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Abstract
Context In software development organizations employing weak or collective ownership,
different teams are allowed and expected to autonomously performchanges in various compo-
nents. This creates diversity both in the knowledge of, and in the responsibility for, individual
components.
Objective Our objective is to understand how and why different teams introduce technical
debt in the form of code clones as they change different components.
Method We collected data about change size and clone introductions made by ten teams in
eight components which was part of a large industrial software system. We then designed a
Multi-Level Generalized LinearModel (MLGLM), to illustrate the teams’ differing behavior.
Finally, we discussed the results with three development teams, plus line manager and the
architect team, evaluating whether the model inferences aligned with what they expected.
Responses were recorded and thematically coded.
Results The results show that teams do behave differently in different components, and the
feedback from the teams indicates that this method of illustrating team behavior can be useful
as a complement to traditional summary statistics of ownership.
Conclusions We find that our model-based approach produces useful visualizations of team
introductions of code clones as they change different components. Practitioners stated that the
visualizations gave them insights that were useful, and by comparing with an average team,
inter-teamcomparisons canbe avoided.Thus, this has the potential to be a useful feedback tool
for teams in software development organizations that employ weak or collective ownership.

Keywords Code ownership · Code clones · Team behavior · Bayesian linear model ·
Software craftsmanship

1 Introduction

Code clone detection and management has a long history in Software Engineering research
(Koschke 2007; Roy and Cordy 2007; Rattan et al. 2013; Pate et al. 2013; Sobrinho et al.
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2021). Though copy-pasted code initially functions like the original, issues may emerge as
the code evolves, with clones diverging as they change at different rates, particularly when
developers are unaware of them. Tornhill (2018) states that two code clones that often, but
not always, change together can be the source of problems. In a study of five industrial and
open-source systems, Juergens et al. (2009) found that 52% of all clones were inconsistently
changed, and 15% caused faults in the application. For this reason, code clones are seen as
a prominent and quite common Technical Debt Item (TDI).

Technical Debt (Cunningham 1992) (TD) is a metaphor borrowed from economics to
explain the long-term consequences of sub-optimal design decisions taken to speed up the
development process. Technical Debt is classified into different categories (Alves et al. 2016),
and the term Technical Debt Item (TDI) refers to a single occurrence of technical debt in
software artifacts (Avgeriou et al. 2016b; Kruchten et al. 2019).

Software development organizations often divide large projects into components,managed
by different teams, and can take varying approaches to code ownership, from strong, to
weak, or collective ownership (Fowler 2006). In weak or collective ownership, different
teams are allowed and encouraged to contribute to the same components. Ribeiro et al.
(2016) have identified advantages of weak ownership, such as (i) knowledge distribution; (ii)
increased backup pool of developers; (iii) lower rework; and (iv) better code quality, as well
as disadvantages such as (i) increased conflict; (ii) increased errors and failures; (iii) lower
understanding of the code; and (iv) increased development time when studying shared code
ownership in industrial contexts.

Traditional code ownership involves teams or individuals being responsible for the quality
and upkeep of software artifacts (Nordberg 2003). However, in practice, it is challenging to
assign responsibilities to development teams, because multiple teams, with different “own-
ership stakes,” frequently contribute to a single component. Having a handful of contributors
might cause friction in the development process by introducing overhead or degrading the
quality of the product or its source code (Avgeriou et al. 2016a). For example, teams working
in a component where they are not the main contributors might introduce more Technical
Debt Items by being less careful with the code they produce, or they might introduce bugs
due to their being unaware of the full consequences of their code changes. Therefore, the
alignment between team expertise and tasks plays a critical role in the effectiveness and
efficiency of the organization (Newman 2021; Baškarada et al. 2020). Sedano et al. (2016)
emphasize that team code ownership is a feeling to be engendered, not a policy to be decreed.

In an article widely cited in economics and ecology, Hardin (1968) introduced the term
“The Tragedy of the Commons”, where he argued that common ownership in a land of finite
resources will cause ruin and devastation for the whole population. Hardin argued in his essay
for the centralization of the control of common-pool resources.

However,Dietz et al. (2003) foundfive factors that support effective commons governance:
(i) monitoring (including verification and understanding) of resources and human use of
resources; (ii) moderate rate of change in resources, populations, technology, and social con-
ditions; (ii) frequent face-to-face communication and dense social networks, which increase
trust and allow people to experience the emotional reactions to distrust; (iv) the possibility
of excluding outsiders at a relatively low cost; and (v) the users themselves support effective
monitoring and rule enforcement (i.e., the users understand the purpose of the rules). We
hypothesize that these factors apply to software code commons and that some of these fac-
tors can impact the mitigation of the “code tragedy”, such as the accumulation of Technical
Debt.

The goal of this paper is to develop and evaluate a model to proactively monitor how
Technical Debt growth varies by contributor in a large-scale industrial system, and how this
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aligns with component ownership. We have built a model based on code clone introductions
by teams, because clones are a common and easy TDI concept to grasp for most developers,
with easy-to-grasp consequences. Contributions were grouped by team because, in the stud-
ied organization, teams worked independently and did not have strong ownership (e.g., no
mandatory inter-team code reviews). We conducted a case study to collect data and build a
Bayesian model that shows how code clones are introduced in components.

We created a Multi-Level Generalized Linear Model (MLGLM), based on a zero-inflated
negative Binomial likelihood. The model is fit onto a dataset consisting of 31007 file changes
made during 35 months in 8 code repositories by, in total, 10 development teams, belonging
to an organization transitioning from collective to weak code ownership as it grew. Based on
causal reasoning, the model estimates the expected number of introduced code clones for a
given change by a given team in a given repository. The estimate is then used to visualize
how teams behave in different repositories, and how they react to predictors such as existing
complexity of, the number of existing duplicates in the changed file, or the size of the change.

To validate the reliability and usefulness of the model, we presented the main findings
of the study to four of the studied teams in five focus-group sessions. All teams agree that
the model predictions and associated visualizations present a useful view of how teams have
behaved, and they presented plausible reasons for why some teams “stood out” in certain
repositories.

The paper is structured as follows: Section 2 describes the background and related work,
including the aforementioned OCAMmodel. Section 3 describes the research methodology,
including the design of the causal and statistical models. Section 4 describes the results, both
quantitative and qualitative. Section 5 discusses our findings, followed by threats to validity
in Section 6 and conclusions in Section 7.

2 Background and RelatedWork

A key part of the Agile and XP programming principles (Beck and Andres 2001; Abrantes
and Travassos 2011), the principle of collective code ownership have also been espoused by
software craftsmanship authors (notably, Seibel 2009; Martin 2011).

Software engineering usually maps out individual ownership, based on metrics such as:
(i) commits in a component, (ii) files authored or changed, or (iii) lines authored or removed.
In a study at Microsoft, Bird et al. (2011) defined ownership metrics based on the number
of commits and examined the effect of these on software quality. They looked at two large
software projects: Windows Vista and Windows 7, and explored whether the number of low-
expertise developers and the proportion of ownership for the top owner have a relationship
with both pre-release faults and post-release failures. They discovered that more minor con-
tributions (a proxy for weak code ownership) result in more pre- and post-release failures.
Other researchers at Microsoft replicated the study, looking in more detail at an intermediate
level of granularity that lies between binaries and source files: code directories (Greiler et al.
2015). They also broadened the metrics describing code ownership to individual ownership
for files, directories, and organizational ownership for files and directories. Their results also
confirmed that code ownership correlates with code quality.

Several researchers have looked into code authorship and ownership in open-source soft-
ware projects. Avelino et al. (2019) analyzed code authorship in 119 open-source projects,
including the Linux kernel, and concluded that: (a) only a small portion of developers (26%)
makes significant contributions to the code base—this ratio is almost constant during the
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Linux kernel evolution; (b) the number of files per author is highly skewed—a small group
of top authors (2%) is responsible for hundreds of files, while most authors (75%) are respon-
sible for at most 10 files; (c) most authors in Linux (≈ 76%) are specialists, and the ratio
between specialists and generalists tends to be constant; (d) authors with a high number
of co-authorship connections tend to work with authors with fewer connections. Similarly,
Foucault et al. (2015) investigated the relationship between Bird’s code ownership metrics
and software quality for seven open-source projects. They confirmed the existence of a rela-
tionship between code ownership and software quality, but the relative importance of Bird’s
ownership metrics in multiple linear regression models is low compared to metrics such as
the number of lines of code, the number of modifications performed over the last release, or
the number of developers of a module.

Maruping et al. (2009) examined the role of team collective ownership and coding stan-
dards by surveying 73 software project teams belonging to a large US software development
firm. The authors analyzed 56 responses, comprising 509 software developers, and discov-
ered that collective ownership and coding standards play a role in improving software project
technical quality.

Faragó et al. (2015) investigated the impact of code ownership, defined as the geometric
mean of the number of authors of files in a commit, on maintainability for four open-source
projects and discovered that code erosion is higher for source files modified by several
developers in the past, compared to the files with clear ownership. They concluded that files
changed by more authors are more error-prone than those developed by fewer developers.

Orrú and Marchesi (2016) investigated the relationship between code ownership and
refactoring activities in the Apache Ant software system. Using Bird’s notion of ownership
as a ratio of changes performed by a single developer versus the total number of changes
to a file, they derive two new metrics: Subjective Ownership and Relational Ownership.
They concluded that refactoring activities were positively correlated with both Subjective
and Relational Ownership, although the relation is weaker in the Relational case.

Borg et al. (2023) analyzed 40 proprietary software repositories to understand the rela-
tionship between ownership, code quality, and issue resolution time. They discovered that in
low-quality source code, marginal owners need 45% more time for small changes and 93%
more time for large changes. Marginal owners are particularly hampered when working with
low-quality source code, which leads to productivity losses.

On the qualitative research front, Ribeiro et al. (2016) conducted an interview study
with 19 participants to investigate the advantages and disadvantages of using shared code.
They found six advantages and six disadvantages of using shared code ownership, includ-
ing improved knowledge distribution, increased conflicts between the team members, and
increased development time.

