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Abstract
Given a reduced analytic space Y we introduce a class of nice cycles, including all effective
Q-Cartier divisors. Equidimensional nice cycles that intersect properly allow for a natural
intersection product. Using ∂̄-potentials and residue calculus we provide an intrinsic way of
defining this product. The intrinsic definition makes it possible to prove global formulas. In
case Y is smooth all cycles are differences of nice cycles, and so we get a new way to define
classical proper intersections.

1 Introduction

Let Y be a complexmanifold of dimension n. In this paper a cycleμ in Y is a locally finite sum∑
j ν j Z j , where ν j ∈ Q\{0} and Z j are distinct irreducible analytic subsets of Y . The cycle

is effective if ν j > 0. The support, |μ|, ofμ is the union of the Z j and the (co)dimension ofμ
is the (co)dimension of∪ j Z j . Assume thatμ1, . . . , μr are cycles in Y of pure codimensions.
It is well-known that then

codim
(|μ1| ∩ · · · ∩ |μr |

) ≤ codim |μ1| + · · · + codim |μr |. (1.1)

If equality holds in (1.1), then μ1, . . . , μr are said to intersect properly. In that case there is
a well-defined cycle

μr · · · μ1 =
∑

j

m j Vj ,

the proper intersection product, where Vj are the irreducible components of the set-theoretical
intersection |μ1| ∩ · · · ∩ |μr | and m j ∈ Q. In general some m j may be 0. However, if μ j are
effective, then μr · · · μ1 is effective and all m j > 0.

Classically, this intersection product was defined algebraically, see, e.g., [15]. On the
analytic side, given a cycle μ = ∑

j ν j Z j , recall that there is an associated closed current
[μ] = ∑

j ν j [Z j ], the Lelong current of μ, where [Z j ] is integration over the regular part of
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Z j . It is quite remarkable that one can define the Lelong current of the proper intersection
as

[μr · · · μ1] = [μr ] ∧ · · · ∧ [μ1], (1.2)

where the current product on the right-hand side is given ameaningvia suitable regularizations
of the various factors, see, e.g., [12] and [14].

Let us now assume that Y is a reduced analytic space of pure dimension n. Then there is
no known general analogous intersection theory; not even (1.1) holds in general. We say that
a cycleμ in Y is nice if locally there is an embedding i : Y → Y ′, where Y ′ is smooth, and an
effective pure-dimensional cycle μ′ in Y ′ such that i∗μ, i.e., μ considered as a cycle in Y ′, is
the proper intersection μ′ · i∗Y in Y ′. By definition thus a nice cycle is effective and locally
equidimensional. However, the irreducible components of a nice cycle are in general not nice.
In a neighborhood of a given point one can always take the embedding i to be the minimal
embedding, see Lemma 5.5 below. If μ1, . . . , μr are nice and of pure codimensions, then
(1.1) holds, and as in the smooth case we say that they intersect properly if equality holds.
In that case we have an intrinsic nice cycle μ = μr · · · μ1. As in the smooth case, μr · · · μ1

is commutative. If i : Y → Y ′ is a local embedding and μ′
j are effective cycles in Y ′ such

that i∗μ j = μ′
j · i∗Y , then μ′

1, . . . , μ
′
r , i∗Y intersect properly and i∗μ = μ′

r · · · μ′
1 · i∗Y . See

Sect. 5 for details.
It is well-known that the proper intersection in a complex manifold of cycles with integer

coefficients has integer coefficients. However, in a reduced analytic spacewe need to consider
cycles with rational coefficients. In fact, even if μ has integer coefficients, μ′ may need to
have rational coefficients. Moreover, the intersection product of nice cycles with integer
coefficients in general has rational coefficients.

The intersection theory for nice cycles in Y is in a way a quite simple consequence of
the proper intersection theory in ambient space. Our first main result is an intrinsic way to
define proper intersections in Y , i.e., with no explicit reference to any ambient space. The
approach in [12] to use regularizations of [μ j ] seems to be difficult to extend when Y is
singular. Instead we introduce good ∂̄-potentials. If μ is a cycle in Y of pure codimension κ

we say that a current u in Y of bidegree (κ, κ −1) is a good ∂̄-potential of μ if ∂̄u = [μ], u is
smooth outside |μ|, and u is pseudomeromorphic in Y . This last requirement is an intrinsic
regularity property that will be explained in Sect. 2.1.

Theorem 1.1 Let Y be a reduced analytic space of pure dimension.

(i) Each nice cycle in Y locally has a good ∂̄-potential.
(ii) Assume thatμ1 andμ2 are nice cycles that intersect properly and u2 is a good ∂̄-potential

of μ2. Then u2 ∧ [μ1], a priori defined outside |μ2|, has a unique pseudomeromorphic
extension to Y of pure bidegree. Moreover,

∂̄(u2 ∧ [μ1]) = [μ2 · μ1]. (1.3)

As in the smooth case, cf. (1.2), we write [μ2] ∧ [μ1] for the current in (1.3). Since
μ2 · μ1 = μ1 · μ2, clearly [μ2] ∧ [μ1] is commutative and independent of the choice of
u2. This follows also quite easily from the intrinsic definition and residue calculus, see
Proposition 3.4.

If μ1, . . . , μr are nice and intersect properly, then in a neighborhood of any x ∈ |μ1| ∩
· · · ∩ |μr | this result can be iterated to give the Lelong current of μr · · · μ1 there. Since all
effective cycles in a manifold are nice this gives in particular a new definition of proper
intersection when Y is smooth.
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Remark 1.2 In view of the influential paper [16] by Gillet–Soulé it might look more natural
to use ddc-potentials rather than ∂̄-potentials. However, the latter choice gives access to
residue theory, without which we cannot show existence of local potentials, let alone define
the product u2 ∧ [μ1]; cf. Remark 5.13.

Our intrinsic definition of the proper intersection of nice cycles makes it possible to prove
global results for a compact singular Y .

Theorem 1.3 Let Y be compact, ω a Kähler form, and let μ1, μ2, . . . , μr be nice cycles in
Y of pure codimensions κ1, . . . , κr , respectively. Assume that μ1, . . . , μk intersect properly
for k = 2, . . . , r . Assume also that for each j = 1, . . . , r there is a smooth (closed) form α j ,
and a pseudomeromorphic current a j of bidegree (κ j , κ j − 1), smooth in Y \ |μ j |, such that

∂̄a j = [μ j ] − α j , j = 1, . . . , r . (1.4)

In addition, suppose that all of the α j , except possibly α1, locally have smooth ∂̄-potentials.
If κ = κ1 + · · · + κr , then

∫

Y
[μr ] ∧ · · · ∧ [μ1] ∧ ωn−κ =

∫

Y
αr ∧ · · · ∧ α1 ∧ ωn−κ . (1.5)

Formula (1.5) suggests that the intersection product is “cohomologically sound”.

Example 1.4 Assume that μ j in Theorem 1.3 are the fundamental cycles of ideals defined
by global sections of Hermitian vector bundles E j of ranks κ j = codimμ j . We will see in
Sect. 6 that thenμ j are nice, and in Sect. 7 we prove that there are global pseudomeromorphic
currents a j , smooth in Y \ |μ j |, such that ∂̄a j = da j = [μ j ] − cκ j (E j ). Since the Chern
forms cκ j (E j ) locally have smooth potentials we can thus take α j = cκ j (E j ) in (1.4) and
(1.5).

Cycles as in Example 1.4 will be called RE-cycles, and are discussed in Sect. 6.
There is a proper intersection theory on normal surfaces due to Mumford [17]. Recently

Barlet and Magnússon, [8], defined proper intersections on a so-called nearly smooth Y by
analytic methods. In Sect. 9 we show that for RE-cycles our intersection product coincides
with the intersection in [8].

Our approach relies on residue theory, and in Sect. 2 we have collected some material that
we need. In Sect. 3 we present our ∂̄-potential approach to proper intersection. In Sect. 4 we
use this approach in case Y is smooth and show that it gives the usual intersection product.
Proper intersection of nice cycles is discussed in Sect. 5 and Theorem 1.1 is proved. The
special case of RE-cycles is considered in Sect. 6. We prove the global Theorem 1.3 in Sect. 7
and provide various examples in Sect. 8. In the last section we show that our product, at least
for RE-cycles, coincides with the product in [8] when Y is nearly smooth.

2 Some notions and results in residue theory

Throughout this section Y is a (reduced) analytic space of pure dimension n. A smooth form
α on Yreg is smooth on Y , α ∈ E(Y ), if for a local embedding i : Y → Y ′ into a manifold Y ′
there is a smooth form α̃ in Y ′ such that α = i∗α̃ on Yreg . It follows that ∂̄ , d , and ∂ are well-
defined on E(Y ). If X is a reduced analytic space and g : X → Y is a holomorphic mapping,
then there is a functorial pullback mapping g∗ : E(Y ) → E(X), see [9, Corollary 3.2.21].
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Currents on Y are dual to the compactly supported smooth forms on Y . More concretely,
if i : Y → Y ′ is an embedding, then the currents on Y can be identified with the currents
on Y ′ that vanish on test forms ξ such that i∗ξ = 0. Equivalently, the currents on Y can be
identified with the currents τ on Y ′ such that ξ ∧ τ = 0 for all test forms ξ with i∗ξ = 0.

If g : X → Y is a proper holomorphic mapping, then there is a pushforward mapping
g∗ : C(X) → C(Y ) from currents on X to currents on Y defined as 〈g∗τ, ξ 〉 = 〈τ, g∗ξ 〉. If τ

is a current on X and α is smooth on Y , then

α ∧ g∗τ = g∗(g∗α ∧ τ). (2.1)

If Z ⊂ Y is an analytic subset of pure codimension κ and j : Z → Y is the inclusion, then
the Lelong current [Z ] has bidegree (κ, κ) and j∗1 = [Z ].

If g : X → Y is proper, then there is a mapping g∗ : Z(X) → Z(Y ), where Z(Y ) are
the cycles in Y , defined as follows. Let μ ∈ Z(X) be an irreducible analytic subset of
X of dimension k. If dim g(μ) < k, then g∗μ = 0, and if dim g(μ) = k, then g∗μ =
deg(g|μ)g(μ), where deg(g|μ) is the number of points in g−1(x) for generic x ∈ g(μ). By
linearity, g∗ extends to Z(X). We have, cf. [3, Section 2],

g∗[μ] = [g∗μ]. (2.2)

In what follows we will usually identify a cycle with its Lelong current. In view of (2.2),
this is consistent with pushforward. With this convention, Y (considered as a cycle in Y )
is identified with the constant function 1, and if j : Z → Y is an embedding of a reduced
analytic space, then j∗1 = [ j(Z)] = j(Z) = j∗Z . If Z is an analytic subset of Y and j is
the inclusion, then we often identify Z and j(Z).

2.1 Pseudomeromorphic currents

The function 1/z	 in C \ {0} extends to C as a principal value current. The current ∂̄(1/z	)
is the associated residue current. If U ⊂ Cr is open, (z1, . . . , zr ) are coordinates in U , and α

is a smooth compactly supported form in U , thus

α ∧ 1

z	11
· · · 1

z	ss
∂̄

1

z	s+1
s+1

∧ · · · ∧ ∂̄
1

z	rr

exists as a tensor product in U . Such a current is an elementary pseudomeromorphic current.
The notion of pseudomeromorphic currents was introduced in [6] and further developed

in [4]. We take the characterization in [7, Theorem 2.15] of pseudomeromorphic currents
as the definition in this paper. If Y is smooth, then a germ of a current τ at x ∈ Y is
pseudomeromorphic if it is a finite sum

∑

	

( f	)∗ν	,

where f	 : U	 → Y are holomorphic mappings, U	 ⊂ CN	 are open, and ν	 are elementary
in U	. If Y is a reduced analytic space, then a germ of a current τ at x ∈ Y is pseudomero-
morphic if there is a smooth modification π : Y ′ → Yx of a neighborhood Yx of x and a
pseudomeromorphic current τ ′ in Y ′ such that π∗τ ′ = τ .

The set of germs of pseudomeromorphic currents in Y is an open subset of the sheaf of
currents on Y and thus is a sheaf, the sheaf PMY of pseudomeromorphic current on Y . This
sheaf is closed under ∂̄ and multiplication by smooth forms. We refer to, e.g., [7] for proofs
of the statements below about pseudomeromorphic currents.
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If τ is pseudomeromorphic and the holomorphic function h vanishes on the support of τ ,
then h̄τ = 0 = dh̄ ∧ τ . Furthermore, we have the
Dimension principle: If τ is pseudomeromorphic, has bidegree (∗, q) and support contained
in a subvariety of codimension > q , then τ = 0.

