ ✓ ✓ ✓ ✓ ✓

3. Digital Twin for HEMS

DTs have emerged as a transformative technology for advancing EMSs in residential
settings while offering precise, real-time simulations and optimizations. In the context of
HEMSs, DTs enable the creation of dynamic virtual replicas of physical homes, integrating
spatial and environmental data with IoT-driven insights. This section introduces the DT
framework tailored for HEMSs, outlining its key components, functional objectives, and the
standardized parametric 3D modeling approach. By bridging physical and digital domains,
the proposed DT empowers users with actionable insights and supports sustainable energy
practices. The following subsections delve into the development, features, and capabilities
of this innovative framework.

3.1. Research Methodology

As discussed, the primary aim of this research is to propose and validate an innovative
framework that integrates DT technology into HEMSs. The framework is designed to
address key challenges in residential energy management, ensuring the system can adapt
to diverse home configurations and varying IoT deployments. Providing intuitive user
interfaces with actionable insights for energy optimization. Reducing computational and
operational demands through standardized DT models. By bridging the physical and digital
domains, the proposed framework enables real-time simulations, predictive analytics, and
precise energy monitoring, empowering users to adopt sustainable energy practices while
optimizing energy consumption.

To achieve the outlined scientific aim, this study adopts a systematic methodology
comprising the following steps:

1. Literature Review: Conducted a comprehensive review of existing HEMS and DT
frameworks to identify gaps, establish the novelty of the proposed framework, and
define objectives for its development.

2. Framework Design and Development: Developed a DT-enabled HEMS framework,
focusing on objectives such as real-time visualization, spatial segmentation, energy
tracking, and predictive analytics.

3. Case Study Implementation: Applied the framework to a real-world scenario, simu-
lating a residential building project. The case study incorporates IoT data and spatial
modeling to validate the practical functionality of the framework.

4. Simulation and Performance Testing: Conducted simulations to assess the frame-
work’s performance in achieving scalability, usability, and resource efficiency. Metrics
such as energy consumption patterns, environmental monitoring accuracy, and system
responsiveness were evaluated.

5. Validation and Comparison: Benchmarked the results against traditional HEMS
approaches to demonstrate the added value of the DT integration in terms of enhanced
user experience, energy optimization, and scalability.
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This structured methodology ensures a systematic approach to validating the frame-
work’s scientific and practical contributions to the field of residential energy management.

3.2. Defining the Digital Twin Framework in HEMSs

A DT serves as a dynamic digital replica of physical systems, offering real-time moni-
toring, analysis, and control. Within HEMSs, DTs enable the integration of IoT data with
spatial and environmental models, bridging the physical and digital domains. This trans-
formation is crucial for optimizing energy management and providing actionable insights
into household energy use. The DT framework integrates IoT-driven data collection with
virtual modeling to dynamically represent and manage the home environment, enhancing
system efficiency and user engagement. Figure 1 depicts the transition from a classical
HEMS architecture to an extended system integrating DT capabilities. The classical HEMS
structure consists of three primary components:

• Physical Layer: Includes the actual rooms, IoT sensors, and appliances.
• Data Collection and Processing: Handles data streams, middleware communication,

and database storage for managing and analyzing energy usage.
• Applications: Offers basic monitoring and control through user-facing applications.

The proposed system builds upon this by introducing a DT Layer, which mirrors the
physical environment in a virtual space. This DT Layer enables real-time visualization,
advanced simulations, and enhanced interaction. Digital rooms, IoT sensors, and appliances
within the DT Layer are synchronized with their physical counterparts, offering users
actionable insights and predictive analytics. This architecture bridges the gap between
monitoring and actionable control, significantly enhancing the scalability, usability, and
efficiency of HEMS.

Figure 1. Extended HEMS architecture incorporating DT Layer.

In contrast to traditional HEMS architectures, which rely on static configurations and
limited real-time capabilities, the integration of Digital Twins introduces dynamic simulation
and predictive analysis. This enables real-time adjustments and optimization based on live
IoT data streams, reducing latency and improving user engagement. The proposed DT
framework uses standardized models, ensuring scalability and efficient resource usage
while allowing for customized interactions with the home environment. By bridging IoT
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data with spatial models, the system provides granular insights into energy consumption
and thermal conditions, leading to enhanced sustainability and user comfort. This research
focuses on transforming traditional HEMSs into dynamic, user-centric systems through
the integration of IoT and Digital Twins. By enabling real-time simulation, predictive ana-
lytics, and enhanced user interactions, this study aims to address scalability and usability
challenges in energy management.

Specifically, Figure 2 depicts the transition from a classical HEMS architecture to an
extended system with integrated DT capabilities. The diagram compares the two architec-
tures, emphasizing the added value of the DT Layer. A Classical HEMS is limited to the
Physical Layer, Data Collection and Processing, and Applications. It primarily focuses on
IoT-based data collection and basic user interactions, offering limited insights and lacking
predictive capabilities. Meanwhile, in the extended HEMS with DT, the DT Layer transforms
the system into a dynamic, interactive platform. This layer provides real-time visualization
of household energy use, advanced simulations, and predictive analytics. By mirroring
physical rooms, IoT sensors, and appliances in a virtual environment, the DT Layer bridges
the gap between monitoring and actionable control, empowering users with enhanced
engagement and decision-making tools.

Figure 2. Comparison of HEMS with and without Digital Twin, illustrating system architecture, data
flows, and differentiated purposes.

3.3. Functional Objectives and Modeling Priorities

The development of a DT for an HEMS requires a strategic approach to modeling
that should emphasize both functionality and precision. This section outlines the primary
objectives and priorities guiding the creation of the DT model tailored for HEMS appli-
cations. The focus is on enhancing user experience and spatial realism while supporting
granular data segmentation, and enabling data analytics. By integrating detailed environ-
mental and energy-related data, the DT model can provide users with an immersive and
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interactive experience while facilitating real-time insights and energy management. Each
objective contributes to the overall aim of achieving a 3D model that is technically robust
and adaptable to user needs, environmental conditions, and energy optimization goals
within different areas of the home. The functional objectives and modeling priorities (Obj)
are listed bellow:

• Obj. 1: Enhance realism and user experience by creating a visually and tactilely ac-
curate 3D model that fosters immersion and ease of navigation within the Digital
Twin environment.