The Ownership and Contribution Model (OCAM) was formulated by Zabardast et al.
(2022b), and ranks teams using seven metrics to determine the alignment between contribu-
tion and ownership for a particular component. The number of applied metrics is flexible,
as is the granularity of contributors and components. The authors validate the model in a
longitudinal industrial case study in the paper. In a follow-up study, Zabardast et al. (2022a)
found that the relationship between ownership and contribution alignment was identified by
the focus group participants as one of the potential causes of faster accumulation of technical
debt.

In another study at Microsoft, Herzig and Nagappan (2014) found that test suites whose
owners are distributed across organization subgroups with long communication paths are
negatively correlated with quality. They recommended reviewing test suites concerning their
organizational composition and favored subgroups having clear ownership of test suites.

123



Empirical Software Engineering            (2025) 30:43 Page 5 of 42    43 

In addition to the studies mentioned in the introduction, several recent authors also studied
code clones detection and management. Ain et al. (2019) conducted a systematic literature
review (SLR) of code clone detection tools, identifying 13 distinct tools in 54 selected papers,
as well as 13 proposed future tools. Quradaa et al. (2024) surveyed the literature about the
usage of recurrent neural networks in code clone detection, and concluded that LSTM tech-
niques are the most commonly used. Kaur and Rattan (2023) surveyed the use of machine
learning in code clone detection, reporting that Decision Tree, Random Forest, Bayesian
Network, and Naïve Bayes are the most popular machine learning algorithms, and that Deep
Learning can be used to detect semantic clones. Rongrong et al. (2019) used different classi-
fiers to recommend clones for refactoring, and concluded that Decision Trees and Bayesian
Networks achieved the highest accuracy in recommending clones for refactoring, but Deci-
sion Tree was more stable. Zakeri-Nasrabadi et al. (2023) conducted another SLR on clone
detection, and identified 136 primary studies, referring to 80 distinct tools, of which almost
half support Java, and more than a third support C and C++.

We identified two literature reviews about code clone evolution. Pate et al. (2013) con-
ducted an SLR on code clone evolution and found wide variation in the ratio of consistent
changes to clones—between 11% and 74% of clones were found to be changed consistently.
They concluded that researchers need to study human behavior, together with available data,
to understand the evolution of code clones. Zhong et al. (2022) surveyed the literature on
code clone evolution and found few studies on the visualization of clone evolution.

Yu et al. (2012) studied the locations of code clones in two versions of the Linux kernel.
They found that clones mostly occurred between files close in the hierarchy, and found that
the number of clones grew with the size of the kernel. Although there are valid cases for
duplicating code—in particular, if it changes for different reasons (see Martin, 2017; Kapser
and Godfrey, 2008)—we follow the taxonomy of Alves et al. (2016) and place code clones
in the Code Technical Debt category, as several studies, such as Yu et al. (2012) have found
that the majority of code clones arise due to simple copy-paste behavior.

Compared to the related work, we take a different approach. Although code may be
authored and committed by individuals, in proprietary software development, they tend to be
organized in teams (that often have significant authority and freedom), and we hypothesize
that team culture might have an impact on how developers approach code quality. Therefore,
we map these individuals to the team they belong to at the time of authoring (or committing).
These teams are then used as categories to build a regression model, which can be used
to simulate and visualize how teams introduce code clones in different components. When
presented with the results, both architects and development teams stress that they think the
model for clone introductions is useful to illustrate and explain their behavior.

However, when modeling other organizations or software development networks, other
grouping factorsmight be used—regardless of how the categories are conceived, theBayesian
model will use them when deriving the linear regression. Different organizations may war-
rant other grouping levels, such as individual authors, organizational sub-units, or different
geographical sites or countries.

3 ResearchMethodology

The research presented in this paper follows a two-staged process, where we start with
designing a causal model of how teams introduce clones in components, depending on their
level of knowledge and how much they care for these components. We then proceeded by
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using our causal model to guide us in collecting empirical data, following a case study
research method. We used two different sources of data: i) quantitative, for which we use
archival analysis as data collection method to mine the software repositories of the studied
organization to trainmodels that predict the introduction of code clones in the studied software
repositories; and ii) qualitative, for which we use focus group interviews as a data collection
method and open coding to analyze the data to validate the reliability and usefulness of the
chosen model.

The remaining of the section is structured as follows: Section 3.1 provides the details on
how the model was iteratively built, while Section 3.2 reports on the empirical validation of
the model predictions.

3.1 Model Design

3.1.1 Research Questions

The motivation for our study is to explore how collective ownership of source code impacts
its quality, in particular, the introduction of code clones. This led us to formulate the following
research questions:

RQ1 Can we build a generalized linear model with acceptable accuracy and reliability to
visualize team behavior regarding the introduction of code clones in different compo-
nents?

RQ2 What predictors are most likely to affect the rate of clone introduction, and how do
these vary between teams and components?

RQ3 Are the model predictions and their associated visualizations perceived as useful for
the studied organization?

For RQ1, we chose to design aMulti-Level Generalized Linear (MLGLM)model, predict-
ing the number of introduced code clones in a file being changed, given various predictors.
We chose to focus on this particular class of Technical Debt Item (TDI), as we wanted a
model that could predict team behavior without biasing how different classes of TDI should
be weighted in the overall technical debt score. Code clones are readily detected by tools
such as SonarQube (Roy et al. 2009), and are also directly connected to the clean–code
principle DRY - Don’t Repeat Yourself (Hunt and Thomas 2000; Martin 2011), that have
been shown to be an important indicator of technical debt by experienced developers (Ljung
and Gonzalez-Huerta 2022).

For RQ2, we designed several models and compared their out-of-sample prediction capa-
bilities using the LOO-CV metric (Vehtari et al. 2017).

For RQ3, we conducted five focus group interviews with four of the studied teams—one
meeting each with three development teams, plus opening and closing presentations with the
architect team. The meetings were recorded and transcribed; anonymized transcriptions are
available upon request. We used open coding to summarize the findings of the teams. Based
on team feedback, we also designed a follow-up model building of clone removal behavior.

3.1.2 Measuring the Degree of Ownership Alignment

OCAMwas originally defined as a flexible model to assess the degree of alignment between
formal ownership and team contribution to a given repository (Zabardast et al. 2022b). The
OCAM model allows metrics and organizational granularity to be configured according to
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Table 1 Used OCAM model
metrics

Metric Description

N Number of commits

CHURN Sum of max(added, removed) LOC

ADD_COMP Sum of added McCabe complexity

REM_COMP Sum of removed McCabe complexity

specific needs. As the studied organization was large and some developers switched teams,
we decided to keep the team granularity from the original OCAM model.

Table 1 contains descriptions of the OCAM metrics that we collected. We kept the fol-
lowing original OCAM metrics: (i) the number of commits; (ii) code churn—defined as the
sum of max(added, removed) lines for each changed file; (ii) added complexity (McCabe
metric); (iv) removed complexity. We had to disregard the metrics regarding tickets and
pull requests, since the studied organization did not keep track of these metrics for changes
originating between teams.

We used the OCAMmodel in the second stage of our research, comparing and contrasting
its results with the results from our model, as perceived by the development teams and
architects.

3.1.3 Predicting Code Clone Introduction

In the design of the statistical model for clone introduction, we follow the method outlined
by McElreath (2020), which starts with stating your assumptions and the domain knowledge
in the form of a Directed Acyclic Graph (DAG) (Pearl 2009; Furia et al. 2023).

Figure 1 shows a causal DAG containing the variables and their dependencies in our
model of clone introductions. Two variables are unknown (and therefore unmeasured) and
are marked as latent—CLEAN and KNOW. In this DAG,1 every change to each source code
file is modeled according to the following variables:

INTR (outcome) measures howmany duplicates were introduced by the change to the file.
This is the outcome variable of the model. The lower bound is zero, and the upper
limit is bounded by the size of the changed file (though the duplicate detection tool
will consider several adjacent identical lines a single duplicate).

TEAM (exposure) indicates the team that committed the change to the master branch, as a
categorical predictor. Furthermore,we assume that behaviorwill vary between teams
and that a single team will behave differently in different components (repositories).
We map the committer to the team at the time of the commit, based on sampled
organization charts from a team wiki page, which contains current and historical
team compositions.

ADD (adjustment set) measures the number of lines that were added to the file in this
particular change. The lower bound is zero, and there is no theoretical upper bound
(although in practice, the used compiler will impose some fixed limit).

REM (adjustment set) measures the number of lines that were removed from the file in
this particular change. The lower bound is zero, and the upper bound is limited by
the size of the file before the change.

1 DAG motivation is available at
https://docs.google.com/spreadsheets/d/1vV6utjEEgmELib9ihplflOjhjVLPDXvHWbUG49cb-qQ
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Fig. 1 Assumed causal model of
code clone introduction

DUP (adjustment set) measures the number of existing duplicates in the file before the
change, as measured by SonarQube. The lower bound is zero, and the theoretical
upper bound is limited by the size of the changedfile (basedonhow the tool calculates
duplicates).

COMP (adjustment set) measures the complexity of the file according to McCabe (1976),
as measured by SonarQube, after the change. The lower bound is zero, and there is
no theoretical upper bound.

KNOW is a latent (unmeasured and unknown) metric, representing the knowledge the team
committing the change has in the file, and in the component to which the changed
file belongs. As complex files—possibly with many existing duplicates—are likely
to be harder to comprehend, the prior knowledge is affected by the DUP and COMP
metrics. Knowledge affects the number of added lines, as we posit that developers
make more copy-paste changes in components where they lack domain knowledge.

CLEAN is a latent (unmeasured and unknown) metric, representing the tendency of the team
committing the change to clean up the code they touch or come across when they
make changes. A team being formally responsible for the quality of—or with a high
ownership stake in—a given component would be expected to clean up more (e.g.,
via refactorings) than a sporadically contributing team.

Themain causal effect wewant to study is how team knowledge and cleanliness affects the
number of duplicates introduced for a given number of added lines. As we cannot measure
these metrics objectively, we instead measure how the team and repository combination
affect the influence that the other predictors (i.e., the number of duplicates in the file, the
complexity, and the number of lines added or removed) have on the amount of duplicates
being introduced.
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The specified DAG implies the following conditional independencies: REM ⊥⊥
COMP | TEAM and REM ⊥⊥ DUP | TEAM (⊥⊥ is the symbol for independence, and |
is the symbol for ‘given’).