Example 2.1 If f is a holomorphic function on Y , not identically 0 on any irreducible com-
ponent, then 1/ f , a priori defined outside Z = f −1(0), has a pseudomeromorphic extension
to Y ; cf. Example 2.2. By the dimension principle such an extension must be unique. The
residue current, ∂̄(1/ f ), clearly has support in Z .

If τ is pseudomeromorphic in U and Z is a subvariety, then the natural restriction of τ to
the open subset U \ Z has a pseudomeromorphic extension 1U\Z τ to U such that

1U\Z τ = lim
ε→0

χ(| f |2v/ε)τ, (2.3)

if f is any tuple of holomorphic functions with { f = 0} = Z , χ is a smooth function on
[0,∞) that is 0 in a neighborhood of 0 and 1 in a neighborhood of ∞, and v is a smooth
strictly positive function. The right-hand side of (2.3) is indeed independent of the choice of
f , χ , and v. It follows that

1Z τ := τ − 1U\Z τ (2.4)

is pseudomeromorphic and has support on Z . If Z ′ is another subvariety, then

1Z ′1Z τ = 1Z∩Z ′τ. (2.5)

If τ is pseudomeromorphic and α is a smooth form, then1

1Zα ∧ τ = α ∧ 1Z τ. (2.6)

If g : X → Y is proper, ν and g∗ν are pseudomeromorphic, and Z is a subvariety of Y ,
then

1Z g∗ν = g∗(1g−1(Z)ν). (2.7)

Example 2.2 With the setting in Example 2.1 we have 1Y\Z (1/ f ) = 1/ f by the dimension
principle. In particular, cf. (2.3), limε→0 χ(| f |2v/ε)/ f = 1/ f . Thus, 1/ f can be defined as
a principal value current, which is the original definition of Herrera–Lieberman.

A current a on Y is almost semi-meromorphic, a ∈ ASM(Y ), if a = π∗(α/σ), where
π : X → Y is a modification, σ is a section of a line bundle L → X , and α is a smooth form
with values in L .Notice that if L isHermitian andβ is a smooth form, thenπ∗(∂ log |σ |2∧β) ∈
ASM(Y ). The smallest Zariski closed set outside which a ∈ ASM(Y ) is smooth is called
the Zariski singular support of a. If V is the Zariski singular support of a, then in view of
(2.7) and Example 2.2 we have 1V a = 0. The following lemma is [7, Theorem 4.8].

Lemma 2.3 If a ∈ ASM(Y ) has Zariski singular support V and τ ∈ PM(Y ), then a ∧ τ ,
a priori defined on Y \ V , has a unique pseudomeromorphic extension T to Y such that
1V T = 0.

We write a ∧ τ for the extension as well. By (2.3) it follows that if f is a tuple of
holomorphic functions with { f = 0} = V , then χ(| f |2v/ε)a ∧ τ → a ∧ τ .

Example 2.4 Let f be a holomorphic function on Y and τ ∈ PM(Y ). Then 1/ f ∈ ASM(Y )

and (1/ f )τ ∈ PM(Y ) by Lemma 2.3. Moreover, f (1/ f )τ = 1Y\{ f =0}τ .

1 If noting else is suggested by brackets, 1Z is always assumed to act on the whole expression on its right.
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2.2 Two operations onPM

Let σ be a section of a Hermitian holomorphic vector bundle E → Y with zero set2 Z .

Lemma 2.5 For each k = 1, 2, . . ., there is a (necessarily unique) almost semi-meromorphic
current mσ

k in Y that coincides with (2π i)−1∂ log |σ |2 ∧ (ddc log |σ |2)k−1 outside Z and
such that 1Zmσ

k = 0.

Proof Let π : X → Y be a normal modification such that for each connected component of
X , either π∗σ = 0 or π∗σ = σ 0σ ′, where σ 0 is a generically non-vanishing section of a line
bundle L and σ ′ is a non-vanishing section of L∗ ⊗π∗E . Equip L with a Hermitian metric by
setting |s|2L := |sσ ′|2 for any section s of L . In particular, |π∗σ |2 = |σ 0|2L on the union X ′
of the components of X where π∗σ is generically non-vanishing. By the Poincaré–Lelong
formula thus

ddc log
∣
∣π∗σ |X ′

∣
∣2 = ddc log |σ 0|2L = divσ 0 − c1(L).

Since π is a biholomorphism generically we have 1 = π∗1 as currents. By (2.1) thus,

(2π i)−1∂ log |σ |2 ∧ (ddc log |σ |2)k−1 = π∗
(
(2π i)−1∂ log |σ 0|2L ∧ (−c1(L))k−1) (2.8)

outside Z . Defining ∂ log |σ 0|2L ∧ (−c1(L))k−1 = 0 on X\X ′ the lemma follows since the
right-hand side then is in ASM(Y ) and vanishes on irreducible components of Y contained
in Z . ��

By Lemma 2.3 we can now define our first operation:

mσ
k : PMY → PMY , τ �→ mσ

k ∧ τ, k = 1, 2, . . . . (2.9)

In view of Lemma 2.3, 1Zmσ
k ∧ τ = 0, and if τ has support in Z , then mσ

k ∧ τ = 0. For any
pseudomeromorphic τ , by the comment after Lemma 2.3, we have

mσ
k ∧ τ = lim

ε→0
χ(|σ |2/ε)(2π i)−1∂ log |σ |2 ∧ (ddc log |σ |2)k−1 ∧ τ. (2.10)

Our second operation is the following:

Mσ
k : PMY → PMY , Mσ

0 ∧ τ = 1Z τ, Mσ
k ∧ τ = 1Z ∂̄(mσ

k ∧ τ), k = 1, 2, . . . .

If τ has support in Z , then Mσ
0 ∧ τ = τ and Mσ

k ∧ τ = 0, k = 1, 2, . . .. One can check that
for any pseudomeromorphic τ ,

Mσ
0 ∧ τ = lim

ε→0
(1 − χ(|σ |2/ε))τ, Mσ

k ∧ τ = lim
ε→0

∂̄χ(|σ |2/ε) ∧ mσ
k ∧ τ, k = 1, 2, . . . .

(2.11)

If α is a smooth form, then by (2.11),

α ∧ Mσ
k ∧ τ = Mσ

k ∧ (α ∧ τ). (2.12)

Moreover, if τ = g∗ν is pseudomeromorphic, where g : X → Y is a proper holomorphic
mapping and ν is pseudomeromorphic on X , then in view of (2.1), (2.11), and (2.10)

Mσ
k ∧ τ = g∗(Mg∗σ

k ∧ ν), mσ
k ∧ τ = g∗(mg∗σ

k ∧ ν). (2.13)

We write Mσ
k instead of Mσ

k ∧ 1. By the dimension principle, Mσ
k = 0 for k < codim Z .

2 Z may contain irreducible components of Y .
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Example 2.6 Let Z be a germ of an irreducible analytic subset of codimension κ in Y and let σ
be a tuple of holomorphic functions defining the idealJZ of holomorphic functions vanishing
on Z . Then by [3, Corollary 1.3], Mσ

κ = ν[Z ], where ν is a positive integer. It follows that
(the Lelong current of) any cycle in Y is pseudomeromorphic. If Z is not contained in Ysing ,
then ν = 1 in view of [5, Corollary 1.3]. However, if Z is contained in Ysing , then it may
happen that ν ≥ 2.

Remark 2.7 Assume that τ = g∗β is pseudomeromorphic, where g : X → Y is proper and β

is a product of components of Chern forms of various Hermitian vector bundles over X . Then
τ is a generalized cycle, a notion that was introduced in [3]. It follows from [3, Section 5]
that

Mσ
k ∧ τ = 1Z [ddc log |σ |2]k ∧ τ,

where
[ddc log |σ |2]k ∧ τ = lim

ε→0
(ddc log(|σ |2 + ε))k ∧ τ.

2.3 Regular sequences

Assume that f = ( f1, . . . , fκ ) is a regular sequence at x ∈ Y and let Z = { f = 0}; in
particular then codim Zx = κ . We can consider f as a section of the trivial rank-κ vector
bundle equipped with the trivial metric. Then ∂̄m f

κ = 0 outside Z . By Lemma 2.3 we get
that if τ is pseudomeromorphic, then 1Y\Z ∂̄(m f

κ ∧ τ) = −m f
κ ∧ ∂̄τ . It follows that

∂̄(m f
κ ∧ τ) = 1Z ∂̄(m f

κ ∧ τ) + 1Y\Z ∂̄(m f
κ ∧ τ) = M f

κ ∧ τ − m f
κ ∧ ∂̄τ (2.14)

and, by applying ∂̄ to (2.14), that

∂̄(M f
κ ∧ τ) = M f

κ ∧ ∂̄τ. (2.15)

Example 2.8 Let (ζ, z) be coordinates inCn ×Cn and let η = ζ − z. Let p1, p2 : Cn ×Cn →
Cn be the projections on the first and second factor, respectively, and let i : Cn → Cn × Cn

be the diagonal embedding. We claim that if μ is pseudomeromorphic in U ⊂ Cn then

Mη
n ∧ (1 ⊗ μ) = i∗μ (2.16)

in U × U . If additionally μ has compact support, then

μ = ∂̄
(
(p1)∗(mη

n ∧ (1 ⊗ μ))
) + (p1)∗(mη

n ∧ (1 ⊗ ∂̄μ)). (2.17)

To see (2.16), let [�] := i∗1 be the diagonal. Then [�] ∧ (1 ⊗ μ) is well-defined as a
tensor product; in fact, in the coordinates (η, z) = (ζ − z, z) it is just δ0(η)⊗μ(z). It follows
that

[�] ∧ (1 ⊗ μ) = i∗μ

in U × U . Since by Example 2.6 we have Mη
n = [�], (2.16) follows. To see (2.17), notice

that by (2.14) we have

∂̄(mη
n ∧ (1 ⊗ μ)) = Mη

n ∧ (1 ⊗ μ) − mη
n ∧ (1 ⊗ ∂̄μ).

If μ has compact support then we can apply (p1)∗. By (2.16), and since p1 ◦ i = id, thus
(2.17) follows. Notice that mη

n = ∂|η|2 ∧ (∂̄∂|η|2)n−1/(2π i |η|2)n is the Bochner-Martinelli
kernel and that (2.17) is the Bochner-Martinelli formula.

123
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2.4 The inequality (1.1)

Let us recall why (1.1) holds in a complex manifold Y . By induction it is enough to verify
it for two analytic sets A1 and A2 in Y . Let n = dim Y . Notice that if i : Y → Y × Y is the
diagonal embedding and � = i∗Y , then

i∗(A1 ∩ A2) = (A1 × A2) ∩ �.

Locally in Y × Y , � is defined by n functions so that the right-hand side is obtained by
successive intersection by n divisors (this is not true when Y is singular so then the argument
breaks down). It is well-known that each such intersection can decrease the dimension by at
most one unit, see, e.g., [13, Theorem II 6.2]. Hence dim i∗(A1∩ A2) ≥ dim A1+dim A2−n
and so (1.1) follows.

From (1.1) we get the following useful observation.

Lemma 2.9 Assume that A1, . . . , Ar are germs of analytic sets of pure codimensions at a
point in a smoothmanifold Y . If the intersection A1∩· · ·∩Ar is proper, then each intersection
A1 ∩ · · · ∩ Aν , ν ≤ r , is proper.

Proof Assume that A1, . . . , Ar have codimensions κ1, . . . κr , respectively. By assumption,
codim (A1 ∩ · · · ∩ Ar ) = κ1 + · · · + κr . In view of (1.1) thus

κ1 + · · · + κr = codim
(
(A1 ∩ · · · ∩ Aν) ∩ Aν+1 ∩ · · · ∩ Ar

)

≤ codim (A1 ∩ · · · ∩ Aν) + κν+1 + · · · + κr ≤ κ1 + · · · κr .
Both inequalities thus are equalities andweconclude that codim (A1∩· · ·∩Aν) = κ1+· · ·+κν

as desired. ��

3 A @̄-potential approach to proper intersections

LetY be a reduced analytic space of pure dimensionn.Wenowdescribe our intrinsic approach
to a proper intersection product in Y of cycles which locally admit good potentials.

Definition 3.1 Assume that μ is a cycle in Y of pure codimension κ ≥ 1 with support Z . We
say that a pseudomeromorphic current u of bidegree (κ, κ − 1) in an open subset U ⊂ Y is
a good ∂̄-potential (or simply a good potential) of μ if u is smooth in U \ Z and ∂̄u = μ.

It follows from the dimension principle (see Sect. 2.1) that 1Zu = 0. If χε = χ(| f |2/ε),
where Z( f ) = Z , therefore χεu are smooth and χεu → u; cf. (2.3) and (2.4). Since ∂̄u = 0
outside Z thus με = ∂̄χε ∧ u are smooth, ∂̄-closed, and με → μ.

Let μ1 and μ2 be (germs of) cycles of pure codimensions κ j ≥ 1 at a point x ∈ Y , let
Z j = |μ j |, and assume that u j is a good potential of μ j for j = 1, 2.