• Obj. 2: Support functional segmentation for energy and environmental data by spa-
tially segmenting the 3D model based on material and functional variations, enabling
targeted data integration.

• Obj. 3: Capture space-specific energy consumption patterns by enabling the Digital Twin
to track and analyze energy use unique to each space (e.g., living room vs. kitchen).

• Obj. 4: Improve environmental monitoring and thermal comfort by using spatial and
material segmentation to monitor conditions like temperature and humidity, ensuring
each zone meets optimal comfort levels.

• Obj. 5: Facilitate predictive analytics for occupancy and usage patterns, allowing the
Digital Twin to predict and adapt to occupancy and behavior trends across differ-
ent rooms.

• Obj. 6: Enable precision in smart home automation by integrating automation features
that adapt to the unique material and spatial characteristics of each room.

3.4. Parametric Standardized 3D Model

DTs have evolved into transformative tools in the Architecture, Engineering, Con-
struction and Operations (AECOs) fields, providing real-time and data-driven digital
replicas of physical building structures. These virtual models bridge the gap between phys-
ical structures and digital environments, enabling improved monitoring, simulation, and
management throughout the overall building’s lifecycle. The transition from traditional
two-dimensional (2D) design to dynamic Digital Twins represents the evolution of how
data from each Digital Twin informs and influences building performance and decision-
making. Initially, architectural design was mostly based on 2D drawings, physical or digital,
which provided only static representations of structures, detailing spatial layouts, structural
elements, and key mechanical systems [29]. The development in three-dimensional (3D)
modeling has added a new dimension to architectural design, and the creation of BIM
has allowed the creation of parametric models that enclose rich, interconnected data on
material properties, spatial relationships, and building systems [30].

As stated in Section 1, this paper aims to minimize the design-processing time and
reduce the size of the data associated with each DT model by assembling a standardized,
parametric, pre-designed DT framework. This approach eliminates the need for customized
per user modeling, therefore facilitating scalability and significantly reducing computational
requirements. By standardizing DT fundamentals, the model can be efficiently adapted
for different users without extensive customization, ensuring efficient deployment and
resource development. The separation and standardization of the design can be categorized
according to the basic characteristics of an apartment, which are the number of rooms, the
type of common areas (i.e., whether it is a main living and kitchen area or a separate layout
of the respective rooms), and the number of toilets. Therefore, the standard design for a
studio apartment, a one-room apartment, a two-room apartment, etc., may come up.

To achieve the conversion of this 2D data into a 3D model, architects and engineers
use BIM software, which allows the creation of a parametric model that represents both the
physical and functional aspects of the building [31]. This process involves first digitizing
the spatial layouts and structural elements from the 2D plan, which are then rendered in
3D geometry. Using BIM, engineers can render material properties, simulate structural
elements and incorporate electromechanical systems such as Heating, Ventilation, and
Air Conditioning (HVAC), plumbing, and electrical infrastructure. This transformation
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enhances spatial understanding while allowing for the incorporation of feature data, which
is essential for the development of the Digital Twin.

Regarding the structural characteristics of each dwelling, there is a clear distinction
between the characteristics of the external walls, which define the outline of the dwelling,
and the internal walls, which mainly concern the separation of the individual rooms. This
differentiation mainly concerns the thickness and composition of the walls and reflects
functional and thermal insulation characteristics, as external walls are usually designed
to provide necessary insulation, structural stability, and climate resistance. In contrast,
internal walls are mainly used for internal layout purposes, which requires a lower density
and material composition. This variation in wall specifications is typical and integral
to achieving optimal energy efficiency and structural integrity within the compartment,
always adapted to best practices in building design. At the same time, a key specification
is the provision of natural light and ventilation in each space. It is worth noting that this
specification tends to influence the interactions of the DT model with the HEMS and the
external environment.

At the same time, by applying different materials to each surface and space, the realistic
experience of the user is enhanced during their navigation in the digital environment
of the DT. This differentiation of materials not only provides visual and tactile fidelity
within the model, but also aids in distinguishing spaces for a more realistic browsing
experience. Additionally, the separation of spaces based on material transitions serves as a
fundamental preparatory step for transitioning the three-dimensional model into a DT. By
aligning specific materials with distinct spatial functions, this approach supports the precise
integration of data and functional segmentation, which are critical for DT applications.
Each defined area, living room, kitchen, bedrooms, bathroom, hallway, etc. can then be
mapped to capture distinct patterns of energy consumption, environmental parameters,
and occupancy behaviors, and in this paper’s chosen scenario, thermal comfort.

In order to achieve the optimal spatial navigation experience for the user, the 3D model
is structured according to a ’dollhouse’ concept [32]. These types of views involve creating
an open, segmented view of the compartment, enabling users to seamlessly explore the
layout and spatial relationships within the model. By presenting internal elements in a
clear, unobstructed way, the dollhouse approach enhances spatial understanding and user
engagement, making it particularly effective for immersive experiences in Digital Twin
applications. Through this systematic design and preparation, the optimal user experience
is achieved in terms of navigating the digital space and gathering the desired information
provided. Starting from the initial floor plan, continuing with the construction of the 3D
model with the applied finishing materials and finally selecting the appropriate perspective,
the 3D model fulfills the appropriate prerequisites to be transformed into a digital twin.
This step-by-step approach ensures that every layer, from spatial layout to visual fidelity
to navigation perspective, helps to create a cohesive and immersive digital environment,
aligning the model with the requirements for effective integration of the Digital Twin.

As depicted in Figure 3, the overall workflow consists of six sequential steps designed
to develop and integrate a 3D model for DT applications in HEMSs. Each step is closely
associated, directly or indirectly, with the Functional Objectives and Modeling Priorities
(Obj. 1–6), ensuring that the methodology aligns with key goals such as realism, functional
segmentation, energy tracking, environmental monitoring, predictive analytics, and smart
home automation. Overall, this methodology is ideal for creating a highly functional and
adaptable DT, addressing critical aspects of home energy management with precision and
scalability. Each step builds upon the previous one, leading to a robust 3D model that meets
the objectives for energy optimization, user comfort, and seamless interaction in a smart
home environment.
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Figure 3. Workflow for 3D model development and DT integration in HEMS.