These independencies can be tested from the collected data, and while the number of
removed lines does seem to be independent of the existing complexity, there might be a weak
association between REM and DUP (μ = 0.13, 95%CI = [0.11; 0.14]). This might indicate
that (some) teams are more likely to remove lines in files with many duplicates. Thus, we
do not rule out a causal path between DUP and REM. However, the existence of this path
would not change our model or conclusions since, most likely, this path might only influence
how the duplicates are removed, i.e., a file with many duplicates might receive changes that
mainly focus on removing lines of code, or at least modifying them, aiming at removing
duplicates.

3.1.4 Data Collection

We used Algorithm 1 to calculate the required metrics for each changed file, in each
commit, per repository. List C contains each commit, in order of application to the
master branch for each studied repository. Commit data is retrieved via the functions
AuthoredBy(C), AuthoredDate(C), CommittedBy(C) and CommittedDate(C).
In the git version control system, the author is normally the person initiating the change,
and the committer is the person triggering the commit which merges the change to the
main branch.

Algorithm 1 Calculating introduced clones for changed files in a repository.
Data: C commits: Ci precedes Ci+1
Result: List of data for changed files
filestate ← ()

for Ci ∈ C do
author ← AuthoredBy(Ci)
dauth ← AuthoredDate(Ci)
committer ← CommittedBy(Ci)
dcomm ← CommittedDate(Ci)
teama ← FindTeam(author,dauth)
teamc ← FindTeam(committer,dcomm)
for Fj,i ∈ Files(Ci) do

add ← Added(Fj ,i)
rem ← Removed(Fj ,i)
comp ← Complexity(Fj ,i)
dupprev ← Duplicates(Fj ,i−i)

dupcurr ← Duplicates(Fj ,i)
� ← dupcurr − dupprev
if � > 0 then introd ← �

else introd ← 0
filestate ← filestate + (Fj ,i , teama , teamc,

add, rem, comp,dupprev, introd)

end
end
return filestate
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We used historical organization charts to determine the developer–team affiliation at a
given time. This information is returned by the FindTeam(A, D) function. Files(C)
are the files changed in commitC .Added(Fj,i ) and Removed(Fj,i ) are the number of added
and removed lines of file Fj , in commit Ci , as counted by the git command. Complex(F)
and Duplicates(F) are the McCabe complexity and number of duplicated code blocks,
as measured by the SonarQube tool. We use the Fj,i−1 notation to denote the file state in
commit Ci−1, regardless of whether the file changed in that commit or not. The number
of introduced duplicated code blocks is given by �, in case it is positive. The complete
anonymized data set is available in the replication package (Sundelin and Bauer 2024).

3.1.5 Simulation and Initial Model Design

Based on our prior domain knowledge, and supported by empirical findings such as Zabardast
et al. (2020), who found thatmost file changes neither introduced nor removedTechnicalDebt
Items, we assumed that most file changes would not introduce any additional duplicates. As
we were modeling a count (≥ 0) of added duplicates, our initial model used the Zero-Inflated
Poisson distribution, which is the maximum entropy distribution for counting independent
events, having a known expected value.

However, after simulating and validating with collected data from the first repository,
we found the constraints of the Poisson distribution, i.e., equal variance and expected value
(σ 2 = λ), to be unsuitable for our domain. The conventional next choice of model is the
Negative-Binomial distribution, which is parameterized via two parameters: μ, the expected
value (mean), and φ, the shape parameter that adjusts the variance via the formula σ 2 =
μ+μ2

φ
. As recommended byMcElreath (2020),we used a logarithmic link function, log(μ) =

β0+∑
i βi Pi to tie our linear predictors to the parameters of theNegative-Binomial. The zero-

inflation part is realized via a Bernoulli trial, with the probability of ‘success’ (zero-inflation
active) tied to the linear predictor via a logit (log-odds) link function, logit(p) = log( p

1−p ).

Following the recommendations by McElreath (2020) and Gelman,2 we transformed
our data to fit within the useful range of the link functions. In theory, the logit function
is unbounded, but in practice, the useful values lie within±10, as logit(4.5 · 10−5) ≈ −10
and logit(0.99995) ≈ 10. A similar argument can be made for the log link function, which
causes the mean value of the Negative-Binomial likelihood to grow with the exponent of the
linear predictors.

Based on our causal assumptions (Fig. 1), besides the team and repository categorical
predictors, we considered adding four numerical predictors: added lines (ADD), removed
lines (REM), existing duplicates (DUP) and existing complexity (COMP). Following the
DAG, all numerical predictors were bounded by zero, without any obvious upper bound.
Furthermore, exploratory analysis of collected data showed that all four predictors were
right-skewed,3 which caused us to base the linear model based on the logarithm of the
predictor value plus one (as log(0+1) = 0). We scaled and centered the resulting logarithm
by subtracting the mean and dividing by the standard deviation of the logarithm, to aid prior
selection and improve model fitting, as suggested in McElreath (2020). This means that a
change of one unit in the scaled predictor corresponds to a change in the magnitude of the
unscaled predictor equal to the observed standard deviation of the magnitude.

2 https://statmodeling.stat.columbia.edu/2019/08/21/you-should-usually-log-transform-your-positive-data/
3 Most changes add a few lines of code, remove a few lines of code, and the complexity of the files is in
general low, with fewer data points with high levels for any of these variables.
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This leaves us with four potential numerical predictors:

A is the scaled and centered natural logarithm of the number of added lines (ADD).
R is the scaled and centered natural logarithm of the number of removed lines (REM).
C is the scaled and centered natural logarithm of the existing McCabe complexity of the

changed file, as calculated by SonarQube (COMPLEX).
D is the scaled and centered natural logarithm of the existing number of duplicates in a

changed file, as calculated by SonarQube (DUP).

Depending on the number of predictors we include, we will get models of varying com-
plexity.

A crucial step in model design is conducting prior predictive checks (McElreath 2020).
For Bayesian inference to work efficiently, the selected priors should be wide enough to
allow for reasonable outcomes, but not too wide, as this would force the model to explore
outcomes not consistent with domain-specific knowledge. In our context, we know, based on
the design of the duplicate detection tool,4 that the number of introduced duplicates must be
less than the number of existing lines in a file. Thus, regardless of the parameter values fed
to the model, we would find outcomes ranging in the tens of thousands to be implausible.

Both domain knowledge simulation and prior predictive checks were conducted before
actual data collection, and both are available in the replication package (Sundelin and Bauer
2024).

3.1.6 Model Design and Quality Assessment

We built three models of increasing complexity to compare and assess their results. We used
the R programming language5 and the framework BRMS (Bürkner 2017; Bürkne (2018) as a
front-end for the Hamiltonian Monte Carlo (HMC) framework provided by Stan (Carpenter
et al. 2017).

3.1.7 Model Structure

All threemodels use a Zero-Inflated Negative-Binomial distribution, and differ in complexity
only in the number of parameters used in the linear predictors.

p(y|μ, φ, ξ) =
{

ξ + (1 − ξ) · NB(0|μ, φ) if y = 0

(1 − ξ) · NB(y|μ, φ) if y �= 0
(1)

A Zero-Inflated Negative-Binomial model is defined by (1), where NB is the Negative-
Binomial distribution with mean (i.e., location) parameter μ and a shape parameter φ, which

adjusts the variance via the formula σ 2 = μ + μ2

φ
. The parameters y, μ, φ, and ξ can either

be modeled as population-level parameters (i.e., the same distribution for all values in the
input data set), or may depend on observation i .

We will adopt the notation favored by McElreath (2020), where an i suffix indicates that
the parameter is associated with observation i from the observed data. That is: μi means the
μ value for observation i ; β0,τ [i] is the intercept parameter offset associated with the team in
observation i ; στ means the standard deviation for team τ ; and στ :χ is the standard deviation
associated with team τ in component (repository) χ .

In all our models, we leave the shape parameter, φ, independent of observations.

4 SonarQube, https://www.sonarsource.com/products/sonarqube
5 https://www.r-project.org/
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3.1.8 Intercept-Only ModelM0

The first, simplest model M0, ignores all predictors except the team and repository cate-
gories. This is a common choice as a baseline model, for comparison with models of higher
complexity. It is specified as:

M0
log(μi ) = β0,i

logit(ξi ) = γ0,i
(2)

where
β0,i = β0 + β0,τ [i] + β0,τ :χ [i]
γ0,i = γ0 + γ0,τ [i] + γ0,τ :χ [i]

(3)

with priors
β0 ∼ Normal(0, 0.5)

στ ∼ Weibull(2, 0.25)

στ :χ ∼ Weibull(2, 0.25)

φ ∼ Gamma(0.5, 0.1)

(4)

Model M0 assumes that the logarithm of the mean (μi ) of the Negative-Binomial for
observation i is composed of one population-level parameter β0, plus two adjustments to this
value; β0,τ [i], adjusting the intercept per team (regardless of the repository), and β0,τ :χ [i],
additionally adjusting the intercept depending on the team–repository combination.

The same structure is used for the probability (ξi ) of seeing inflated zeros; in this case, γ0
represents the population-level intercept, adjusted by γ0,τ [i] and γ0,τ :χ [i]. The model assumes
that the shape parameter is independent of observations.

3.1.9 A More Complex ModelM1

Following our DAG (Fig. 1), we posit that the causal model of introduced clones would at
least include the added and removed lines predictors, whose scaled magnitude is represented
by A and R, with team- and repository-level variation only on the intercept and the removed
lines (R) predictor.

Our second model then becomes:
M1

log(μi ) = β0,i + βA Ai + βR,i Ri

logit(ξi ) = γ0,i + γA Ai + γR,i Ri
(5)

Here, the intercept (β0,i ) and the slope for the R predictor (βR,i ) are composed of three
components, incorporating the team- and team-per-repository-level differences:

β0,i = β0 + β0,τ [i] + β0,τ :χ [i]
βR,i = βR + βR,τ [i] + βR,τ :χ [i]

(6)

In contrast, the slope βA of the added lines predictor is assumed to be constant between
teams and repositories,meaning that as the number of added lines grow, the rate of introducing
duplicates increases by the same amount for all teams and repositories, if the other predictors
are kept constant. However, as the model allows the intercepts to vary between teams and
repositories, each team might still have a different base rate of clone introduction in each
repository.
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Aswe let both the slope and the intercepts vary,weneed to incorporate prior information for
the correlation between these parameters. The offsets per team (βR,τ [i]) and team–repository
(βR,τ :χ [i]) are modeled as multi-variate-normal (MVN) models, with a zero mean—because
they are offsets—and standard deviation matrices (�R,τ , �R,τ :χ ) decomposed by diagonal
matrices and correlation matrices (�R,τ , �R,τ :χ ). We use the recommended Lewandowski-
Kurowicka-Joe distribution for the correlation matrices; our choice of the LKJ(2) prior
ensures that our model is mildly skeptical of extreme correlations between intercepts and
slopes.