Proposition 3.2 The smooth form u2 ∧ u1, a priori defined in the Zariski open set Zc
2 ∩ Zc

1,
has a unique pseudomeromorphic extension T to Y such that 1Z2∪Z1T = 0.

Proof If T and T ′ are pseudomeromorphic currents with the stated properties, then

T − T ′ = 1Zc
2∩Zc

1
(T − T ′) + 1Z2∪Z1(T − T ′) = 0

since they coincide in Zc
2 ∩ Zc

1 and both vanish on the complement.
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For the existence of the extension, let i : Y → Y × Y be the diagonal embedding and
let � = i∗Y . Since � is not contained in (Y × Y )sing it follows from Example 2.6 that
Mη

n = [�], where η is a tuple of holomorphic functions defining �. By (2.12) we have

Mη
n ∧ (u2 ⊗ u1) = (u2 ⊗ u1) ∧ Mη

n = (u2 ⊗ u1) ∧ [�] = i∗i∗(u2 ⊗ u1)

in Zc
2 × Zc

1. If p : Y × Y → Y is the projection, e.g., on the first factor, then p ◦ i = idY
and it follows that p∗

(
Mη

n ∧ (u2 ⊗ u1)
)
is equal to u2 ∧ u1 in Zc

2 ∩ Zc
1. Since p is a simple

projection, p∗ preserves pseudomeromorphicity and thus

T := 1Zc
2∩Zc

1
p∗

(
Mη

n ∧ (u2 ⊗ u1)
)

is the desired pseudomeromorphic extension. ��
We denote the extension T by u2 ∧ u1 as well. It is immediate from the proposition that

this product is anti-commutative since its restriction to Zc
2 ∩ Zc

1 is.

Wewill now define the product of u2 andμ1. Notice that u2∧μ1 is well-defined in Zc
2.We

claim that T = −1Zc
2
∂̄(u2 ∧ u1) is the unique pseudomeromorphic extension of u2 ∧ μ1 to

Y such that 1Z2T = 0. The uniqueness of such an extension is clear, and since u2 is ∂̄-closed
in Zc

2, T is indeed an extension, so the claim follows. We denote this extension by u2 ∧ μ1.
That is,

u2 ∧ μ1 = −1Zc
2
∂̄(u2 ∧ u1). (3.1)

It follows from the dimension principle that if (3.4) below holds and T is any pseudomero-
morphic current of pure bidegree such that T = u2 ∧ μ1 in Zc

2 and supp T ⊂ Z1, then
T = u2 ∧ μ1 in Y .

We now define

μ2 ∧ μ1 := ∂̄(u2 ∧ μ1). (3.2)

It is clear that μ2 ∧μ1 has support on Z2 ∩ Z1. However, without further assumptions it may
depend on the choice of potential u2. If f is a holomorphic tuple with zero set Z2 we have

u2 ∧ μ1 = lim
ε→0

χ(| f |2/ε)u2 ∧ μ1 (3.3)

since 1Z2u2 ∧ μ1 = 0, cf. (2.3) and (2.4). Since ∂̄(u2 ∧ μ1) = 0 in Zc
2 it follows that

μ2 ∧ μ1 = lim
ε→0

∂̄χ(| f |2/ε) ∧ u2 ∧ μ1.

Definition 3.3 We say that the pure-dimensional cycles μ2 and μ1 intersect properly if

codim (Z2 ∩ Z1) ≥ codim Z2 + codim Z1. (3.4)

Since μ2 ∧ μ1 has support in Z2 ∩ Z1 it follows from the dimension principle that
μ2 ∧ μ1 = 0 if codim (Z2 ∩ Z1) > codim Z2 + codim Z1.

Proposition 3.4 Assume that Z2 and Z1 intersect properly. With the notation above,

μ2 ∧ μ1 = μ1 ∧ μ2, (3.5)

and the product is independent of the choice of good potentials in the definition.

We have already noticed that μ2 ∧ μ1 has support on Z2 ∩ Z1.
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Proof We claim that

∂̄(u2 ∧ u1) = −u2 ∧ μ1 + u1 ∧ μ2. (3.6)

In fact, ∂̄(u2 ∧ u1) = 0 in the Zariski open set Zc
1 ∩ Zc

2, and so

1Zc
1∩Zc

2
∂̄(u2 ∧ u1) = 0.

Recall that κ j = codim Z j . The current T := 1Z1∩Z2 ∂̄(u2∧u1) has bidegree (∗, κ2+κ1−1),
and by the assumption of proper intersection it has support on a set of codimension≥ κ2+κ1.
Thus T vanishes by the dimension principle. In view of (3.1) and the equality

1 = 1Zc
1
+ 1Zc

2
− 1Zc

1∩Zc
2
+ 1Z1∩Z2 (3.7)

now (3.6) follows. If we apply ∂̄ to (3.6) we get (3.5), cf. (3.2).
From the very definition of μ2 ∧ μ1 it is clear that it does not depend on the potential u1.

In view of (3.5) it does not depend on u2. ��
The product μ2 ∧ μ1 is Q-bilinear in the following sense. If μ2 = aμ′

2 + bμ′′
2, where μ′

2
and μ′′

2 have good potentials and intersect μ1 properly and a, b ∈ Q, then

aμ′
2 ∧ μ1 + bμ′′

2 ∧ μ1 = μ2 ∧ μ1. (3.8)

Sinceμ2 ∧μ1 = μ1 ∧μ2 the roles ofμ2 andμ1 can be interchanged. To see (3.8), let u′
2 and

u′′
2 be good potentials of μ′

2 and μ′′
2, respectively, and let ũ2 = au′

2 + bu′′
2. Then ∂̄ ũ2 = μ2

but ũ2 is not necessarily a good potential of μ2. However, the proof of Proposition 3.4 goes
through with u2 replaced by ũ2 and Z2 replaced by |μ′

2| ∪ |μ′′
2|. It follows that

∂̄(ũ2 ∧ μ1) = μ1 ∧ μ2,

from which we see that (3.8) holds.

Remark 3.5 With similar techniques as in the proof of Proposition 3.4 one can prove that
μ2 ∧μ1 is d-closed. However, unfortunately we cannot show, in general, that μ2 ∧μ1 is (the
Lelong current of) a cycle.

Example 3.6 Assume that f = ( f1, . . . , fκ2) is a regular sequence at x ∈ Y and letμ2 = M f
κ2 ,

cf. Example 2.6. In view of Sect. 2.2, m f
κ2 is a good potential of μ2. If μ1 is a cycle which

has a local good potential, then

μ2 ∧ μ1 = M f
κ2

∧ μ1, (3.9)

where the right-hand side is defined in Sect. 2.2. To see this, recall that m f
κ2 ∧ μ1, defined as

in Sect. 2.2, is the unique pseudomeromorphic extension to Y of the natural product of m f
κ2

and μ1 in Zc
2 such that 1Z2m

f
κ2 ∧ μ1 = 0. Therefore m f

κ2 ∧ μ1 is the product of the good

potential m f
κ2 and μ1. Now (3.9) follows by (3.2) and (2.14).

For degree reasons, cycles in Y of codimension 0 cannot have good potentials. Such a
cycle is a linear combination of the irreducible components of Y . If μ1 = aY , a ∈ Q, and
μ2 is a cycle with a good potential u2, then we define u2 ∧ μ1 := au2 and μ2 ∧ μ1 := aμ2,
which is consistent with (3.2). If μ1 is any other cycle of codimension 0, then we do not give
any meaning to μ2 ∧ μ1.
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Remark 3.7 Onecan extend the approach in this section tomore than two factors. Ifu1, . . . , ur
are good potentials of cycles μ1, . . . , μr , respectively, with |μ j | = Z j , then ur ∧ · · · ∧ u1,
a priori defined in ∩ j Zc

j , has a unique pseudomeromorphic extension to Y whose restriction
to ∪ j Z j vanishes. One can then recursively define

ur ∧ · · · ∧ u	+1 ∧ μ	 ∧ · · · ∧ μ1 := ±1∩r
	+1Z

c
j
∂̄(ur ∧ · · · ∧ u	 ∧ μ	−1 ∧ · · · ∧ μ1)

for 	 = 1, 2, . . .. We say thatμ1, . . . , μr intersect properly if, for any permutation j1, . . . , jr
of 1, . . . , r , all successive intersections

Z j2 ∩ Z j1 , Z j3 ∩ (Z j2 ∩ Z j1), Z j4 ∩ (Z j3 ∩ Z j2 ∩ Z j1), . . .

are proper in the sense of (3.4). If this is the case, then μr ∧ · · · ∧ μ1 is independent of the
ordering of the factors and choice of good potentials, has support in ∩r

1Z j , and is d-closed.
Since this extension is not needed in this paper we omit the details.

4 Proper intersections when Y is smooth

We shall now use the approach in the previous section in the case when Y is smooth, and see
that we get back the classical proper intersection product.

Lemma 4.1 If Y is smooth, then any cycle μ in Y admits, locally, a good ∂̄-potential.

Proof It is sufficient to show the lemma when Y is an open subset of Cn . Let U � Y be
pseudoconvex and let ρ be a smooth cutoff function in Y that is 1 in U . Let mη

n be the
Bochner–Martinelli kernel in Cn × Cn , see Example 2.8. By (2.17) applied to ρμ we get
that

μ = ∂̄u′ + (p1)∗
(
mη

n ∧ (1 ⊗ ∂̄ρ ∧ μ)
)

(4.1)

inU , where u′ = (p1)∗(mη
n∧(1⊗ρμ)). Since p1 is a simple projection, u′ is pseudomeromor-

phic. Notice that u′ and the last term in (4.1) are the convolutions of the Bochner-Martinelli
form in Cn by ρμ and ∂̄ρ ∧ μ, respectively. Hence they are smooth where ρμ and ∂̄ρ ∧ μ,
respectively, are smooth. In U thus u′ is smooth outside |μ| and the last term in (4.1) is
smooth. Moreover, the last term in (4.1) is clearly ∂̄-closed in U and so it is ∂̄u′′ for some
smooth form u′′ there. We conclude that u′ + u′′ is a good potential of μ in U . ��

We can thus use the approach in Sect. 3 and obtain a commutative current productμ2∧μ1

for any cycles μ1, μ2 that intersect properly, and it has support on |μ2| ∩ |μ1|.
Proposition 4.2 If μ1 and μ2 are any cycles in Y that intersect properly, with supports Z1

and Z2, respectively, then μ2 ∧ μ1 is (the Lelong current of) a cycle μ2 · μ1 with support on
Z1 ∩ Z2. Moreover, if i : Y → Y × Y is the diagonal embedding and � = i∗Y , then

i∗(μ2 ∧ μ1) = i∗(μ2 · μ1) = [�] · (μ2 ⊗ μ1). (4.2)

Proof The proposition is local so we may assume that Y is an open subset of Cn . In view of
(3.8) and Lemma 4.1 we can also assume that μ j = |μ j | = Z j . Let u2 be a good potential
of μ2. We first claim that

u2 ∧ μ1 = p∗
(
Mη

n ∧ (u2 ⊗ μ1)
)
, (4.3)

where p : Y × Y → Y is the projection on the first factor.
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Notice that u2 ⊗ 1 is smooth in Zc
2 ×Y . Therefore, by (2.12), (2.16), and (2.1), in Zc

2 ×Y
we have

Mη
n ∧ (u2 ⊗ μ1) = (u2 ⊗ 1) ∧ Mη

n ∧ (1 ⊗ μ1) = (u2 ⊗ 1) ∧ i∗μ1 = i∗(u2 ∧ μ1).

Since p ◦ i = idY , (4.3) holds in Zc
2. Now Mη

n ∧ (u2 ⊗ μ1) has support in � ∩ (Y × Z1).
Thus, its restriction to Z2 × Y has support in � ∩ (Z2 × Z1) and hence it vanishes in view
of the dimension principle. By (2.7) thus,

1Z2 p∗
(
Mη

n ∧ (u2 ⊗ μ1)
) = p∗

(
1Z2×Y M

η
n ∧ (u2 ⊗ μ1

) = 0.