3.5. Parametric Standardized Digital Twin

Based on the developed comprehensive standardized 3D model within the HEMS
framework, a parametric standardized digital twin is created to dynamically simulate the
indoor environment and related energy flow. Relevant 3D model data, such as the architec-
tural, structural, and interior building parameters are used as operational parameters also
in the DT. There, these are complemented with data about HVAC systems, appliances in
the premises (e.g., type, location, power consumption profiles and usage patterns), energy
related data (e.g., energy source type, usage patterns and historical data, historical and
real-time energy prices), occupancy (e.g., number of occupants and demographics, rou-
tines and activities, etc.), and indoor environmental data, such as temperature, humidity,
lighting levels, CO2 levels, air quality, and thermal comfort. Thermal comfort is commonly
estimated using the Predicted Mean Vote (PMV) index, a scientifically validated metric that
predicts the average thermal sensation of occupants on a scale ranging from cold (−3) to
hot (+3) [2]. It refers to state n in which individuals feel satisfied with the indoor conditions
and is estimated by temperature, humidity, and personal factors (clothing, activity level) [2].
By leveraging the PMV index, HEMSs dynamically adjust heating, ventilation, and air
conditioning while ensuring a balance between comfort and energy efficiency. Outdoor
environmental data may also be relevant, as in almost all cases, they affect the inside of the
premises as well. In this regard, local climate conditions, air pollution, or external obstacles
such as shading from trees or buildings can be reflected and added to the DT.

Once all this data is captured and integrated into a coherent system, it can be used for
real-time monitoring. This is not only an informative feature, but also helps in identifying
anomalies or deviation from normal patterns. Such data are key for predictive maintenance
and addressing potential issues before they escalate, leading to reduced maintenance costs,
improved system reliability, and enhanced overall home comfort and safety. Within the
digital twin, the aggregated data are cleaned and pre-processed to remove any noise and
inconsistencies. More than that, the captured data and their patterns and interactions can
be analyzed and optimized. For example, analyzing occupancy patterns can help optimize
heating and cooling schedules, while monitoring appliance usage can identify opportunities
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for energy-efficient alternatives. At the same time, using ML, deep learning, or other artificial
intelligence techniques allows DTs to continuously reflect and learn from new changes in
the system and thus improve their predictive accuracy over time.

By altering different parameters in the system and running simulations, different what-
if scenarios can be simulated virtually, and based on the results, energy-saving strategies
can be identified and implemented. Similarly, DTs can be used to predict future energy
consumption based on historical data and current conditions. This feature allows for more
efficient and proactive energy management. Actions can include, for example, scheduling
appliances to work during off-peak hours or adjusting thermostat settings and can be
either issued automatically by the system, or prompted by the user. In this regard, the
DT can be imported and manipulated by any rendering engine. The model can be further
enriched with data and user interactions offered by the capabilities of mainstream game
engines. Homeowners can then interact with the DT through a user-friendly interface to
monitor room conditions, energy consumption, receive personalized recommendations,
and make adjustments as needed. Information relevant to the user is structured and
presented in a comprehensive way. The 3D model room visualization is enhanced with
prompts and visual clues regarding sensors’ status, indoor environmental conditions, and
thermal comfort. The latter is only enabled by the IoT integration with the Digital Twin.

4. IoT Integration with Digital Twin

The integration of IoT devices with DTs is a critical step in realizing advanced HEMSs.
IoT provides real-time data collection and device control, while DTs leverage these data to
create dynamic, virtual representations of home environments. This seamless connectivity
allows for real-time monitoring, predictive analytics, and autonomous energy optimiza-
tions, bridging the physical and digital realms. This section details the IoT architecture and
its integration with the DT framework, including the roles of IoT devices, communication
protocols, and middleware for efficient data flow. Emphasis is placed on how IoT facili-
tates a bi-directional interaction between physical devices and their digital counterparts,
enabling intelligent, responsive, and scalable energy management solutions. The described
methodology ensures a robust and user-friendly approach to integrating IoT with DTs for
effective HEMSs.

4.1. IoT Devices and Data Collection

The Internet of Things Connectivity Node (ICON) is the central entity in an HEMS. The
ICON will basically work as a main gateway in a home, coordinating and managing all IoT
devices. It may be a personal computer (PC), mini PC, or Raspberry Pi that makes it easy to
integrate diverse smart sensors and actuators for smooth connectivity at both local network
and cloud-based services. The ICON is an IoT hub that allows devices to communicate
with each other and interact effectively, interfacing the immediate environment with larger
structures in the network. Such IoT devices are allowed to connect with the ICON through
special communication modules and protocols. Additionally, it plays an important role in
translating various standards of communication, hence allowing for smooth interaction.

The ICON may be connected with many kinds of IoT devices, which in return provide
specific data and functions as detailed in Table 2. These include environmental sensors that
track temperature, humidity, and CO2 levels, wall plugs that monitor the energy consump-
tion of small devices, motion sensors that detect luminance and movement, and heavy-duty
smart switches that control high-consumption devices, such as air conditioners (ACs) using
an IR AC extender. Additionally, a three-phase energy meter is utilized to monitor energy
consumption in households equipped with a three-phase system. In homes without a three-
phase setup, one of the existing phases will be used for energy monitoring and management
purposes. These IoT devices are designed for low-power operation to extend battery life
and reduce the frequency of maintenance. In fact, this is important for devices installed in
far-flung areas or those which are intended to run for an extended period, independent of
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manual interference. It is such protocols that enable continuous communication and energy
management, required by both smart home installations and industries.

Table 2. Devices and sensors in an IoT system.