This means that our priors are defined as:

β0 ∼ Normal(0, 0.5)

βA ∼ Normal(0, 0.25)

βR ∼ Normal(0, 0.25)

βR,τ [i] ∼ MVN(0, �R,τ )

�R,τ ∼ diag(στ )�τdiag(στ )

στ ∼ Weibull(2, 0.25)

�τ ∼ LKJ(2)

βR,τ :χ [i] ∼ MVN(0, �R,τ :χ )

�R,τ :χ ∼ diag(στ :χ )�τ :χdiag(στ :χ )

στ :χ ∼ Weibull(2, 0.25)

�τ :χ ∼ LKJ(2)

φ ∼ Gamma(0.5, 0.1)

(7)

The zero-inflation predictors (γ ) use identical structures and priors:

γ0,i = γ0 + γ0,τ [i] + γ0,τ :χ [i]
γR,i = γR + γR,τ [i] + γR,τ :χ [i]

(8)

3.1.10 Full Causal ModelM2

Following the complete DAG in Fig. 1, we posit that the existing complexity and number
of duplicates in a file impact the number of duplicates that a particular team introduces,
especially if the team is unfamiliar with the component where the file resides.

The fact that the existing number of duplicates (DUP, part of code technical debt) in a
file will impact the number of duplicates that developers introduce while changing the same
file is consistent with the Broken Window Theory phenomenon, first described in a Software
Engineering context by Hunt and Thomas (2000) and validated by Levén et al. (2024).

With this reasoning in mind, we decided to also incorporate the existing complexity and
number of duplicates into our model:

M2

log(μi ) = β0,i + βA Ai +
∑

P∈{R,C,D}
βP,i Pi

logit(ξi ) = γ0,i + γA Ai +
∑

P∈{R,C,D}
γP,i Pi

(9)

ComparedwithM1, our model now has two additional predictors (C and D), representing
the scaled magnitude of the complexity (COMPLEX) and existing duplicates (DUP) in the
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file. The βC,i and βD,i coefficients, just like β0,i and βR,i in model M1, are composed of
three components, as is γC,i and γD,i .

β0,i = β0 + β0,τ [i] + β0,τ :χ [i]
βR,i = βR + βR,τ [i] + βR,τ :χ [i]
βC,i = βC + βC,τ [i] + βC,τ :χ [i]
βD,i = βD + βD,τ [i] + βD,τ :χ [i]
γ0,i = γ0 + γ0,τ [i] + γ0,τ :χ [i]
γR,i = γR + γR,τ [i] + γR,τ :χ [i]
γC,i = γC + γC,τ [i] + γC,τ :χ [i]
γD,i = γD + γD,τ [i] + γD,τ :χ [i]

(10)

We used the same priors as in model M1, but also included C and D:

β0 ∼ Normal(0, 0.5)

∀P ∈ {A, R,C, D} : βP ∼ Normal(0, 0.25)

∀P ∈ {R,C, D} : βP,τ [i] ∼ MVN(0, �P,τ )

∀P ∈ {R,C, D} : �P,τ ∼ diag(στ )�τdiag(στ )

στ ∼ Weibull(2, 0.25)

�τ ∼ LKJ(2)

∀P ∈ {R,C, D} : βP,τ :χ [i] ∼ MVN(0, �P,τ :χ )

∀P ∈ {R,C, D} : �P,τ :χ ∼ diag(στ :χ )�τ :χdiag(στ :χ )

στ :χ ∼ Weibull(2, 0.25)

�τ :χ ∼ LKJ(2)

φ ∼ Gamma(0.5, 0.1)

(11)

As for model M1, we used identical structure and priors for the predictors for the zero-
inflation component (γ ).

We used visualizations such as the plot in Fig. 2 to aid prior selection for all our
models. Gelman et al. (2020) recommends avoiding bounded priors such as the uniform
distribution, and instead use priors consistent with domain knowledge. In Fig. 2, the x-axis
depicts the 95th percentile and the y-axis depicts the 99th percentile of predictions made
using only prior information, with predictor values used from our data. Based on the figure,
we conclude that using these priors, the model would expect 95% of the observations to range
between 0 and about 20 introduced duplicates (the observed count is 1, indicated by T (y) in
the figure). Likewise, the model would expect 99% of the observations to range between 0
and about 80 introduced duplicates, with the more likely outcomes being between 0–40.

We used the following criteria to select appropriate priors:

• Based on empirical findings (Zabardast et al. 2020) and experience, we would find it
implausible that the majority of file changes would result in new duplicates. Our priors
put the highest probability at about 80% zeros, but expect anything from 40% to 100%
zeros (with smaller probabilities at the extremes).

• The maximum estimated value (i.e., the number of introduced clones the model would
expect, based only on prior information) for these priors range from ≈ 100 to ≈ 20000
duplicates, with higher probabilities at the lower end of the scale, and very little proba-
bility over 1000.
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Fig. 2 Prior predictive check plot
of 95th vs. 99th percentile of
introduced code clones.
T (yrep): Prior predictions.
T (y): Observations (Q95 = 1,
Q99 = 5). Prior predictions are
consistent with observations, and
not unreasonable

• As shown in Fig. 2, the 95th percentile is expected to range from 0 to ≈ 20 and the 99th
percentile is expected to range from about 0 to ≈ 80, though more extreme values are
also possible, albeit less likely.

The replication package contains more prior predictive plots, including predictions on
group-level data, such as teams and repositories.

Based on our exploratory data analysis, we found that our data contained an excess amount
of zeros (around 93%), so traditional measures of central tendency (mean and median) would
not be of much use. We opted instead to use Q95 and Q99 metric—that is the 95th and 99th
percentile metrics.

After fitting the model, and performing standard sampling checks,6 we assessed the
model fit by approximating leave-one-out cross-validation (LOO-CV)usingPareto-smoothed
importance sampling (PSIS), as recommended by Vehtari et al. (2017). Instead of doing full
leave-one-out cross-validation, which would require refitting the model once for each data
point, theLOO-CValgorithmcalculates the leave-one-out posterior distribution using Pareto-
smoothed importance sampling (PSIS) by approximating the importance of each data point
on the final posterior distribution. The result is reported for each data point as the Pareto
k-value. Data points with Pareto k-values higher than 0.7 are considered outliers and should
be investigated further. In our case, modelM2 contained 12 data points with Pareto k values
exceeding 0.7. Using the reloo function,7 the model was refit once per suspicious data point,
concluding that the real Pareto k values for all data points were below the recommended
threshold. This completed our diagnostics of the models.

However, a well-diagnosed model might still produce bad inferences, in case it does not
fit the data well. The conventional tool to assess model fit is to plot and quantify residuals
(the difference between predicted and observed values) but for zero-inflatedmodels like ours,

6 See the replication package for details.
7 https://discourse.mc-stan.org/t/clarification-about-the-purpose-of-reloo-in-the-loo-function/8742
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Fig. 3 Suspended rootogram for
modelM2. Subplot a): expected
count 0-150 Subplot b): expected
count 1-50; enlargement of the
red square

the recommended way is instead to use the rootogram method (Kleiber and Zeileis 2016).
In a rootogram, the y-axis contains the square root of the expected frequency and the x-axis
contains the predicted outcome count. In a suspended rootogram, the difference between
the expected and actual frequency is shown as the light-blue Observed histogram, while the
Expected line (and surrounding credible interval) contains the expected frequency.

Figure 3 contains two subplots of rootograms in the suspended style, for model M2.
Subplot a) contains predictions up to y = 150, and all of the predicted zeros (as

√
30000 ≈

173). At this scale, it is hard to draw any conclusions. Therefore, we created subplot b),
which zooms in on predictions between 1 and 50. At this scale, we see that the model slightly
underestimates introductions of 2 duplicates, and slightly less overestimates 3 duplicates. The
rest of the expected counts fit progressively better. Overall, the model seems to fit the data
well—this is also indicated by the narrow prediction interval around the expected frequency.

3.1.11 Model Comparison

The LOO-CV algorithm can also be used to compare and rank the models, as shown in
Table 2. This indicates that model M2 outperforms the simpler model M1 by about eight

Table 2 Comparison of LOO-CV
expected log posterior

Model elpd_diff se_diff

M2 0.0 0.0

M1 −205.9 24.7

M0 −2217.5 77.0

The first column contains the model name, the second column is the
difference in expected log-predictive density, and the final column lists
the difference in standard error
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standard deviations ( 205.924.7 ), which is a significant amount. The intercept-only model,M0, is
a distant third.

Based on the DAG and the LOO-CV results, we decided to use model M2 for future
exploration of the posterior predictions. Worth noting is that M2 also follows the causal
model and, hence, from a causal perspective is the correct model given the assumptions
concerning causality in the studied phenomenon.

3.1.12 Posterior Predictions

Thefinal step in building a trustworthymodel is to visualize posterior predictions and compare
them with the collected data points. The model should fit the trained data, but should also
allow some variations in predictions, to avoid overfitting.

Figure 4 shows the proportion of zeros (no clones added) predicted by model M2 when
given the training data set. The blue histogram is the predicted proportion of zeros for various
samples of the model, and the observed data is the solid dark blue vertical line. As can be
seen in the figure, when seeing the training data set, the model expects between 93% and
94% zeros. This fits the observed data (black line T (y)) well. Further posterior predictive
checks are available in the replication package.

Oncewe have a robustmodel, we can use it tomake inferences and visualizations. Because
the model is multi-dimensional, we typically fixate all but one or two predictors, generate
predictions, and then plot the inferences (e.g., expected values and credible intervals) as they
vary across the varying predictors.

Further predictions and visualizations are available in Section 4.

