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Abstract
We use two different methods, Monte Carlo sampling and variational infer-
ence (VI), to perform a Bayesian calibration of the effective-range parameters
in 3He–4He elastic scattering. The parameters are calibrated to data from a
recent set of 3He–4He elastic scattering differential cross section measure-
ments. Analysis of these data for Elab� 4.3 MeV yields a unimodal posterior
for which both methods obtain the same structure. However, the effective-
range expansion amplitude does not account for the 7/2− state of 7Be so, even
after calibration, the description of data at the upper end of this energy range is
poor. The data up to Elab = 2.6MeV can be well described, but calibration to
this lower-energy subset of the data yields a bimodal posterior. After adapting
VI to treat such a multi-modal posterior we find good agreement between the
VI results and those obtained with parallel-tempered Monte Carlo sampling.
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1. Introduction

Two-body scattering calculations are ubiquitous in nuclear physics. Very often their output is
compared with experimental data, and the parameters of the two-body interaction inferred, so
the scattering can be extended to a different energy regime or embedded in another context:
three-body scattering, fusion reactions, etc.

χ2 minimization has been the workhorse for this inference for many years. However, a
(naive) χ2 metric is only valid if the uncertainties on the data points are uncorrelated, and
theoretical uncertainties do not contribute significantly to the problem's error budget. Strictly
speaking, χ2 minimization also fails to provide information about parameter uncertainties,
although the shape of the χ2 surface around the minimum can be examined to mitigate this
issue. Bayesian methods have recently been used to address all these issues with scattering-
parameter inference based on χ2-minimization [1–4]. These methods have been used in
different scattering formalisms: optical potentials, nucleon–nucleon scattering in Chiral
Effective Field Theory, and R-matrix.

The multi-dimensional posterior probability density function (pdf) of the scattering para-
meters is typically examined through Markov chain Monte Carlo (MCMC) sampling.
However, this can be computationally demanding. The computational requirements can be
significantly reduced by the use of scattering-calculation emulators of either the black-box or
intrusive variety [5–8]. In this paper we explore a complementary pathway, based on var-
iational inference (VI) [9–11].

In VI it is assumed that the posterior pdf takes a particular functional form, i.e. is part of a
‘family’ of posteriors. The parameters of the pdf are computed by minimizing an objective
function that is a surrogate for the distance of the variational form from the true posterior. VI
is often conducted with a mean-field family, which assumes an uncorrelated product of
distributions describes the model parameters’ pdfs. A mean-field family of Gaussians was
recently used to infer the pdfs of liquid-drop-model parameters from nuclear-mass data [12].
In this, or indeed any study that uses the mean-field Gaussian family, the parameters that
specify the family are the means and variances of the uncorrelated Gaussians. But correlations
between model parameters are also important, so here we extend the mean-field family to a
family that parameterizes a general covariance matrix between the parameters of our scat-
tering problem. The variational calculation now seeks to minimize the objective function in a
2d + d(d − 1)/2-dimensional space, but, as we shall see, VI is still markedly faster than
MCMC sampling.

As a test case for the efficacy of VI we selected a halo effective field theory (EFT) fit to
3He–4He scattering data. The scattering amplitude in this case is straightforwardly related to
the estimated parameters, since they are just the s- and p-wave effective-range-theory para-
meters (ERPs). But it is critical that we can extract them reliably from data on elastic
scattering, as they are key inputs to calculations of the capture reaction 3He(4He,γ)7Be.

This reaction produces 7Be in the Sun, after which it undergoes either a proton or electron
capture reaction, both of which yield solar neutrinos at the upper end of the solar neutrino
energy distribution [13]. Understanding the low energy elastic scattering of 3He and 4He thus
has an important impact on the understanding of the solar pp-II and pp-III chains.

Solar fusion occurs in energy regimes where it is appropriate to use nuclei as the degrees of
freedom. This motivates the use of a systematic EFT based on 3He and 4He degrees of
freedom. In [14] halo EFT was used to extract low-energy ERPs from 3He–4He scattering
data [14]. These low energy parameters then have implications for solar fusion and neutrino
production rates. Crucially, EFT comes with its own uncertainty quantification, since EFT
calculations are carried out up to a finite order in the EFT expansion, and the error associated
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with omitted terms can be estimated. The EFT parameters may thus be extracted in a fit that
includes the impact of model uncertainty on the inference.

In this paper we benchmark results using the same EFT, data, and MCMC methodology as
employed in [14] against VI results. Section 2 explains what VI is and how it works.
Section 3 introduces the data of [15] that we use for our fits, and also reviews the aspects of
halo EFT that are needed to construct the likelihoods and priors we employ. Those likelihoods
and priors, suitably combined, produce the Bayesian posterior of the EFT parameters, as we
explain in section 4. In section 5.1 we perform MCMC sampling for an EFT-parameter
posterior conditioned on the data of [15] over a majority of the range of that experiment
(0.7� Elab� 4.3 MeV). However, the EFT, if not augmented by at least one resonance state,
cannot describe the upper half of this energy range. We therefore restrict our fit to
Elab� 2.6 MeV, and discover that the posterior is multi-modal. This necessitates the use of
parallel tempering in our MCMC. Our VI approach also requires an extension in order to
produce multi-modal posteriors. We describe these extensions of our methods and display and
compare the posteriors they produce in section 5.2. We then provide a summary of our results
in section 6. An appendix explains other, less effective, ways to deal with multi-modality in
this posterior.