Since also 1Z2u2 ∧ μ1 = 0, cf. (3.1), it follows that (4.3) holds in Y .
Applying ∂̄ to (4.3) and using (2.15) we get

μ2 ∧ μ1 = p∗
(
Mη

n ∧ (μ2 ⊗ μ1)
)
. (4.4)

To see that this is a cycle, notice that if ι : μ2 ×μ1 → Y ×Y is the inclusion, then by (2.13),
Mη

n ∧ (μ2 ⊗ μ1) = ι∗M ι∗η
n . By King’s formula, cf. [5], it follows that M ι∗η

n , and hence
Mη

n ∧ (μ2 ⊗ μ1), are cycles. Since Mη
n ∧ (μ2 ⊗ μ1) has support in � � Y there is a cycle

μ in Y such that

i∗μ = Mη
n ∧ (μ2 ⊗ μ1). (4.5)

Thus, by (4.4), μ2 ∧ μ1 = p∗i∗μ = μ is a cycle.
For the last statement, notice that mη

n is a good potential of [�] in view of Example 3.6.
Thus, cf. Example 3.6,

Mη
n ∧ (μ2 ⊗ μ1) = [�] ∧ (μ2 ⊗ μ1). (4.6)

Since this is a cycle we write the right-hand side as [�] · (μ2 ⊗ μ1). Now (4.2) follows from
(4.4), (4.5), and (4.6). ��
Remark 4.3 If Y is singular, then the diagonal � ⊂ Y × Y is not a regular embedding, i.e.,
defined by a locally complete intersection. The proof of Proposition 4.2 then breaks down
because if η (locally) defines �, then mη

n is not ∂̄-closed outside � and thus not a good
potential of �; cf. Example 8.10 below.

4.1 Comparison to Chirka’s approach

In [12] the product of two properly intersecting cycles μ1 and μ2 can be obtained as follows,
see the theorem in [12, Ch. 3, §16.2, p. 212]. We denote it here by μ2 � μ1 to distinguish
it from our product. If με

2 is a regularization of μ2 obtained by any standard approximate
identity, then

lim
ε→0

με
2 ∧ μ1 = μ2 � μ1. (4.7)

Proposition 4.4 If μ1 and μ2 intersect properly in the manifold Y , then μ2 �μ1 = μ2 ∧μ1.

Proof The statement can be checked locally so we can assume that Y is an open subset of
Cn . Let φ(ζ ) = ∂̄χ(|ζ |2) ∧ mζ

n , where χ ′ ≥ 0, and let χε(ζ ) = χ(|ζ |2/ε). Then φ(ζ ) is a
positive (n, n)-form and

φε(ζ ) := φ(ζ/
√

ε) = ∂̄χε(ζ ) ∧ mζ
n (4.8)
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is an approximate identity (considered as an (n, n)-form) in Cn . If p : Y × Y → Y is the
projection on the second factor and η = ζ − z, then

με
2 := p∗(φε(η) ∧ (μ2 ⊗ 1)) (4.9)

is the convolution of μ2 and φε . By (4.7) thus limε→0 με
2 ∧ μ1 = μ2 � μ1. The proposition

now follows from the next lemma. ��
Lemma 4.5 We have limε→0 με

2 ∧ μ1 = μ2 ∧ μ1.

Proof This can be checked locally so let U � Y be pseudoconvex and let ρ be a smooth
cutoff function in Y that is 1 in a neighborhood of U . In view of (4.9) and (4.8), if ε > 0 is
sufficiently small, then in U we have

με
2 = p∗

(
φε(η) ∧ (ρμ2 ⊗ 1)

)

= ∂̄ p∗
(
χε(η)mη

n ∧ (ρμ2 ⊗ 1)
) + p∗

(
χε(η)mη

n ∧ (∂̄ρ ∧ μ2 ⊗ 1)
)
.

The last term on the right-hand side is independent of ε > 0 in U if ε is sufficiently small.
As in the proof of Lemma 4.1 it follows that

με
2 = ∂̄(u′

ε + u′′),

where u′
ε = p∗

(
χε(η)mη

n ∧ (ρμ2 ⊗ 1)
)
and u′′ is smooth in U . By (2.10),

lim
ε→0

χε(η)mη
n ∧ (ρμ2 ⊗ 1) = mη

n ∧ (ρμ2 ⊗ 1)

is pseudomeromorphic, and since p is a simple projection,

u′ := lim
ε→0

u′
ε = p∗

(
mη

n ∧ (ρμ2 ⊗ 1)
)

is pseudomeromorphic. Moreover, u′ is smooth outside |μ2|, and we notice that the conver-
gence u′

ε → u′ is locally uniform in U \ |μ2|. Thus u := u′ + u′′ is a good potential of μ2

in U .
We claim that u ∧ μ1 = limε→0(u′

ε + u′′) ∧ μ1, where the left-hand side is the product
in Sect. 3. Taking the claim for granted the lemma follows since

με
2 ∧ μ1 = ∂̄(u′

ε + u′′) ∧ μ1 = ∂̄
(
(u′

ε + u′′) ∧ μ1
) → ∂̄(u ∧ μ1) = μ2 ∧ μ1.

To show the claim, notice first that by standard distribution theory,

u′
ε ∧ μ1 = p∗

(
χε(η)mη

n ∧ (ρμ2 ⊗ μ1)
)
.

Then limε→0 u′
ε ∧ μ1 = p∗

(
mη

n ∧ (ρμ2 ⊗ μ1)
)
is pseudomeromorphic, has support in

|μ1|, and is equal to u′ ∧ μ1 in U \ |μ2| since u′
ε → u′ locally uniformly there. Hence

T := limε→0(u′
ε + u′′) ∧ μ1 is pseudomeromorphic, has support in |μ1|, and T = u ∧ μ1

in U \ |μ2|. Since μ2 and μ1 intersect properly thus the claim follows by the dimension
principle; cf. the comment after (3.1). ��

4.2 Comparison to the algebraic definition in [15]

The intersection product in [15] of two cycles μ1 and μ2, that we here denote by μ2 • μ1,
is defined by the intersection of the diagonal � ⊂ Y × Y and the product cycle μ2 × μ1.
In view of Proposition 4.2, to see that the intersection product in [15] in the case of proper
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intersections coincides with our product it thus suffices to see that if μ ⊂ Y is an irreducible
subvariety and A ⊂ Y is a submanifold intersecting μ properly, then A • μ = [A] ∧ μ.

Assume that codim A = κ and dimμ = d . In general, if A and μ do not necessarily
intersect properly, then A • μ is a Chow class of dimension d − κ in the set-theoretic
intersection A ∩ μ. If A and μ intersect properly, then dim A ∩ μ = d − κ and this Chow
class is the zeroth Segre class of the subspace A ∩ μ of μ, s0(A ∩ μ,μ), which is a cycle
with support A ∩ μ. If ι : μ → Y and j : A ∩ μ → μ are the inclusions, then as cycles in Y
we have

A • μ = ι∗ j∗s0(A ∩ μ,μ).

Let f = ( f1, . . . , fκ ) be a tuple defining A (locally) in Y . By Example 2.6 and (2.14)
then m f

κ is a good potential of [A]. In view of (2.14) and (2.13) thus

[A] ∧ μ = ∂̄(m f
κ ∧ μ) = M f

κ ∧ μ = ι∗M ι∗ f
κ .

It follows from [3, Proposition 1.5] that M ι∗ f
κ = j∗s0(A∩μ,μ) and hence [A]∧μ = A •μ.

5 Proper intersection of nice cycles

To begin with, assume that Y is a complex manifold and let i : Y → Y ′ be a local embedding
into a complex manifold Y ′. Letμ1, . . . , μr be germs of effective cycles in Y at a point x and
letμ′

j be effective cycles in Y
′ intersecting i∗Y properly and such that i∗μ j = μ′

j ·Y ′ i∗Y . For
instance one can takeμ′

j as follows. Let (x, y) be coordinates in Y
′ such that i∗Y = {y = 0}.

Possibly after shrinking Y ′ and Y , we have Y ′ = i∗Y × U for some neighborhood U of
0 in some Cd and we can take μ′

j = i∗μ j × U . For any choice of such μ′
j we have that

μ′
1, . . . , μ

′
r , i∗Y intersect properly in Y ′ if and only if μ1, . . . , μr intersect properly in Y , cf.

Lemma 5.4 below. In this case,

i∗(μ1 ·Y · · ·Y μr ) = μ′
1 ·Y ′ · · ·Y ′ μ′

r ·Y ′ i∗Y . (5.1)

We can thus relate proper intersections in Y to proper intersections in a larger smooth ambient
space. This is the idea for defining proper intersections when Y is singular and motivates the
definition of nice cycles.

Definition 5.1 Let Y be a reduced analytic space of pure dimension n. A germ of a cycle μ

at x ∈ Y is nice if there is a local embedding i : Y → Y ′, where Y ′ is smooth, and a germ of
an effective pure-dimensional cycle μ′ at i(x) ∈ Y ′ intersecting i∗Y properly, such that

i∗μ = μ′ ·Y ′ i∗Y . (5.2)

We say that μ′ is a representative of μ in Y ′ at i(x). Since the intersection μ′ ·Y ′ i∗Y is
proper it follows that

codim Yμ = codim Y ′μ′. (5.3)

Since μ and μ′ are effective we have that

|i∗μ| = |μ′| ∩ i∗Y . (5.4)

Moreover, if μ = μ1 + μ2, where μ j are effective, then |μ| = |μ1| ∪ |μ2|. Neither this
last statement nor (5.4) holds if the assumptions on effectivity are dropped, not even if Y is
smooth.
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A cycle μ in Y is nice if the germ of μ at x is nice for all x ∈ Y . From the definition we
see that a Q+-linear combination of nice cycles is nice.

Example 5.2 The germ of Y at any point x ∈ Y is nice since there is a local embedding
i : Y → Y ′ of a neighborhood of x into some open Y ′ ⊂ CN and i∗Y = Y ′ ·Y ′ i∗Y . Since
aY ′, a ∈ Q+, are the only effective cycles in Y ′ of codimension 0, the only nice cycles in
Y at x of codimension 0 are aY . In particular, if Y has several irreducible components at x ,
then neither of these are nice.

Example 5.3 Let Y = {z2 = w3} ⊂ C2 and let p = 0. Then Y ·C2 {w = 0} = 2p and
Y ·C2 {z = 0} = 3p. Considering p as a cycle in Y thus (1/2){w = 0} and (1/3){z = 0} are
representatives of p in C2.

Lemma 5.4 Ifμ1, . . . , μr are germs of nice cycles at x ∈ Y of pure codimensions κ1, . . . , κr ,
respectively, then

codim
(|μ1| ∩ · · · ∩ |μr |

) ≤ κ1 + · · · + κr . (5.5)

Let μ′
j be representatives of μ j in the same Y ′. Then equality holds in (5.5) if and only if

μ′
1, . . . , μ

′
r , i∗Y intersect properly.

Proof Notice first that if A ⊂ Y , then

codim A + codim Y ′ i∗Y = codim Y ′ i∗A. (5.6)

In view of (5.4), i∗
(|μ1| ∩ · · · ∩ |μr |

) = |μ′
1| ∩ · · · ∩ |μ′

r | ∩ i∗Y . By (1.1) in Y ′ and (5.6) thus

codim
(|μ1| ∩ · · · ∩ |μr |

) + codim Y ′ i∗Y = codim Y ′ i∗
(|μ1| ∩ · · · ∩ |μr |

)

= codim Y ′(|μ′
1| ∩ · · · ∩ |μ′

r | ∩ i∗Y ) ≤ codim Y ′ |μ′
1| + · · · + codim Y ′ |μ′

1| + codim Y ′ i∗Y .

In view of (5.6) and (5.3) both (5.5) and the last statement of the lemma follow. ��
Lemma 5.5 Let μ be a germ of a nice cycle in Y at x and let j : Y → Y ′

m be a minimal
embedding of a neighborhood of x. Then there is a representative of μ in Y ′

m.

Proof By definition there is an embedding i : Y → Y ′ and a representative μ′ of μ in Y ′.
Since j is aminimal embedding there is an embedding ι : Y ′

m → Y ′ such that the composition

Y
j−→ Y ′

m
ι−→ Y ′ (5.7)

is the embedding i . By choosing suitable local coordinates in Y ′, and possibly shrinking Y ′
and Y ′

m , we can assume that Y ′ = ι∗Y ′
m ×U for some open U in some Cd .

We claim that μ′, i∗Y × U , and ι∗Y ′
m intersect properly in Y ′. This follows since by

definitionμ′ and i∗Y intersect properly inY ′, and sincewe clearly have the proper intersection

(i∗Y ×U ) ·Y ′ ι∗Y ′
m = i∗Y . (5.8)

By Lemma 2.9 thus all pairs of μ′, i∗Y ×U , ι∗Y ′
m intersect properly. Let

μ′
m := μ′ ·Y ′ ι∗Y ′

m .

Then μ′ is a representative of μ′
m , and in view of (5.8), i∗Y ×U is a representative of j∗Y in

Y ′. By Lemma 5.4 thus μ′
m and j∗Y intersect properly in Y ′

m . From (5.1) and (5.8) we now
get

ι∗(μ′
m ·Y ′

m
j∗Y ) = μ′ ·Y ′ (i∗Y ×U ) ·Y ′ ι∗Y ′

m = μ′ ·Y ′ i∗Y = i∗μ = ι∗ j∗μ.