Fig. 4 M2 posterior predicted
proportion of 0. T (yrep): Model
predicted proportions. T (y):
Observed proportion of zeros.
The observed value lies well
within the predicted proportion
(93%–94%)
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3.2 Empirical Validation ofM2

Following the methodology from Runeson et al. (2012), we conducted an embedded case
study, where the unit of analysis is a set of components belonging to a particular subsystem
developed by a sub-organization in a large software development organization. We selected
components basedon availability andorganizational structure—theorganizationwasgrowing
during the studied period, and wanted to know how changes to their existing business flow
would affect their accumulation of technical debt.

Data collection was initially done via archival analysis (of code repositories and organi-
zational charts), and later augmented by qualitative data from focus group interviews, which
was transcribed and subject to open coding. We performed four kinds of verification and
validation of the model and its results: (i) we used synthetic data and analyzed whether the
different models that we built could recover the used predictors; (ii) our choice of Hamilto-
nianMonte-Carlomeans that themodel execution itselfwill perform fundamental consistency
checking (e.g. flagging divergent transitions (McElreath 2020)), in addition to the standard
way to assess model fitting (e.g., rootograms Kleiber and Zeileis 2016), for our zero-inflated
model); (iii) our choice of using PSIS-LOO (Pareto-Smoothed Importance Sampling, Vehtari
et al. (2017)) indicates that our model is free from highly influential points that might skew
the model results, and finally (iv) we confronted three development teams, plus line and
architect teams, with the results, which allowed us to evaluate whether the model inferences
aligned with what they expected.

3.2.1 Organization and System Characteristics

The studied system consists of eight components belonging to a subsystem in a large-scale
software system. All components are written in Java and are used in a scalable business
processing application that combines event-driven processing with batch-processing tasks.
We studied the components from January 2020 until November 2022, as development ramped
up after having been paused for a few years. During the period under study, the number of
contributors grew from 18 in three teams to, at most, 63 in ten teams. Two teams were
disbanded during the study, leaving eight active teams at the end of the study.

The organization initially emphasized “collective ownership” of the code repositories,
meaning that teams were expected to contribute to all components, and make improvements
wherever a developer sees the opportunity.However, some distribution of repository responsi-
bilities between teams took place during 2021, whereby all development teamswere expected
to monitor the SonarQube issues and metrics for one or more allocated repositories. They
were also expected to improve the test coverage in the allotted repositories, unless they were
busy working on new features.

As the organization grew, it formed dedicated architect and quality assurance (QA) teams
during late 2020. While the architect team was quite active, both in the production and the
integration test code bases, the QA team did not contribute code but instead focused on
planning and executing end-to-end tests.

3.2.2 Data Collection and Exploratory Data Analysis

The algorithm used for producing the quantitative data is described in Algorithm 1. We col-
lected commit data from theMain branch of the studied repositories, as well as organizational
data from the team wiki, which contained team composition at different points in time. In
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total, ten organization charts were identified for the studied period. Based on this data, we
inferred which team a particular developer belonged to at a particular date. We used this
affiliation data, together with the author and committer information, to identify the respon-
sible author and the team they belonged at the time of the commit. Authors lacking known
team affiliation (i.e., missing from the organization charts) were modeled as belonging to an
“Unknown” team—we could have opted to remove or impute these data points, but chose to
keep them, as they concerned only 2.0% of the input data, and had a low impact on the final
model.

The git log provided data for each commit, such as date, author, committer, added lines of
code (ADD) and removed lines of code (REM). By merging this with data from the Sonar-
Qube analysis, such as McCabe’s cyclomatic complexity (COMPLEX), and the number of
code clones before (DUP) and after the commit, we constructed a history over which author,
and which committer, changed which file, at each point in time. This was then merged with
the organizational data to attribute the change to the team that the author (or committer)
belonged to at the time of the authoring (or committing).

In most cases, the author-team and committer-team are the same, and selecting one or the
other does not change our conclusions. But wemake the case that, in this organization, having
“free-for-all commit rights,” it is fairer to attribute the change to the committing team, rather
than to the authoring team, as it is the committers team that merges the final change into the
master branch. In organizations with more stringent merge rules or where some automated
function merges the change, using the authoring team as the basis of analysis might make
more sense.

After completing data collection, we performed exploratory data analysis, to ascertain
data quality, and to identify possible patterns.

3.2.3 Feedback to Organization

We presented our findings to the studied organization, initially in a meeting with the architect
team and the responsible line manager. In this meeting, we decided to present team-specific
findings in meetings with the core teams: Red, Green, and Blue.8 In the team-specific meet-
ings, we discussed findings particular to the specific team.

We concluded with a summary presentation for the architect team, where we presented
the findings together with comments from each core team. Both the architects and the devel-
opment teams agreed that the metrics would be useful to gain an insight into team behavior
related to clone introductions, but also stated that metrics related to the removal of code
clones would be needed to give a more correct picture of the evolution of the code base.

3.2.4 Modeling Removal of Duplicates

We concluded the study by making a simple model for the removal of code clones, to see if
this model changed some conclusions.

We collected data on clone removals using Algorithm 2, and used an intercept model,
structured like modelM0, with y set to the number of removed clones (fixed), with identical
priors as model M0, to illustrate the tendency of each team to remove clones. Results from
the model were reported to the architect team in summary format, and are available in the
replication package.

8 At least one developer in each of these three teams were contributing to the product throughout the whole
studied period.
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Algorithm 2 Calculating removed clones for changed files in a repository.
Data: C commits: Ci precedes Ci+1
Result: List of data for changed files
filestate ← ()

for Ci ∈ C do
author ← AuthoredBy(Ci)
dauth ← AuthoredDate(Ci)
committer ← CommittedBy(Ci)
dcomm ← CommittedDate(Ci)
teama ← FindTeam(author,dauth)
teamc ← FindTeam(committer,dcomm)
for Fj,i ∈ Files(Ci) do

dupprev ← Duplicates(Fj ,i−i)

dupcurr ← Duplicates(Fj ,i)
� ← dupcurr − dupprev
if � < 0 then fixed ← abs(�)
else fixed ← 0
filestate ← filestate + (Fj ,i , teama , teamc, fixed)

end
end
return filestate

Further studies and model designs for clone removals are left as subjects of follow-up
studies.

4 Results

4.1 Exploratory Data Analysis

All eight studied components existed at the start of the study and were being developed by
three teams (Red, Green, and Blue) at that time.

At least one developer from each of these teams was part of the studied organization
during the whole study period, but all teams changed staffing, to some extent, during the
study. The number of teams grew both organically (developers switching team affiliation)
and via external recruitment.

Figure 5 shows the flow of developers into (Onboarded) and out of (Exited) the studied
organization, as well as transfers between teams throughout the studied period. At the peak,
63 contributors formed eleven teams—including one architect team (Arch), one end-to-end
testing team (QA, not contributing to the production-code base), and one UI team (mostly
working in non-Java components). As two of the formed teams were disbanded during the
study, at the end of the study eight developer teams, totaling 45 developers, were contributing
to the code base, and 5 QA testers were validating the components end-to-end. In total, 82
developers were onboarded, and 50 left the organization during the study.

Table 3 shows the initial (Fs) and final (Fe) number of Java files, the initial (LOCs) and final
(LOCe) lines of code, as well as the number of change events in each repository (Chg). The
components were of different sizes, and changed to varying degrees. In the largest repository,
Jupiter, almost nine times more files were changed than in the smallest, Mercury.

Figure 6 shows the proportion of file changes, per team and repository, that contain at
least one new code clone. The size of the point is proportional to the number of file changes
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Fig. 5 Flow of developers in and out of the organization, and between the different teams. Study start: Dec.
2019; Study end: Nov. 2022

the team has performed in the given repository. We note that the architect team (“Arch”),
though they make fewer changes than the more active teams (e.g., Blue, Green, and Red), are
less likely to introduce duplicates. Furthermore, we note that the repositories have different
likelihood of having duplicates introduced. In the integration test repository, most teams—
except Architects—introduce at least one duplicate in every tenth file change, regardless
of change size or other predictors. Some teams make very few changes, in particular Pink,
which was active only a few months, and UI, which does not normally work in Java-based

Table 3 Summary code statistics
per repository

Repository Fs LOCs Fe LOCe Chg

IntTest 243 99310 347 154637 3999

Jupiter 1103 151628 1768 219063 9413

Mars 413 64351 729 75050 2215

Mercury 166 23437 291 35597 1137

Neptune 288 38240 468 66616 1801

Saturn 1267 149820 2157 208294 6969

Uranus 227 26256 577 60423 3083

Venus 198 22703 482 55391 2390

Fs /LOCs : initial number of Java files/lines of code.
Fe/LOCe: closing number of Java files/lines of code.
Chg: number of file change events during the study
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Fig. 6 Observed proportion of file changes containing one or more new duplicates, per team and repository.
The size of the point is proportional to the number of files changed by the team in the repository

repositories. To avoid selection bias, we chose to keep these data points for model fitting,
even though our analysis focused on the more active core teams.

Figure 7 shows theOCAMrank for the various teams in the Jupiter andUranus repositories.
As lower ranks imply higher contributions, we note that in Jupiter, Team Red leads in the
number of commits, the total size of changed code (churn), and the added complexity. Team
Blue also ranks high, indicating they have been highly active in this repository. In Uranus,
the roles are practically reversed between Team Red and Blue, and we note that some teams
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Fig. 7 OCAM model rank of
team contributions to the Jupiter
and Uranus repositories.
NCOMMIT: Number of commits.
CHURN: Sum of max(added,
removed) LOC. ADD_COMP:
Sum of added McCabe
complexity. REM_COMP: Sum of
removed complexity. All metrics
increase as contributions
increase. Rank 1 means the
highest contribution amongst the
studied teams.

(e.g., Pink, UI, Unknown, Violet) are consistently ranked low. We used OCAM plots like
these to discuss ownership with the teams and contrast these findings with the visualizations
from our model.