2. Variational inference

VI is an optimization-based approach to approximating posterior distributions. It is thus an
alternative to the sampling-based MCMC approaches. The main idea is to approximate the
target posterior distribution with a member of a simpler, more tractable family of
distributions.

The first step is to posit a family of distributions indexed by variational parameters λ.
The family should be flexible enough to capture the shape (and potential correlations) of the
target posterior distribution, but simple enough that the optimization process is efficient [10].

The family member that best approximates the target distribution is then determined using
an optimization process. The optimal member q* of  is determined by minimizing the
Kullback–Leibler (KL) divergence as a function of λ. The KL divergence is defined as

( ( ∣ )∣∣ ( ∣ )) [ ( ∣ )] [ ( )] ( ) ( )q l q q l q= - +q p D q p D p DKL ln ln , ln , 1q q 

where p(θ|D) is the target posterior distribution of unknown parameters θ given the data D
and q denotes an expected value with respect to the density q.

In practice, the marginal data likelihood p(D), the model evidence, is not a computationally
tractable quantity. Instead, one maximizes an equivalent objective function called the evi-
dence lower bound (ELBO):

( ) [ ( )] [ ( ∣ )] ( )l q q l= -p D qELBO ln , ln . 2q q 

Since equation (2) is equivalent to equation (1) up to an overall minus sign and a term that
does not depend on λ, the optimal distribution q* that maximizes the ELBO minimizes the
KL divergence [10]. In this way, we restate the posterior approximation problem as an
optimization problem. In principle, ELBO can be minimized using any optimization
approach, however, it is common practice to use stochastic gradient ascent (SGA) algorithm
for its speed and scalability. SGA updates the variational parameter λ at the tth step according
to

ˆ ( ) ( )l l lr¬ ++  , 3t t t t1
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where ˆ ( )l is an unbiased estimate of the ELBO gradient. Such an estimate can be readily
obtained using autodifferentiation as long as both the joint distribution p(θ, D) and q(θ|λ) are
differentiable in θ. For ˆ ( )l , a typical practice is to construct a simple Monte Carlo estimator
using the samples from a variational distribution [9].

2.1. Choice of variational family

The most popular variational family, the mean-field variational family, assumes that the
unknown model parameters θ = (θ1, K, θm) are mutually independent. A general member of
this family thus takes the form

( ∣ ) ( ∣ ) ( )q l lq=
=

q q . 4
j

m

j j j
1

The functional form of each individual qj is up to the practitioner, however, the form of qj(θj)
will affect the optimization efficiency and the resulting fidelity of the posterior approximation.
Typical choices are the independent Gaussian variational family for real-valued parameters
and the log-normal or Gamma variational family for non-negative parameters. With the right
choice of particular qj’s, the posterior's means should agree well with the true posterior.
However, the major flaw of the mean-field family is that it assumes a decoupled covariance
structure, i.e. zero correlation between the parameters being inferred. The resulting variational
approximation underestimates the uncertainties in the case of correlated parameters [10].

A simple remedy to this flaw of a mean-field family is to posit a full rank Gaussian
variational family:

( ∣ ) ( ∣ ) ( )q l q m S= q , , 5

where λ is now(μ, Σ), i.e. it includes the mean vector and a positive definite covariance
matrix.

Variational families are an active area of research and many other flexible variational
families exist. We refer the reader to the work of [16] for a detailed discussion on variational
families and their implementation.

2.2. Implementation details

To guarantee the positive-definiteness of the covariance matrixΣ for the Gaussian variational
family (5), we parameterize the covariance matrix in terms of its Cholesky decomposition as a
product of a lower triangular matrix with positive diagonal entries L and its transpose.
Additionally, all the strictly positive variational parameters λ were transformed as

( ) ( )l = -lelog 1 6

to avoid constrained optimization.
When it comes to the practicalities of ELBO maximization via SGA (3), choosing an

optimal learning rate ρt can be challenging. Ideally, the rate should be low when the Monte
Carlo estimates of the ELBO gradient are unstable (high variance) and high when the esti-
mates are stable (low variance). The elements of the variational parameter λ can also vary
significantly in scale, requiring the learning rate to accommodate these varying, often small,
scales. The rise of stochastic optimization in machine learning has spurred the creation of
numerous algorithms that provide element-wise adaptive learning rates. We use the Adaptive
Moment Estimation (Adam) algorithm [17], which is known for its popularity and ease of
implementation.
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Table 1. Number of data points for each beam energy N E
data (first row) and the standard

deviations s fi for each of the Gaussian priors of the normalization coefficients (second
row). The energies listed here are the energies in the lab frame at interaction region 1.
See equation (21) for the full prior.