Device Type Function Data Collected

ICON Manages connections Aggregated sensor data

Communication Module Facilitates data exchange Signal communication

Device Management Interface Configures and controls
devices

Device status and
configuration

Sensors Measure various conditions
Temperature, humidity, CO2,
motion, light levels, energy
consumption

Appliance Controller Manages appliance operation Appliance status

MQTT Broker Manages data flow Real-time data handling

The ICON has a mesh network topology, with every device connecting to each other
wirelessly in multiple ways. This layout provides the network with better communication
reliability as well as increased resilience—data can traverse several paths. Even if one link
or device is lost, communication among the rest of the nodes can, by virtue of rerouting
them, remain unbroken. Typical of Z-Wave devices in this kind of setup, messages can
be passed between devices in a hops manner and thus, the mesh network topology can
reach out beyond the communication range of a central controller. In most cases, up to
four intermediate nodes are used and this makes communication possible even in distant
areas through direct lines. However, a potential drawback of mesh networks is their
intricacy; developing a smoothly running system with effective data flow usually requires
high-level techniques. Nevertheless, its strength and adaptability are the main factors of
the technology that make it most suitable in the fields where communication between
the devices is very high. In contrast, a star network topology, employed in solutions like
Z-Wave Long Distance (LR), has a central hub that communicates directly to each device
without any intermediary nodes. This design has the benefit of clear communication paths
and less latency, which is especially beneficial for devices further from the hub. The star
topology is simple and it is a good solution in situations where the only requirement is short-
distance communication with no delays. In order to ensure an easy process for the users, the
ICON interface is designed as a Docker container. This containerized architecture creates
an environment where services can run independently, so changes and maintenance can
happen without affecting other functions. In addition, users can also easily add, configure,
and manage connected sensors on the ICON device. Thanks to the reliability of mesh
networks, the operational simplicity provided by Docker makes the ICON communication
system remain strong and flexible.

The data collected by these IoT devices is sent, using the MQTT protocol, to a MQTT
broker such as Mosquitto. The efficiency of this lightweight messaging system ensures the
real-time transfer of data. The sensor information formatted in JSON format has a unique
identifier for each sensor. This standardized format ensures easy integration and accurate
handling of various types of data, such as temperature, humidity, and energy consumption.
For a detailed representation of this data flow and integration process, the data collected
might be locally stored or transmitted to a cloud server for further analysis. Edge computing
performs preliminary data processing effectively at the source. In general, data analysis on
the edge optimizes resources, improves transmission speed, and accelerates decision-making.
This approach further supports sophisticated data management with accurate analytics.

The flow of the IoT system, as illustrated in Figure 4, begins with the ICON, which
serves as the central controller for connections and interactions throughout the system.
From this node, it connects to specific modules for a reliable exchange of information. These
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modules, sensors, and appliance controllers communicate with each other using low-power
protocols designed for energy conservation and scalability. The proposed network has
a mesh topology, together with a star network topology. The mesh network allows for
improved redundancy because there are more paths that data can travel to ensure that
communication is good in case something like a device or a link goes down. The star
network simplifies routing by connecting directly with the ICON hub, thereby reducing
latency, especially for those devices that are further away. This will ensure robust and
efficient communication across the network.

Figure 4. Data flow and integration process of HEMS.

4.2. Middleware Framework

Middleware is an essential software layer that facilitates communication and service
integration between operating systems, applications, and DTs, while providing critical
services (i.e., communication, authentication, API management, processing). By managing
data flow and interaction in real-time, middleware enables seamless coordination between
physical devices and their virtual counterparts in DT frameworks. This capability is partic-
ularly critical in complex environments such as IoT systems, where reliable and scalable
distributed operations are required to maintain an accurate and responsive Digital Twin.
Middleware thus supports the development of efficient, scalable applications that continu-
ously synchronize real data with digital replicas, enabling real-time analysis, predictive
insights, and system optimization.

As depicted in Figure 5, the MQTT middleware framework in an IoT setup where
various constrained devices (e.g., temperature sensors) generate data for applications or
other devices is presenteds. MQTT clients act as publishers and subscribers, while managing
this data exchange. In distributed IoT systems, middleware manages protocols and data
flows and abstracts hardware complexities to provide a unified interface. MQTT, a widely
used middleware solution, uses a publish/subscribe model for efficient data distribution [33].
In this architecture, a sensor can publish data to an MQTT broker, which then distributes it
to subscribed clients on specific topics (e.g., topics A, B, or C). Compared to protocols like
HTTP or CoAP, MQTT’s lightweight design optimizes it for IoT applications by minimizing
bandwidth and power consumption, making it ideal for low-resource IoT devices [34].

MQTT stands out as an effective protocol for real-time, low-latency communication in
IoT systems, providing an efficient publish/subscribe mechanism tailored to devices with
limited power and bandwidth resources. Unlike HTTP and CoAP, MQTT’s lightweight
design is optimized for minimal resource consumption, making it particularly suitable for
IoT environments [35]. Middleware frameworks that integrate MQTT also facilitate cross-
platform communication, particularly in edge computing environments, by enabling local
data processing and reducing reliance on centralized networks. As shown, MQTT brokers
deployed on edge devices support continuous data exchange even in offline scenarios,
improving the reliability and responsiveness of local IoT systems and ensuring that critical
functions function regardless of external network conditions.
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Figure 5. Gateway Middleware Framework.

In Figure 6, an IoT application architecture in which middleware plays a critical role
in ensuring seamless data flow between physical devices, applications, and digital twins is
represented. In IoT systems integrated with DTs, middleware not only synchronizes real
data with virtual models, but also ensures that these digital replicas remain accurate and
up-to-date. This allows DTs to simulate, analyze, and predict behaviors in systems such as
home energy management, where real-time energy consumption data from sensors can
serve as the basis for optimization and control decisions. By connecting various IoT devices
and supporting edge processing, middleware improves both scalability and responsiveness,
enabling digital twins to operate effectively in real-time and even offline, making them
powerful tools for proactive management in complex environments such as Smart Homes
and Smart Cities.

Figure 6. Architecture of IoT-enabled middleware and applications.

5. Case Study: Practical Implementation of DT for HEMS

The case study and simulation presented in this section aim to validate the proposed
framework’s effectiveness in addressing the primary scientific objectives of this research.
Specifically, in this section, the proposed framework is validated by addressing the objec-
tives outlined in Section 3.3 and their corresponding use cases. The following objectives
are validated:

• Realism and Immersion (Obj. 1). Use Case: Navigation and Interaction in a Digital
Twin Environment. The simulation includes a visually and spatially accurate 3D
model, allowing users to navigate and interact with the Digital Twin environment,
improving realism and user experience.
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• Functional Segmentation and Data Integration (Obj. 2 & 5): Use Case: Zone-Specific
Energy Monitoring. The Digital Twin uses spatial segmentation of the 3D model to
integrate energy and environmental data for targeted monitoring, improving precision
and usability.