4.1.1 Core Teams in the Largest Repository

Three development teams were part of the organization during the entire studied period, and
we also considered the Architect team, which was formed by developers from the Blue and
Green teams in early 2020. Summary statistics for the contributions of the four core teams
to the Jupiter repository, the largest in the product, is shown in Table 4. Team Red made over
2000 changes to files in the repository, and Team Green about half as many. As part of these
changes, the proportion of code authored byTeamRed grew from10.5% to almost 18%,while
the proportion authored by Team Green declined from 12% to barely 4%. Although Team
Blue made over 2000 changes, the proportion of code authored by them declined from 15%
to 5%, meaning that they either did significantly smaller changes and/or were consistently

Table 4 Summary statistics for
core teams in the Jupiter
repository

Team n %dup Cq50 JLINEs JLINEe

Red 2166 4.0% 18 10.5% 17.9%

Arch 623 4.6% 16 — 6.4%

Green 1172 6.7% 21 12.2% 3.8%

Blue 2123 5.5% 10 15.0% 5.0%

Other 62.3% 73.4%

Total 9413 5.9% 13 204 kL 282 kL

n: number of changes to files.
%dup: percentage of changes that introduce a clone.
Cq50: median complexity of the changed file.
JLINEs : initial ratio of authored lines.
JLINEe: closing ratio of authored lines.
The last row is the total metrics for all teams (including the absolute
number of all lines in the Java files)
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changing the same portion of the code in that particular component. At the end of the study,
the four additional development teams had contributed between 0.6% to 6.9%—summarized
in the Other row in the table. About 20% of the code in the repository had been authored by
developers who had left the organization. About 5.9% of the file changes introduce duplicates
in this repository.

Figure 8 show four histograms, one per team, where the x-axis represents the number of
introduced duplicates, in the Jupiter repository, and the y-axis is the number of file changes
that add this number of duplicates. For these teams, eight changes introduce more than ten
duplicates (four by Green, three by Red, and one by Blue). We also note that the architect
team introduced fewer duplicates (23 single-duplicate-introducing changes, and only a few

Fig. 8 Histogram of the observed number of introduced duplicates in the largest repository (Jupiter) by four
teams
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changeswith 2–6 duplicates). The Blue teammademore than 60 changes introducing a single
duplicate, and they committed one change with more than 40 duplicates, which also was the
maximum observed value for this repository across all teams.

The summary data alone shows that teams have different rates of introducing duplicates in
the Jupiter repository. We will explore the differences more using the model in the following
section.

4.2 Fitness of theModel

Figure 9 shows a posterior predictive visualization displaying the 99th percentile prediction
for the various teams across all repositories. As seen on the respective x-axis,9 most teams
are expected to introduce less than 16 duplicates at the 99th percentile. The exception is the
UI team, where some predictions range up into the hundreds. This is because the UI team
only contributed a few changes to a few repositories, causing the model to be more uncertain.
In general, the expected 99th percentile values (light blue histograms) align well with the
observed values (solid T (y) line), indicating a good model fit.

More posterior prediction visualizations are available in the replication package.

4.3 Model predictions

Given that small changes rarely introduce any duplicates and that all metrics are highly right-
skewed, we focus our predictions on choosing either the median (indicated by Q50), 95th
percentile (indicated by Q95), or 99th percentile (indicated by Q99) as predictor values. The
observed values for these metrics across all repositories are shown in Table 5.

Figure 10 shows the predicted probability of introducing at least one duplicate for a
large change (added and removed lines at their 99th percentile) to a complex file with many
duplicates (complexity and existing duplicates at their 95th percentile). Themodel predictions
are made for the teams active at the end of the studied period, plus a simulated “Average”
team, which pools information from all teams and repositories. The different behaviors of
the teams are clearly visible in the repositories. The figure indicates that in many repositories
(e.g., IntTest, Saturn, Uranus, Venus), the architect team has a low probability of introducing
duplicates—in some cases this behavior is shared with other teams (e.g., Red in IntTest and
Green in Uranus).

The largest repository, Jupiter, has the highest probability of teams introducing code
clones, in particular by the Blue, Brown, and Orange teams. For these teams, the model
expects more than a 50% probability that a change with these characteristics will introduce at
least one duplicate, whereas the probability for the Green team is around 30%. In the second
largest repository, Saturn, the only teams that deviate from the norm are the architects, with
a lower-than-average probability of introducing clones, and Team Yellow, with a slightly
higher-than-average probability.

4.4 Model Evaluation—RQ 1, RQ 2

Table 2 shows that the model that best fits our data, using approximated leave-one-out cross-
validation (LOO-CV), is M2, described in (9)–(11). This is a Bayesian MLGLM, with
four numerical and two categorical predictors, with varying slopes and intercepts. To assess

9 Note the different scales on the x-axes.
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Fig. 9 Posterior predicted 99th percentile per team, across all repositories. Note the different x-axis scales

Table 5 Summary statistics for
file changes in all repositories

Metric Q50 Q95 Q99 Max

ADD 6 143 370 3772

REM 2 92 311 3413

COMP 16 282 633 1244

DUP 0 36 99 664
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Fig. 10 Probability of introducing at least one duplicate for a large change in a complex file. ADD = 370
(Q99); REM = 311 (Q99), COMP = 282 (Q95); DUP = 36 (Q95)

model convergence, we used standard diagnostic checks (McElreath 2020; Vehtari et al.
2017; Gelman et al. 2020), such as R̂, nef f -ratio and Pareto-k value approximation, and to
assess model fit, we used the rootogrammethod recommended byKleiber and Zeileis (2016).
Detailed diagnostics are available in the replication package (Sundelin and Bauer 2024).

4.5 Predictions of the Estimated Number of Introduced Duplicates

Using M2, we can make predictions using the posterior distribution, to visualize and sum-
marize results.
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Fig. 11 Estimated number of introduced clones for a large change, by complexity and existing duplicates.
Q50: DUP = 0; Q99: DUP = 99 A) Team Blue in Jupiter; B) Team Blue in Uranus; C) Team Red in Jupiter; D)
Team Red in Uranus; ADD = 143 (Q95); REM = 92 (Q95); observations as points, regardless of change size.
The shaded area represents the 89% credible interval. Team Red is largely indifferent to existing complexity.
Both teams are sensitive to existing duplicates, and are expected to introduce fewer clones in repositories that
they have chosen to be responsible for
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Figure 11 shows how the estimated number of introduced duplicates varies for a large
change, made by two teams (Blue and Red) in two repositories (Jupiter and Uranus). The
x-axis represents the complexity of the changed file, and the different colored lines represent
the expected number of introduced clones, depending on whether the file had any existing
duplicates or not. Both added and removed lines are set to their respective 95th-percentile
value. The shaded areas represent the 89% credible interval for predictions—all areas start
at 0, and the larger the number of existing duplicates, the larger the credible interval. The
figure also contains observed data points for the respective teams, regardless of the size of
the change, but colored by whether the file had duplicates or not.

Complexity matters—but not for all As is shown in Fig. 11, the expected number of
duplicates for TeamRed (bottom row) does not depend on the existing complexity of
the changed file. The other teams show varying strengths in the association between
existing complexity in the file and the expected number of introduced clones. The
preexisting number of clones plays a role in all teams—files without any existing
clones are unlikely to see a large number of introduced clones, and the larger the
number of existing clones, the larger the expectednumber of newly introduced clones.

During 2021, Team Blue (top row) chose to be responsible for Uranus (B), while Team
Red (bottom row) chose Jupiter (C). As the figure shows, both teams are expected to add
around half as many duplicates in the repository they assumed ownership of, relative to the
other.

(Some) owners are different As shown in Fig. 11, assumed ownership of a compo-
nent does seem to impact the rate of clone introductions. In this study, teams were
allowed to self-select which components to be responsible for, from the perspective
of reducing SonarQube violations and increase test coverage. There was no formal
team ownership (such as requiring sign-off on commits or patch sets) in place. As
illustrated in the figure, both Team Blue and Team Red appear to introduce about
half as many duplicates in the components they chose to be responsible for, relative
to the other.

Given what Dietz et al. (2003) say about the importance of monitoring of the common
resource to efficiently govern its usage, we postulate that our model, and in particular the
posterior predictions and visualizations would be a useful tool for architects and team leaders
to judge the adherence of individual teams to the agreed code duplication policies. Unlike
standard statistical summaries (such as Figs. 6 and 8), which does not take complexity and
existing number of clones into account, our model adjusts its predictions to the circum-
stances of each file change. Thus, it has the potential to be more precise, and therefore, more
trustworthy, for developers and architects alike.

4.6 Comparing with the Average

Using the model, we can simulate how a new team (i.e., a team that has not yet produced any
data points) is likely to behave, based on the behavior of existing teams, using a concept called
“partial pooling” in Bayesian contexts. This can give interesting comparisons. Figure 12
shows the expected cumulative probability of introducing duplicates for four existing teams,
as well as the population average (“NewTeam”) in four repositories, for a fairly large change
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Fig. 12 Cumulative probability of introduced code clones for four existing and a simulated new team, making
a large change; ADD = 143 (Q95); REM = 92 (Q95); in four repositories; a) in a file of median complexity
lacking existing duplicates; COMP = 16 (Q50); DUP = 0 (Q50), and b) in a complex file with many existing
duplicates; COMP = 282 (Q95); DUP = 36 (Q95)

(added and removed lines to their 95th percentile). The x-axis shows the maximum number
of introduced duplicates and the y-axis shows the probability of seeing the corresponding x
number of introduced clones, or less. In Fig. 12, part A, the complexity and existing number
of duplicates are set to their median values (16 and 0, respectively), indicating a large change
in a median complex file. In Fig. 12, part B, all values are instead set to their 95th percentile
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values (complexity 282 and 36 existing duplicates), indicating an equally sized change, in a
more complex file. Based on the figure, we can draw several conclusions:

• “NewTeam”, the population average—being the average—can be used to indicate
whether a team is more or less likely to introduce duplicates than the average team.
We see that the placement of teams, relative to the population average, varies across
repositories, and depending on complexity. For a change in a median file in Uranus,
Team Red is below average, whereas they are close to the average for a complex change.
The opposite is true for Team Blue, who are more affected by complexity.

• Team Blue, as stated, behaves below average for both integration tests and Jupiter, the
largest repository, where they have slightly less than 30% probability of avoiding intro-
ducing duplicates in a complex file. In Mars and Uranus, changing median complex files
lacking duplicates, they behave better than the average team.