Elab (MeV) 0.706 0.868 1.292 1.759 2.137 2.624 2.624 3.598 4.342 5.484

NE
data 17 29 45 46 52 52 52 52 53 53

s fi 0.064 0.076 0.098 0.057 0.045 0.062 0.041 0.077 0.063 0.089

Figure 1. Differential cross section data of Paneru et al relative to the Rutherford cross
section versus detector angle. The panels here correspond to the initial beam energies
and are labeled as such. The cross sections were measured at three different interaction
regions in the gas target [15]. The colors of the data points correspond to the interaction
region: blue is from region 1, orange is from region 2, and green is from region 3. Since
there are three different interaction regions, there are three slightly different interaction
energies. Table 4.1 in [18] lists the interaction energies. When constructing the
likelihood, we use the corresponding interaction energy for each data point. The
number of data points for each beam energy is N E

data , which corresponds to the number
of data points in each panel above.
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3. Data and scattering model

3.1. Experimental data

The data used in this analysis comes from the elastic 3He–4He scattering experiment per-
formed at TRIUMF by Paneru et al [15]. This experiment impinged a 3He beam, with an
energy ranging from 0.7 to 5.5 MeV, on a 4He gas target contained in the SONIK target cell.
The detector array covered an angular range of 30o < θCM < 139o. Table 1 lists the number of
different angles at which data was obtained for each of the ten beam energies chosen (two
runs used Elab = 2.624MeV). It also specifies the (fractional) common-mode error (i.e. the
normalization uncertainty) in the cross section for each energy. The data values and their
point-to-point uncertainties are represented in figure 1. Full details can be found in [15].

The quantity Ndata represents the total number of data included in the analysis. Table 1
contains the number of measurements at each energy. We perform analysis on two different
subsets of the data; 0.706–2.624MeV and 0.706–4.342MeV. The values of Ndata are 293 and
398 respectively. NE represents the number of energy bins (panels shown in figure 1) we are
including in the analysis.

3.2. Parameterization of scattering amplitude

Halo EFT for this problem reproduces the modified effective-range expansion [14, 19, 20].
The parameters we seek to estimate are thus the ERPs for low-energy 3He–4He elastic
scattering.

The differential cross section is given by

∣ ∣ ∣ ∣ ( )s
W

= +f f
d

d
. 7c i

2 2

The non-spin-flip amplitude fc includes a ‘Rutherford amplitude’ that represents pure-
Coulomb scattering of the two nuclei. The rest of fc, as well as the spin-flip amplitude fi, can
be expanded as a sum of partial waves [21–23]. We thus have:

⎡
⎣⎢

⎤
⎦⎥

( )( ) ( ( ( ))) ( ) ( )/ / åh
q h q a q

d d
= - +

+
-

+
-=

¥

+ - 8f
k

i
k

i P
i i2

csc 2 exp log csc 2
1

exp 2 cos
ℓ 1

cot

ℓ

cotc
2 2

ℓ 0
ℓ ℓ

ℓ ℓ

⎡
⎣⎢

⎤
⎦⎥

( ) ( ) ( )å a q
q
q d d

=
-

-
-=

¥

- +f
k

i
dP

d i i

1
exp 2 sin

cos

cos

1

cot

1

cot
9i

ℓ 0
ℓ

ℓ

ℓ ℓ

Here αℓ is the difference of Coulomb phase shifts, αℓ ≡ σl − σ0, θ is the scattering angle in
the center of mass frame, dℓ the ℓth phase shift of the ± scattering channel, and Pℓ is the ℓth
Legendre polynomial. In this analysis, we only consider s- and p-wave amplitudes and so
truncate the sums in equations (8) and (9) at ℓ = 1.

Hamilton, Overbö and Tromberg [24] showed that the effective range function is real,
analytic, and holomorphic in the physical energy sheet, cut along the negative real axis. It is
also regular at the origin (k= 0) so there is a well defined Taylor expansion at the corresp-
onding energy [25]. They also showed how to modify this expansion to account for long
ranged interactions such as the Coulomb interaction. We make use of the modified effective
range expansion (ERE) which lets us calculate the phase shifts via:
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⎡
⎣⎢

⎤
⎦⎥

( )
( ) ( )

( )| ( )|
( )

| ( )|
( )d

h h
h
h

- =
G +

+ G +
-

G +ph
+ 

-



k i
k

e

k K k

i

k H

i
cot

2 ℓ 1

ℓ ℓ 1
10c c2ℓ 1

ℓ

2 2ℓ
ℓ

2 2 2

2ℓ

2

with

( ) ( ) ( ) ( )h h
h

h= Y + -H
i

i
1

2
ln i , 11

where Ψ is the digamma function, h = k

k
c is the Sommerfeld parameter, and kc = z1z2αμ with

charge numbers z1 and z2, fine-structure constant α, and reduced mass μ.
Our model parameters come from the effective range function ( )K kℓ given as