Since ι∗ is injective thus j∗μ = μ′
m · j∗Y , i.e., μ′

m is a representative of μ in Y ′
m . ��
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We can thus assume that i : Y → Y ′ is a minimal embedding in Definition 5.1. By
uniqueness of minimal embeddings it follows that if μ1, . . . , μr are nice cycles in Y at x ,
then all of them have representatives μ′

j in the same (minimal) Y ′. Moreover, if μ is a nice
cycle at x and i : Y → Y ′ is any local embedding, then there is a representative μ′ of μ in
Y ′. Indeed, using the notation of the above proof, if ν′ is a representative of μ in Y ′

m we can
take μ′ = ι∗ν′ ×U .

We say that germsμ1, . . . , μr of pure-dimensional nice cycles at x ∈ Y intersect properly
if equality holds in (5.5). It follows that if μ1, . . . , μr intersect properly, then each subset of
them do as well, cf. (the proof of) Lemma 2.9. Notice that if i : Y → Y ′ is a local embedding
and μ′

j are representatives of μ j in Y ′, then by Lemma 5.4, μ j intersect properly if and only
if μ′

1, . . . , μ
′
r , i∗Y intersect properly.

Proposition 5.6 Assume that μ1, . . . , μr are germs of nice cycles at x ∈ Y that intersect
properly. Then there is a unique germ of a nice cycle μ1 · · · μr at x such that if i : Y → Y ′
is a local embedding and μ′

j are representatives of μ j in Y ′, then

i∗(μ1 · · · μr ) = μ′
1 ·Y ′ · · · μ′

r ·Y ′ i∗Y . (5.9)

Proof The uniqueness is clear since i∗ is injective. To show existence we take (5.9) for one
fixed local embedding i as the definition of μ1 · · · μr and show that it is independent of
representatives μ′

j and i .
If we have other representatives μ′′

j in Y ′ for μ j , then μ′′
j ·Y ′ i∗Y = μ′

j ·Y ′ i∗Y and
hence, by commutativity of proper intersections in a smooth space, μ′′

1 ·Y ′ · · · μ′′
r ·Y ′ i∗Y =

μ′
1 ·Y ′ · · · μ′

r ·Y ′ i∗Y .
Let j : Y → Y ′

m be a minimal embedding and factorize i as in (5.7). As in the proof
of Lemma 5.5 we get representatives μ′

m, j of μ j in Y ′
m . With the notation in that proof

we have ι∗(μ′
m,1 · · · μ′

m,r · j∗Y ) = μ′
1 · · · μ′

r · i∗Y = i∗(μ1 · · · μr ). Since i∗ = ι∗ j∗
thus μ′

m,1 · · · μ′
m,r · j∗Y = j∗(μ1 · · · μr ). By uniqueness of minimal embeddings and the

independence of representatives it follows that μ1 · · · μr is independent of the embedding.
Clearly, μ′

1 ·Y ′ · · · μ′
r is a representative of μ1 · · · μr in Y ′ and so μ1 · · · μr is nice. ��

In view of Lemma 5.5 and Proposition 5.6 the following definition makes sense.

Definition 5.7 The proper intersection product of properly intersecting germs of nice cycles
μ1, . . . , μr in Y at x is the nice cycle μ1 · · · μr such that (5.9) holds.

The product μ1 · · · μr is commutative since the proper intersection product in Y ′ is.
Moreover, μ1 · · · μr is Q+-linear in each factor in the sense that if, for some j , μ j =
aν1 + bν2, where a, b ∈ Q+ and ν1 and ν2 are nice, then

μ1 · · · μr = aμ1 · · · ν1 · · · μr + bμ1 · · · ν2 · · · μr . (5.10)

Notice that both ν1 and ν2 intersect μ1, . . . , μ j−1, μ j+1, . . . , μr properly since |μ j | =
|ν1| ∪ |ν2|.

Example 5.8 Assume that p is a point in Y . By the local parametrization theorem, Y is locally
embedded as a branched cover in a neighborhood of 0 in CN = Cn × CN−n . It follows that
p ∈ Y is the proper intersection of Y and z1 = · · · = zn = 0 in CN . Hence {p} is a nice
cycle in Y .
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Example 5.9 Let Y = {x1x2 + x3x4 = 0} in C4. Then the analytic sets μ1 = {x1 = x3 = 0}
and μ2 = {x2 = x4 = 0} both have codimension 1 in Y but their set-theoretic intersection is
just the point 0, which has codimension 3. In view of Lemma 5.5 not both of them, and by
symmetry thus none of them, is nice.

Here is an example of an irreducible Y and a nice cycle of positive codimension whose
irreducible components are not nice, cf. Example 5.2.

Example 5.10 Let Y be as in Example 5.9; it is irreducible. The subvariety {x ∈ Y ; x1 = 0}
is certainly nice and it has the two irreducible components μ1 = {x1 = 0, x3 = 0} and
{x1 = 0, x4 = 0}. It follows from Example 5.9 that none of them is nice.

Proposition 5.11 Assume that i : Y → Y ′ is a local embedding and Y ′ is smooth. If μ′ is a
representative of the nice cycle μ in Y ′ and u′ is a good potential ofμ′, then there is a unique
good potential u of μ such that u = i∗u′ in Y\|μ|.
Proof The uniqueness is clear in view of the dimension principle. By Lemma 4.1, i∗Y has a
good potential in Y ′ and from Sect. 3 it follows that u′ ∧ i∗Y , a priori defined in Y ′ \ |μ′|, has a
unique pseudomeromorphic extension to Y ′ such that 1|μ′|(u′ ∧ i∗Y ) = 0. If χε = χ(| f |2/ε)
and { f = 0} = |μ′|, then by (3.3) we have

χεu
′ ∧ i∗Y → u′ ∧ i∗Y . (5.11)

Let ξ be any smooth form in Y ′ such that i∗ξ = 0. Then clearly ξ ∧ χεu′ ∧ i∗Y = 0 for
ε > 0. By (5.11) therefore ξ ∧ u′ ∧ i∗Y = 0. This means that there is a (unique) current u in
Y such that i∗u = u′ ∧ i∗Y ; cf. Sect. 2. We claim that

1i∗Ysing (u
′ ∧ i∗Y ) = 0. (5.12)

Taking this claim for granted for the moment we can complete the proof. Since u′ ∧ i∗Y is
pseudomeromorphic and in addition (5.12) holds, it follows from [2, Theorem 1.1] that u is
pseudomeromorphic in Y .

Moreover, in view of (3.1) and Sect. 4.1 or 4.2,

i∗∂̄u = ∂̄i∗u = ∂̄(u′ ∧ i∗Y ) = μ′ ∧ i∗Y = μ′ · i∗Y = i∗μ

so that ∂̄u = μ. In Y ′\|μ′|, where u′ is smooth, we have i∗i∗u′ = u′ ∧ i∗Y . Thus u = i∗u′
in Y \ |μ| and is smooth there.

To show the claim, notice first that 1|μ′|1i∗Ysing (u′ ∧ i∗Y ) = 0 in view of (2.5) since
1|μ′|(u′ ∧ i∗Y ) = 0. Moreover, u is smooth in Y ′ \ |μ′| and so, by (2.6), 1i∗Ysing (u′ ∧ i∗Y ) =
u′ ∧ 1i∗Ysing i∗Y = 0 there. It follows that 1Y ′\|μ′|1i∗Ysing (u′ ∧ i∗Y ) = 0. Hence,

1i∗Ysing (u
′ ∧ i∗Y ) = 1|μ′|1i∗Ysing (u′ ∧ i∗Y ) + 1Y ′\|μ′|1i∗Ysing (u′ ∧ i∗Y ) = 0

concluding the proof. ��
From Lemma 4.1 we know that μ′ has a good potential in Y ′ and hence we have

Corollary 5.12 If μ is a nice cycle in Y , then μ locally has a good potential.

Wewill now prove Theorem 1.1, which says that the extrinsic Definition 5.7 of the proper
intersection product coincides with intrinsic ∂̄-potential-theoretic definition (3.2).
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Proof of Theorem 1.1 Statement (i) follows fromCorollary 5.12. For the first part of statement
(ii), notice that u2 ∧ μ1 is canonically defined outside |μ2| ∩ |μ1| since u2 is smooth outside
|μ2| and μ1 = 0 outside |μ1|. Let T be the right-hand side of (3.1). Notice that T is a
pseudomeromorphic current equal to u2 ∧ μ1 outside |μ2| ∩ |μ1| and of the same bidegree
as u2 ∧ μ1. Since μ1 and μ2 intersect properly it follows from the dimension principle that
1|μ2|∩|μ1|T = 0. The first part of (ii) thus follows.

To prove (1.3), let i : Y → Y ′ be a local embedding, μ′
j representatives of μ j in Y ′, u′

2 a
good potential of μ′

2, and u2 the good potential of μ2 such that i∗u′
2 = u2 outside |μ2|; cf.

Proposition 5.11. By Lemma 5.4, μ′
1, μ

′
2, and i∗Y intersect properly, and by Lemma 2.9 any

subset intersect properly too. We claim that

i∗(u2 ∧ μ1) = u′
2 ∧ (μ′

1 · i∗Y ). (5.13)

Indeed, it holds outside |μ′
2| since there

u′
2 ∧ (μ′

1 · i∗Y ) = u′
2 ∧ i∗μ1 = i∗(i∗u′

2 ∧ μ1) = i∗(u2 ∧ μ1).

Moreover, both sides of (5.13) have support in |μ′
1| ∩ i∗Y . Thus (5.13) holds outside |μ′

2| ∩
|μ′

1| ∩ i∗Y . Since μ′
2, μ

′
1, and i∗Y intersect properly it follows from the dimension principle

that (5.13) holds in Y ′.
In view of (3.2) and Sect. 4.1 or 4.2 we now get

i∗(μ2 ∧ μ1) = i∗∂̄(u2 ∧ μ1) = ∂̄i∗(u2 ∧ μ1) = ∂̄(u′
2 ∧ (μ′

1 · i∗Y )) = μ′
2 ∧ (μ′

1 · i∗Y )

= μ′
2 · μ′

1 · i∗Y = i∗(μ2 · μ1),

and so the proof is finished. ��

Remark 5.13 Notice that goodness of ∂̄-potentials is a regularity assumption that is crucial
in the intrinsic definition of the proper intersection product. In order to use ddc-potentials
for such a construction, again one would need some regularity assumption. One idea is to
assume the ddc-potential to have singularities of logarithmic type along the cycle, as is done
by Gillet and Soulé in [16] to define their ∗-product of properly intersecting cycles. As long
as Y is smooth any cycle has such a ddc-potential, but we do not know if this is true for, say,
nice cycles on a singular space.

Remark 5.14 From Sect. 3, the product μ2 ∧ μ1 is defined assuming only that μ j have good
∂̄-potentials, and it is commutative and d-closed if μ1 and μ2 intersect properly. But unless
μ j are nice we do not know if μ2 ∧ μ1 is (the Lelong current of) a cycle. However, we have
no example of a cycle in Y that is not nice but has a good ∂̄-potential.

6 RE-cycles

Let Y be a reduced analytic space of pure dimension n, and J ⊂ OY a locally complete
intersection ideal sheaf with zero set Z and codimension κ . Let π : Ỹ → Y be the normal-
ization of the blowup along J , let D be the exceptional divisor, and L the corresponding line
bundle. It is well-known, see, e.g., [15, Ch. 1 and 4], that if Y is smooth, then the (Lelong
current of the) fundamental cycle μJ of J satisfies

μJ = π∗
([D] ∧ ĉ1(L

∗)κ−1), (6.1)
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where ĉ1(L∗) is the first Chern form of L∗ with respect to some arbitrary Hermitian metric.
If Y is not smooth we take (6.1) as the definition of the fundamental cycle of J . It is well-
known that (6.1) is independent of the choice of metric on L; it follows for instance from the
dimension principle since Chern forms of different metrics in particular are ∂̄-cohomologous.
It is also well-known that (6.1) is an effective integral cycle, cf., e.g., Example 6.1 below.

The sheaf J being a locally complete intersection precisely means that the analytic sub-
space of Y with structure sheafOY /J is a regular embedding. We say that a cycle μ in Y is a
regular embedding cycle, an RE-cycle, ifμ is a locally finite sum

∑
k νkμJk , where νk ∈ Q+

and Jk are locally complete intersection ideals.

Example 6.1 Assume that f = ( f1, . . . , fκ ) is a tuple of holomorphic functions generating
J so that f is a regular sequence at each x ∈ Z , or more generally, f is a section of a
Hermitian vector bundle of rank κ such that f generates J . By [3, Proposition 1.5] then
M f

κ = μJ . It follows, see [5, Theorem 1.1], that μJ is an effective integral cycle. Notice
also that ∂̄m f

κ = 0 outside Z( f ) so that, cf. (2.14), m f
κ is a good potential of μJ .