• Space-Specific Energy Tracking (Obj. 3):Use Case: Energy Analysis Across Zones. The
framework tracks patterns unique to specific spaces (e.g., living room vs. kitchen),
providing actionable insights tailored to individual zones.

• Environmental Monitoring and Thermal Comfort (Obj. 4): Use Case: Monitoring
and Adjusting Comfort Levels. By leveraging material and spatial segmentation,
the simulation monitors temperature and humidity across different zones, ensuring
thermal comfort and energy efficiency.

• Precision in Smart Home Automation (Obj. 6): Use Case: Automated Room-Specific
Adjustments. Automation features are tailored to the unique material and spatial
characteristics of each room, enabling precise control over smart home devices.

Overall, the case study and simulation demonstrate the successful validation of the
proposed DT framework in fulfilling the key scientific objectives of this research. These
include enhancing realism and user engagement through immersive 3D modeling, enabling
precise energy and environmental monitoring with spatial and functional segmentation,
and facilitating predictive analytics and automation for efficient and user-centric energy
management. These outcomes highlight the framework’s ability to bridge physical and digi-
tal domains, optimize energy consumption, and support sustainable practices in residential
energy systems, thereby addressing the scalability, usability, and efficiency challenges
outlined in this study.

5.1. Experiment Setup

The ICON was applied on a Raspberry Pi 5 (Rpi5) (Cambridge, UK) [36]. The Z-
Wave was selected as this protocol is reliable and low power; hence, it can offer flawless
communication between devices in a smart home. Sensors and devices were connected to a
central hub or gateway through the use of a Z-Wave dongle [37], which efficiently enabled
integration and management while keeping the communication stable and reliable. These
components were utilized to enable communication with various smart home sensors,
functioning as the main gateway that interfaced the Raspberry Pi with a network of devices
via the Z-Wave protocol. This controller translated between the Z-Wave communication
standard and the Raspberry Pi, facilitating interaction with compatible sensors, such as
the MCO Home (Tokyo, Japan) Z-Wave CO2 sensor [38] for air quality monitoring, the
Aeotec Heavy Duty Smart Switch Gen5 (Hamburg, Germany) [39] for managing high-
power appliances, the Three-phase Energy Meter [40] for real-time energy consumption
data, the Smart Plug Fibaro v2 (Wysogotowo, Poland) [41] for remote control of standard
appliances, the FIBARO Motion Sensor [42] for motion detection, and the ZXT-600 AC
Master (Remotec, Hong Kong, China) [43] for HVAC control. Table 3 below contains a list
of all the devices that were used.

Table 3. Devices and sensors in Z-Wave IoT system.

Device Name Brand Type / Description

Raspberry Pi 5 [36] Raspberry Lightweight desktop computing
Aeotec Z-Stick 7 [37] Aeotec Z-Wave controller for home automation
MCO Home - Z-Wave CO2 [38] MCO Home CO2 Sensor with Z-Wave compatibility
Aeotec Heavy Duty Smart Switch Gen5 [39] Aeotec High-power smart switch for appliances (Z-Wave)
3-Phase Smart Meter [40] Qubino Energy monitoring for three-phase systems
Smart Plug Fibaro Z-Wave Plus v2 [41] Fibaro Smart plug with energy monitoring (Z-Wave Plus)
FIBARO Motion Sensor Z-Wave Plus White [42] Fibaro Motion and temperature sensor (Z-Wave Plus)
ZXT-600 AC MASTER [43] Remotec Z-Wave-to-IR bridge for air conditioner control
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The visualization of IoT integration identifies the interconnected network of devices,
data flows, and systems that facilitate the exchange of data across the IoT platform. The
following graphic shows the main elements of the IoT architecture such as sensors, inter-
connectivity protocols, cloud infrastructure, and data analytics modules, which make it
possible to form real-time insights. Through visualization, these individual components
and their complex interactions become clear and enhance efficiency in the data-based
decision-making process.

Figure 7 illustrates the data on an IoT platform, giving real-time information, as well
as information about the pattern of events and in-depth information obtained from the
data. Therefore, these graphical items helpfully depict the entire project’s data flow.

Figure 7. Time series data from sensors.

5.2. Parametric Standardized 3D House Model

For the implementation of the HEMS, a residential apartment design was selected as
the basis for the DT model. The two-dimensional floor plan of this apartment includes
two bedrooms, an open-plan living and kitchen area, a bathroom, and a central hallway
connecting all spaces. The layout also features exterior balcony openings, allowing natural
light and ventilation (Figure 8). During the 3D modeling phase, key structural elements
were incorporated to closely reflect realistic building characteristics. Exterior walls were
constructed with a thickness of 30 cm, integrating both masonry and external thermal insu-
lation to enhance energy efficiency. Interior partition walls, primarily for space delineation,
were assigned a thickness of 15 cm. Following the structural setup, openings for external
windows, balcony doors, and the main entrance were positioned according to the floor
plan, facilitating natural light entry and cross-ventilation. Interior doors were strategically
placed to support room connectivity and privacy where needed.

Once the structural layout was completed, materials were applied to the model to
reflect a realistic home environment. Wood flooring was implemented throughout the
apartment, except in the bathroom, where tiles were used to resist moisture. Additionally,
walls in each space were painted with unique colors to visually differentiate rooms, which
supports usability and enhances the Digital Twin model’s data segmentation for energy
management. Bedrooms, the hallway, and the open-plan area all have distinct hues that
improve the user’s spatial awareness within the Digital Twin interface.
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Figure 8. 2D model for HEMS.