⎡
⎣⎢

⎤
⎦⎥

( ) ( )= - + + +
+ 

  K
k a

r k P k k
1

2

1 1

2

1

4
. 12

c
ℓ 2ℓ 1

ℓ
ℓ

2
ℓ

4 6

The coefficients of the powers of k2 are the effective range parameters (ERPs). The ERPs of interest
for this analysis are

a

1

0
, r0, a

1

1

, r1 , and P1 . We define the parameter ºA
a0
1

0
as the inverse

scattering length. The ERE amplitude must have a pole at the momenta corresponding to the bound
state energies / m=B k 2bs

2 , and so the right-hand side of equation (10) is zero when analytically
continued to k = ikbs. There are two shallow p-wave bound states in the

-3

2
and the

-1

2
channels

(1.5866 and 0.43MeV respectively) [26]. This constraint reduces the number of sampling
parameters, since it relates

a

1

1

to the bound state momenta kbs, and the other ERPs of that channel

[14]. Similarly, we can relate r1 and P1 to the asymptotic normalization coefficients ( )C1
2 through

the derivative evaluated at the bound state energy [14].
Halo EFT is a systematic expansion of the scattering amplitude in powers of

{ }/º LQ p qmax , B. In Halo EFT the different contributions of the effective-range theory
amplitude are organized in a hierarchy of importance. The convergence pattern of the EFT is
consistent with the ordering presented in [14]. In what follows we work with the EFT
amplitude at next-to-next-to-leading order, NNLO, O(Q2). Theory uncertainties are thus of a
relative size ∼Q3. Their impact on the posterior pdf can be included through a theory
covariance matrix, as will be described further in section 4.

One effect that causes the breakdown of the EFT is the existence of an f-wave resonance at
5.22 MeV in the lab frame [26]. We have not included the physics of this resonance in our
analysis. For this reason, we do not expect the EFT to make accurate predictions for energies
approaching 5.22MeV.

We also model the portion of the systematic uncertainty of the experimental data that is
associated with uncertainties in the beam current and target density. These uncertainties are com-
pletely correlated across all the data taken at a particular energy; they are a ‘common-mode error’.
We account for them by introducing additional parameters fi that multiply the theoretical prediction
at energy Ei [4, 27]. The fi’s are assigned (Gaussian) priors based on the expected size of this
common-mode error, as reported in [15], and repeated in the third row of table 1.

4. Bayesian PDFs

We adopt a shorthand notation to represent the sampled parameters. The vector θ = (a, f)
where a is a 1 × 6 dimensional vector of ERPs and f is a 1 × NE dimensional vector of
normalization coefficients. NE is the number of energy bins considered in the analysis and
N E

data is the number of data points in the energy bin E. The joint posterior distribution we wish
to obtain is
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( ∣ ) ( ∣ ) ( ∣ )
( ∣ )

( ∣ ) ( ∣ ) ( )q
q q

q q= µp D I
p D I p I

p D I
p D I p I,

,
, . 13

Here p(D|θ, I) is the likelihood function and p(θ|I) is the prior on the parameters θ. p(D|I) is
the model evidence, also sometimes called the ‘marginal likelihood.’ In practice, this piece of
the right-hand side of Bayes’ theorem functions as a normalization, and does not affect the
shape of the pdf for the parameters θ.

We define the likelihood function via

⎜ ⎟
⎛
⎝

⎞
⎠

( ∣ )
( )

( )q
p

c
=

S
-p D I,

1

2 det
exp

2
14

N

2

data

where

( ( ))[ ] ( ( )) ( )å åc q q= - S -
= =

-a ay f y E y f y E, , , , 15
j k

N

l m

N

j l j j l jl km k m k k m
2

, 1 , 1
,

1
, ,

E
E

data

|
We consider two different choices for the covariance matrix Σ.

• A version Σ ≡ Σexp that accounts only for the point-to-point experimental uncertainties:

( )s dS = . 16jl km jl jl km,
exp 2

,

• A covariance matrix which includes an additional term, that accounts for theory
uncertainties. Reference [2] showed that the next-order (in this case O(Q3)) pieces of the
EFT amplitude can be marginalized over. In the simplest case this yields a theory
covariance matrix of the form:

( ) ( ) ¯ ( )S = y y c Q Q , 17jl km jl km jl km,
th

ref ref
2 3 3

with Q the EFT expansion parameter and c̄ the rms value of the EFT expansion
coefficients. In what follows we take the hyperparameters Q and c̄2 that appear in Σth as
fixed, basing the adopted values, ΛB = 1.014 fm−1 and ¯ =c 0.7, on the analysis of the
convergence pattern of the EFT carried out in [14]. Once theory uncertainties are included
the full covariance matrix is Σ ≡ Σth + Σexp.