In case κ = 1 this can be made more explicit. In this case, if Y is normal, then the
fundamental cycleμJ is the divisor, div f , of f . If Y is not normal, thenμJ = π∗(divπ∗ f ),
where π : Ỹ → Y is the normalization, and we take μJ as the definition of div f . Notice that
m f

1 = ∂ log | f |2/2π i is a good potential of div f .

If the tuple f generates J it is sometimes convenient to write μ f rather than μJ .

Example 6.2 Any point in Y is an RE-cycle in view of Example 5.8.

Proposition 6.3 If J is a complete intersection ideal at x, then μJ is a nice cycle.

Proof Assume that f = ( f1, . . . , fκ ) is a minimal generating tuple for J at x so that
M f

κ = μJ . Let i : Y → Y ′ be an embedding and let F = (F1, . . . , Fκ ) be a tuple of
holomorphic functions at i(x) ∈ Y ′ such that f = i∗F . Since {F = 0} ∩ i∗Y = i∗{ f = 0}
has codimension κ + codimY ′Y it follows from (1.1) that codim {F = 0} = κ . Hence, F
defines a regular embedding at i(x) and μF = MF

κ intersects i∗Y properly in Y ′. Since
f = i∗F it follows from (2.13) that i∗M f

κ = MF
κ ∧ i∗Y . By Example 3.6 and Lemma 4.1

thus

i∗μJ = i∗M f
κ = MF

κ ∧ i∗Y = MF
κ ·Y ′ i∗Y = μF ·Y ′ i∗Y . (6.2)

We conclude that μJ is a nice cycle in Y . ��
Let us illustrate the connection between the intrinsic fundamental cycle μJ and the

representing fundamental cycle μF in Y ′ given by (6.2) with the following example.

Example 6.4 Let Y = {z2 = w3} ⊂ C2
z,w , i : Y → C2 the inclusion, and p = 0 ∈ Y ; cf.

Example 5.3. Then π : C → Y , π(t) = (t3, t2), is the normalization and, cf. Example 6.1,

div(z|Y ) = π∗div t3 = 3p, div(w|Y ) = π∗div t2 = 2p.

Thus, 3p and 2p are the fundamental cycles of the regular embeddings defined by 〈z|Y 〉 and
〈w|Y 〉, respectively. From the extrinsic viewpoint, the fundamental cycles div z = {z = 0}
and divw = {w = 0} are representatives in C2 of 3p and 2p, respectively, since {z =
0} · i∗Y = 3p and {w = 0} · i∗Y = 2p.

Proposition 6.5 If J and J̃ define properly intersecting regular embeddings, then J + J̃
defines a regular embedding and μJ+J̃ = μJ · μJ̃ .
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Proof If Y is smooth this is well-known and follows from, e.g., [15]; cf. also Remark 6.7
below. The general case can be reduced to that case as follows. As in the proof of Propo-
sition 6.3, choose minimal tuples f and f̃ generating J and J̃ , respectively, at x , a local
embedding i : Y → Y ′, and F and F̃ in Y ′ such that f = i∗F and f̃ = i∗ F̃ . Then F and F̃
define regular embeddings and by (6.2), i∗μJ = μF · i∗Y and i∗μJ̃ = μF̃ · i∗Y .

Since μJ and μJ̃ intersect properly it follows that ( f , f̃ ), which generates J + J̃ , is a
regular sequence and that μF , μF̃ , i∗Y intersect properly; cf. Lemma 5.4. In particular, μF

and μF̃ intersect properly in the smooth space Y ′ and so, in view of (5.9) and (2.13),

i∗(μJ · μJ̃ ) = μF · μF̃ · i∗Y = μF,F̃ · i∗Y = MF,F̃
κ+κ̃

∧ i∗Y = i∗(M f , f̃
κ+κ̃

) = i∗μJ+J̃ ,

where κ and κ ′ are the codimensions of J and J ′, respectively. This finishes the proof. ��
By Q+-linearity, cf. (5.10), we have

Corollary 6.6 Any RE-cycle in Y is nice, and if μ1 and μ2 are RE-cycles that intersect
properly, then μ1 · μ2 is an RE-cycle.

Remark 6.7 If f and f̃ are minimal tuples that defines J and J̃ , respectively, then
Proposition 6.5 says that ( f , f̃ ) is a regular sequence and

M f , f̃
κ+κ̃

= M f
κ ∧ M f̃

κ̃
, (6.3)

where κ and κ ′ are the codimensions of J and J ′, respectively. This may have independent
interest. If Y is smooth, then (6.3) is known and follows from, e.g., [5, Eq. (7.6)].

Example 6.8 (Q-Cartier divisors) Assume that Y is normal. A cycle μ in Y is a Q-Cartier
divisor if locally there is a meromorphic function f = g/h and a positive integer q such that
qμ = div f := divg − divh. If μ is effective it follows that f is holomorphic on Yreg , and
therefore holomorphic on Y by normality. Thus effective Q-Cartier divisors are RE-cycles.
Assume that μ1 and μ2 are effective Q-Cartier divisors that intersect properly and suppose
that div f j = q jμ j , j = 1, 2, for some q j ∈ Z+. Then

μ2 · μ1 = μ2 ∧ μ1 = 1

q1q2
div f2 ∧ div f1. (6.4)

7 Global intersection formulas

We begin with the proof of Theorem 1.3.

Proof of Theorem 1.3 By assumption, μ1, . . . , μk intersect properly and we let νk =
μk · · · μ1, k = 1, . . . , r . We inductively define currents Ak of bidegree (κ1 + · · · + κk, κ1 +
· · · + κk − 1) such that

∂̄Ak = νk − αk ∧ · · · ∧ α1. (7.1)

Let A1 = a1. Assume now that Ak is found. We then define

Ak+1 := ak+1 ∧ νk + Ak ∧ αk+1.

The second product is not problematic since αk+1 is smooth. We claim that the first product,
a priori defined outside |μk+1|, has a unique pseudomeromorphic extension to Y , denoted
by ak+1 ∧ νk as well, and that

∂̄(ak+1 ∧ νk) = μk+1 ∧ νk − αk+1 ∧ νk . (7.2)
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Taking the claim for granted for the moment, using that ∂̄αk+1 = 0 and (7.1) we get

∂̄Ak+1 = (μk+1 − αk+1) ∧ νk + (νk − αk ∧ · · · ∧ α1) ∧ αk+1

= μk+1 ∧ νk − αk+1 ∧ · · · ∧ α1.

Hence, Ak+1 has the desired properties. For degree reasons,

d(Ar ∧ ωn−κ ) = ∂̄(Ar ∧ ωn−κ ) = νr ∧ ωn−κ − αr ∧ · · · ∧ α1 ∧ ωn−κ

and thus (1.5) follows by Stokes’ theorem.
It remains to show the claim. The uniqueness is clear in view of the dimension principle

since μ1, . . . , μk+1 intersect properly. For the existence it is thus sufficient to check that
ak+1 ∧ νk can be extended across |μk+1| locally in Y . Let γ be a local smooth ∂̄-potential of
αk+1. Then

ak+1 = ak+1 + γ − γ =: uk+1 − γ,

and in view of (1.4) thus uk+1 is a local good potential of μk+1. Therefore,

uk+1 ∧ νk − γ ∧ νk (7.3)

is defined in view of Sect. 3 and is a local pseudomeromorphic extension of ak+1 ∧ νk across
|μk+1|. Checking (7.2) is also a local problem. We can thus replace ak+1 ∧ νk by (7.3) and
then (7.2) follows by (3.2). This finishes the proof of the claim and Theorem 1.3. ��

In the rest of this section, given a nice cycle μ in Y , we consider two cases where there
are a and α as in Theorem 1.3; cf. (1.4).

Proposition 7.1 Suppose that Y is compact and letμ be a nice cycle in Y of pure codimension
κ . Assume that there is a global embedding i : Y → Y ′ into a compact Kähler manifold Y ′
and an effective cycleμ′ in Y ′ intersecting i∗Y properly such that i∗μ = μ′ ·Y ′ i∗Y . Then there
is a pseudomeromorphic current a in Y , smooth in Y \ |μ|, and a smooth closed (κ, κ)-form
α such that ∂̄a = μ − α. Moreover, α locally has smooth ∂̄-potentials.

Proof By [16, Theorem 1.3.5], there is a smooth form α′ in Y ′ and a ddc-potential v′ such
that

ddcv′ = μ′ − α′,

v′ is smooth inY ′\|μ′| and has singularities of logarithmic type along |μ′|. This latter property
means the following: There is a proper surjective mapping p : Y ′′ → Y ′ and a current v′′
in Y ′′ such that v′ = p∗v′′, v′′ is smooth in Y ′′ \ p−1|μ′|, and in suitable local coordinates
s = (s1, . . . , sN ′′) in Y ′′,

v′′ = c1 log |s1|2 + · · · + ck log |sk |2 + b,

where c j are smooth closed forms and b is a smooth form.
Notice that a′ := ∂v′/2π i is smooth in Y ′\|μ′| and ∂̄a′ = μ′ − α′. We claim that, in

addition, a′ is pseudomeromorphic in Y ′. In fact, a′ = p∗a′′ where a′′ := ∂v′′/2π i locally
has the form

c1 ∧ ds1
2π is1

+ · · · + ck ∧ dsk
2π isk

+ ∂b/2π i .

Thus a′′ is pseudomeromorphic in Y ′′ and it follows from [7, Corollary 2.16] that a′ is
pseudomeromorphic in Y ′.

Let α := i∗α′. As in the proof of Proposition 5.11 it follows that there is a unique
pseudomeromorphic current a in Y such that a = i∗a′ in Y\|μ|. To see that α and a have
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the desired properties, let γ ′ be a local smooth ∂̄-potential of α′. Then i∗γ ′ is a local smooth
∂̄-potential of α. Moreover, u′ := a′ + γ ′ is a local good potential of μ′. By Proposition 5.11
there is a (unique) local good potential u of μ such that u = i∗u′ outside |μ|. Thus u − i∗γ ′
is pseudomeromorphic and equal to i∗a′ outside |μ|. Hence, a = u − i∗γ ′ locally, and it
follows that ∂̄a = μ − α. ��

The assumptions in Proposition 7.1 are rather restrictive since in general one cannot expect
that μ has a global representative in a smooth ambient space. We will now give an intrinsic
condition on μ ensuring that there are a and α as in Theorem 1.3; see Proposition 7.5 below.
The proof of Proposition 7.5 is based on the following generalization of the Poincaré–Lelong
formula. It is precisely Theorem 1.1 in [1], but since the formula in [1] is formulated only
when Y is smooth, we give a proof here.

Proposition 7.2 Let Y be a reduced pure-dimensional analytic space and let σ be a holo-
morphic section of a Hermitian vector bundle E → Y (of any rank) such that the zero set
Z = Z(σ ) has codimension κ > 0. Let S denote the trivial line bundle over Y \ Z so that

0 → S
σ→ E → Q → 0

is exact in Y \ Z. If S and Q are equipped with the induced Hermitian metrics, then the
associated Chern forms c(S) and c(Q) have (unique) locally integrable closed extensions
C(S) and C(Q) to Y . Moreover, log |σ |2 · C(Q) is locally integrable, ddc(log |σ |2 · C(Q))

has order 0, and there is a real locally integrable form W such that

ddcW = MQ,σ − c(E) + C(Q), (7.4)

where

MQ,σ = 1Zddc(log |σ |2 · C(Q)). (7.5)

Moreover,

MQ,σ
κ = Mσ

κ . (7.6)

Proof Let π : X → Y be a modification such that X is smooth and the ideal generated by
π∗σ is principal, cf. the proof of Lemma 2.5. Then π∗σ = σ 0σ ′, where σ 0 is a section of
a line bundle L → X defining a divisor D and σ ′ is a non-vanishing section of π∗E ⊗ L∗.
We then have the exact sequence

0 → L
σ ′−→ π∗E −→ Q′ → 0.

Equip L and Q′ with the induced metrics and notice that |σ 0|L = |σ 0σ ′| = |π∗σ |. Outside
π−1(Z) we thus have:

(a) π∗S σ 0−→ L is an isomorphism of Hermitian line bundles,

(b) the mapping π∗S π∗σ−→ π∗E factorizes as π∗S σ 0−→ L
σ ′−→ π∗E .