To improve immersion, essential furnishings were incorporated. Bedrooms were fur-
nished with beds, wardrobes, and curtains for shading. In the open-plan living and kitchen
area, a complete kitchen setup with a dining table and appliances was modeled, alongside
a living area with a sofa, coffee table, and TV. The bathroom was equipped with standard
sanitary fixtures, including a washbasin, toilet, and shower. Following the application of
all materials and furnishings, the model was prepared for transformation into a fully inter-
active Digital Twin. This model provides users with an immersive experience, mirroring
the apartment’s layout and aesthetics while allowing for advanced energy management,
environmental monitoring, and data-driven insights within the Digital Twin framework.
Figure 9 presents the parametric standardized 3D house mode.
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Figure 9. Parametric standardized 3D house model. 3D models illustrating the development stages
of a standardized parametric house model for DT integration in an HEMS. (a,c): Bare 3D structural
layouts emphasizing spatial relationships, furnished with essential furniture and appliances, shown
from different perspectives. (b,d): Models enriched with applied materials and distinct room-specific
color coding to enhance realism, spatial differentiation, and data segmentation, supporting immersive
visualization and energy management within the DT framework.

5.3. Digital Twin for HEMS

This section presents the implementation and functionality of the DT framework for
an HEMS, focusing on its real-world application. Initially, it discusses the integration of IoT
sensors within the DT environment, enabling real-time operational monitoring and fault
detection. Furthermore, the system’s capability to track and visualize indoor environmental
parameters is explored, such as temperature and humidity, providing users with action-
able insights. Finally, it highlights the use of thermal comfort metrics, including the PMV
index, to optimize indoor conditions while ensuring energy efficiency. These components
collectively validate the DT’s role in enhancing energy management, user engagement, and
system reliability.

5.3.1. Status of Sensors in DT

One critical aspect of monitoring indoor conditions in an HEMS is ensuring the oper-
ational status of all connected sensors. Often, alerts and logs generated by such systems
remain unnoticed or unread by end-users, leading to delayed responses to sensor mal-
functions. This can undermine the accuracy and reliability of the HEMS, as sensor data
are fundamental to maintaining optimal indoor conditions. In this paper, a user-friendly
framework is proposed to visualize sensor statuses in real-time within the DT environment.
The process begins with each sensor in the IoT network continuously collecting data and
transmitting it to the ICON. This transmission includes not only environmental measure-
ment but also the sensor’s operational status (i.e., active, non-active). Once the data are
received by the ICON, they are processed and stored in the database. The database serves
as a reliable repository, where the operational status of each sensor is recorded along with
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historical and real-time data. This ensures that the system has a robust record of sensor
activity, which can be referenced at any time.

Using the generated 3D house model as a basis, virtual sensors corresponding to real
ones can be overlaid on top of the model to match the real sensors’ positions (Figure 10). The
Unreal Engine 5 software used in the DT framework communicates with each sensor via API
calls [44]. These API interactions allow the Digital Twin to retrieve the real-time operational
status of the sensors and visually update their status within the 3D environment. The
retrieved data are visualized within the DT using an intuitive and user-friendly interface.
Each sensor is represented in the virtual model with a simple color-coded scheme to indicate
its status. Green indicates that the sensor is functioning correctly (i.e., active), while red
highlights sensors that are malfunctioning or offline (i.e., non-active). This straightforward
visualization enables users to quickly identify and address any issues.

Figure 10. DT visualization of HEMS with virtual sensors: green indicates functional sensors, and
red indicates malfunctions.

In addition to visualization, the system is also capable of generating alerts for malfunc-
tioning sensors. These alerts can be sent via email, SMS, or app notifications, ensuring that
users are promptly informed of any issues, reducing the likelihood of unnoticed malfunc-
tions. The alerts complement the visual status indicators, making the monitoring process
both proactive and accessible. This approach enhances the usability and reliability of the
HEMS. By providing immediate feedback through the DT, users can address sensor issues
in a timely manner. The integration of IoT devices, centralized data storage, API communi-
cation, and real-time visualization ensures that the Digital Twin remains an accurate and
interactive representation of the physical system. This proactive monitoring framework
improves system performance, enhances user engagement, and ensures optimal energy
management and environmental comfort.

5.3.2. Indoor Monitoring in DT

The DT environment is not only designed for monitoring the operational status of
sensors but also for taking actionable steps to interact with their physical counterparts. By
integrating real-time sensor data into the 3D house model, the DT enables a more comprehen-
sive understanding of indoor conditions such as temperature and humidity as depicted in
Figure 11. In the DT, the virtual sensors corresponding to real ones are placed in their physical
locations within the house layout. These sensors actively track key parameters (e.g., tempera-
ture, humidity). The DT retrieves real-time data from IoT sensors through API calls, ensuring
continuous synchronization with the physical environment. For instance, in Figure 11, a
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green indicator signifies that the corresponding sensor is functioning properly and provides
data on the current indoor conditions, such as 28 °C temperature and 75% humidity.

Figure 11. Indoor conditions monitoring in DT.

Beyond monitoring, the DT enables users to take direct actions based on the displayed
sensor data. For example, if indoor conditions deviate from optimal comfort levels, users
can trigger changes, such as adjusting the thermostat or activating ventilation systems,
directly through the DT interface. These actions are communicated back to the physical
devices via the IoT network, ensuring that the desired changes are implemented seamlessly.
This bidirectional communication and interaction make the DT a powerful tool for proactive
indoor environment management. By combining real-time monitoring, intuitive visualiza-
tion, and actionable controls, the DT enhances user engagement and ensures that indoor
conditions are maintained effectively. The figure illustrates this functionality, showing how
real-time data and user-triggered actions are visually and operationally integrated into
the system.

5.3.3. Thermal Comfort in the DT

The system is designed to seamlessly integrate with other services and applications
(Section 4.2), enabling enhanced functionalities such as estimating thermal comfort using
the PMV index [45]. The PMV index provides a scientifically validated measure of thermal
comfort; this index is estimated in real time based on environmental parameters such as
temperature, humidity, and personal factors, and the results are stored in the system’s
database. Figure 12 showcases the PMV data as calculated in real time. The thermal comfort
conditions are visualized for the three different rooms within the house. As seen, the PMV
values for the living room and bedrooms exhibit slight variations throughout the day,
reflecting different usage patterns and environmental influences. Despite these differences,
the overall fluctuations remain within a moderate range, indicating stable comfort levels
across the rooms.