Turning our attention now to the prior p(θ|I), this pdf has two distinct pieces. The first
pertains to the effective-range theory parameters, and the second is related to the normal-
ization parameters. We take these to be independent prior pdfs:

( ∣ ) ( ∣ ) ( ∣ ) ( )q = a fp I p I p I . 18

The priors for the ERPs are taken to be truncated normal distributions

( ∣ ) ( ) ( ) ( ) m s= ap I T a b, , , 19
i

d

i i i i
2

with

{( ) [ ] ( )=T a b a b, 1 ,
0 otherwise.

20

These truncated normal distributions encode the notion that the ERPs r0 and
P1 are natural

when measured in units of the breakdown scale ΛB. The effective-range-theory parameters
corresponding to terms of positive mass dimension in the amplitude are not natural, and have
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enhancements or suppressions, as detailed in [14]. This too is captured by the priors. The
hyperparameters of the prior pdf for the effective-range-theory parameters are given in
table 2.

Meanwhile, the prior for the normalization parameters fi are taken to be

( ∣ ) ( ) ( ) ( ) s= fp I T1, 0, 2 . 21
i

g

f
2

i

Here the s f
2

i
s are the variances of associated with the normalization uncertainty at each

energy that was reported in [15]. They are listed in table 1.

5. Results

In this section we compute four different posterior pdfs for the ERPs and the normalization
parameters, using both VI and various MCMC techniques. Once analysis is completed, a
comparison of posterior distributions will indicate the level of agreement between the two
methods.

The choice of MCMC methods has two motivations: the high dimensionality of the
problem, and the desire to obtain a full pdf for the model parameters. Once the log-posterior
function (or log-prior and log-likelihood functions separately in the case of ptemcee) is
coded, MCMC is easily implemented using the prebuilt python packages emcee [28] and
ptemcee [29].

We performed four versions of the analysis. The first uses only the experimental covar-
iance matrix and analyzes the Paneru et al [15] data up to Elab = 4.342 MeV. It is described in
section 5.1. We also present a version of this analysis where we evaluated the χ2 (15), and
hence the likelihood, using the full covariance matrix Σexp + Σth. In section 5.2 we analyze
data over a smaller energy range, where the EFT we used to obtain the scattering amplitude is
reliable. This yields a bimodal posterior pdf for the ERPs and so necessitates some mod-
ification of our approach to VI of the posterior. In parallel to the results of section 5.1,
section 5.2 reports both an analysis of the low-energy portion of the data of [15] that uses just
the experimental covariance matrix as well as one where we combine the experimental
uncertainties with the theoretical ones by taking Σ ≡ Σexp + Σth. While we performed four
different versions of this analysis, none of these versions are the same as the EFT analysis
performed in [15]. That analysis includes a phenomenological treatment of the

-7

2
resonance,

while our analyses do not.

Table 2. Truncation bounds, means, and standard deviations of the Gaussian priors for
each of the effective range parameters. Equation (19) shows the full prior on the
effective range parameters.

Parameter
a

1

0
(fm−1) r0 (fm)

( )+C1
2

(fm−1) +P1 (fm)
( )-C1

2

(fm−1) -P1 (fm)

a −0.02 −3.0 5.0 −6.0 5.0 −6.0
b 0.06 3.0 25.0 6.0 25.0 6.0
μ 0.025 0.8 13.84 0.0 12.59 0.0
σ 0.015 0.4 1.63 1.6 1.85 1.6
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5.1. Unimodal results using higher-energy data

In this section we present results from analysis of the SONIK dataset with energies ranging
from 0.7 to 4.3 MeV. At first we do not consider the theory uncertainties.

Table 3 shows the χ2/dof of the model at the maximum a posteriori (MAP) value solution
for our parameters from [14], compared to the scattering data. For this we have used χ2 with
both Σ ≡ Σexp and Σ ≡ Σexp + Σth. As expected, given that the EFT does not include the
resonance at Elab = 5.22MeV, the χ2 becomes large as Elab approaches that energy.

The physics model is therefore very unlikely to be correct throughout the entire energy
regime. However, the problem of posterior computation still has a unique answer. We can use
that answer to assess the usefulness of VI for posterior computation in a situation where we
have a sizable amount of data. We emphasize, though, that the posteriors of the estimated
parameters discussed in this section do not reflect a realistic result for the physics model under
consideration. They are presented as the outcome of a technical exercise in comparing
MCMC parameter estimation to VI parameter estimation.

We first use the Python package emcee to generate a Markov chain of samples that
represents the posterior distribution of the ERPs and the normalization parameters. Our
production run had 50 000 burn-in steps, and ran for a total of 300 000 sample steps, with 30
walkers. To start the sampling, we draw random starting positions from the priors for each
walker. The sampler evolves through the burn-in steps to reach equilibrium. Upon completing
burn-in, the sampler then begins the sample acquisition process by storing chains of samples
for each walker. The sampling method was emcee’s default stretch move and the auto-
correlation time was 287. The sampling was done with a standard computer and took
approximately 4 h to complete the burn-in and sampling.