By (a) we get that c(S) = π∗c(π∗S) = π∗c(L) outside Z , and thus C(S) := π∗c(L) is a
locally integrable closed extension of c(S). From (b) it follows that, outside Z , π∗Q = Q′
as Hermitian bundles. As with c(S) we see that C(Q) := π∗c(Q′) is a locally integrable
closed extension of c(Q). Since log |σ |2 · c(Q) = π∗(log |π∗σ |2 · c(Q′)) outside Z and
log |π∗σ |2 ·c(Q′) is locally integrable in X it follows that log |σ |2 ·c(Q) is locally integrable
in Y . Moreover, since ddc log |π∗σ |2 has order 0 and c(Q′) is smooth and closed it follows
that ddc(log |σ |2 · C(Q)) = π∗ddc(log |π∗σ |2 · c(Q′)) has order 0.
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By [11] there is a smooth form v in X such that

ddcv = c(π∗E) − c(L) ∧ c(Q′). (7.7)

Moreover, by the Poincaré–Lelong formula on X ,

ddc log |π∗σ |2 = ddc log |σ 0|2L = [D] − c1(L). (7.8)

If

w := log |π∗σ |2c(Q′) − v, (7.9)

then a simple calculation gives

ddcw = [D] ∧ c(Q′) − c(π∗E) + c(Q′). (7.10)

Since log |σ |2 · c(S) is locally integrable, in view of (2.7) and (7.8) we have

MQ,σ = π∗
(
1π−1Zdd

c(log |π∗σ |2 · c(Q′))
) = π∗

(
1|D|([D] − c1(L)) ∧ c(Q′)

)

= π∗([D] ∧ c(Q′)). (7.11)

Thus we get (7.4) with W := π∗w after applying π∗ to (7.10).
To see (7.6) notice that (7.7) gives

c(Q′) = s(L) ∧ c(π∗E) − ddc(s(L) ∧ v),

where3 s(L) := 1/c(L) = ∑∞
k=1(−c1(L))k−1. Hence,

MQ,σ = π∗
([D] ∧ c(Q′)

) = π∗
([D] ∧ s(L) ∧ c(π∗E)

) − ddcπ∗
([D] ∧ s(L) ∧ v

)
.

(7.12)

On the other hand, by Lemma 2.5 and (2.8),

Mσ =
∑

k≥1

Mσ
k =

∑

k≥1

1Z ∂̄mσ
k =

∑

k≥1

π∗

(

1|D|∂̄
(

∂ log |σ 0|2L
2π i

∧ (−c1(L))k−1

))

= π∗
(
1|D|([D] − c1(L)) ∧ s(L)

) = π∗
([D] ∧ s(L)

)
.

In view of (7.12) it thus follows that

MQ,σ = c(E) ∧ Mσ + ddcγ, (7.13)

where γ = −π∗([D] ∧ s(L) ∧ v). Clearly, γ has support in Z , and since π is a modification
γ is pseudomeromorphic. Taking the component of (7.13) of bidegree (κ, κ) we obtain (7.6)
since Mσ

k = 0 for k < κ and the component of bidegree (κ − 1, κ − 1) of γ vanishes by the
dimension principle. ��
Remark 7.3 If κ = 1 = rank E , then (7.4) is the Poincaré–Lelong formula, albeit the
underlying space is possibly non-normal; cf. Example 6.1 and [3, Proposition 2.1].

Corollary 7.4 If A = ∂W/2π i , then A is pseudomeromorphic, smooth outside Z, and

∂̄A = d A = MQ,σ − c(E) + C(Q). (7.14)

3 s(L) is the total Segre form of L .
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Proof Notice that W = π∗w, cf. (7.9). Thus, 2π i A is π∗ of

∂|π∗σ |2
|π∗σ |2 ∧ c(Q′) − ∂v = ∂|σ 0|2

|σ 0|2 ∧ c(Q′) − ∂v

and hence pseudomeromorphic sinceπ is a modification and v is smooth. Now (7.14) follows
from (7.4). ��
Proposition 7.5 Assume that μJ is the fundamental cycle of a locally complete intersection
idealJ of codimension κ generated by a global holomorphic section σ of a Hermitian vector
bundle E → Y of rank κ . Then there is a pseudomeromorphic current a in Y , smooth in
Y \ |μJ |, such that

∂̄a = da = μJ − cκ (E). (7.15)

Proof With the notation above, let a = Aκ,κ−1. Then a is pseudomeromorphic and smooth
outside |μJ |. By [3, Proposition 1.5], μJ = Mσ

κ , and since rank Q = κ − 1 we have
Cκ (Q) = 0. Taking the component of bidegree (κ, κ) of (7.14) thus (7.15) follows from
(7.6). ��

If μ = ∑
	 q	μJ	

, q	 ∈ Q+, is an RE-cycle where each μJ	
is as in the proposition,

then by Q+-linearity, cf. (5.10), we get a pseudomeromorphic a and a smooth α such that
∂̄a = μ − α and α locally has smooth ∂̄-potentials.

8 Examples

Example 8.1 If Y is smooth and μ is any cycle, then the proper intersection of μ and Y is μ,
since μ is the intersection of � and μ × Y in Y × Y .

In case Y is singular this holds if μ is a nice cycle; recall from Example 5.2 that Y is nice.
To see this, let i : Y → Y ′ be a local embedding into a smooth Y ′ and letμ′ be a representative
of μ in Y ′. Since Y ′ is a representative of Y in Y ′ we have i∗(μ · Y ) = μ′ ·Y ′ Y ′ ·Y ′ i∗Y =
μ′ ·Y ′ i∗Y = i∗μ by (5.9), and thus μ · Y = μ. One can also choose a good potential u of μ

and notice that μ · Y = ∂̄(u ∧ 1) = ∂̄u = μ; cf. (3.2).

Example 8.2 Assume that μ1 and μ2 are nice in Y and intersect properly. Moreover, assume
that μ1 = |μ1| =: Z , let ι : Z → Y be the inclusion, and let τ be the cycle in Z such that
ι∗τ = μ2 · Z . We first claim that τ is nice.

Let i : Y → Y ′ be a local embedding and let μ′
2 and Z ′ be representatives of μ2 and Z ,

respectively, in Y ′. Sinceμ2 and Z intersect properly,μ′
2, Z

′, i∗Y intersect properly. We have

(i ◦ ι)∗τ = i∗(μ2 · Z) = μ′
2 ·Y ′ Z ′ ·Y ′ i∗Y = μ′

2 ·Y ′ i∗Z = μ′
2 ·Y ′ (i ◦ ι)∗Z ,

where we in the second last equality consider Z as a cycle in Y , and in the last equality as a
cycle in Z . Hence, μ′

2 is a representative of τ in Y ′ and so τ is nice.
Let us also notice that if u′

2 is a local good potential of μ′
2, then by Proposition 5.11 there

is a unique local good potential u of τ such that u = ι∗i∗u′
2 outside |τ |. In particular, if

μ2 = μ f is the fundamental cycle of a locally complete intersection ideal of codimension κ

generated by a holomorphic κ-tuple f , then mι∗ f
κ is a good potential of τ ; cf. Example 6.1

and the proof of Proposition 6.3. In this case thus τ is the fundamental cycle μι∗ f and

μ f · Z = ι∗μι∗ f . (8.1)

123



On proper intersections on a singular... Page 25 of 31    23 

Example 8.3 Let Y = {xy − z2 = 0} ⊂ P3[x0,x,y,z] and let i : Y → P3 be the inclusion. Then
Y has an isolated singular point p = [1, 0, 0, 0]; the so-called A1-singularity. Consider the
lines

L1 = {[x0, x, y, z]; x = z = 0}, L2 = {[x0, x, y, z]; y = z = 0}.
It is straightforward to check that the sections σ1 = i∗x and σ2 = i∗y of i∗O(1) vanish to
order 2 on L1\{0} and L2\{0}, respectively. Thus, divσ1 = 2L1 and divσ2 = 2L2, so L1 and
L2 are 1/2-Cartier divisors. Let ι : L1 → Y be the inclusion. Noticing that ι∗σ2 = y|L1 , by
(8.1) we have that

2L2 · L1 = ι∗divι∗σ2 = [p], (8.2)

and so L2 · L1 = (1/2)[p].
To see that L2 · L1 = (1/2)[p] one can also use Theorem 1.3 as follows.

Example 8.4 We keep the notation from Example 8.3 and let ω be the Fubini–Study metric
form on P3. By the Poincaré–Lelong formula we have ddc log |σ j |2 = divσ j − i∗ω, and by
Theorem 1.3 thus ∫

Y
2L2 · 2L1 =

∫

Y
divσ2 ∧ divσ1 =

∫

Y
ω2.

Now,
∫
Y ω2 = 2 since Y has degree 2, and hence

∫
Y L2 · L1 = 1/2. Since |L2 · L1| = {p} it

follows that L2 · L2 = (1/2)[p].
We remark that there is nothing special about the lines L1 and L2. In fact, the set of pairs

of lines in Y through p (including double lines) is in one-to-one correspondence with the set
of divisors, containing p, of sections of i∗O(1).

The next example shows that (5.4) does not hold in general if the representative μ′ of μ

in Definition 5.1 is not effective.

Example 8.5 We continue to keep the notation of Example 8.3 and let σ3 = i∗z. Then
{σ3 = 0} = L1∪L2 and σ3 vanishes to order 1 along L1∪L2 \{0}. Hence, div σ3 = L1+L2.
Since div σ2 = 2L2 thus div σ3 − (1/2)div σ2 = L1. It follows that μ′ := div z − (1/2)div y
is a “representative” of L1 in C3 such that |μ′| ∩ Y = L1 ∪ L2 strictly contains L1.

Example 8.6 Let Z1 and Z2 be two 2-dimensional planes in C4. Clearly, Z j are fundamental
cycles of complete intersection ideals so the cycle Z1 + Z2 is an RE-cycle. However, if Z1

and Z2 intersect properly, so that Z1 ∩ Z2 is just a point p, then no multiple of Z1 + Z2 is the
fundamental cycle of a complete intersection. This follows from Hartshorne’s connectedness
theorem, which says that a set-theoretic complete intersection is connected in codimension
1. Since Z1 ∪ Z2 is 2-dimensional and becomes disconnected by removing p thus Z1 ∪ Z2

is not a complete intersection.
If Z1 and Z2 do not intersect properly, then Z1+Z2 is the fundamental cycle of a complete

intersection ideal. This is clear since then either Z1 = Z2 or Z1 ∩ Z2 is a line.

Here is an example of a singular Y where similar phenomena occur.

Example 8.7 Let f : C4
z → C10

w be the mapping

f (z) = (zα1 , . . . , zα10) = (w1, . . . , w10),

where zα j are the monomials in C4 of degree 2. Let Y = f (C4) and let i : Y → C10 be the
inclusion. The differential of f is injective outside 0 so Y is smooth outside 0 = f (0). One
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can check that f is 2 : 1 outside 0, and using, e.g., [3, (6.1)] that the multiplicity of Y at 0 is
8. In particular, 0 ∈ Y is a singular point.

Let Z̃1 = {z1 = z2 = 0} ⊂ C4 and Z1 = f (Z̃1). Choose the monomials zα j so that
zα1 = z21 and zα2 = z22. Then, since f∗1 = 2, by (2.13) and Remark 6.7 we have

2Mi∗w1,i∗w2
2 = f∗(M

z21,z
2
2

2 ) = f∗(M
z21
1 ∧ M

z22
1 ) = f∗(2[z1 = 0] ∧ 2[z2 = 0])

= 4 f∗ Z̃1 = 8Z1. (8.3)

Hence, 4Z1 is the fundamental cycle of 〈i∗w1, i∗w2〉, so Z1 is in particular an RE-cycle.
If Z̃2 is another 2-dimensional linear subspace of C4, then in the same way Z2 := f (Z̃2)

is an RE-cycle, and hence Z1 + Z2 is an RE-cycle. If Z̃2 intersects Z̃1 properly, then Z̃1 ∪ Z̃2

is not a complete intersection; cf. Example 8.6. In this case, since f −1(Z1 ∪ Z2) = Z̃1 ∪ Z̃2,
it follows that no multiple of Z1 + Z2 is the fundamental cycle of a complete intersection
ideal. If, on the other hand, Z̃2 and Z̃1 do not intersect properly, then a multiple of Z1 + Z2 is
the fundamental cycle of a complete intersection ideal. For instance, if Z̃2 = {z2 = z3 = 0}
and w3 = zα3 = z1z3, then in a similar way as in (8.3),

Mi∗w2,i∗w3
2 = 2(Z1 + Z2).

In the next example we will see that one can give a meaning to the intersection J · μ,
where J generates a regular embedding and μ is any cycle such that codim Z(J ) ∩ |μ| =
codim Z(J ) + codim |μ|.
Example 8.8 Let J be a locally complete intersection ideal sheaf on Y of codimension κ and
let μ be a cycle in Y such that codim Z(J ) ∩ |μ| = κ + codim |μ|. Let f = ( f1, . . . , fκ ) be
a holomorphic tuple locally generating J . We claim that

J · μ := M f
κ ∧ μ,

cf. Sect. 2.2, is the Lelong current of a cycle with support Z(J ) ∩ |μ| that only depends on
the integral closure class of J .