To represent thermal comfort visually within the Digital Twin, a color map is imple-
mented based on the PMV scale as shown in Figure 13.

Each wall and room area is dynamically updated to reflect its thermal comfort level,
with colors ranging from blue (cooler) to green (neutral) and red (warmer). This visual-
ization allows users to intuitively assess the thermal conditions of their home and make
informed adjustments if necessary, such as modifying HVAC settings to maintain opti-
mal comfort Figure 14. The integration of real-time PMV estimation, visualization, and
actionable controls within the Digital Twin enhances the user experience and ensures
energy-efficient home management while maintaining thermal comfort.
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Figure 12. Thermal comfort conditions.

Figure 13. PMV scale color map.

Figure 14. Thermal comfort in DT.

The integration of real-time PMV estimation, visualization, and actionable controls
within the Digital Twin enhances the user experience and ensures energy-efficient home
management while maintaining thermal comfort. The results of the case study are illus-
trated on the GitHub repository [46].

5.4. Evaluation of Key Performance Metrics

The scientific aim of this research was validated through a set of carefully defined Key
Performance Indicators (KPIs) that measure the framework’s effectiveness in achieving
its objectives. These KPIs included real-time system performance, predictive accuracy,
scalability, usability, and energy efficiency. Specifically, the real-time system performance
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was assessed by measuring data synchronization latency, ensuring seamless integration of
IoT data into the Digital Twin environment. Scalability was demonstrated through system
response times under varying loads, maintaining robust performance even with increased
IoT device connections. Usability was estimated through user experience based on ease of
navigation and actionable insights.

In Table 4, the KPIs for evaluating the suggested framework for IoT-integrated HEMSs
are outlined. The table highlights essential aspects such as the setup time required for plug-
and-play IoT integration and DT framework installation, emphasizing non-intrusiveness
with minimal structural modifications. Real-time monitoring is measured by latency and
memory efficiency, ensuring the synchronization of IoT data within the DT environment.
Metrics for system performance include the ability to minimize storage requirements by
using reusable 3D models and maintaining RAM utilization during high-load operations.
Additionally, scalability and seamless integration are evaluated through metrics like data
reflection time, model build time, and resource efficiency, ensuring the system’s readiness
for real-world applications.

Table 4. Key performance metrics for evaluating IoT-integrated DT framework in HEMS.

Metric Proposed Framework Traditional IoT Systems ([13–15,47])

Setup Time
for IoT Deployment

Average
15 min per user

Average 30–45
min per user

Intrusiveness
in Installation

<5% requiring
structural modifications

20–30% requiring structural
modifications,
including rewiring and new fixtures

Time to Build
DT for All 50
Households

1 h total
(standardized model)

200–300 h
total (4–6 h per house for
customized modeling)

Overall Time
for 50 Users
(IoT + DT)

∼13.5 h ∼225–275 h

Setup Time
for IoT Deployment

Average
15 min per user

Average 30–45
min per user

Memory Usage
for DT

<500 MB
(single model for all users)

∼25 GB total
(500 MB per model
×50 models)

Scalability Highly scalable with
standardized DT models

Limited scalability
due to custom modeling
and extensive resource
requirements

Interoperability
Seamless integration with
diverse IoT protocols
(Zigbee, Wi-Fi, Z-Wave)

Often protocol-specific,
requiring additional
middleware for
compatibility

User Experience Intuitive 3D visualizations,
satisfaction score ≥ 4.7/5

Often lacking in real-time
visualization,
satisfaction score ∼3.5–4/5

This comprehensive approach ensures the proposed framework not only meets techni-
cal and operational standards but also aligns with user expectations for non-intrusiveness
and intuitive interaction. The integration of IoT and DT technologies, evaluated through
these performance indicators, demonstrates the potential to optimize energy efficiency,
enhance real-time monitoring, and provide actionable insights for sustainable energy
management in modern households. As such, the study contributes significantly to the
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advancement of scalable and user-friendly solutions for smart energy management, paving
the way for future research and practical implementations in the HEMS domain.

A comparative analysis with traditional HEMS systems highlights the transformative
potential of integrating Digital Twin technology. The comparison evaluates improvements
in real-time data synchronization, predictive capabilities, and overall system scalability,
demonstrating how the proposed framework addresses limitations in conventional systems.
This dual approach ensures a comprehensive assessment of the framework’s performance
and its practical implications for users and HEMS. As a result, the importance of the
standardized DT model, where users still enjoy the full benefits of a DT-enabled HEMS, in
a scenario involving 50 new users is considered. Comparing the suggested framework to
traditional methods of both IoT and DT integration, the results are summarized in Table 5.
The proposed framework demonstrates significant efficiency and scalability advantages. By
utilizing a single, standardized DT model and plug-and-play IoT devices, the framework
reduces the time and resource burdens typically associated with traditional systems.

Table 5. Comparison of proposed IoT-integrated DT framework and traditional IoT systems in
deployment time, intrusiveness, and scalability for 50 users.

Metric Proposed Framework Traditional IoT Systems
([13–15,17])

Setup Time
for IoT Deployment

Average 15
min per user

Average 30–45
min per user

Intrusiveness
in Installation

<5% requiring
structural modifications

20–30% requiring structural
modifications,
including rewiring
and new fixtures

Time to Build
DT for All 50
Households

1 h total
(standardized model)

200–300 h total
(4–6 h
per house for customized
modeling)

Overall
Time for 50
Users (IoT + DT)

∼13.5 h ∼225–275 h

Memory
Usage for
DT

<500 MB
(single model
for all users)

∼25 GB total
(500 MB per model ×
50 models)

Scalability
Highly scalable
with standardized
DT models

Limited scalability
due to custom modeling
and extensive resource
requirements

Interoperability
Seamless integration
with diverse IoT
protocols
(Zigbee, Wi-Fi, Z-Wave)

Often protocol-specific,
requiring additional
middleware for compatibility

User Experience Intuitive 3D visualizations,
satisfaction score 4.7/5

Often lacking in real-time
visualization,
satisfaction score ∼3.5–4/5

Cost
(Approximate)