To generate the VI results we utilized the Adam optimizer from the pytorch library [30].
The learning rate was set to 5 × 10−3, and the number of optimization steps was 30 000. This
method took less than 10 min to complete. Once we obtain the optimized variational para-
meters, we then draw samples from the variational family.

The joint posterior density obtained using these two methods is shown in figure 2. It is
unimodal. The MCMC result is shown in blue and the VI result in orange. The two methods
produce remarkably consistent results: table 4 compares the percent differences of the
medians and standard deviations between the VI and the MCMC approach. The two-
dimensional distributions, as quantified by the correlation coefficients, also agree very well.

Table 3. The χ2 per degree of freedom of the model at the MAP value solution for our
parameters from [14]. The reported values were computed using equation (15) with the
appropriate covariance matrix.

Emax (MeV) χ2/dof χ2/dof
(Σ ≡ Σexp) (Σ ≡ Σexp + Σth)

0.706 1.2320 1.1925
0.868 1.2306 1.1863
1.292 1.7751 1.6773
1.759 1.9463 1.8748
2.137 2.1392 2.1234
2.624 2.3837 2.3410
3.598 4.8966 3.4682
4.342 19.9067 10.4666
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Figure 2. Joint posterior density of ERPs from analyzing Elab = 0.676 MeV to
4.342 MeV data without including the theory covariance. The blue distribution was
generated by sampling with emcee, and the orange is the distribution from VI. All
values are reported in their appropriate units as defined in table 2.

Table 4. The percent differences ( ∣ ∣ ¯/º - *x x x 100%1 2 ) of the 68% equal tail credible
intervals obtained for the ERPs using VI and ptemcee without including the theory
covariance in the likelihood.

Parameter 16% quantile 50% quantile 84% quantile

A0 0.35% 0.34% 0.36%
r0 0.14% 0.02% 0.10%
( )+C1

2 0.02% 0.49% 1.07%
+P1 0.12% 0.45% 0.76%

( )-C1
2 0.13% 0.34% 0.99%

-P1 0.08% 0.97% 1.65%
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Perhaps this is not surprising, given that MCMC reveals this posterior to be well approxi-
mated by a multi-variate Gaussian, and this is the family we have used for the VI. We remark
in passing that the agreement is, predictably, not nearly as good if the ‘mean-field’ (i.e.
uncorrelated) VI family is employed here.

The second calculation using the data set up to Elab = 4.3 MeV included the theory
covariance. It had the same number of burn-in, sample steps, and walkers. To include the
theory covariance we use Σ ≡ Σth + Σexp in equation (15). The run with the theory cov-
ariance had an autocorrelation time of 383. This run also completed in approximately 4 h.

This joint posterior density is shown in figure 3, with the same color scheme as in figure 2.
Once again VI and MCMC agree very well. Table 5 compares the percent differences of the
quantiles from the MCMC and VI analyses that include the theory covariance in the

Figure 3. Joint posterior density of ERPs from analyzing Elab = 0.676 MeV to
4.342 MeV data with the theory covariance. The blue distribution was generated by
sampling with emcee, and the orange is the distribution from VI.
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likelihood. This time the posteriors for the ERPs are broader, and the correlations are
somewhat different to that found in the previous analysis. But the conclusion is that VI has no
problem with the more complex correlation structure of the data that results when theory
uncertainties are considered.

5.2. Bimodal results using only lower-energy data

Preliminary analysis of cross section data from Elab = 0.7 to 2.6 MeV using emcee produces
bimodal distributions, with the bimodality being driven by two possible solutions for the pair
of shape parameters { }+ -P P,1 1 . This bimodality was also observed in the analysis of Poudel
and Phillips [14]. It appears to result from the inability of lower-energy cross section data to
distinguish the roles of the two p-wave channels that have different total angular momentum.
This bimodality at best produces a very long autocorrelation time in emcee, and at worst
results in the MCMC sampling being poorly converged and unreliable.

In order to handle the bimodal distribution we modified our sampling approach and used
the ptemcee sampler instead [29]. ptemcee uses the parallel tempering Monte Carlo
technique which is better equipped to handle multimodal distributions [31]. Sample chains
generated with ptemcee produced much lower autocorrelation times than emcee in this
application.

We mirror the analyses done in section 5.1 and do two runs, one with and one without the
theory covariance. In the case where the likelihood did not include the theory covariance
matrix, the autocorrelation time decreased from 287 to 2 while when we use the likelihood
including theory covariance it decreased from 383 to 2. Because ptemcee produces chains
with much lower autocorrelation times, we do not need as many steps as we employed with
emcee.

For both ptemcee analyses we used 10 000 burn-in steps, and 50 000 sample steps and
sampled across 8 different inverse temperatures with values of {1, 0.917, 0.841,
0.771, 0.707, 0.5, 0.353, 0.25}. Figures 4 and 5 show the joint posterior densities without and
with the theory covariance respectively.