To see this, assume first that μ is an irreducible subvariety and let ι : μ → Y be the

inclusion. Then, by (2.13) we have M f
κ ∧μ = ι∗M ι∗ f

κ . Since Z(J ) and μ intersect properly
it follows that ι∗ f is a regular sequence at all points where ι∗ f = 0. In view of Example 6.1

thus M ι∗ f
κ is a cycle in μ and we conclude that M f

κ ∧ μ is a cycle in Y . Moreover, in view

of [5, Remark 4.1], M ι∗ f
κ only depends on the integral closure class of 〈ι∗ f 〉. The claim now

follows for an arbitrary μ by linearity.

If μ in Example 8.8 has a good potential, e.g., is a nice cycle, then in view of Sect. 3,
J ·μ = μJ ∧μ = μ∧μJ . Thus, in this case, J ·μ only depends on the fundamental cycle
μJ of J . We will see in the following example that in general, even for a principal ideal J ,
J · μ depends on (the integral closure class of) J and not only on its fundamental cycle.

Example 8.9 Let Y = {(x, y, z) ∈ C3; xy = 0} and let, for positive integers p and q , f p,q
be the restriction to Y of x p + yq . Let π : Y ′ → Y be the normalization and notice that Y ′
is the disjoint union of Y ′

1 � {y = 0} and Y ′
2 � {x = 0}. We have that, cf. Example 6.1,

div f p,q = π∗divπ∗ f p,q = π∗(divx p|Y ′
1
+ divyq |Y ′

2
) = (p + q)[Z ],

where Z = {x = y = 0}. Thus, (p+ q)[Z ] is the fundamental cycle of the ideal Jp,q ⊂ OY

generated by f p,q , and so [Z ] is an RE-cycle. Notice that Jp,q and Jp′,q ′ have the same
fundamental cycle if p + q = p′ + q ′.
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Let [W ] = {y = z = 0} and let ι : W → Y be the inclusion. Then, cf. Example 8.8,

Jp,q · [W ] = div f p,q ∧ [W ] = ι∗divι∗ f p,q = ι∗div(x p|W ) = p[0].
Since J1,2 and J2,1 have the same fundamental cycle it follows that the product defined in
Example 8.8 does not only depend on the fundamental cycle of J . We notice also that [W ]
cannot have a good potential; in particular it cannot be an RE-cycle, or even a nice cycle.
Indeed, if it had, then Jp,q · [W ] would only depend on the fundamental cycle of Jp,q in
view of the discussion just before this example.

Assume that Y has pure dimension n, let ι : Y → Y × Y be the diagonal embedding and
η a tuple of holomorphic functions defining � = ι∗Y in Y × Y . In view of Example 2.6 we
have Mη

n = [�]. By (2.12) thus

Mη
n ∧ (α ⊗ β) = ι∗(α ∧ β) (8.4)

ifα andβ are smooth forms. Ifα andβ are good ∂̄-potentials u j of cyclesμ j , thenweused that
(8.4) holds outside |μ1|× |μ2| to define the product u1∧u2; see the proof of Proposition 3.2.
Moreover, if α and β are generically smooth and have certain mild singularities, then the
left-hand side of (8.4) can be used to give a reasonable meaning to the product α ∧ β, see,
e.g., [18]. However, contrary to the case when Y is smooth, if α and β are cycles, then the
left-hand side of (8.4) cannot in general be used to give a reasonable definition of α ∧ β for
singular Y as the following example shows.

Example 8.10 Let Y and p be as in Example 8.3, but here considered in C3
x,y,z so that

p = (0, 0, 0). By Example 6.2, [p] is an RE-cycle. Let ι : Y → Y × Y be the diagonal
embedding and η the restriction to Y × Y of (x − x ′, y − y′, z − z′) so that η defines the
diagonal ι∗Y . We claim that

Mη
2 ∧ (Y ⊗ [p]) = 2ι∗[p]. (8.5)

Using the left-hand side as a definition of a proper intersection product of Y and [p] would
thus not be in agreement with Example 8.1.

To see (8.5), consider the generically 2 : 1 mapping

π : C2 → Y ; (u, v) �→ (u2, v2, uv).

and let g be the mapping Y → Y × Y , ξ �→ (ξ, p). Since g∗1 = Y ⊗ [p] and π∗1 = 2, by
(2.13) we have that

Mη
2 ∧ (Y ⊗ [p]) = g∗Mg∗η

2 = g∗Mx,y,z
2 = 1

2
g∗π∗Mu2,v2,uv

2 . (8.6)

The ideal (u2, v2, uv) has the same integral closure as the regular sequence (u2, v2) and
hence, cf. [5, Remark 4.1],

Mu2,v2,uv
2 = Mu2,v2

2 = 4[0]. (8.7)

Since π∗[0] = [p] thus (8.5) follows from (8.6) and (8.7).

9 The case when Y is nearly smooth

Recently, in [8], Barlet and Magnússon introduced a class of analytic spaces called nearly
smooth. An analytic space Y is nearly smooth if it is normal and if for each y ∈ Y there is a
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neighborhood U of y, a connected complex manifold Ỹ , and a proper holomorphic surjective
finite mapping q : Ỹ → U . Such a mapping q is called a local model. The number of points
of q−1(y) for generic y ∈ Y is constant and denoted by deg q .

Recall that if μJ is the fundamental cycle of a locally complete intersection ideal J of
codimension κ generated by a tuple f = ( f1, . . . , fκ ), then μJ = M f

κ ; cf. Example 6.1.

Lemma 9.1 Suppose that f j = ( f j,1, . . . , f j,κ j ), j = 1, 2, are holomorphic tuples such that

codim f −1
j (0) = κ j and that the corresponding fundamental cycles μ j = M

f j
κ j intersect

properly. If q : Ỹ → Y is a local model, then M
q∗ f j
κ j are properly intersecting fundamental

cycles and

μ2 · μ1 = 1

deg q
q∗(Mq∗ f2

κ2
∧ Mq∗ f1

κ1
).

Proof Since q−1(y) is 0-dimensional for all y ∈ Y it follows that M
q∗ f j
κ j are properly

intersecting fundamental cycles of complete intersection ideals.

Since q∗1 = deg q , by (2.13) we have that deg q · M f1
κ1 = q∗Mq∗ f1

κ1 . By (2.13) again thus

deg q · M f2
κ2

∧ M f1
κ1

= q∗
(
Mq∗ f2

κ2
∧ Mq∗ f1

κ1

)
.

The lemma now follows in view of Example 3.6. ��
By [8, Proposition 1.1.5], the inequality (1.1) holds for nearly smooth spaces. For such

spaces proper intersection thus has a clear meaning, and an intersection product μ2 ∩Y μ1

for any two properly intersecting cycles μ1 and μ2 in Y is introduced in [8]. The main result
of this section is the following proposition.

Proposition 9.2 Let Y be nearly smooth and letμ1 andμ2 be properly intersecting RE-cycles
in Y . Then μ2 · μ1 = μ2 ∩Y μ1.

Lemma 9.3 Let f = ( f1, . . . , fκ ) be a holomorphic tuple in Y such that codim f −1(0) = κ .
Then there is a neighborhood S of 0 ∈ Cκ such that

(
M f −s

κ

)
s∈S is an analytic family of

cycles in Y parametrized by S. In particular, lims→0 M
f −s
κ = M f

κ as currents.

The definition of an analytic family of cycles can be found, e.g., in [9, Section 4.3.1]. The
precise definition is not needed in this paper; instead we will recall and use various natural
properties of such families when needed.

Proof Notice first that there is a neighborhood S ⊂ Cκ of 0 such that codim f −1(s) = κ for
all s ∈ S; see, e.g., [9, Proposition 2.4.60].

It is a local problem in Y to show that
(
M f −s

κ

)
s∈S is an analytic family so we can assume

that we have a local model q : Ỹ → Y . As in the proof of Lemma 9.1 we have q∗Mq∗ f −s
κ =

deg q · M f −s
κ and codim (q∗ f )−1(s) = κ , s ∈ S. If

(
Mq∗ f −s

κ

)
s∈S is an analytic family in Ỹ ,

then q∗Mq∗ f −s
κ is an analytic family in Y by [9, Theorem 4.3.22]. Hence, to show the lemma

it suffices to show that
(
Mq∗ f −s

κ

)
s∈S is analytic. We may thus assume that Y is smooth.

Possibly replacing Y by f −1(S) we may also assume that f : Y → S has fibers of constant
codimension κ .

Let G ⊂ Y × S be the graph of f and let Hs := Y × {s} ⊂ Y × S. Then G and Hs

intersect properly and Xs := G · Hs is after the identification Hs � Y a cycle in Y . In view
of [10, Ch. VII, Proposition 1.5.1], (Xs)s∈S is an analytic family of cycles in Y .
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Let F(x, s) = f (x) − s. By Example 2.6 we have MF
κ = [G]. Fix an arbitrary s0 ∈ S

and let i : Y → Y × S be the embedding x �→ (x, s0) so that i∗1 = Hs0 . In view of Sect. 4.1
and Sect. 4.2, and (2.13),

i∗Xs0 = G · Hs0 = MF
κ ∧ i∗1 = i∗Mi∗F

κ = i∗M f −s0
κ .

Hence, Xs0 = M f −s0
κ and it follows that (M f −s

κ )s∈S is an analytic family. The last statement
of the lemma follows from [9, Proposition 4.2.17]. ��

If q : Ỹ → Y is a local model and μ is a cycle in Y , then there is a natural pullback cycle
q∗μ in Ỹ , see [8, Section 2.1]. We have the following corollary of Lemma 9.3.

Corollary 9.4 Let f = ( f1, . . . , fκ ) be as in Lemma 9.3, let q : Ỹ → Y be a local model,

and let μ = M f
κ . Then q∗μ = Mq∗ f

κ .

Proof Let Ṽ = {x ∈ Ỹ ; rankx q < dim Y } and V = q(Ṽ ). Then, since q is proper and
surjective, Ṽ and V are nowhere dense analytic subsets of Ỹ and Y , respectively.

By [8, Section 2.1], q∗ has the following two properties. First, if Z is a cycle with no
component contained in V ∪ Ysing and Z = |Z |, then

q∗Z = q−1|Z |. (9.1)

Second, if (μs)s∈S is an analytic family of cycles in Y , then (q∗μs)s∈S is an analytic family
of cycles in Ỹ .

Let now μs := M f −s
κ and μ̃s := (Mq∗ f −s

κ )s∈S , where S is as in Lemma 9.3. By that
lemma, (μs)s∈S and (μ̃s)s∈S are analytic families of cycles in Y and Ỹ , respectively. We
claim that

q∗μs = μ̃s (9.2)

for all s ∈ S, from which the corollary follows. To show the claim it suffices to check that
(9.2) holds for generic s in S since both q∗μs and μ̃s are analytic, in particular continuous,
in s. Let Ã = {x ∈ Ỹ ; rankx f ◦ q < κ} and A = q( Ã). Then Ã and A are nowhere dense
analytic subsets of Ỹ and Y , respectively.

For generic s, by, e.g., [9,Corollary 2.4.61],μs has no component contained in A∪V∪Ysing
and μ̃s has no component contained in Ã. Fix such an s. Outside A ∪ V ∪ Ysing , f has
constant rank κ and so { f = s} is a submanifold and f − s generates its radical ideal there.
By Example 2.6 thus

μs = |μs | (9.3)

outside A ∪ V ∪ Ysing . Since μs has no component contained in A ∪ V ∪ Ysing it follows
that (9.3) holds in Y . In the same way it follows that μ̃s = |μ̃s |. Since μs in particular has
no component contained in V ∪ Ysing it now follows from (9.1) that

q∗μs = q−1|μs | = q−1{ f = s} = { f ◦ q = s} = |μ̃s | = μ̃s

and the claim and the corollary are proved. ��
Proof of Proposition 9.2 This is a local statement so after shrinking Y we may assume that

there is a local model q : Ỹ → Y . Moreover, by linearity we can assume that μ j = M
f j
κ j for

holomorphic tuples f j = ( f j1, . . . , f jκ j ) such that codim f −1
j (0) = κ j .
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The pullback cycles q∗μ j intersect properly in Ỹ and, by [8, Theorem 3.1.5],

μ2 ∩Y μ1 = 1

deg q
q∗(q∗μ2 · q∗μ1), (9.4)

where q∗μ2 ·q∗μ1 is the proper intersection product in Ỹ . By Lemma 9.1 thus the proposition
follows from Corollary 9.4. ��
Remark 9.5 By [8, Proposition 1.1.5], any Weil divisor in a nearly smooth Y is a Q-Cartier
divisor. Effective Weil divisors in Y thus are RE-cycles, see Example 6.8. In view of Exam-
ple 8.1 and since any 0-dimensional cycle is RE by Example 6.2 we thus see that for
2-dimensional nearly smooth spaces the proper intersection product in [8] coincides with
our product for effective cycles.
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