EUR 180 hardware per
household plus negligible
setup costs;
EUR 1–2 for one model

EUR 300 hardware per
household plus
EUR 20–30 setup costs plus
EUR 40–50 per model
(EUR 2000–EUR 2500 )

Specifically, based on the results, a 94% reduction in overall deployment time was
achieved, minimizing the effort required to set up IoT systems and build the DT. Moreover,
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the use of a single standardized DT model resulted in a 98% reduction in memory usage
compared to the traditional approach, which involves creating individual DT models for
each household. With plug-and-play capabilities, the framework reduced IoT setup time
per user by 50%, providing a more streamlined and efficient process. The non-intrusive
nature of the proposed framework resulted in 75% fewer installations requiring structural
modifications, ensuring easier adoption and implementation in diverse home environments.
These results clearly demonstrate the superiority of the proposed framework in terms of
time, scalability, and user convenience while maintaining the high-quality experience and
energy management capabilities enabled by Digital Twin integration. In addition to these
operational efficiencies, the cost analysis highlights the economic benefits of the proposed
framework. In terms of cost for a 50-household deployment, the proposed framework is
significantly more economical, with an estimated total cost of approximately EUR 9050
(EUR 180 hardware per household + negligible setup costs and EUR 1–2 for the standard-
ized model). In contrast, traditional systems require an estimated EUR 15,000–EUR 20,000
(EUR 300–EUR 400 per household due to higher hardware, setup, and custom modeling ex-
penses). This translates to a cost reduction of 40–55% for the proposed framework, making
it a highly cost-effective solution for large-scale adoption in smart home technologies.

5.5. Limitations, Challenges, and Extensions

The proposed framework offers significant advancements in enhancing HEMSs through
the integration of DT technology. However, certain limitations and challenges remain to be
addressed. Scalability is a key consideration, as the framework has been evaluated within
specific IoT configurations, and its application across diverse and larger-scale residential
setups with more complex IoT ecosystems requires further validation. Additionally, while the
framework demonstrates robust predictive capabilities, ensuring consistent accuracy under
dynamic and unpredictable user behaviors in real-world environments presents an important
area for further exploration. User engagement and usability assessments have primarily been
based on predefined use cases. Broader validation across varied demographics and user
preferences is essential to refine the framework’s design and functionality. Another important
consideration is the adaptability and generalizability of the DTs. While effective for specific
scenarios, ensuring these models can accommodate diverse home layouts and IoT device
capabilities remains a challenge.

In terms of implementation, deploying the framework across heterogeneous residen-
tial infrastructures and ensuring seamless compatibility with varying IoT configurations
presents practical complexities. Additionally, the lack of standardized DT models tailored
for residential environments highlights the need for collaborative efforts to establish uni-
versal standards. Data privacy and security also emerge as critical concerns, requiring
robust measures to safeguard user information and foster trust. Lastly, integrating ad-
vanced technologies such as artificial intelligence, machine learning, and renewable energy
systems introduces new opportunities but also challenges in ensuring interoperability and
optimizing system performance. Despite these limitations, the framework establishes a
strong foundation for advancing residential energy management, providing clear pathways
for addressing these challenges and guiding future research.

Moreover, while the current study validates the proposed framework using a two-
bedroom residential layout, this choice was intentional to demonstrate the feasibility and
benefits of utilizing a predefined framework. Future work could explore adapting this
framework to larger and more complex environments, such as multi-storied buildings.
Future iterations should also consider incorporating predefined room types and leveraging
modular grid-based designs to dynamically construct more complex structures. This
enhancement would significantly improve the framework’s adaptability and scalability,
broadening its applicability while maintaining its inherent advantages.

The proposed framework was designed with scalability and flexibility in mind, al-
lowing for future extensions to address additional factors and scenarios. For instance, the
framework can be augmented to include mechanisms for handling network disconnections,
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sensor failures, and high data loads to improve robustness in real-world applications. More-
over, while the current implementation focuses on thermal comfort using PMV indices,
it can be extended to incorporate additional environmental factors such as noise levels
and air quality. These enhancements would provide a more holistic approach to home
energy management, ensuring a comprehensive understanding of occupant comfort and
environmental sustainability. By building on the existing modular and adaptable design,
such extensions can be seamlessly integrated without compromising the framework’s
simplicity and usability.

The most critical achievement of the proposed framework is the seamless integration
of IoT devices with the Digital Twin environment, which forms the foundation for various
advanced visualizations. By leveraging real-time data collected from IoT sensors, the
framework enables a wide range of interactive and informative visual representations,
including energy consumption patterns, thermal comfort levels, and occupancy trends.
These visualizations can be further tailored to incorporate other environmental factors,
such as noise levels, air quality, or even predictive analytics for device performance and
energy optimization. The flexibility and modularity of this IoT integration ensure that
users can gain actionable insights through intuitive dashboards or immersive 3D interfaces,
enhancing their understanding and control over home energy management systems.

6. Conclusions

This study presents an innovative framework for integrating IoT technologies with
Digital Twins in Home Energy Management Systems. By leveraging a standardized para-
metric 3D modeling approach, the proposed solution addresses key challenges such as
scalability, deployment complexity, and resource optimization. The framework demon-
strates significant advancements over traditional methods, achieving a 94% reduction in
deployment time and a 98% decrease in memory usage, while ensuring non-intrusive
installation and seamless integration of diverse IoT protocols.

The integration of real-time monitoring, predictive analytics, and user-friendly visu-
alizations empowers households to optimize energy consumption and maintain thermal
comfort effectively. Additionally, the incorporation of metrics like the PMV index enhances
the precision of environmental adjustments, ensuring a balance between energy efficiency
and user comfort. The scalability and interoperability of the framework make it a robust
solution for large-scale deployments, contributing to the development of sustainable and
intelligent residential environments.

Future research will focus on creating a user-friendly system that enables residents
to construct their Digital Twin homes by selecting and customizing pre-designed rooms.
Users will be able to adjust parameters such as dimensions, layouts, and furnishings to
build a virtual representation closely resembling their actual house. This approach will
combine the efficiency of standardized models with the flexibility of user customization,
streamlining the adoption process and providing precise energy management tailored to
individual household configurations.
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