As alluded to earlier in this section, the VI approach requires a modification to allow for
multimodal posteriors as the full rank Gaussian variational family (5) is not flexible enough to
describe multimodality directly. The VI-based multimodal posterior distributions in figures 4
and 5 were obtained using the Black Box Variational Bayesian Model Averaging
(BBVBMA) algorithm [32]. The BBVBMA posterior variational distribution is a mixture
distribution, where each mixture component is a full rank Gaussian produced by the standard
VI approach (as described in section 2) with random initialization. Each mixture weight is

Table 5. Percent differences of the 68% equal tail credible intervals obtained for the
ERPs using ptemcee and VI when the theory covariance is included in the likelihood.

Parameter 16% quantile 50% quantile 84% quantile

A0 2.42% 2.77% 3.09%
r0 0.06% 0.23% 0.43%
( )+C1

2 0.93% 1.04% 1.23%
+P1 0.03% 0.69% 1.17%

( )-C1
2 1.09% 0.64% 0.69%

-P1 3.98% 0.31% 1.38%
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consequently proportional to the corresponding ELBO value. The resulting multimodal
approximations are based on a mixture of 1000 VI approximations computed independently
and in parallel on a computer cluster. We refer the reader to [32] for full details of BBVBMA.

The posteriors presented here are bimodal due to the two possible solutions for the pair of
shape parameters { }+ -P P,1 1 . These two parameters are anticorrelated as shown in the bottom
row, fourth column of both figures 4 and 5. The results generated by ptemcee tend to be
broader than those from VI. The distribution obtained through ptemcee provides samples
bridging between the two modes, while VI does not.

Tables 6 and 7 show the percent differences between the ERP quantiles obtained with
ptemcee and VI without and with the theory covariance respectively. There are a few large
discrepancies between the quantiles: the differences in inference in the two approaches are

Figure 4. Joint posterior density of ERPs from analyzing the data of [15] from
Elab = 0.676 MeV to 2.624 MeV without the theory covariance using both ptemcee
and VI. The blue distribution was generated by sampling with ptemcee, and the
orange is the distribution from VI.

J. Phys. G: Nucl. Part. Phys. 52 (2025) 015109 A Burnelis et al

14



Figure 5. Joint posterior density of ERPs from analyzing the data of [15] from
Elab = 0.676 MeV to 2.624 MeV with the theory covariance included. The blue
distribution was generated by sampling with ptemcee, and the orange distribution
from VI.

Table 6. Percent differences of the 68% equal tail credible intervals for the ERPs
without including the theory covariance for the Elab = 0.676–2.624 MeV analysis.

Parameter 16% quantile 50% quantile 84% quantile

A0 0.01% 0.10% 0.10%
r0 0.46% 0.61% 0.73%
( )+C1

2 4.26% 1.72% 0.53%
+P1 21.41% 0.73% 0.35%

( )-C1
2 0.84% 1.17% 1.58%

-P1 1.18% 17.41% 70.63%
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most noticeable for the parameters in which bimodality appears. In the analysis without the
theory covariance, we see a percent difference of 21% in the 16% quantile of +P1 , while in the
84% quantile for -P1 we have a 70% difference. Meanwhile, the analysis with the theory
covariance has percent differences of −69% and 23% in the 16% and 50% quantiles of -P1 ,
although the quantiles and univariate distribution for +P1 are in remarkable agreement across
the methods in this case.

In general the univariate distributions agree well between VI and ptemcee for parameters
that do not exhibit bimodality. There are moderate differences in the 16%, 50%, and 84%
quantiles of A0 but A0’s median is a small number. We conclude that VI performs well for the
unimodal parameter distributions even though the overall distribution is bimodal.

6. Summary

Inferring parameters of scattering models from large data sets is a common nuclear-physics
problem. Here we have shown that Variational Inference (VI) can expedite this parameter
estimation. The two sets of scattering data we examined in section 5 had 398 and 293 data
points respectively, and the VI posterior was obtained in a fraction of the time needed for the
Monte Carlo sampling. We found essentially perfect agreement between the VI result for the
posterior of the 3He-α effective-range expansion parameters and the posterior obtained using
Monte Carlo sampling when the parameter posterior pdf was unimodal.

A critical ingredient of the success of the variational inference was that the VI family, i.e.
the parameterization of the posterior, was flexible enough to allow for correlations. An
accurate description of correlations between parameters is critical for reliable Uncertainty
Quantification.

VI requires that we assume a parameterization of the posterior. Here we used a multivariate
Gaussian. Other families, e.g. a multi-variate t-distribution, can be implemented. We have not
attempted to use other variational families for this analysis since our purpose here was to
benchmark VI against MCMC. A possible workflow for future studies that primarily use VI
would be to perform a short MCMC run to inform the choice of the variational family.