• Team Red, in general, behaves like the average team, or better, with the exception of
changing median complex files in Uranus. The model expects the probability of intro-
ducing a duplicate in Uranus to be similar regardless of complexity and whether there are
duplicates or not (though the slope is different, so the number of duplicates introduced
would be expected to be higher in a more complex file)

• Team Green in the Mars repository, is very unlikely to introduce clones in the complex
file, but in themedian file, they behave slightlyworse than average (though the probability
of avoiding clones is still around 80%). The reason for this is to be found in the data—the
majority of cases where Team Green has introduced clones in Mars have been in files
lacking any existing duplicates, and they have never introduced a clone in a file with
more than two existing duplicates. Thus, the model infers that when Team Green makes
a change in a complex file with existing duplicates, they are unlikely to introduce any
clone.

• Architects are, in general, less likely to introduce clones, particularly in the integration
test repository, where the model infers around a 90% chance of avoiding clones in a
complex file. One exception is the probability (around 60%) of keeping zero clones for
a change in a complex Jupiter file—but the probability of more than one clone drops off
more quickly than the average team.

Pathbreakers vs. caretakers When confronted with the findings from the collected
data, both the Architect team and Team Blue stated that the reason for the aberrant
behavior of Team Blue in the Jupiter repository was that they handled “the most
difficult tasks”, and during the studied period they were actively working on rearchi-
tecting the main business flow, largely encapsulated inside the Jupiter repository.
Thus, they could be seen as “pathbreakers”, versus the more careful and deliberate
“caretakers”, i.e., the Red and Green teams.

4.7 Teams’Feedback—RQ 3

While the organization lacked any formal “gatekeeper” form of ownership of the repositories,
the teams did state that they, during 2021, had distributed the repositories between themselves
to manage SonarQube violations and improve test coverage. Teams were allowed to self-
select repositories to care for, and based on the (LOC) size of each repository, one or more
repositories were chosen. While Team Red had responsibility for one repository—Jupiter,
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the largest, Team Green had seven, among themMars, and Team Blue had two, one of which
was Uranus. The Architect team was not allocated any repository, as they had the overall
product structure responsibility.

Figure 12 shows that the Architect team in the integration test repository has a very low
probability of introducing clones, relative to the normal development teams. They attributed
this to the fact that “we make changes to this repository only when we change various inter-
faces of the product”. Looking at the data, this statement is partially correct—the Architect
team does introduce fewer new files (14 of 241, ≈ 5.8%) than the Blue (93/1030, ≈ 9.0%)
and Brown (24/332, ≈ 7.2%) teams. However, many teams are less active, and Team Red
(another core team) introduced 30 new files out of 617 changes (≈ 4.9%).

The Blue team in the Jupiter repository shows a stark difference from the other teams.
This repository is the largest in the product, where most of the business logic is contained.
When we discussed this with the team, we got a partial explanation: “We were in Proof-
of-Concept mode, no process was followed. Lots of code was copied across repositories. . .
And after that, there was a reset, where 1.5 years of work was almost null and void. . . ”
The Architect team backs this up: “It was a huge feature, a twelve–fourteen-kind-of-sprints
feature, changing almost every aspect of the two main business flows. Because of this, they
might have been replicating parts of it, causing duplicates”.

As depicted in Fig. 12, Team Green behaves close to the population average in most
repositories. However, in the Mars repository, they behave significantly differently, having
a 90% chance of avoiding introducing a duplicate when changing a complex file, compared
to the population average of around 75% (a figure that is also close to the Red and Blue
team behavior). Team Green responds to this fact with: “In Mars, we have achieved kind of
a standard of code, whereas in Jupiter we are introducing diverse code, which results in bad
coding practices sometimes”. This indicates that this team is familiar with Mars, while being
more foreign to Jupiter. The other teams do not appear to be as familiar with Mars as Team
Green.

All teams state that they think the statistics and visualizations give important insights into
team behavior, but also state that a fuller picture would be gained by also modeling how
teams improve code by removing duplicates.

4.8 Model for Removal of Code Clones

As the teams indicated that the removal of clones by teams in different components should also
be considered, we tried to model clone removals via the same method as the introductions.
We collected data on clone removals according to Algorithm 2, and then fit the simplest,
intercept-based model onto the collected data to get the average behavior of the team in each
repository without considering any predictors.

To construct model M3, we used (1), with y representing the number of (zero or more)
removed code clones. The parameters of the zero-inflated negative Binomial likelihood are
defined according to (2)–(3). As the prior predictive checks showed reasonable values, we
used the same priors (defined by (4)) for model M3 as for model M0.

Figure 13 shows the probability of removing one or more duplicates for the eight currently
active teams in the various repositories. A few teams and repositories stand out, such as the
Architects and Team Green in Neptune, Team Yellow in integration tests, and Team Brown
in Mars. But the general pattern is that the teams show quite similar behavior, and the simple
intercept model (not considering any predictors) expects, at most, a 5–10% chance of a team
removing a clone, regardless of which repository.
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Fig. 13 Probability of removed clones, based on an intercept-only model

5 Discussion

In this section, we separate the discussion of the general findings from the case-specific ones.

5.1 Monitoring Code Clone Introduction Trends

Relative to summary statistics, such as the proportional data in Fig. 6 and Table 4, our
Bayesian model allows instant “grading” of a contribution. Using the tools that generated
Fig. 12, each file change in a merge request can be automatically rated, both in comparison
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to the average team and relative to the typical behavior of the developing team. Given input
data (i.e., the number of added and removed lines, the existing complexity and number of
duplicates in the file, and the author team), the model would output the probability of seeing
y new clones. This could be integrated into automated review tools, such as SonarQube or
Gitlab pipelines. Providing this sort of feedback before merging to the main branch would
allow the team to proactively affect their “clone introduction probability,” before the next
iteration of the model is built.

Statistical summaries such as the ones in Figs. 11 and 12 could be used by architects or
experienced developers to ascertain how newly formed or onboarded teams fare, relative to
“the average team” and detect when they might have a different behavior than what could
be expected. This should allow an objective assessment of how teams behave from a clone-
introducing perspective, relative to the average team, in different components. It is important
to note that, as the averaging occurs across the entire population of developer teams, there
will always be some teams that are better, and some that are worse than the average. But the
model also allows an objective assessment (with uncertainty estimates) of how much better
or worse, each team is, relative to the average team. This should allow the architects to gain
insights that can be used to initiate discussions about how each team are performing in the
different components of a subsystem, which in turn could be used to identify components
where more architectural support is warranted.

Choice of Grouping Level for Code Clone Introduction Modeling Relative to earlier soft-
ware engineering studies, which usually mapped out ownership based on the number of
changes individuals make to distinct files (e.g. Bird et al., 2011; Avelino et al., 2019; Fou-
cault et al., 2015) our study aligns more with the OCAM (Zabardast et al. 2022b) way of
inferring teams based on the author or committer of a particular file change. In the studied
organization, teams were responsible for what they committed, including reviewing and test-
ing the change, and we validated this inference with the studied organization. We attribute
the team affiliation based on where the committer was located at the time of the change. This
means that the ownership of components will fluctuate over time, as people change teams
(as seen in Fig. 5).

In other organizations, like Open-Source projects with loosely affiliated teams and occa-
sional corporate contributors, different methods might be applied to assign team labels to
file changes. In a typical successful Open-Source system,10 committing to active branches is
often reserved to a select set of Committers, while Reviewers are responsible for reviewing
incoming code changes, and Maintainers are responsible for the coordination of contribu-
tions, releases, and the overall project direction. The Linux kernel project11 allows different
headers in its patches (e.g., Co-developed-by:, Acked-by:, Signed-off-by:,
Reviewed-by:), which should be used to identify contributing individuals. Depending
on the question you are trying to answer (e.g., “In general, how do component C patches,
originating from Organization X, compare from a clone perspective to those written by Y”),
one or more of these attributes could be used to determine the contributing team, in addition
to the git standard Author: or Committer: attributes. This might also require updates
to the causal model underlying the Bayesian model.

The Bayesianmodel is agnostic to the choice of grouping level; it will use whatever groups
(labels) the data contains. However, too wide groups (e.g., sub-organizations, geographical
sites, or countries) might produce more diffuse, less-actionable results, since the findings

10 https://docs.linuxfoundation.org/lfx/project-control-center/v2-latest-version/reports/health-metrics/
code-contributions
11 https://docs.kernel.org/process/submitting-patches.html
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might be harder to connect to team practices and team behavior. Conversely, groupings that
are too fine-grained (e.g., on individual author level) might produce groups with too few
data points to make reliable predictions. Additionally, attributing a change to a single author
would introduce bias by disregarding contributions made by others, for instance, due to pair
programming, reviewing, or peer testing.

Capturing the Diversity of Team Behaviors The visualizations of different teams’ proba-
bility of introducing one or more duplicates (e.g. Fig. 12) can be used to discuss the causes
of clone introductions with the team. Team Blue was, by architects and themselves, seen as
“pathbreakers,” who were often tasked to perform the more complex tasks (such as architec-
tural changes), relative to the more “caretaking” Team Red (who, in turn, were standing out
in that they were, in most components, unaffected by existing complexity when introducing
clones). Thus, the visualizations can guide architects to understand, and initiate discussions
with, different teams, in a language that they understand. Both Team Blue and the Architect
team agreed that neither a formal process nor SonarQube rules were followed while Team
Blue was changing the architecture as a “Proof of Concept.” This is the likely reason for
them being much more likely to introduce clones in the largest repository in the product (and
also, to a lesser extent, in the other repositories).

Comparing With the Average, Rather Than Between Teams Figure 12 illustrates how a
Bayesian model can simulate a new team, based on the pooled population average. The
behavior of the “generic new team” is based on the partial pooling of existing teams, with the
influence of individual teams proportional to how much they have contributed to the various
repositories. These predictions can be used to monitor the progress of both new and existing
teams and detect behaviors that could be improved, or competencies that should be widened.

Relating to thefindingsmadebyDietz et al. (2003) to avoid the “Tragedyof theCommons”,
we postulate that our model, and its visualizations can serve as a useful tool to monitor (or
act as a quality gateway for) both newly onboarded, as well as more experienced, teams
making contributions to existing components. The architect team also indicated that the
visualizations could improve communication about how and why teams introduced code
clones in different components. Comparing with the average (rather than pitting one team
against another) might also improve the social networks between architects and development
teams. However, seeing any long-term effects requiresmore longitudinal observations, which
we defer to future studies on this subject.