The largest advantage that VI has over MCMC is its speed. This advantage is a con-
sequence of performing fewer likelihood evaluations. The SGA algorithm performs as few
evaluations as are required to optimize the variational parameters. In some implementations of
MCMC, the number of likelihood evaluations is more than the number of samples generated
due to the possibility of rejection in the MCMC proposal step—and that is even before one
considers thinning due to autocorrelation time. In a VI implementation, once the SGA

Table 7. Percent differences of the 68% equal tail credible intervals for the ERPs with
the theory covariance included for the analysis up to Elab = 2.624 MeV.

Parameter 16% quantile 50% quantile 84% quantile

A0 30.75% 15.06% 7.04%
r0 2.90% 0.28% 2.24%
( )+C1

2 0.53% 0.46% 1.61%
+P1 2.17% 0.23% 0.84%

( )-C1
2 0.60% 0.32% 0.28%

-P1 −69.37% 23.75% 0.32%
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algorithm has found the optimal parameters, it is straightforward and fast to generate as many
samples as one desires.

Analyzing scattering data using VI has promise because of its flexibility and speed.
Posteriors of scattering parameters often turn out to be Gaussian, or very close to it
[2, 14, 33, 34]. Therefore, initially positing a full rank Gaussian variational family can be
quite effective, although it is important to keep in mind the possibility of correlations and
multimodality in the posterior.

Analyzing the subset of data from [15] for Elab� 2.6 MeV produced a bimodal posterior.
We used parallel tempered Monte Carlo Markov Chains in order to sample this posterior
thoroughly; the autocorrelation time for standard MCMC sampling was almost prohibitively
long. Long autocorrelation times are often a signal of multi-modality.

In the case of VI the multi-modality manifested as a sensitivity of the solution to the ELBO
to its starting position. We leveraged this feature of VI to obtain different optima for the
ELBO, and then combined the inferred distributions using the ELBO estimate of the Bayesian
evidence. This modified VI approach produced posteriors that were in good agreement with
those found using parallel tempered MCMC.

The source code used to generate results is available through GitHub [35, 36].
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Appendix A Other ways to combine single-peak results

While performing the analysis discussed in section 5.2, we investigated different methods
where we could reliably combine two single-peak results in a way that preserved the relative
peak heights and shapes of the two modes. In this appendix we discuss two alternative
methods we considered as well as the caveats that go along with them. Both methods
discussed here follow a model comparison strategy; we treat samples obtained from one peak
(θA) model A, and the samples obtained from the other peak (θB) model B. The relative peak
heights are thus determined by the ratio of the marginal likelihoods.

A.1. Harmonic mean estimator

The harmonic mean estimator was introduced in [37] which showed how using samples from
the posterior one could approximate the marginal likelihood. We can start by examining the
quantity
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where  is the likelihood function, and θi is a sample drawn from the posterior. We can take
our samples from each of the peaks and compute corresponding r̂A and r̂B and then take the
ratio to obtain the relative height of the peaks.

This method however yields inconsistent and often times incorrect results. We can recast
understand its failure from the perspective of importance sampling. For importance sampling
to be effective, we would need the sampling distribution to be broader than the target
distribution. In this case, we are drawing from the posterior distribution which is narrow when
compared to the prior. For this reason, we are not obtaining effective samples and this method
fails.

A.2. Overlap normalization

Suppose we have two peaks in a posterior distribution that have a slight overlap between
them. We can then use a uniform prior to perform sampling for each peak separately. If we
then construct the priors so there is a small overlap between them—one that coincides with
the overlap between the peaks—we can cross-normalize the two sets of samples.

An illustration of this is shown in figure 6. In the overlap region, the samples from the two
runs are drawn from the same posterior distribution. We can exploit the uniqueness of the
underlying distribution within this region to obtain the relative peak heights.

Figure 6. An illustration showing the overlapping region set by the two priors. The
solid blue lines are the truncation cuts of the two priors, and the shaded region is the
overlap region.
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Suppose there are NA total samples in set θA, and NB total samples in set θB, with NA,ol and
NB,ol the number of samples appearing in the overlap region. Without loss of generality, we
may assume NA,ol > NB,ol. We can determine a relative peak height ratio of

( )=r
N

N
. A4B ol

A ol

,

,

With this target ratio, we can then thin the appropriate set of samples such that after thinning
we have

( )=
N

N
r. A5B

A

,thinned

, thinned

Although both numbers of samples have been given the ‘thinned’ subscript, it is sufficient to
only thin one of the two sets of samples. Once the thinning is done and the ratio of the total
thinned samples is the target ratio r, we can then combine the two sets of samples to obtain
the full joint posterior distribution with the appropriate relative peak heights.

While this method can be useful, it is not always possible to have a clear overlap region.
The overlap region can often be very small, and the number of samples in this region is often
very low. This can lead to a very noisy estimate of the relative peak heights. Normalizing the
peaks using this method yields posteriors that closely resemble the ones obtained from
ptemcee. But, ultimately, choosing ptemcee proved more effective in our case.
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