5.2 Case-specific findings

In the following sections, we discuss the major findings highlighted by the model, as well as
how the teams reacted to these findings.

Architects are Active and Also Behave Differently In this organization, the architect team
is active in all repositories, and employs a different behavior than the regular development
teams. They have the highest median number of removed lines (7), which is higher than their
median number of added lines (3). Most other teams have higher median added lines (ranging
from 3 to 20) than median removed lines (ranging from 0 to 4). Figure 12 shows that the
behavior is especially pronounced in the integration test repository, where the architect team
is between 5–25% less likely to introduce duplicates in a complex file than the other teams.
The architect team claims that this is because they are mainly making changes due to added
or changed external interfaces.
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Teams React Differently to Existing Complexity As visualized in Fig. 11, Team Red is
largely indifferent to existing complexity with regard to the rate of clone introduction. For
all repositories but one (Venus), this team seems to be unaffected by complexity, although
the rate of clone introduction will vary across repositories (as shown in Fig. 11, parts C and
D). Team Blue, on the other hand employs the more common behavior, where the likelihood
of introducing code clones increases, as the complexity of the file grows. Team Red stated
that they are careful to avoid introducing new clones, and that they have started fixing old
SonarQube violations as they go along with their contributions. They have not contributed
much code to the Venus repository, which could be one reason for why the model assumes
they behave like an average team there.

Ownership Matters In Fig. 11, Team Blue is responsible for Uranus (B) and is less likely to
introduce clones here than in Jupiter (A). The reverse is true for TeamRed, who is responsible
for Jupiter (C), but not for Uranus (D). In Fig. 12, TeamGreen is responsible forMars, and has
the lowest likelihood (about 10%) of introducing clones of all teams, when changing complex
files. Initially, the studied organization employed total collective ownership. However, this
changed in 2021, when the teams were allowed to self-select which components they should
care for by fixing SonarQube issues and improving test coverage. To some extent, this can
explain the behavior—teams would likely select components where they “felt at home” when
they allocated team ownership. Because of this, we cannot claim causality, but we can state
that for these three teams, ownership allocation was reflected in how they behaved in the
respective components.

Given that most Open-Source projects also employ self-selection, it would be interesting
to evaluate whether this finding applies also to such organizations, and how it varies for
corporate contributors. To make such an assessment, in addition to the Bayesian model and
a tool such as SonarQube, the following would be needed: (i) the full source code, including
commit history (to build the historical data needed for predictions) of the project you want
to analyze; (ii) how to map contributions using labels such as Author:, Committer: or
any of the ones mentioned in Chapter 5.1, into the team (or other grouping level of interest)
responsible for the contribution; (iii) how the responsibilities of these groups are mapped
to the Contributor, Committer, Reviewer, and Maintainer roles for the various components
of the system under study. We would assume that committers (and possibly maintainers)
would show the strongest ownership behaviors, followed by reviewers, and last contributors.
If our assumption holds, for a given component, we would see groups with the committer or
maintainer role behave similarly to Team Green in Mars or Team Red in Jupiter, relative to
how they behave in other components, where they are merely contributors. Unfortunately,
we have to defer the studies of such Open-Source systems to a follow-up study.

DoNotForget RemovalsWhendiscussing our findingswith the teams, they often asked about
clone removals. To illustrate this, we also developed a simple (intercept-based) model for
how teams remove clones in the various repositories. This is illustrated in Fig. 13, where we
see the overall clone removal probability for various teams, in the various repositories. There
are some teams that “stand out”, such as Team Yellow in integration tests, and the Architects
and TeamGreen (and to a lesser extent TeamBlue and TeamBrown) in Neptune. Overall, this
model illustrates that most teams behave quite similarly regarding clone removals. Further
research in this area is deferred to a follow-up study to explicitly model removals with a
different DAG and possibly different predictors.
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6 Threats to validity

We structure our threats to validity according to the four different angles recommended
by Wohlin et al. (2012).

Construct validity concerns whether the studied measures reflect what the researcher had
in mind, and what is stated in the research questions. We base our study on a causal DAG
and attribute latent constructs (such as team cleanliness and knowledge of components) to
quantitative data (such as introductions of code clones). To aid interpretation of the results,
and improve construct validity, we presented the findings to four teams, and included their
feedback in this paper.

Changes to source code are made by individuals, based on more or less feedback from
other individuals. In this study, we attribute the committing individual, at the time of the
commit, to the associated team according to the organization chart, and use this information
to make inferences about general team behavior. Several possible threats arise from this
attribution: (i) modern software development methods (e.g, pair or mob programming), and
software version control systems (e.g., Gerrit12 and GitLab13) allow multiple developers to
collaborate on a patch set, before one person finally merges it, as one or more commits, into
themaster branch; (ii) individuals do not necessarily represent the team they are working in—
misrepresentations are possible, for instance by “lone wolf development,” or by individuals
working closer to other teams than their officially assigned; (iii) the committing individual
might have no relation at all to the actual changes—in some organizations, the commit
function is outsourced to an automated function, that merges the code once all required
tests pass. Regarding threat (i), we compared inferences based on both original author of
the commit and the committer, and found that they were virtually identical; regarding threat
(ii), we validated the organization charts with the studied organization, and found them to
be reasonably accurate and up-to-date; regarding threat (iii), the organization did not use
automated merge tools and was not rebasing (i.e., re-writing) commits to any large extent.

The Git logs contained a small number of authors that could not be associated with a team.
As this concerned only a few data points (less than 2% of the data), we modeled these as
belonging to a separate “Unknown” team. Although not correct from an organizational point
of view, this allowed these data points to influence the population average, which would not
have been possible if these data points had been excluded from the analysis.

We based our model on the detection of exact clones; Type 1 as defined by Bellon et al.
(2007) andKoschke (2007).Weused the default configuration of SonarQube to detect clones.
Evaluating how themodel performs for the identification of Type 2 (renamed/parameterized),
Type 3 (near miss), and Type 4 (semantic) clones remains a subject for future studies.

Internal validity deals with whether there might be other, non-studied factors that could
explain some of the findings.

One complicating factor is that the study took place during the Covid-19 remote work
period, where developers in their daily work had to work and collaborate remotely. This
possibly impacted both the onboarding of new teams and team members, as well as intra-
and inter-team collaboration. However, all the studied teams were operating under the same
remote-work rules, so the same confounding factor applies to all teams in this study. Still,
teams might react differently to the remote-work mandate, but we have to defer this factor
to a future study. We found during the focus groups that even with the remote work mandate

12 https://www.gerritcodereview.com/
13 https://about.gitlab.com/
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lifted, the studied organization was continuing to use a hybrid work mode, where teams
would come to the office one or two days per week, and work the other days from the home
office.

We focused our qualitative work on the core teams, with deep knowledge of the product.
This was partly for availability reasons, and partly because these teams were the most experi-
enced, and had members that had been part of the product for a long time. The same method
could have been used to study less contributing teams, but then considerable effort would
have to be spent to find the people who were part of these teams during the study period.

External validity concerns to what extent it is possible to generalize the findings, and to
what extent the findings are of interest to other people outside of the investigated case.

This paper contains data from a particular system, developed by a particular organization,
which limits generalizability. However, as Flyvbjerg (2006) states, cases play an important
role in human learning, and it is, in fact, possible to learn from a single case.

We have tried to describe characteristics that might enable others to judge whether our
findings apply to other systems, but we cannot claim generalizability across all possible
systems or organizations. To aid this judgment, we provide the full anonymized data set,
including all models and graphs described in the paper, and invite others to replicate the
study in other contexts.

The constructs in our DAG and model are all generic and are not specific to the studied
organization. Hence, it should be straightforward to use the same model in other contexts, to
see whether the findings can be replicated.

Reliability concerns whether or not the data and analysis are dependent on the specific
researchers.

Most of the data in this article are collected from quantitative sources, and processed
and visualized using standard statistical tools. We deliberately chose industry-standard tools
(git, SonarQube) for data collection, to avoid bias specific to particular tools. We provide a
replication package, including the full anonymized data set, that can be used to replicate our
Bayesian model-building process.

Interpretation of the processed data runs the risk of introducing reliability threats. We
strove to reduce these threats by interacting with the studied organization via mail and by set-
ting up focus groups to discuss our findings. We elicited feedback from four teams, including
architects, one line manager, and three core development teams. Anonymized transcripts and
codes are available upon request.

7 Conclusions and Further Work

This paper introduces a model and replication package (Sundelin and Bauer 2024) designed
to help visualize and understand how the team behavior related to introducing code clones
varies across different components. The model is based on an industrial case study and has
been validated through five focus-group sessions involving four teams.

The general pattern is that the number of introduced clones is related to both added and
removed lines (i.e., the change size), and the existing complexity and number of duplicates,
following the Broken Window Theory, as described by Hunt and Thomas (2000).

However, in some components, some teams are not affected by the existing complexity in
the file. Furthermore, teams that have chosen ownership of a component appear to introduce
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fewer duplicates, relative to how they behave in other components. This suggests that (self-
selected) ownership does matter in getting the teams to introduce fewer code clones.

An important factor to consider when analyzing data iswhy teams behave as they do. In the
study, one team that stood out, relative to the other teams, was tasked to rearchitect the main
business flow of the application, and this is a probable explanation for their behavior. Thus,
the visualizations are important, but the insights that the visualizations lead to are probably
more important (e.g., the importance of removing old code, once the new architecture is in
place).

All interviewed teams stated that the visualizations of the clone introduction probabilities
were useful for understanding clone introduction behavior across teams and repositories.
However, most teams also felt that the model should be complemented with a corresponding
visualization of the amount of removed clones. We developed the simplest possible model in
this regard and found no significant outliers on a team-level stratification. Inmost repositories,
most teams were acting similarly regarding clone removals.

This suggests that these two models could make a useful addition to a toolbox to govern
the commons, according to the principles outlined byDietz et al. (2003).We intend to explore
the clone removal model in follow-up studies and invite others to do the same.

Understanding how much historical data to incorporate into models like these, and how
often to resample them remains to be studied in follow-up studies.

In addition, replications in other organizations are needed to understand whether the
observed behaviors differ in other contexts, and whether the models can be useful when
analyzing other units of analysis (such as geographical sites or sub-organizations).
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